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A Transformation Which Preserves the Clique Number
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We introduce a graph transformation which preserves the clique number. When
applied to graphs containing no odd hole and no cricket (a particular graph on 5
vertices) the transformation also preserves the chromatic number. Using this trans-
formation we derive a polynomial algorithm for the computation of the clique
number of all graphs in a class which strictly contains diamond-free graphs. Further-
more, the transformation leads to a proof that the Strong Perfect Graph Conjecture
is true for two new classes of graphs and yields a polynomial time algorithm for the
computation of the clique number and the chromatic number for both classes. One
of these two classes strictly contains claw-free graphs. � 2001 Elsevier Science
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1. INTRODUCTION

A clique in a graph G is a set of pairwise adjacent vertices. The clique
number of G, denoted |(G), is the size of the largest clique in G. The
chromatic number of G, denoted /(G), is the minimum number of colours
needed to colour G so that no two adjacent vertices get the same colour.
As usual, Pk and Ck denote respectively a chordless path and a chordless
cycle on k vertices. The complement of a graph G is denoted by G� .

A graph is called perfect if the vertices of every induced subgraph H can
be coloured with |(H) colours. Berge [1] introduced perfect graphs and
conjectured that a graph is perfect if and only if it does not contain any
odd hole or odd antihole. Here a hole is a chordless cycle with at least five
vertices, and an antihole is the complement of a hole. This conjecture is still
open and is known as the Strong Perfect Graph Conjecture, SPGC for
short. Graphs without any odd holes or odd antiholes are known as Berge
graphs. A graph G is called minimal imperfect, if G itself is not perfect, but
every proper induced subgraph of G is perfect. An even pair of a graph is
any pair of vertices such that every chordless path between them has an
even number of edges. Meyniel [7] introduced even pairs and proved that
minimal imperfect graphs contain no even pairs.
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FIGURE 1

In this paper we generalise results that are known for diamond-free
graphs and for claw-free graphs. A diamond is the graph obtained by delet-
ing an edge in a clique on four vertices, and a claw is the graph consisting
of vertices x, y, z, w and edges xy, xz, xw (see Fig. 1).

We introduce a graph transformation which preserves the clique number.
We show that any diamond-free graph G can be transformed into the
union of disjoint cliques without modifying the clique number. This leads
to a very simple polynomial algorithm for the computation of the clique
number in diamond-free graphs. We then extend this result to a class C of
graphs which strictly contains diamond-free graphs. We show that each
graph in C can be transformed into a (P5 , P5 , C5)-free graph. Chva� tal et
al. [2] showed that the latter class is perfect, and the authors proposed a
linear time algorithm for the maximum clique and the minimum colouring
problem.

A cricket is the graph obtained from a claw by adding a vertex linked to
two adjacent vertices in the claw (see Fig. 1). When the above transformation
is applied to a graph which contains no odd hole and no cricket, then we
prove that it also preserves the chromatic number. This leads to a proof that
the SPGC is true for a class of graphs that strictly contains claw-free graphs.

The paper is organised as follows. We first describe in the next section
the graph transformation that preserves the clique number, and we prove
that when applied to cricket-free graphs without odd holes, it also pre-
serves the chromatic number. In Section 3, we describe classes of graphs for
which the proposed transformation leads to a polynomial algorithm for the
computation of the clique number, and we show the validity of the SPGC
for two classes of graphs.

2. DESCRIPTION OF THE GRAPH TRANSFORMATION

Let G=(V, E) be a graph with vertex set V and edge set E. Consider any
vertex x in V, and let N(x) denote the set of vertices adjacent to x in G.
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Let H1 , ..., Hk denote the k�1 connected components of the subgraph of
G induced by the vertices in N(x). We consider the graph transformation
which builds a new graph Gx from G as follows. We first remove vertex x
from G and then add k new non adjacent vertices x1 , ..., xk , each x i being
linked to all vertices in Hi (1�i�k). The new vertices x1 , ..., xk are called
the copies of x.

This transformation increases the number of vertices by k&1, but keeps
the number of edges constant. If k=1, i.e., the neighborhood of vertex x
is connected, the transformation does not induce any change in G. In the
resulting graph Gx , the neighborhood of each copy xi of x is connected.
Moreover, two copies xi and x j of x have no common neighbor in Gx . By
construction, the above transformation does not remove any clique from G,
and does not create any new one. Hence, G and Gx have the same clique
number, i.e., |(G)=|(Gx).

