
Performance Evaluation of Virtual Machines in a Service-oriented Grid Testbed

Carlos R. Senna, Luiz F. Bittencourt, and Edmundo R. M. Madeira

Institute of Computing,

University of Campinas - UNICAMP,

P.O. Box 6196, Campinas, São Paulo, Brazil

④crsenna, bit, edmundo⑥@ic.unicamp.br

ABSTRACT

In this paper we analyze the performance of execution of

service workflows in virtual machines (VMs) used as re-

sources in our service-oriented grid testbed (SGT). We cho-

sen an application widely known by computer network re-

searchers and developers to evaluate the testbed: the sim-

ulation of networks using the Network Simulator. We con-

structed workflows which execute several WiMAX network

scenarios in parallel, and we executed them to evaluate

the performance of virtual and physical machines in the

grid. The experiments show that the adequate support to

the parallelism can minimize the consequences of the over-

head introduced by the VMs, allowing the simulation of

several scenarios with execution time as low as one simu-

lation alone would take. We conclude that it is important to

have a VM-aware resource manager to completely explore

the hardware and its VMs.

KEYWORDS: ●r✐�s✱ ❙❡r✈✐✁❡s✱ ❲♦r❦ß♦✇s✱ ❱✐rt✉❛❧
▼❛✁❤✐✂❡s✳

1. INTRODUCTION

Grids are computational networks where heterogeneous re-

sources can be shared. The Open Grid Services Architec-

ture (OGSA) [1] incorporates Internet protocols to achieve

interoperability between heterogeneous resources, allow-

ing the grids to use standards and paradigms from the Ser-

vice Oriented Computing (SOC) [2]. The service-oriented

grid allows users to establish links between services, or-

ganizing them as workflows instead of building only se-

quential applications. Such service compositions require

adequate support to the coordination and dynamic compo-

sition of processes and services, what is not supplied by

current OGSA implementations.

Virtualization [3] presents logical virtualized resources

such as CPUs, physical memory, network connections, and

peripherals in form of Virtual Machines (VM). With this,

each VM can have its own operating system, applications,

and network services. VMs as grid resources can bring

benefits and help in avoiding some restrictions of this en-

vironment. The grid can involve VMs in allocation prob-

lems, where more CPUs than the available ones are needed

to execute a workflow. However, the use of VMs in the

grid brings new management requirements. We are going

to show experiments using our SGT to analyze the perfor-

mance of VMs as computational resources in the grid. The

SGT models VMs as services, as well as the physical re-

sources, and uses them in the service workflows. We con-

structed several service workflows to execute different sim-

ulation scenarios of WiMAX networks using the Network

Simulator 2 (NS2), and we utilize them to evaluate the per-

formance of the VMs in relation to their host machines.

Considering the virtual machine characteristics, our soft-

ware infrastructure with VM-aware scheduling algorithms

can optimize the resources usage in service workflows ex-

ecution, notably in parallel execution scenarios.

The paper is organized as follows. In Section 2 we present

the Grid with our management infrastructure, which is re-

sponsible for the workflow execution in the resources. Sec-

tion 3 describes the experiments with NS2. Experimental

results are shown in section 4, while Section 5 describes

some related works. Section 6 concludes the paper.

2. THE GRID INFRASTRUCTURE

The SGT is composed of computers with a grid software

toolkit and our software infrastructure. To compose the

grid we join physical and virtual machines (VMs). A VM

This is a pre-print version.!

The final version is available at the publisher's website.



is a software implementation of a machine (i.e. a computer)

that executes programs like a physical machine. The VM

implementation adds a software layer to a real machine to

support the desired architecture [3]. The virtualization can

provide a better utilization of powerful and/or underutilized

CPUs, as well as it allows several applications, operating

systems, and software platforms to be used in the same

hardware. This can facilitate the development of software

products to be delivered to many different platforms with

no need to acquire more than one hardware. We use Xen as

virtual machines in our grid testbed.

The grid infrastructure used in our SGT is the Globus

Toolkit (GT) [4], an OGSA implementation [1]. In the

OGSA all resources are modeled as services, bringing to

the environment concepts like SOA [2]. We used the GT

version 4 installed on Debian GNU/Linux operating sys-

tems over a gigabit ethernet network.

