# A Transformation Which Preserves the Clique Number 

Michael U. Gerber and Alain Hertz<br>Department of Mathematics, Swiss Federal Institute of Technology, Lausanne CH-1015, Switzerland E-mail: Michael.Gerber@epfl.ch, Alain.Hertz@epfl.ch

Received July 31, 2000; published online July 30, 2001


#### Abstract

We introduce a graph transformation which preserves the clique number. When applied to graphs containing no odd hole and no cricket (a particular graph on 5 vertices) the transformation also preserves the chromatic number. Using this transformation we derive a polynomial algorithm for the computation of the clique number of all graphs in a class which strictly contains diamond-free graphs. Furthermore, the transformation leads to a proof that the Strong Perfect Graph Conjecture is true for two new classes of graphs and yields a polynomial time algorithm for the computation of the clique number and the chromatic number for both classes. One of these two classes strictly contains claw-free graphs. © 2001 Elsevier Science Key Words: clique number; chromatic number; strong perfect graph conjecture.


## 1. INTRODUCTION

A clique in a graph $G$ is a set of pairwise adjacent vertices. The clique number of $G$, denoted $\omega(G)$, is the size of the largest clique in $G$. The chromatic number of $G$, denoted $\chi(G)$, is the minimum number of colours needed to colour $G$ so that no two adjacent vertices get the same colour. As usual, $P_{k}$ and $C_{k}$ denote respectively a chordless path and a chordless cycle on $k$ vertices. The complement of a graph $G$ is denoted by $\bar{G}$.

A graph is called perfect if the vertices of every induced subgraph $H$ can be coloured with $\omega(H)$ colours. Berge [1] introduced perfect graphs and conjectured that a graph is perfect if and only if it does not contain any odd hole or odd antihole. Here a hole is a chordless cycle with at least five vertices, and an antihole is the complement of a hole. This conjecture is still open and is known as the Strong Perfect Graph Conjecture, SPGC for short. Graphs without any odd holes or odd antiholes are known as Berge graphs. A graph $G$ is called minimal imperfect, if $G$ itself is not perfect, but every proper induced subgraph of $G$ is perfect. An even pair of a graph is any pair of vertices such that every chordless path between them has an even number of edges. Meyniel [7] introduced even pairs and proved that minimal imperfect graphs contain no even pairs.


## FIGURE 1

In this paper we generalise results that are known for diamond-free graphs and for claw-free graphs. A diamond is the graph obtained by deleting an edge in a clique on four vertices, and a claw is the graph consisting of vertices $x, y, z, w$ and edges $x y, x z, x w$ (see Fig. 1).

We introduce a graph transformation which preserves the clique number. We show that any diamond-free graph $G$ can be transformed into the union of disjoint cliques without modifying the clique number. This leads to a very simple polynomial algorithm for the computation of the clique number in diamond-free graphs. We then extend this result to a class $\mathscr{C}$ of graphs which strictly contains diamond-free graphs. We show that each graph in $\mathscr{C}$ can be transformed into a ( $P_{5}, \overline{P_{5}}, C_{5}$ )-free graph. Chvátal et al. [2] showed that the latter class is perfect, and the authors proposed a linear time algorithm for the maximum clique and the minimum colouring problem.

A cricket is the graph obtained from a claw by adding a vertex linked to two adjacent vertices in the claw (see Fig. 1). When the above transformation is applied to a graph which contains no odd hole and no cricket, then we prove that it also preserves the chromatic number. This leads to a proof that the SPGC is true for a class of graphs that strictly contains claw-free graphs.

The paper is organised as follows. We first describe in the next section the graph transformation that preserves the clique number, and we prove that when applied to cricket-free graphs without odd holes, it also preserves the chromatic number. In Section 3, we describe classes of graphs for which the proposed transformation leads to a polynomial algorithm for the computation of the clique number, and we show the validity of the SPGC for two classes of graphs.