We can iteratively apply the above transformation as long as there is a
vertex whose neighbourhood is disconnected. The resulting graph, denoted
G� has the same clique number as G. The construction of G� is summarised
in the following algorithm.

Input: A graph G with vertex set V=[v1 , ..., vn].

Output: A graph G� with vertex set W=[w1 , ..., ws] and such that the
neighborhood of each vertex wi is connected.

(1) Set s :=0 and G� :=G;
(2) For i :=1 to n do

Let k be the number of connected components of the graph induced
by N(vi);
Set G� :=G� vi

and denote by ws+1 , ..., ws+k the copies of vi ; Set
s :=s+k;

This algorithm is illustrated in Fig. 2. Notice that the order of vertex
splittings in step (2) is not important and that the output graph G� for input
graph G is unique. Furthermore, the size of G� (number of vertices, number
of edges) is polynomial in the size of G. Determining the connected com-
ponents of a graph G=(V, E) can be done in O( |V |+|E| ) [10]. It follows
that G� can be constructed in O( |V | 2+|V | |E| ) time. Moreover, since
|(G)=|(Gx) for all graphs G and any vertex x in G, we have the follow-
ing property.

Property 1. |(G)=|(G� ) for all graphs G.

If the graph resulting from this algorithm belongs to a class of graphs for
which the clique number can be computed in polynomial time, we have
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FIGURE 2

then found a way to determine in polynomial time the clique number of the
original graph. We will use this idea in Section 3.

In the following we apply the transformation to determine the chromatic
number of a graph. We must however add some restrictions to the input
graph G, otherwise the transformation does not necessarily preserve the
chromatic number. For example, if G is an odd hole, then G� is the union
of disjoint edges, and we therefore have /(G)=3>2=/(G� ). Notice also
that if a graph G contains no odd hole, then it may happen that Gx con-
tains one. As an illustration, by choosing vertex v1 in the graph G on the
left in Fig. 2, one gets a graph Gv1

that contains an odd hole on vertices
w1 , v2 , v3 , v4 , v5 , v6 , v7 , while G does not contain any odd hole.

Lemma 1. Let G be a cricket free graph without odd holes, and let x be
any vertex in G. Then each pair of copies xi , xj of x in Gx is an even pair.

Proof. Suppose there are two copies xi and xj of x in Gx which are
linked by a chordless path P=(xi=z0 , z1 , ..., z2k+1=xj) having an odd
number of edges. We can assume that P is the shortest such odd-length
chordless path between two copies of x in Gx . None of the vertices z1 to
z2k is a copy of x, since this would contradict the minimality of P. Hence,
vertices z1 , ..., z2k induce a chordless path in G. Clearly, x is adjacent to z1

and z2k in G. Now, x is not adjacent to z2 in G, otherwise z1 and z2 would
be in the same connected component of N(x) and xi would therefore be
adjacent to z2 in Gx . Similarly, x is not adjacent to z2k&1 in G.

Finally, if G contains no induced triangle xzi zi+1 (3�i�2k&3), then G
contains an odd hole, and if G contains such a triangle xzizi+1 , then
vertices x, z1 , zi , zi+1 , z2k induce a cricket in G, a contradiction. K
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The proof of the next lemma uses the standard proof technique which
can be found in [3, 7].

Lemma 2. Let G be a cricket free graph without odd holes, and let x be
any vertex in G. Then, /(G)=/(Gx).

Proof. Consider first any colouring of G in /(G) colours. One can also
colour Gx with /(G) colours by assigning to each copy of x in Gx the same
colour as x in G, and by giving to all other vertices the same colour as in
G. Hence, /(G)�/(Gx).

Consider now any colouring of Gx in /(Gx) colours. If all copies of x
have the same colour, one can also colour G with /(Gx) colours by assign-
ing to x the same colour as its copies in Gx , and by giving to all other ver-
tices the same colour as in Gx . Assume now that two copies xi and xj of
x have different colours r and s, respectively. Consider the subgraph Grs of
Gx containing only those vertices having colour r or s. Let Crs be the con-
nected component of Grs containing vertex xi . It follows from Lemma 1
that no copy of x with colour s belongs to Crs . Hence, by exchanging
colours r and s in Crs one gets a new colouring of Gx in /(Gx) colours, and
we have strictly increased the number of copies of x having colour s. By
applying this colour exchange procedure iteratively, one can assign colour
s to all copies of x, and we have seen above that G can then easily be
coloured in /(Gx) colours. Hence, /(G)�/(Gx). K

The diameter d(G) of a graph G is defined as the length of the longest
shortest path between two vertices in G.