The SGT uses seven computational resources. There are

three physical machines, namely Cronos, P✶, and P✷, and

four virtual machines. Over the P✶ physical machine we

build three computational resources: Temis, Helios, and

Persefone. Temis is a “Debian/Linux physical machine”,

while Helios and Persefone are Xen virtual machines in

Temis. In P✷ we used the same schema, with Medusa be-

ing the “physical machine”, and with Eros and Caos be-

ing Xen virtual machines in Medusa. Table 1 summarizes

all computational resources specifications. Every physical

machine is abbreviated with its name’s first letter plus a ✵,

while the virtual machines had their names abbreviated af-

ter their hosts. For instance, Persefone is called ❚✷ because

it is a virtual machine of Temis (❚✵). We use this nam-

ing scheme to facilitate the identification virtual machines

and their hosts. In the testbed, this configuration can be

changed by the inclusion, exclusion, and migration of VMs

among physical machines. Such dynamic characteristic is

tracked by the SGT’s resource monitor.

The OGSA grid allows bindings between services, organiz-

ing them as workflows instead of standalone applications.

To manage workflows execution, the SGT is composed of

a set of services showed in Figure 1. Its main components

are the workflow manager, the scheduler, the deployment

service, the resource monitor, and the repositories.

The workflow manager implements the Grid Process Or-

chestration (GPO) [5]. The service workflows are de-

scribed in GPOL (Grid Process Orchestration Language)

[5] an XML-based language. The GPOL includes some

specific directives needed in a grid environment, such as:

state maintenance, potentially transient services, notifica-

tion, and group oriented services. Additionally, includes

variables, lifecycle, fabric/instance control, flow control,

Figure 1. SGT Software Infrastructure Architecture.

and allows the user to start sequentially or in parallel the

execution of tasks, services, and workflows. The Dynamic

Deployment Service (DAUS) is responsible for the dy-

namic instantiation of services needed to execute the work-

flow. Information about grid resources and current avail-

able services are obtained by the Resource Monitor (RM)

in a distributed manner. The RM performs strategic role by

supplying information which allows the resource manager

to identify bottlenecks and concurrency situations. Such

information is stored in the repositories and is used by the

scheduler in its decision making process. The Scheduler

Service (SS) can use simple algorithms, as distributing the

services according to the number of cores on each resource,

or it can use more complex algorithms [6], which use dy-

namic information provided by grid monitors.

In service-oriented grids with VMs, the scheduler (SS) has

to consider new information, which includes: the overhead

of the virtual machine and consequent impact in the per-

formance when executing workflows; information about

which grid resource hosts which virtual machine(s); perfor-

mance of hosts when the virtual machine(s) hosted by them

are executing workflows; performance of virtual machines

when their hosts are executingworkflows; and performance

of virtual machines executing workflows at the same time

and hosted in the same grid resource. These information

could be added to the objective function optimized by the

scheduler, which can be the minimization of the workflow

execution time, for instance. In the experiments presented

in this paper we quantify these overheads and show how

the concurrency affects the performance. With this, in con-

junction with the information about VMs provided by the

RM, we would have enough information to develop a VM-

aware scheduling algorithm.

3. THE APPLICATION

To analyze the performance of VMs in our testbed we used

the Network Simulator 2 (NS2) [7], a single core appli-

cation which simulates computer networks and generates



Table 1. Computational Resources Specifications.

Name (abbrev.) Processor Cores Clock RAM Disk Is it a VM? (host)

Cronos (❈✵) Intel Core 2 Quad 4 2.4 GHz 4 GB 2x320 GB No

Medusa (▼✵) Intel Xeon E5430 8 2.66 GHz 2 GB 19 GB No

Temis (❚✵) Intel Xeon E5430 8 2.66 GHz 1.3 GB 95 GB No

Helios (❚✶) Intel Xeon E5430 4 2.66 GHz 6.6 GB 390 GB Yes (❚✵)

Persefone (❚✷) Intel Xeon E5430 4 2.66 GHz 6.6 GB 390 GB Yes (❚✵)

Caos (▼✶) Intel Xeon E5430 4 2.66 GHz 6.6 GB 430 GB Yes (▼✵)

Eros (▼✷) Intel Xeon E5430 4 2.66 GHz 6.6 GB 430 GB Yes (▼✵)

traces of network traffic. NS2 is a discrete event simulator

targeted at networking research. NS2 provides substantial

support for simulation of TCP, routing, and multicast proto-

cols over wired and wireless networks. The NS2 architec-

ture is composed of an object oriented simulator in C++ and

an OTcl (Object-oriented Tool Command Language) inter-

preter [7]. OTcl scripts created by the user are executed

by NS, that generates files with the events produced during

the simulation. The oTcl script file describes the network

topology used in the simulation as well as the traffic flows

to be simulated, along with characteristics as bandwidth,

delays, queues, protocols, and simulation time.

