Resource Access Control in the Facebook Model

K. Chronopoulos¹ M. Gouseti¹ A. Kiayias²

¹University of Amsterdam, The Netherlands

²Department of Informatics & Telecommunications University of Athens, Greece

The 12th International Conference on Cryptology and Network Security, 2013

1 Resource Access Control In Social Networks

- Motivation
- Related Work

2 RACS Formal Model

- Protocols
- Properties

3 Faceboo

- Protocols
- Attacks
- How to fix it

1 Resource Access Control In Social Networks

- Motivation
- Related Work

2 RACS Formal Model

- Protocols
- Properties

3 Faceboo

- Protocols
- Attacks
- How to fix it

Owners

Server

Clients

• • • • • • • • • • • •

Owners' Resources

э.

Owners

Server

Clients

• • • • • • • • • • • •

Owners' Resources

∃ →

Owners

Server

Clients

• • • • • • • • • • • •

Owners' Resources

∃ →

Owners

Server

Owners' Resources

Clients

• • • • • • • • • • • •

∃ →

Owners

Server

Owners' Resources

В

Clients

• • • • • • • • • • • •

э.

Owners

Server

Owners' Resources

Clients

1 Resource Access Control In Social Networks

- Motivation
- Related Work

RACS Formal Model

- Protocols
- Properties

3 Faceboo

- Protocols
- Attacks
- How to fix it

Previous work includes:

- Security analysis of OAuth
- Resources access control in social networks
 - Expression access control directives
 - Privacy in a untrusted server setting

Our work:

- Define a formal model of social networks in a trusted server setting
- Analyse its security properties

Resource Access Control In Social Networks

- Motivation
- Related Work

2 RACS Formal Model

- Protocols
- Properties

3 Facebook

- Protocols
- Attacks
- How to fix it

Resource Access Control In Social Networks

- Motivation
- Related Work

2 RACS Formal Model

- Protocols
- Properties

3 Facebook

- Protocols
- Attacks
- How to fix it

Owners:

- Register.
- Authenticate.
- Make connections with other owners.
- Break a connection.
- Authorize clients.
- Use the clients' services.
- Revoke client's authorization.

Clients

- Register.
- Authenticate.
- Access resources.

• • • • • • • • • • • •

イロト イヨト イヨト イヨト

(日) (同) (三) (三)

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

Direct access

When Alice has given the client **user permission** to access her resources.

Access through Bob

When Bob has given the client **friend permission** to access the resources of Alice that are **visible** to him.

• Explicit Revocation

Alice can revoke a client's access by explicitly instructing the server.

Implicit Revocation

The Facebook model suggests that a client's access should be revoked if an owner has not used its services after a certain time period (dt units of time).

If you haven't used an app in a while, it won't be able to continue to update the additional information you've given them permission to access.

- Facebook, Data Use Policy

Resource Access Control In Social Networks

- Motivation
- Related Work

2 RACS Formal Model

- Protocols
- Properties

3 Facebook

- Protocols
- Attacks
- How to fix it

We will use the following notation:

- O, C: unique id that identifies owners and clients respectively.
- f: projection (Dⁿ → D^k) where k ≤ n and D is the space of the owner's resources. Also used as a set of indices.
- oos_ac(), ocs_ac(), ocg_ac(), expt(), r(): server's matrices
- λ : level of security associated with our proposed solutions

Definition

For all $O, O' \neq O, C, f: D^n \rightarrow D^k$ where $k \leq n$, if

$$\begin{pmatrix} (f \subseteq \mathsf{ocs_ac}[O, C]) \land (server_time < \mathsf{expt}[O, C]) \end{pmatrix} \lor \\ \begin{pmatrix} (f \subseteq (\mathsf{ocg_ac}[O', C] \cap \mathsf{oos_ac}[O, O'])) \land (server_time < \mathsf{expt}[O', C]) \end{pmatrix}, \end{cases}$$

then C, by running the "Client Access Resources Protocol", will receive the resources $f(\mathbf{r}[O])$ and the server will record the action access_resources(C, O, f).

Owner Privacy - Explicit Revocation

Definition

For all PPT adversaries A, $Pr[WIN^A] = \frac{1}{2} + negl(\lambda)$, where WIN^A is the event $b = b^*$ while playing the above game.