## 2. DESCRIPTION OF THE GRAPH TRANSFORMATION

Let $G=(V, E)$ be a graph with vertex set $V$ and edge set $E$. Consider any vertex $x$ in $V$, and let $N(x)$ denote the set of vertices adjacent to $x$ in $G$.

Let $H_{1}, \ldots, H_{k}$ denote the $k \geqslant 1$ connected components of the subgraph of $G$ induced by the vertices in $N(x)$. We consider the graph transformation which builds a new graph $G_{x}$ from $G$ as follows. We first remove vertex $x$ from $G$ and then add $k$ new non adjacent vertices $x_{1}, \ldots, x_{k}$, each $x_{i}$ being linked to all vertices in $H_{i}(1 \leqslant i \leqslant k)$. The new vertices $x_{1}, \ldots, x_{k}$ are called the copies of $x$.

This transformation increases the number of vertices by $k-1$, but keeps the number of edges constant. If $k=1$, i.e., the neighborhood of vertex $x$ is connected, the transformation does not induce any change in $G$. In the resulting graph $G_{x}$, the neighborhood of each copy $x_{i}$ of $x$ is connected. Moreover, two copies $x_{i}$ and $x_{j}$ of $x$ have no common neighbor in $G_{x}$. By construction, the above transformation does not remove any clique from $G$, and does not create any new one. Hence, $G$ and $G_{x}$ have the same clique number, i.e., $\omega(G)=\omega\left(G_{x}\right)$.

We can iteratively apply the above transformation as long as there is a vertex whose neighbourhood is disconnected. The resulting graph, denoted $\widetilde{G}$ has the same clique number as $G$. The construction of $\widetilde{G}$ is summarised in the following algorithm.

Input: A graph $G$ with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
Output: A graph $\widetilde{G}$ with vertex set $W=\left\{w_{1}, \ldots, w_{s}\right\}$ and such that the neighborhood of each vertex $w_{i}$ is connected.

Set $s:=0$ and $\widetilde{G}:=G ;$
For $i:=1$ to $n$ do
Let $k$ be the number of connected components of the graph induced by $N\left(v_{i}\right)$;
Set $\widetilde{G}:=\widetilde{G}_{v_{i}}$ and denote by $w_{s+1}, \ldots, w_{s+k}$ the copies of $v_{i}$; Set $s:=s+k$;

This algorithm is illustrated in Fig. 2. Notice that the order of vertex splittings in step (2) is not important and that the output graph $\widetilde{G}$ for input graph $G$ is unique. Furthermore, the size of $\widetilde{G}$ (number of vertices, number of edges) is polynomial in the size of $G$. Determining the connected components of a graph $G=(V, E)$ can be done in $O(|V|+|E|)$ [10]. It follows that $\widetilde{G}$ can be constructed in $O\left(|V|^{2}+|V||E|\right)$ time. Moreover, since $\omega(G)=\omega\left(G_{x}\right)$ for all graphs $G$ and any vertex $x$ in $G$, we have the following property.

Property 1. $\omega(G)=\omega(\widetilde{G})$ for all graphs $G$.
If the graph resulting from this algorithm belongs to a class of graphs for which the clique number can be computed in polynomial time, we have


FIGURE 2
then found a way to determine in polynomial time the clique number of the original graph. We will use this idea in Section 3.

In the following we apply the transformation to determine the chromatic number of a graph. We must however add some restrictions to the input graph $G$, otherwise the transformation does not necessarily preserve the chromatic number. For example, if $G$ is an odd hole, then $\widetilde{G}$ is the union of disjoint edges, and we therefore have $\chi(G)=3>2=\chi(\widetilde{G})$. Notice also that if a graph $G$ contains no odd hole, then it may happen that $G_{x}$ contains one. As an illustration, by choosing vertex $v_{1}$ in the graph $G$ on the left in Fig. 2, one gets a graph $G_{v_{1}}$ that contains an odd hole on vertices $w_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$, while $G$ does not contain any odd hole.