Our experiments involve simulations of WiMAX (World-

wide Interoperability for Microwave Access) [8]. In our

simulations we use a WiMAX module based on the IEEE

802.16 [9, 10]. Our base scenario is the communication be-

tween uniformly distributed subscriber stations and a base

station. Using this, we built several others by mixing differ-

ent parameters. For all scenarios we executed simulations

for 20, 40, and 60 seconds 1.

Simulations run in NS2 are characterized by the intensive

use of resources, since each scenario must be simulated

several times until the results converge according to the

characteristics of the simulated network. Therefore, several

CPU hours are usually needed in this kind of simulation.

Another remarkable characteristic is the intensive disk I/O

when traces are stored to be post-processed, which can be

as large as several GB in the disk. In this context, the CPU

availability in the grid makes this environment suitable for

this kind of simulation, while VMs bring new challenges to

the resource management.

4. EXPERIMENTAL RESULTS

To observe the VMs behavior in the grid we made simula-

tions of computer networks with NS2. We built a service

1Note that this simulation time is not related to the real time taken

to the simulation be executed, but it is related to how many seconds of

network traffic in the network is simulated and logged

which runs NS2 simulations with different parameters, be-

ing able to run several scenarios. We aim to evaluate how

hosts and their VMs would behave when the scheduler con-

siders them as separate machines, and what it must consider

to have a better overall performance.

We start our analysis running the application in a traditional

manner, where each scenario is executed in a single CPU.

In a second stage, we go through the use of management

features provided by our grid middleware, constructing ser-

vice workflows which allow the execution of more than

one scenario in parallel. We built workflows in GPOL to

make the parallel execution of these scenarios. The paral-

lelism in the execution brings a significant improvement in

the performance, however not all combination of resources

brought the expected benefits. All results show averages

over ✸✵ executions without other user processes running in

the machines, thus with the resources dedicated to the ex-

periment.

4.1. Performance and Workflow Overhead

First we executed NS2 simulations in the traditional man-

ner. Figure 2(a) shows the time spent in NS2 simulations

with duration between ✷✵s and ✻✵s in the physicalmachines

❚✵ and ❈✵, and in the VMs▼✶, ❚✶,▼✷, and ❚✷. As we

stated before in Section 2, ▼✶ and▼✷ are hosted by the

physical machine▼✵, while ❚✶ and ❚✷ are hosted by ❚✵.

In these simulations we stored only events from the simula-

tion (trace files), and we did not store the detailed execution

file (log file). The results show that the physical machines

are more efficient than VMs. For instance, ❚✶ and ❚✷ have

around ✹�✁ lower performance than ❚✵ (their host, thus

the same hardware) for the ✻✵s simulation.

We executed the same scenarios with service workflows

to check the overhead introduced. The graph of Figure

2(b) shows that the execution of the NS2 simulation us-

ing workflows generates a minimum overhead (✹✁ on av-

erage) when compared to executions in the traditional way

shown in Figure 2(a). Also, we can observe that the execu-

tion using workflows maintains the performance difference

between physical machines and VMs.



 20

 40

 60

 80

 100

 120

 140

 160

 180

604020

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Simulation size (s)

Application execution times - no log

T0/Application
C0/Application
M1/Application
T2/Application
M2/Application
T1/Application

(a)

 20

 40

 60

 80

 100

 120

 140

 160

 180

604020

Simulation size (s)

Workflow execution times - no log

T0/Workflow
C0/Workflow
M1/Workflow
T2/Workflow
M2/Workflow
T1/Workflow

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

604020

Simulation size (s)

Parallel and sequential executions - no log

T0.T0.T0/Parallel
T0.T1.M2/Parallel
T0.T1.T2/Parallel
T1.T2.M2/Parallel

T0.T0.T0/Sequential
T0.T1.M2/Sequential
T0.T1.T2/Sequential
T1.T2.M2/Sequential

(c)

Figure 2. NS2 Application, Workflow, and Parallel Workflow Execution Times.