Lemma 3. Let G be an H-free graph, where H is a graph with diameter
d(H)�2, and let x be any vertex in G. Then Gx is also H-free.

Proof. Remember first that the copies of x in Gx are non-adjacent and
have no common neighbour. Suppose there is a set [h1 , ..., hk] of vertices
which induces an H in Gx . If [h1 , ..., hk] contains no copy of x, then
[h1 , ..., hk] also induces an H in G, a contradiction. If [h1 , ..., hk] contains
two copies of x, then these copies are non adjacent, and since d(H)�2,
they have a common neighbour, a contradiction.

So assume [h1 , ..., hk] contains exactly one copy of x, say h1 . Then, all
neighbours of h1 in [h2 , ..., hk] are also neighbours of x in G. Since G is
H-free, there must exist a vertex hi in [h2 , ..., hk] which is adjacent to x in
G but not to h1 in Gx . Since d(H)�2, h1 and hi have a common neighbour
hj . Hence, x is also adjacent to hj , which means that hi and hj belong to
the same connected component, of N(x) in G. So, h1 is either linked to
both hi and hj , or to none of them, a contradiction. K
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Lemma 4. Let G be a cricket-free graph without odd holes, and let x be
any vertex in G. Then Gx is also cricket-free and without odd holes.

Proof. Since the diameter of a cricket is 2, it follows from Lemma 3 that
Gx is also cricket-free. Now suppose that Gx contains an odd hole
C=(c1 , ..., c2k+1) (k�2). At least one vertex in C must be a copy of x,
otherwise G also contains an odd hole. Moreover, C cannot contain more
than one copy of x, otherwise there is a chordless path with an odd number
of edges between two copies of x, which contradicts Lemma 1.

Hence, C contains exactly one copy of x, say c1 . Vertex x is therefore
adjacent to c2 and to c2k+1 in G. It follows that x is not adjacent to c3 in
G, else c2 and c3 would belong to the same connected component of N(x),
which would imply that c1 is adjacent to c2 and c3 , or to none of them, a
contradiction. Similarly, x is not adjacent to c2k in G.

Notice that x must be adjacent to two consecutive vertices ci and ci+1

on C, else the subgraph of G induced by x, c2 , c3 , ..., c2k+1 contains an odd
hole. But this means that vertices x, c2 , ci , ci+1 , c2k+1 induce a cricket in
G, a contradiction. K

Corollary 1. Let G be a cricket free graph without odd holes. Then
/(G)=/(G� ).

Proof. This is a direct consequence of Lemma 2 and Lemma 4.

Corollary 2. Let G=(V, E) be a cricket free graph without odd holes.
Given a colouring of G� in /(G� )=/(G) colours, one can colour G with the
same number of colours in O( |V | |E| ) time.

Proof. It follows from Lemma 2 that given any vertex x in a cricket-free
graph G=(V, E) without odd holes, and any colouring of Gx in
/(Gx)=/(G) colours, one can colour G with the same number of colours
by performing bichromatic exchanges until all copies of x get the same
colour. This takes O( |E| ) time. Since G� is obtained from G after |V | suc-
cessive transformations, a colouring of G in /(G) colours can be derived
from a colouring of G� in /(G) colours in O( |V | |E| ) time. K

Corollary 3. Let G be a cricket-free Berge graph. Then G� is also
Berge.

Proof. Let G be a cricket-free Berge graph. Since the diameter of an
antihole is 2, it follows from Lemma 3 that G� has no odd antihole.
Moreover, we know from Lemma 4 that G� has no odd hole. Hence, G� is
Berge. K

325THE CLIQUE NUMBER



3. SPECIAL CLASSES OF GRAPHS

The clique number of diamond-free graphs can easily be computed by
means of the transformation described in the previous section. Indeed, in
such a case, the transformed graph G� has a very special structure as stated
in the following Lemma.

Lemma 5. Let G be a diamond-free graph. Then G� is the union of disjoint
cliques.