Lemma 1. Let $G$ be a cricket free graph without odd holes, and let $x$ be any vertex in $G$. Then each pair of copies $x_{i}, x_{j}$ of $x$ in $G_{x}$ is an even pair.

Proof. Suppose there are two copies $x_{i}$ and $x_{j}$ of $x$ in $G_{x}$ which are linked by a chordless path $P=\left(x_{i}=z_{0}, z_{1}, \ldots, z_{2 k+1}=x_{j}\right)$ having an odd number of edges. We can assume that $P$ is the shortest such odd-length chordless path between two copies of $x$ in $G_{x}$. None of the vertices $z_{1}$ to $z_{2 k}$ is a copy of $x$, since this would contradict the minimality of $P$. Hence, vertices $z_{1}, \ldots, z_{2 k}$ induce a chordless path in $G$. Clearly, $x$ is adjacent to $z_{1}$ and $z_{2 k}$ in $G$. Now, $x$ is not adjacent to $z_{2}$ in $G$, otherwise $z_{1}$ and $z_{2}$ would be in the same connected component of $N(x)$ and $x_{i}$ would therefore be adjacent to $z_{2}$ in $G_{x}$. Similarly, $x$ is not adjacent to $z_{2 k-1}$ in $G$.

Finally, if $G$ contains no induced triangle $x z_{i} z_{i+1}(3 \leqslant i \leqslant 2 k-3)$, then $G$ contains an odd hole, and if $G$ contains such a triangle $x z_{i} z_{i+1}$, then vertices $x, z_{1}, z_{i}, z_{i+1}, z_{2 k}$ induce a cricket in $G$, a contradiction.

The proof of the next lemma uses the standard proof technique which can be found in [3, 7].

Lemma 2. Let $G$ be a cricket free graph without odd holes, and let $x$ be any vertex in $G$. Then, $\chi(G)=\chi\left(G_{x}\right)$.

Proof. Consider first any colouring of $G$ in $\chi(G)$ colours. One can also colour $G_{x}$ with $\chi(G)$ colours by assigning to each copy of $x$ in $G_{x}$ the same colour as $x$ in $G$, and by giving to all other vertices the same colour as in $G$. Hence, $\chi(G) \geqslant \chi\left(G_{x}\right)$.

Consider now any colouring of $G_{x}$ in $\chi\left(G_{x}\right)$ colours. If all copies of $x$ have the same colour, one can also colour $G$ with $\chi\left(G_{x}\right)$ colours by assigning to $x$ the same colour as its copies in $G_{x}$, and by giving to all other vertices the same colour as in $G_{x}$. Assume now that two copies $x_{i}$ and $x_{j}$ of $x$ have different colours $r$ and $s$, respectively. Consider the subgraph $G_{r s}$ of $G_{x}$ containing only those vertices having colour $r$ or $s$. Let $C_{r s}$ be the connected component of $G_{r s}$ containing vertex $x_{i}$. It follows from Lemma 1 that no copy of $x$ with colour $s$ belongs to $C_{r s}$. Hence, by exchanging colours $r$ and $s$ in $C_{r s}$ one gets a new colouring of $G_{x}$ in $\chi\left(G_{x}\right)$ colours, and we have strictly increased the number of copies of $x$ having colour $s$. By applying this colour exchange procedure iteratively, one can assign colour $s$ to all copies of $x$, and we have seen above that $G$ can then easily be coloured in $\chi\left(G_{x}\right)$ colours. Hence, $\chi(G) \leqslant \chi\left(G_{x}\right)$.

The diameter $d(G)$ of a graph $G$ is defined as the length of the longest shortest path between two vertices in $G$.

Lemma 3. Let $G$ be an $H$-free graph, where $H$ is a graph with diameter $d(H) \leqslant 2$, and let $x$ be any vertex in $G$. Then $G_{x}$ is also H-free.