We now evaluate the performance with the workflow paral-

lelism. Figure 2(c) shows the workflow execution times for

three parallel WiMAX scenarios in ❚✵ (❚✵✳❚ ✵✳❚ ✵); one

scenario in ❚✵, one in ❚✶, and one in ▼✷ (❚✵✳❚✶✳▼✷);

one in ❚✵, one in ❚✶, and one in ❚✷ (❚✵✳❚✶✳❚✷); one

in ❚✶, one in ❚✷, and one in ▼✷ (❚✶✳❚✷✳▼✷). We can

observe that it is possible to execute three scenarios with

nearly the same execution time of a single scenario. The

overhead of the parallelism is around ✽� in the worst

case (❚✵✳❚✵✳❚ ✵ versus ❚✵ in Figure 2(b)), but it can be

as fast as the execution of a single scenario in the VMs

(❚✶✳❚✷✳▼✷ versus▼✷ in Figure 2(b)). If we compare the

sequential execution of the same scenarios using traditional

applications (“Sequential” suffix in Figure 2(c)), workflow

executions are ✷✳✼✁ times faster on average.

In Figure 2(c) we can also observe that using ❚✵ to

execute three scenarios in parallel (❚✵✳❚✵✳❚ ✵/Parallel)

is better than using the VMs (❚✵✳❚✶✳▼✷/Parallel,

❚✵✳❚✶✳❚✷/Parallel, ❚✶✳❚✷✳▼✷/Parallel), even with these

VMs having the same processor and more RAM. On the

other hand, the use of parallel workflows is one manner

of taking advantage of available VMs as computational re-

sources in the grid to speed up the execution of simulations.

The parallel execution in ❚✵✳❚✶✳❚ ✷✴✂❛r❛❧❧❡❧ (❚✵ and its

VMs) is ✶✳✽✄ times faster than the sequential executions

running in ❚✵ alone (❚✵✳❚✵✳❚ ✵✴☎❡q✉❡♥t✐❛❧).

4.2. Log Recording Analysis

In the next experiments we added intensive disk I/O with

simulations storing the detailed log file. Each simulated

scenario generates a log file with ✼✄✵MB (✷✵s simulation)

to 2.6GB (✻✵s simulation). Figure 3(a) shows the results

for the execution of traditional applications with log stor-

age. While executions in ❚✵ are ✷✁� slower than the ones

without log storage (Figure 2(a)), executions in ❈✵ and in

the VMs (❚✶, ❚✷,▼✶, and▼✷) lost around ✶✁� in per-

formance. This can be explained by the amount of RAM

available in ❚✵ (1.3 GB). We observed during the execution

of simulations that, when recording log files, the amount of

needed memory is higher than the available RAM in ❚✵.

Therefore, when installing and configuring VMs in a grid,

one must consider that the lack of RAM left for a fast ma-

chine may compromise its performance.

Results for simulations with workflows storing logs are

shown in Figure 3(b). We can observe the same pattern,

with ❚✵ losing more performance than the others. With

log, in general, ❚✵ was ✸✁� slower on average due to lack

of memory, while resources with more RAM were ✶✆�

slower (❚✶ versus ❚✶ in Figure 2(a), for instance).

Figure 4 compares execution of workflows with and with-

out log recording (Figures 4(a) and 4(b), respectively).

Three scenarios executed in parallel (❚✵✳❚✵✳❚ ✵) for ✷✵s

of simulation was ✁✼� slower with log recording, while

the combination with three VMs (❚✶✳❚✷✳▼✷) was ✶✼�

slower. Even with this performance difference, with log

recording ❚✵ is still faster than its VMs (❚✶✳❚✷✳▼✷) for

✷✵s simulations. For ✄✵s simulations and on, the VMs

jointly are more efficient than ❚✵. For ✷✵s simulations,

❚✵✳❚✵✳❚ ✵ is ✶✻� faster, while for ✄✵s and on, it becomes

around ✶✆� slower. In this scenario, besides the lack of

memory, ❚✵ has also to deal with disk access concurrency.

Thus, the resource manager must be aware of this concur-

rency when sending workflows to execute in parallel.

The observed behavior when executing workflows in par-

allel is important and must be considered by the scheduler.

When receiving a submission with parallel services, the SS

must consider the use of VMs and their characteristics in

the execution instead of only considering that the perfor-

mance of physical machines are better for a single service.