Proof. Since the diameter of a diamond is 2, it follows from Lemma 3
that G� is also diamond-free. Suppose now that G� contains a chordless path
P=(v1 , v2 , v3). Since the neighbourhood of vertex v2 in G� must be con-
nected, there exists a chordless path (v1= p1 , p2 , ..., pk=v3) in the
neighbourhood of v2 . Hence, vertices v2 , p1 , p2 , p3 induce a diamond in G� ,
a contradiction. K

Since |(G)=|(G� ) for all graphs G=(V, E), we can compute the
clique number of a diamond-free graph by first constructing G� , and then
determining the largest connected component in G� . This leads to an
O( |V |2+|V | |E| ) time algorithm. We now extend this result to a larger
class of graphs. Consider the two graphs depicted in Fig. 3. They both con-
tain a diamond as subgraph. The class of (gem, F1)-free graphs therefore
strictly contains all diamond-free graphs.

Lemma 6. Let G be a (gem, F1)-free graph. Then, G� is (P5 , P5 , C5)-free.

Proof. Since the diameter of both forbidden subgraphs in G is 2, it
follows from Lemma 3 that G is also (gem, F1)-free. Moreover, the
neighbourhood N(x) of each vertex x in G� is connected and P4-free, else
the subgraph induced by [x] _ N(x) contains a gem.

Suppose that G� contains an induced P5=(x1 , x2 , x3 , x4 , x5), or an
induced C5=(x1 , x2 , x3 , x4 , x5). Since N(x3) is connected and P4-free,

FIGURE 3

326 GERBER AND HERTZ



there exists a vertex y1 which is adjacent to x2 , x3 and x4 in G� . Vertex y1

is neither adjacent to x1 , nor to x5 else vertices x1 , x2 , x3 , x4 , y1 or
x2 , x3 , x4 , x5 , y1 induce a gem in G� . Since N(x2) is also connected and
P4 -free, there exists a vertex y2 which is adjacent to x1 , x2 , x3 and y1 in G� .
Vertex y2 is not adjacent to x4 , else vertices x1 , x2 , x3 , x4 , y2 induce a gem
in G� . By symmetry, there exists a vertex y3 which is adjacent to x3 , x4 ,
x5 , y1 but not to x2 in G� . Also, vertices y2 and y3 are not adjacent, else
x2 , x4 , y1 , y2 , y3 induce a gem in G� . But now, vertices x2 , x3 , x4 , y1 ,
y2 , y3 induce an F1 in G� , a contradiction.

Suppose now that the complement G�� of G� contains an induced
P5=(x1 , x2 , x3 , x4 , x5). Since N(x5) is connected and P4 -free in G� , there
exists a vertex y1 which is adjacent to x1 , x2 , x3 and x5 in G� . Vertex y1 is
not adjacent to x4 else vertices x2 , x3 , x4 , x5 , y1 induce a gem in G� . Since
N(x2) is also connected and P4 -free in G� , there exists a vertex y2 which is
adjacent to x2 , x4 , x5 and y1 . Vertex y2 is neither adjacent to x3 nor to x1

else x2 , x3 , x4 , x5 , y2 or x1 , x3 , x4 , y1 , y2 induce a gem in G� . But now,
vertices x1 , x2 , x3 , x5 , y1 , y2 induce an F1 in G� , a contradiction. K

Theorem 1. The clique number of a (gem, F1)-free graph G=(V, E) can
be computed in O( |V |2+|V | |E| ) time.

Proof. We know from Property 1 that |(G)=|(G� ) and it follows from
Lemma 6 that G� is (P5 , P5 , C5)-free. It is now sufficient to observe that the
construction of G� takes O( |V |2+|V | |E| ) time, while the computation of
the clique number of a (P5 , P5 , C5)-free graph can be performed in
O( |V |+ |E| ) time [2]. K

We now prove the validity of the SPGC for (cricket, gem, F1)-free
graphs. Notice that a gem-free graph does not contain any antihole of
length larger than 6. Moreover, the antihole and the hole on 5 vertices are
isomorphic. Hence, a graph is Berge and (cricket, gem, F1)-free if and only
if it is (cricket, gem, F1)-free and without odd holes.

Theorem 2. All (cricket, gem, F1)-free graphs without odd holes are
perfect.

Proof. We know from Corollary 1 that if G is cricket-free and without
odd holes, then /(G)=/(G� ). Also, it follows from Lemma 6 that if G is
(gem, F1)-free, then G� is (P5 , P5 , C5)-free. Since these graphs are perfect
[2], we can conclude that if G is without odd holes and (cricket, gem, F1)-
free, then |(G)=|(G� )=/(G� )=/(G). K
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Theorem 3. A colouring in /(G) colours of a (cricket, gem, F1)-free
graph G=(V, E) without odd holes can be determined in O( |V | 2+|V | |E| )
time.