Owner Privacy - Implicit Revocation

Definition

For all PPT adversaries A, $Pr[WIN^A] = \frac{1}{2} + negl(\lambda)$, where WIN^A is the event $b = b^*$ while playing the above game.

We define a predicate $P(\log_file, dt)$ that is true when the server can justify a resource access, i.e.

- 1 authenticate(O), t_0
- 2 authorize_client $(O, C, f_s, f_g), t_1,$
- (a) any of $\operatorname{authenticate}(O)$ or $\operatorname{use}(O, C), t_2$
- authenticate $(C)t_3$
- access_resources(C, O, f'_s), t_4 where $f'_s \subseteq f_s \land (t_4 t_{1,2}) < dt$

Definition

For all PPT adversaries A, $Pr[P(\log_file, dt) = 0] = negl(\lambda)$, where log_file is a random variable that reflects the log file given the activity of A as described above.

イロト イヨト イヨト イヨト

Resource Access Control In Social Networks

- Motivation
- Related Work

RACS Formal Model

- Protocols
- Properties

Facebook

- Protocols
- Attacks
- How to fix it

Resource Access Control In Social Networks

- Motivation
- Related Work

RACS Formal Model

- Protocols
- Properties

FacebookProtocols

- Attacks
- How to fix it

Client Access Resources Protocol (part 1)

Figure : Only when the protocol is initiated by a user, i.e. Alice, the authorization protocol can be executed.

< ロト < 同ト < ヨト < ヨト

Client Access Resources Protocol (part 2.1)

Direct Access

Figure : C accesses Alice's resources using her access token.

Client Access Resources Protocol (part 2.2)

Indirect Access

Figure : C accesses Alice's resources using Bob's access token.

Resource Access Control In Social Networks

- Motivation
- Related Work

RACS Formal Model

- Protocols
- Properties

Facebook

- Protocols
- Attacks
- How to fix it

Owner Privacy with Implicit Revocation

Figure : C^* can access Alice's photos using Bob's token even if its access has expired.

Owner Privacy with Implicit Revocation

Toing										
Id			Name	Last Used	Allowed To Access	Accessed Info	Activity	Level Of Privacy	Toke	ens
14			Xc	31/10/12, 11:10:45	false	true	Economic	private 🖚		
	X		=- Access Tokens							8
	Туре	Owner	Access Token						Status	Debug
	Short	Xon ili) Record	AAAFdrkkRMKMBAD						invalid	>>
	Long	Xon	AAAFdrkkRMKMBAA						invalid	>>
	Used	Ma	CAAFdrkkRMKMBAI						valid	>>
			1	-		1		1		
1	1		Kc	im 14/10/13, 17:10:37	true	true	Music	private		
1			Ma	14/11/13, 16:11:39	true	true	Acting	public 🦟		
1000	1		S	13/11/12, 11:11:04	false	false	-	private	-	
Sh Access Tokens										8
	Туре	Own	er Acc	ess Token					Status	Debug
	Short	Sime	AAA	FdrkkRMKMBAG					invalid	>>
	Long	S	AAA	FdrkkRMKMBA					invalid	>>
			-					-		
1	-	7	Pop	20/06/13, 22:06:53	false	true	Reading	private	-	
1 Showing 1 to 5 of 5 records										

Server Consistency

Figure : Inconsistency between Facebook's view and reality. Facebook has recorded that the resources were accessed by C while they were accessed by C^*

Resource Access Control In Social Networks

- Motivation
- Related Work

RACS Formal Model

- Protocols
- Properties

Facebook

- Protocols
- Attacks
- How to fix it

• Owner Privacy with Implicit Revocation

When *C* requests Alice's resources using Bob's access token, Facebook should respond with the intersection of Alice's resources that Bob can access and the *friends data permissions* that Bob has given to *C* i.e. $(oos_ac[Alice, Bob] \cap ocg_ac[Bob, C])$.

• Server Consistency

Various ways, Facebook can:

- Support sign in functionality for applications.
- Filter IP address of an access resource request.
- Request that the client signs the token and a random value with its app_secret.

This work was performed while at the National and Kapodistrian University of Athens. Research partly supported by ERC project CODAMODA.