4.3. CPU Stress

After verifying the influence of the disk I/O, now we eval-

uate the behavior when the parallelism is increased and,



 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

604020

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Simulation size (s)

Application execution times - with log

T0/Application
C0/Application
M1/Application
T2/Application
M2/Application
T1/Application

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

604020

Simulation size (s)

Workflow execution times - with log

T0/Workflow
C0/Workflow
M1/Workflow
T2/Workflow
M2/Workflow
T1/Workflow

(b)

Figure 3. NS2 Application and Workflow Execution Times with Log File.

 20

 40

 60

 80

 100

 120

 140

 160

 180

604020

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Simulation size (s)

Parallel execution - no log

T0.T0.T0/Workflow
T0.T1.M2/Workflow
T0.T1.T2/Workflow
T1.T2.M2/Workflow

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

604020

Simulation size (s)

Parallel execution - with log

T0.T0.T0/Workflow
T0.T1.M2/Workflow
T0.T1.T2/Workflow
T1.T2.M2/Workflow

(b)

Figure 4. Parallel Workflow Execution Without Log Versus Parallel Workflow Execution With Log.

consequently, the CPU cores are intensively used. Figure

5(a) shows the execution of workflows that simulate from

✻ to ✶✻ scenarios in parallel. In these simulations we com-

bined: ❚✵, ❚✶, and ❚✷; ❚✵, ❚✶, and▼✷; ❚✶, ❚ ✷, and▼✷;

❈✵, ❚✶, and▼✷; and ❚✶, ❚ ✷,▼✷, and▼✶ (this combina-

tion uses ✹ VMs but it still has only ✷ physical machines).

When we run ✻ scenarios in ✻ CPU cores the performance

is similar in all combinations of machines. When the paral-

lelism increases, thus executing more scenarios in parallel,

the ❚✶✳❚ ✷✳▼✶✳▼✷ combination becomes the best option.

For ✶✻ scenarios in parallel, ❚✶✳❚ ✷✳▼✶✳▼✷ (four virtual

machines) is up to ✽✵� faster than ❚✵✳❚✶✳❚ ✷, for instance.

It is important to observe that the number of real cores is

extrapolated (a CPU runs more processes than the num-

ber of cores available) when the resource manager does not

consider that some machines are VMs. For instance, with

✶✻ processes in parallel, a resource manager not aware of

the VMs may select the combination ❚✵✳❚✶✳❚ ✷ instead of

❈✵✳❚✶✳▼✷, since ❚✵ has ✽ cores, while ❚✶ and ❚✷ have

✹ cores each, which attends (in theory) the ✶✻ cores de-

mand. On the other hand, ❈✵ has only ✹ cores and its per-

formance is worse than ❚✵, and❈✵ combined with ❚✶ and

▼✷ (which has the same performance of ❚✷), has only ✶✷

cores. But ❈✵✳❚✶✳▼✷ is a better choice than ❚✵✳❚ ✶✳❚ ✷,

since the ✹ cores of ❚✶ and the ✹ cores of ❚✷ actually are

the same ✽ cores from❚✵. This is only one example of mis-

interpretation that can arise if the scheduler is not aware of

which machines are VMs and what are their hosts.

Adding log recording the differences become larger. Fig-

ure 5(b) shows that the combination ❚✶✳❚ ✷✳▼✶✳▼✷ is al-

ways more efficient, reaching a performance ✾✁� better

than ❚✵✳❚✶✳❚ ✷. On the other hand, ❈✵✳❚ ✶✳▼✷, which

uses three different physical machines, has almost the same

performance of ❚✶✳❚ ✷✳▼✶✳▼✷. In this case, the disk con-

currency is making the ❚✶✳❚ ✷✳▼✶✳▼✷ combination per-

formance to decrease around ✸ times for ✶✻ processes in

parallel, while the combination ❈✵✳❚✶✳▼✷, which uses ✸

different physical machines, decreases only around ✷ times.