Proof. Remember first that the copies of $x$ in $G_{x}$ are non-adjacent and have no common neighbour. Suppose there is a set $\left\{h_{1}, \ldots, h_{k}\right\}$ of vertices which induces an $H$ in $G_{x}$. If $\left\{h_{1}, \ldots, h_{k}\right\}$ contains no copy of $x$, then $\left\{h_{1}, \ldots, h_{k}\right\}$ also induces an $H$ in $G$, a contradiction. If $\left\{h_{1}, \ldots, h_{k}\right\}$ contains two copies of $x$, then these copies are non adjacent, and since $d(H) \leqslant 2$, they have a common neighbour, a contradiction.

So assume $\left\{h_{1}, \ldots, h_{k}\right\}$ contains exactly one copy of $x$, say $h_{1}$. Then, all neighbours of $h_{1}$ in $\left\{h_{2}, \ldots, h_{k}\right\}$ are also neighbours of $x$ in $G$. Since $G$ is $H$-free, there must exist a vertex $h_{i}$ in $\left\{h_{2}, \ldots, h_{k}\right\}$ which is adjacent to $x$ in $G$ but not to $h_{1}$ in $G_{x}$. Since $d(H) \leqslant 2, h_{1}$ and $h_{i}$ have a common neighbour $h_{j}$. Hence, $x$ is also adjacent to $h_{j}$, which means that $h_{i}$ and $h_{j}$ belong to the same connected component, of $N(x)$ in $G$. So, $h_{1}$ is either linked to both $h_{i}$ and $h_{j}$, or to none of them, a contradiction.

Lemma 4. Let $G$ be a cricket-free graph without odd holes, and let $x$ be any vertex in $G$. Then $G_{x}$ is also cricket-free and without odd holes.

Proof. Since the diameter of a cricket is 2 , it follows from Lemma 3 that $G_{x}$ is also cricket-free. Now suppose that $G_{x}$ contains an odd hole $C=\left(c_{1}, \ldots, c_{2 k+1}\right)(k \geqslant 2)$. At least one vertex in $C$ must be a copy of $x$, otherwise $G$ also contains an odd hole. Moreover, $C$ cannot contain more than one copy of $x$, otherwise there is a chordless path with an odd number of edges between two copies of $x$, which contradicts Lemma 1.

Hence, $C$ contains exactly one copy of $x$, say $c_{1}$. Vertex $x$ is therefore adjacent to $c_{2}$ and to $c_{2 k+1}$ in $G$. It follows that $x$ is not adjacent to $c_{3}$ in $G$, else $c_{2}$ and $c_{3}$ would belong to the same connected component of $N(x)$, which would imply that $c_{1}$ is adjacent to $c_{2}$ and $c_{3}$, or to none of them, a contradiction. Similarly, $x$ is not adjacent to $c_{2 k}$ in $G$.

Notice that $x$ must be adjacent to two consecutive vertices $c_{i}$ and $c_{i+1}$ on $C$, else the subgraph of $G$ induced by $x, c_{2}, c_{3}, \ldots, c_{2 k+1}$ contains an odd hole. But this means that vertices $x, c_{2}, c_{i}, c_{i+1}, c_{2 k+1}$ induce a cricket in $G$, a contradiction.

Corollary 1. Let $G$ be a cricket free graph without odd holes. Then $\chi(G)=\chi(\widetilde{G})$.

Proof. This is a direct consequence of Lemma 2 and Lemma 4.

Corollary 2. Let $G=(V, E)$ be a cricket free graph without odd holes. Given a colouring of $\widetilde{G}$ in $\chi(\widetilde{G})=\chi(G)$ colours, one can colour $G$ with the same number of colours in $O(|V||E|)$ time.