Proof. The construction of G� from G requires O( |V | 2+|V | |E| ) time.
Since G� is (P5 , P5 , C5)-free, it can be coloured in /(G� )=/(G) colours in
O( |V |+ |E| ) time [2]. Finally, we know from Corollary 2 that a colouring
of G in /(G) colours can be derived from the colouring of G� in O( |V | |E| )
time. K

Claw-free Berge graphs have been well studied, and several proofs of
their perfectness have been given [4, 6, 8]. Moreover, Hsu [5] has
proposed an O( |V | 4) algorithm which determines the chromatic number of
claw-free Berge graphs. In the following, we prove the validity of the
Strong Perfect Graph Conjecture for a class of graphs that strictly contains
claw-free graphs. Consider the three graphs depicted in Fig. 4. Notice that
the cricket, F2 , F3 , and F4 contain a claw.

Lemma 7. Let G be a (F2 , F3 , F4)-free graph. Then G� is claw free.

Proof. Since the diameter of all three forbidden subgraphs is 2, we
know from Lemma 3 that G� is (F2 , F3 , F4)-free. Now suppose that G� con-
tains an induced claw on vertices c0 , c1 , c2 , c3 , where c0 is adjacent to the
three other vertices. Since the neighbourhood of each vertex in G� is con-
nected, there exists a chordless path (c1= p0 , ..., pk=c2) from c1 to c2 in
N(c0), as well as a chordless path (c2=q0 , ..., ql=c3) from c2 to c3 in
N(c0). Since F4 is a forbidden subgraph, both paths are of length 2 or 3.
Assume first that both paths are of length 2 (i.e., k=l=2). Vertex p1 is not
adjacent to c3 , else G� contains an F2 . For the same reason, vertex q1 is not
adjacent to c1 . Hence, we now have either an F3 if p1 is adjacent to q1 , or
an F4 otherwise, a contradiction.

Therefore, among the three chordless paths linking c1 to c2 , c1 to c3 and
c2 to c3 in N(c0), at least two are of length 3. We may assume that there
exist chordless paths (c1= p0 , p1 , p2 , p3=c2) and (c2=q0 , q1 , q2 , q3=c3)

FIGURE 4
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in N(c0). Vertex c3 cannot be adjacent to both p1 and p2 , else vertices c0 ,
c1 , c2 , c3 , p1 , p2 induce an F3 in G� . Also, vertex c3 cannot be adjacent to
exactly one vertex among p1 and p2 , say p1 , else vertices c0 , c1 , c3 , p1 , p2

induce an F2 in G� . Hence, c3 is neither adjacent to p1 , nor to p2 . By sym-
metry, q2 is not adjacent to c1 . Notice that vertices c0 , c1 , c2 , q2 also induce
a claw, which means that we also know that q2 is neither adjacent to p1 ,
nor to p2 . But now, vertices c0 , c2 , p1 , q2 induce a claw, while the paths
( p1 , p2 , c2) and (c2 , q1 , q2) in N(c0) are of length 2, a contradiction. K

Theorem 4. All (cricket, F2 , F3 , F4)-free Berge graphs are perfect.

Proof. Let G be a (cricket,F2 , F3 , F4)-free Berge graph. It follows from
Corollary 3 and Lemma 7 that G� is Berge and claw-free. Also, it follows
from Corollary 1 that /(G)=/(G� ). Since claw-free Berge graphs are known
to be perfect [8], we conclude that |(G)=|(G� )=/(G� )=/(G). K

Theorem 5. A colouring of a (cricket, F2 , F3 , F4)-free Berge graph
G=(V, E) in /(G) colours can be determined in O( |V |4) time.

Proof. The construction of G� from G requires O( |V |2+|V | |E| ) time.
Hsu [5] has shown how to colour G� in /(G� )=/(G) colours in O( |V |4)
time. Finally, we know from Corollary 2 that a colouring of G in /(G)
colours can be derived from the colouring of G� in O( |V | |E| ) time. K

Theorem 4 proves the validity of the SPGC for a class of graphs that
strictly contains claw-free graphs. A similar result has been obtained by
Sun who has shown the validity of the SPGC for dart-free graphs, where
a dart is the graph obtained from a claw by adding a vertex linked to all
vertices in the claw, except one of degree 1 [9].
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