In these experimentswe can see that combinationswith less

powerful machines (❈✵✳❚ ✶✳▼✷, for instance) are impor-

tant to show that resources with less processing power (❈✵,

in this case) can be interesting options when combined in

the correct way by the grid resource manager. However,

to do this, the resource manager must be aware of which

machines are VMs and which are not, besides having in-



 50

 60

 70

 80

 90

 100

 110

 120

 130

161296

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Number of scenarios in parallel

CPU stress executions - no log

T0.T1.T2/Workflow
T0.T1.M2/Workflow
T1.T2.M2/Workflow
C0.T1.M2/Workflow

T1.T2.M2.M1/Workflow

(a)

 50

 100

 150

 200

 250

 300

 350

 400

161296

Number of scenarios in parallel

CPU stress executions - with log

T0.T1.T2/Workflow
T0.T1.M2/Workflow
T1.T2.M2/Workflow
C0.T1.M2/Workflow

T1.T2.M2.M1/Workflow

(b)

Figure 5. CPU Stress in Parallel Workflow Execution With and Without Log.

formation about where each VM is hosted.

4.4. Discussion

The loss of performance, caused by the concurrency intro-

duced in the grid result of the distribution of workflows un-

aware of VMs localization, can compromise the resources

performance, making less powerful resources more effi-

cient. We detected situations where disk intensive services

are run in VMs within the same physical machine and the

number of physical CPU cores are extrapolated. Both of

these situations were created by wrong choices based on

correct information about the resources performance.

Table 2 summarizes some situations where the characteris-

tics of each machine influence in the resources choice, with

each column sorted by performance. For example, to exe-

cute the traditional applications shown in the first column it

is sufficient to choose the machine with the best hardware

configuration (❚✵). In parallel scenarios, the choice is not

straightforward: disk and CPU concurrency must be con-

sidered in a grid with VMs. In the third column we can

see that the bottleneck generated by the concurrency in the

disk I/O and lack of RAM in ❚✵ eliminates its advantage,

turning ❚✵✳❚✵✳❚ ✵ into the worse option for this kind of ex-

ecution. On the other hand, despite the fact that VMs were

✺✵� worse when running one application alone, choosing

them to execute services in parallel brings benefits by dis-

tributing the disk I/O (❚✶✳❚✷✳✁✷). When stressing the

CPU (last column), because in the ❚✵✳❚✶✳❚✷ combina-

tion the physical CPU used is the same, its performance

is degraded when many scenarios are executed in parallel,

while ❚✶✳❚✷✳✁✶✳✁✷ is more efficient. This is because

such combination is distributed in two physical machines,

thus it has a higher number of real cores available.

The use of VMs in a grid can be interesting when the re-

source manager considers the concurrency when VMs in

the same physical machine are used in parallel.

5. RELATED WORK

Our SGT involves some technologies like grids, SOC, ex-

ecution of service workflows, virtualization, network sim-

ulation, and grid testbeds, and there are many works re-

lated with these areas. [3] presents a good view about

virtual machine architectures. In [11] the authors orga-

nize solenoid applications in virtual data system workflows

and execute them on VMs in a computational grid. [12]

proposes a metascheduler framework that achieves coal-

location using the concept of virtualization. They used

Deviation Based Resource Scheduling algorithm to initi-

ate SLA negotiation with other resources for participating

in resource co-allocation, and it also supports SLA mon-

itoring and enforcement. However they discuss only the

scheduling performance. Finally, [13] focuses on green

computing by scheduling virtual machines in a computer

cluster to reduce power consumption.

The references presented here do not consider services in

their analysis. Our work contributes in evaluating the com-

bination of service-oriented grid with virtual machines, an-

alyzing the new requirements and possibilities in such com-

bination of resources. Our analysis suggest that service

workflows, where there exist mechanisms to allow the cre-

ation of instances and parallelism support, is an alternative

to the use of VMs in the same conditions shown in [12].

6. CONCLUSION

The use of VMs in the grid brings new management re-

quirements. In this paper we evaluate the performance in

the execution of service workflows in VMs as computa-

tional resources in our service-oriented grid testbed (SGT)

using the Network Simulator 2. In our experiments we

constructed several workflows to execute different simula-

tion scenarios of WiMAX networks, and we executed these

workflows to evaluate the performance of the VMs in rela-



Table 2. Performance of Computational Resources in the Experiments.

Applications / no log Workflows / log Parallel executions / log CPU stress / log

❚✵ ❚✵ ❚✶✳❚ ✷✳�✷ ❚✶✳❚ ✷✳�✶✳�✷

❈✵ ❈✵ ❚✵✳❚✶✳�✷ ❈✵✳❚✶✳�✷

�✷ �✷ ❚✵✳❚✶✳❚ ✷ ❚ ✶✳❚ ✷✳�✷

�✶ �✶ ❚✵✳❚✵✳❚ ✵ ❚ ✵✳❚✶✳�✷

❚✷ ❚✷ ❚✵✳❚✶✳❚ ✷

❚✶ ❚✶

tion to their host machines in the SGT.