Proof. It follows from Lemma 2 that given any vertex $x$ in a cricket-free graph $G=(V, E)$ without odd holes, and any colouring of $G_{x}$ in $\chi\left(G_{x}\right)=\chi(G)$ colours, one can colour $G$ with the same number of colours by performing bichromatic exchanges until all copies of $x$ get the same colour. This takes $O(|E|)$ time. Since $\widetilde{G}$ is obtained from $G$ after $|V|$ successive transformations, a colouring of $G$ in $\chi(G)$ colours can be derived from a colouring of $\widetilde{G}$ in $\chi(G)$ colours in $O(|V||E|)$ time.

Corollary 3. Let $G$ be a cricket-free Berge graph. Then $\tilde{G}$ is also Berge.

Proof. Let $G$ be a cricket-free Berge graph. Since the diameter of an antihole is 2 , it follows from Lemma 3 that $\widetilde{G}$ has no odd antihole. Moreover, we know from Lemma 4 that $\widetilde{G}$ has no odd hole. Hence, $\widetilde{G}$ is Berge.

## 3. SPECIAL CLASSES OF GRAPHS

The clique number of diamond-free graphs can easily be computed by means of the transformation described in the previous section. Indeed, in such a case, the transformed graph $\widetilde{G}$ has a very special structure as stated in the following Lemma.

Lemma 5. Let $G$ be a diamond-free graph. Then $\widetilde{G}$ is the union of disjoint cliques.

Proof. Since the diameter of a diamond is 2, it follows from Lemma 3 that $\widetilde{G}$ is also diamond-free. Suppose now that $\widetilde{G}$ contains a chordless path $P=\left(v_{1}, v_{2}, v_{3}\right)$. Since the neighbourhood of vertex $v_{2}$ in $\tilde{G}$ must be connected, there exists a chordless path $\left(v_{1}=p_{1}, p_{2}, \ldots, p_{k}=v_{3}\right)$ in the neighbourhood of $v_{2}$. Hence, vertices $v_{2}, p_{1}, p_{2}, p_{3}$ induce a diamond in $\widetilde{G}$, a contradiction.

Since $\omega(G)=\omega(\widetilde{G})$ for all graphs $G=(V, E)$, we can compute the clique number of a diamond-free graph by first constructing $\tilde{G}$, and then determining the largest connected component in $\widetilde{G}$. This leads to an $O\left(|V|^{2}+|V||E|\right)$ time algorithm. We now extend this result to a larger class of graphs. Consider the two graphs depicted in Fig. 3. They both contain a diamond as subgraph. The class of (gem, $F_{1}$ )-free graphs therefore strictly contains all diamond-free graphs.

Lemma 6. Let $G$ be a $\left(\mathrm{gem}, F_{1}\right)$-free graph. Then, $\tilde{G}$ is $\left(P_{5}, \overline{P_{5}}, C_{5}\right)$-free.
Proof. Since the diameter of both forbidden subgraphs in $G$ is 2 , it follows from Lemma 3 that $G$ is also (gem, $F_{1}$ )-free. Moreover, the neighbourhood $N(x)$ of each vertex $x$ in $\widetilde{G}$ is connected and $P_{4}$-free, else the subgraph induced by $\{x\} \cup N(x)$ contains a gem.

Suppose that $\tilde{G}$ contains an induced $P_{5}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$, or an induced $C_{5}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$. Since $N\left(x_{3}\right)$ is connected and $P_{4}$-free,

gem

$F_{1}$

FIGURE 3
there exists a vertex $y_{1}$ which is adjacent to $x_{2}, x_{3}$ and $x_{4}$ in $\widetilde{G}$. Vertex $y_{1}$ is neither adjacent to $x_{1}$, nor to $x_{5}$ else vertices $x_{1}, x_{2}, x_{3}, x_{4}, y_{1}$ or $x_{2}, x_{3}, x_{4}, x_{5}, y_{1}$ induce a gem in $\widetilde{G}$. Since $N\left(x_{2}\right)$ is also connected and $P_{4}$-free, there exists a vertex $y_{2}$ which is adjacent to $x_{1}, x_{2}, x_{3}$ and $y_{1}$ in $\widetilde{G}$. Vertex $y_{2}$ is not adjacent to $x_{4}$, else vertices $x_{1}, x_{2}, x_{3}, x_{4}, y_{2}$ induce a gem in $\widetilde{G}$. By symmetry, there exists a vertex $y_{3}$ which is adjacent to $x_{3}, x_{4}$, $x_{5}, y_{1}$ but not to $x_{2}$ in $\widetilde{G}$. Also, vertices $y_{2}$ and $y_{3}$ are not adjacent, else $x_{2}, x_{4}, y_{1}, y_{2}, y_{3}$ induce a gem in $\widetilde{G}$. But now, vertices $x_{2}, x_{3}, x_{4}, y_{1}$, $y_{2}, y_{3}$ induce an $F_{1}$ in $\widetilde{G}$, a contradiction.

Suppose now that the complement $\overline{\widetilde{G}}$ of $\widetilde{G}$ contains an induced $P_{5}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$. Since $N\left(x_{5}\right)$ is connected and $P_{4}$-free in $\widetilde{G}$, there exists a vertex $y_{1}$ which is adjacent to $x_{1}, x_{2}, x_{3}$ and $x_{5}$ in $\widetilde{G}$. Vertex $y_{1}$ is not adjacent to $x_{4}$ else vertices $x_{2}, x_{3}, x_{4}, x_{5}, y_{1}$ induce a gem in $\widetilde{G}$. Since $N\left(x_{2}\right)$ is also connected and $P_{4}$-free in $\widetilde{G}$, there exists a vertex $y_{2}$ which is adjacent to $x_{2}, x_{4}, x_{5}$ and $y_{1}$. Vertex $y_{2}$ is neither adjacent to $x_{3}$ nor to $x_{1}$ else $x_{2}, x_{3}, x_{4}, x_{5}, y_{2}$ or $x_{1}, x_{3}, x_{4}, y_{1}, y_{2}$ induce a gem in $\widetilde{G}$. But now, vertices $x_{1}, x_{2}, x_{3}, x_{5}, y_{1}, y_{2}$ induce an $F_{1}$ in $\widetilde{G}$, a contradiction.

Theorem 1. The clique number of a (gem, $\left.F_{1}\right)$-free graph $G=(V, E)$ can be computed in $O\left(|V|^{2}+|V||E|\right)$ time.

Proof. We know from Property 1 that $\omega(G)=\omega(\widetilde{G})$ and it follows from Lemma 6 that $\widetilde{G}$ is $\left(P_{5}, \overline{P_{5}}, C_{5}\right)$-free. It is now sufficient to observe that the construction of $\widetilde{G}$ takes $O\left(|V|^{2}+|V||E|\right)$ time, while the computation of the clique number of a $\left(P_{5}, \overline{P_{5}}, C_{5}\right)$-free graph can be performed in $O(|V|+|E|)$ time [2].

We now prove the validity of the SPGC for (cricket, gem, $F_{1}$ )-free graphs. Notice that a gem-free graph does not contain any antihole of length larger than 6 . Moreover, the antihole and the hole on 5 vertices are isomorphic. Hence, a graph is Berge and (cricket, gem, $F_{1}$ )-free if and only if it is (cricket, gem, $F_{1}$ )-free and without odd holes.

Theorem 2. All (cricket, gem, $F_{1}$ )-free graphs without odd holes are perfect.

Proof. We know from Corollary 1 that if $G$ is cricket-free and without odd holes, then $\chi(G)=\chi(\widetilde{G})$. Also, it follows from Lemma 6 that if $G$ is (gem, $F_{1}$ )-free, then $\widetilde{G}$ is $\left(P_{5}, \overline{P_{5}}, C_{5}\right)$-free. Since these graphs are perfect [2], we can conclude that if $G$ is without odd holes and (cricket, gem, $F_{1}$ )free, then $\omega(G)=\omega(\widetilde{G})=\chi(\widetilde{G})=\chi(G)$.