Our experimental results show that, despite the VMs ad-

vantages, the grid manager must take into consideration

where each VM is hosted to avoid concurrency. Unin-

tended concurrency in disk I/O and CPU is possible when

VMs are present in the environment. The results indicate

a performance loss when such concurrency occurs in situ-

ations where disk intensive services are run in VMs within

the same physical machine and the number of physical

CPU cores are extrapolated. Therefore, the concurrency in-

troduced without knowledge about the VMs and their hosts

can deteriorate the performance of the resources. Thus, a

VM-aware resource manager is fundamental to explore the

hardware and its VMs in their full extent.

Future works include the development of a VM-aware

scheduler service that takes into consideration the lessons

learned from our experiments and uses the VMs informa-

tion given by the SGT’s resource monitor.

ACKNOWLEDGEMENTS

We thank Flavio Kubota for his help with the NS2, and

CAPES, FAPESP (05/59706-3), and CNPq (472810/2006-

5 and 142574/2007-4) for the financial support.

REFERENCES

[1] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The phys-

iology of the grid: An open grid services architecture for

distributed systems integration,” 2002. [Online]. Available:

http://www.globus.org/research/papers/ogsa.pdf

[2] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S.Weerawarana,

“The next step in web services,” Communications of ACM,

Vol. 46, No. 10, pp. 29–34, 2003.

[3] J. E. Smith and R. Nair, “The architecture of virtual ma-

chines,” IEEE Computer, Vol. 38, No. 5, pp. 32–38, 2005.

[4] I. Foster, “Globus toolkit version 4: Software for service-

oriented systems”, IFIP Intl. Conference on Network and

Parallel Computing, Springer-Verlag LNCS 3779, Beijing,

China, pp. 2–13, 2005.

[5] C. Senna, L. Bittencourt, and E. R. M. Madeira, “Execu-

tion of service workflows in grid environment”, 5th Interna-

tional Conference on Testbeds and Research Infrastructures

for the Development of Networks & Communities (Trident-

Com 2009), Washington, USA, pp. 1–10, 2009.

[6] L. F. Bittencourt and E. R. M. Madeira, “A performance-

oriented adaptive scheduler for dependent tasks on grids,”

Concurrency and Computation: Practice and Experience,

Vol. 20, No. 9, pp. 1029–1049, 2008.

[7] “Network simulator 2,” 2009. [Online]. Available:

http://nsnam.isi.edu/nsnam

[8] “IEEE standard 802.16-2004, part 16. air interface for fixed

broadband wirelesss access system,” IEEE, Tech. Rep., 2004.

[Online]. Available: http://www.ieee802.org/16/pubs/80216-

2004.html

[9] J. Freitag and N. L. S. da Fonseca, “Wimax module for the

ns-2 simulator,” IEEE 18th International Symposium on Per-

sonal, Indoor and Mobile Radio Communications, Athens,

Greece, pp. 1–6, 2007.

[10] “WiMAX module for the ns-2 simulator”, Com-

puter Networks Laboratory, Institute of Com-

puting, UNICAMP, 2009. [Online]. Available:

http://www.lrc.ic.unicamp.br/wimax ns2/

[11] L. Wang, M. Kunze, and J. Tao, “Performance evaluation of

virtual machine-based grid workflow system,” Concurrency

and Computation : Practice and Experience, Vol. 20, No. 15,

pp. 1759–1771, 2008.

[12] T. S. Somasundaram, B. R. Amarnath, B. Ponnuram,

K. Rangasamy, R. Kandan, R. Rajaian, R. B. Gnanapra-

gasam, M. Ellappan, and M. Bairappan, “Achieving co-

allocation through virtualization in grid environment,”, 4th

International Conference on Grid and Pervasive Computing

(GPC 09), Geneva, Switzerland, pp. 235–243, 2009.

[13] A. X. H. von Laszewski, G.; Lizhe Wang; Younge, “Power-

aware scheduling of virtual machines in dvfs-enabled clus-

ters,”, IEEE International Conference on Cluster Computing

and Workshops (CLUSTER 09), New Orleans, USA, pp. 1–

10, 2009.