Theorem 3. A colouring in $\chi(G)$ colours of a (cricket, gem, $F_{1}$ )-free graph $G=(V, E)$ without odd holes can be determined in $O\left(|V|^{2}+|V||E|\right)$ time.

Proof. The construction of $\widetilde{G}$ from $G$ requires $O\left(|V|^{2}+|V||E|\right)$ time. Since $\widetilde{G}$ is $\left(P_{5}, \overline{P_{5}}, C_{5}\right)$-free, it can be coloured in $\chi(\widetilde{G})=\chi(G)$ colours in $O(|V|+|E|)$ time [2]. Finally, we know from Corollary 2 that a colouring of $G$ in $\chi(G)$ colours can be derived from the colouring of $\widetilde{G}$ in $O(|V||E|)$ time.

Claw-free Berge graphs have been well studied, and several proofs of their perfectness have been given [4, 6, 8]. Moreover, Hsu [5] has proposed an $O\left(|V|^{4}\right)$ algorithm which determines the chromatic number of claw-free Berge graphs. In the following, we prove the validity of the Strong Perfect Graph Conjecture for a class of graphs that strictly contains claw-free graphs. Consider the three graphs depicted in Fig. 4. Notice that the cricket, $F_{2}, F_{3}$, and $F_{4}$ contain a claw.

Lemma 7. Let $G$ be a $\left(F_{2}, F_{3}, F_{4}\right)$-free graph. Then $\widetilde{G}$ is claw free.
Proof. Since the diameter of all three forbidden subgraphs is 2 , we know from Lemma 3 that $\widetilde{G}$ is $\left(F_{2}, F_{3}, F_{4}\right)$-free. Now suppose that $\widetilde{G}$ contains an induced claw on vertices $c_{0}, c_{1}, c_{2}, c_{3}$, where $c_{0}$ is adjacent to the three other vertices. Since the neighbourhood of each vertex in $\widetilde{G}$ is connected, there exists a chordless path $\left(c_{1}=p_{0}, \ldots, p_{k}=c_{2}\right)$ from $c_{1}$ to $c_{2}$ in $N\left(c_{0}\right)$, as well as a chordless path $\left(c_{2}=q_{0}, \ldots, q_{l}=c_{3}\right)$ from $c_{2}$ to $c_{3}$ in $N\left(c_{0}\right)$. Since $F_{4}$ is a forbidden subgraph, both paths are of length 2 or 3 . Assume first that both paths are of length 2 (i.e., $k=l=2$ ). Vertex $p_{1}$ is not adjacent to $c_{3}$, else $\widetilde{G}$ contains an $F_{2}$. For the same reason, vertex $q_{1}$ is not adjacent to $c_{1}$. Hence, we now have either an $F_{3}$ if $p_{1}$ is adjacent to $q_{1}$, or an $F_{4}$ otherwise, a contradiction.

Therefore, among the three chordless paths linking $c_{1}$ to $c_{2}, c_{1}$ to $c_{3}$ and $c_{2}$ to $c_{3}$ in $N\left(c_{0}\right)$, at least two are of length 3 . We may assume that there exist chordless paths $\left(c_{1}=p_{0}, p_{1}, p_{2}, p_{3}=c_{2}\right)$ and $\left(c_{2}=q_{0}, q_{1}, q_{2}, q_{3}=c_{3}\right)$

$F_{2}$

$F_{3}$

$F_{4}$

FIGURE 4
in $N\left(c_{0}\right)$. Vertex $c_{3}$ cannot be adjacent to both $p_{1}$ and $p_{2}$, else vertices $c_{0}$, $c_{1}, c_{2}, c_{3}, p_{1}, p_{2}$ induce an $F_{3}$ in $\widetilde{G}$. Also, vertex $c_{3}$ cannot be adjacent to exactly one vertex among $p_{1}$ and $p_{2}$, say $p_{1}$, else vertices $c_{0}, c_{1}, c_{3}, p_{1}, p_{2}$ induce an $F_{2}$ in $\widetilde{G}$. Hence, $c_{3}$ is neither adjacent to $p_{1}$, nor to $p_{2}$. By symmetry, $q_{2}$ is not adjacent to $c_{1}$. Notice that vertices $c_{0}, c_{1}, c_{2}, q_{2}$ also induce a claw, which means that we also know that $q_{2}$ is neither adjacent to $p_{1}$, nor to $p_{2}$. But now, vertices $c_{0}, c_{2}, p_{1}, q_{2}$ induce a claw, while the paths ( $p_{1}, p_{2}, c_{2}$ ) and ( $c_{2}, q_{1}, q_{2}$ ) in $N\left(c_{0}\right)$ are of length 2 , a contradiction.

Theorem 4. All (cricket, $F_{2}, F_{3}, F_{4}$ )-free Berge graphs are perfect.
Proof. Let $G$ be a (cricket, $F_{2}, F_{3}, F_{4}$ )-free Berge graph. It follows from Corollary 3 and Lemma 7 that $\widetilde{G}$ is Berge and claw-free. Also, it follows from Corollary 1 that $\chi(G)=\chi(\widetilde{G})$. Since claw-free Berge graphs are known to be perfect [8], we conclude that $\omega(G)=\omega(\widetilde{G})=\chi(\widetilde{G})=\chi(G)$.

Theorem 5. A colouring of a (cricket, $F_{2}, F_{3}, F_{4}$ )-free Berge graph $G=(V, E)$ in $\chi(G)$ colours can be determined in $O\left(|V|^{4}\right)$ time.

Proof. The construction of $\widetilde{G}$ from $G$ requires $O\left(|V|^{2}+|V||E|\right)$ time. Hsu [5] has shown how to colour $\widetilde{G}$ in $\chi(\widetilde{G})=\chi(G)$ colours in $O\left(|V|^{4}\right)$ time. Finally, we know from Corollary 2 that a colouring of $G$ in $\chi(G)$ colours can be derived from the colouring of $\widetilde{G}$ in $O(|V||E|)$ time.

Theorem 4 proves the validity of the SPGC for a class of graphs that strictly contains claw-free graphs. A similar result has been obtained by Sun who has shown the validity of the SPGC for dart-free graphs, where a dart is the graph obtained from a claw by adding a vertex linked to all vertices in the claw, except one of degree 1 [9].

## REFERENCES

1. C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Hall-Wittenberg Math.-Natur. Reihe (1961), 114-115.
2. V. Chvátal, C. T. Hoàng, N. V. R. Mahadev, and D. de Werra, Four classes of perfectly orderable graphs, J. Graph Theory 11 (1987), 481-495.
3. J. Fonlupt and J. P. Uhry, Transformations which preserve perfectness and $H$-perfectness of graphs, Ann. Discrete Math. 16 (1982), 83-95.
4. R. Giles, L. E. Trotter, and A. Tucker, The strong perfect graph theorem for a class of partitionable graphs, in "Topics on Perfect Graphs" (C. Berge and V. Chvátal, Eds.), pp. 161-167, North-Holland, Amsterdam, 1984.
5. W.-L. Hsu, How to color claw-free perfect graphs: Studies on graphs and discrete programming (Brussels, 1979), Ann. Discrete Math. 11 (1981), 189-197.
6. F. Maffray and B. A. Reed, A description of claw-free perfect graphs, J. Combin. Theory Ser. B 75 (1999), 134-156.
7. H. Meyniel, A new property of critical imperfect graphs and some consequences, Europ. J. Combin. 8 (1987), 313-316.
8. K. R. Parthasarathy and G. Ravindra, The strong perfect graph conjecture is true for $K_{1,3}$-free graphs, J. Combin. Theory Ser. B 21 (1976), 212-223.
9. L. Sun, Two classes of perfect graphs, J. Combin. Theory Ser. B 53 (1991), 273-292.
10. R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972), 146-160.
