INSTITUTO DE COMPUTACAO
UNIVERSIDADE ESTADUAL DE CAMPINAS

Accurate Tridimensional Reconstruction with
Unsynchronized Cameras Regardless of Time

Information
F. Dias N. J. Leite
Technical Report - 1C-14-04 - Relatério Técnico

February - 2014 - Fevereiro

The contents of this report are the sole responsibility of the authors.
O contetdo do presente relatério € de Gnica responsabilidade dos autores.



Accurate Tridimensional Reconstruction with Unsynchronized
Cameras Regardless of Time Information

Fébio Dias* Neucimar Jeronimo Leite!

Abstract

In this work, we approach the problem of the tridimensional reconstruction of the
trajectory of an object using unsynchronized cameras. While most methods from the
literature try to measure, as accurately as possible, the timing difference between the
cameras, we chose a very different path: we ignore most, or all, of the time information
from the videos. The idea is quite simple. Each pair of camera and projected trajectory
generate a surface on the volume. The intersection of these curves is the desired result.
Since this intersection can be very complex, we considered a Monte Carlo approach
for the reconstruction, using random tridimensional points to estimate the region of
intersection. Therefore, any camera calibration schema can be used. These points are
later used to compute a continuous curve, which is the final result of the method. We
compared this method to a very simple reconstruction approach, which assumes the
frames are synchronized, and obtained outstanding results. Our implementation and
data are freely available on https://code.google.com/p/ucr-timeless/.

1 Introduction

With the popularization of video cameras, their use as a data acquisition tool is increasing on
many domains. A very common task is the tridimensional reconstruction of the trajectory
of an object of interest through a captured scene. Assuming some hypothesis to be true,
this is indeed an easy problem to solve. In this work, we will explore the removal of one of
these hypothesis: the need for synchronized cameras for tridimensional reconstruction.

In this work, we consider a camera to be synchronized if it is part of a multi-camera
setup and it is connected to a synchronization signal, assuring that all cameras on the setup
are capturing the frames at the same time. This method of synchronization by hardware is
usually recommended if the application needs good accuracy.

While such synchronization inputs are a basic feature on industrial and professional cam-
eras, they are not usually present in over-the-shelf digital cameras, so the synchronization
must be achieved in a different way.
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The most common way to deal with unsynchronized videos is to estimate the time
difference between the involved cameras, usually bundled with the camera calibration it-
self [14, 2, 15, 13, 16, 7, 1]. Another common method to compute this time difference
involves the use of an external audio signal [3, 5]. Other methods resort to the frequency
domain [9, 10]. Once the time difference is estimated, images [17, 12] or data [8] from one
camera can be interpolated to match a reference camera, used to help space carving [6] or
compute the scene flow [11]. Elhayek et. al. [4] avoid the time difference computation by
developing a new tracking method in a continuum domain, however we are not interested
in modifying the tracking procedure, only the reconstruction.

In this work, we approach the unsynchronized tridimensional reconstruction of the tra-
jectory of a single point by ignoring the time information in most, or all, cameras. To the
best of our knowledge, our approach is original and fundamentally different from the ones
in the literature. Indeed, if the required result can be expressed only as a curve in the
tridimensional space, we can completely ignore the temporal information. However, our
approach does require that all the videos encompass the same period of time. While our
results are promising, the main contribution of this work is this new way of considering the
problem.

2 PROPOSED METHOD

We start by describing the problem we aim to explore. The observed scene is composed
of a single, punctual, object moving around freely. The scene is captured by a number
of calibrated cameras and the coordinates of the point are known for all frames of each
video. All the cameras start and stop recording at, roughly, the same time. Approximate
boundaries of the movement, in real world coordinates, are also known.

The main idea behind our approach is quite simple. Consider a long exposure camera.
All the movement observed is present in a single image. This image represents projections
of all the places the object has been, but it does not contain the information of when it
was there nor its tridimensional position. Each pair of camera and trajectory generate a
surface on the volume of interest. The intersection of these surfaces is our result. A very
simple graphical illustration of this principle is depicted in figure 1, where two cameras are
depicted, along with the respective surfaces and their intersection.

Since the intersection of these surfaces can be reasonably complex, a closed form solution
is not practical, in most cases. Therefore, we considered a Monte Carlo approach to this
problem, using random points to estimate the trajectory of the observed object. Algorithm 1
presents an outline of the base procedure.

The basic idea of the algorithm is to create a number of random points in the volume.
Each point is verified and rejected if it is deemed unacceptable. New random points are
created and the iteration continues.

The definition of what makes a point acceptable is flexible. In our case, the point
is projected, using the calibration information, by each camera and the distance from its
projection to the corresponding trajectory is calculated. To improve the accuracy, we
interpolate the bidimensional trajectory using a spline. If this distance is smaller than a
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Figure 1: Illustration of the method’s principle.

Data:
e: Vector of rejection parameters;
N,: Number of points to be used at each iteration;
V': Approximate volume of movement;
C: Number of cameras;
Clalib: Structure containing calibration information for all cameras;
U: Structure containing the position of the object in the images for all cameras;
Result:
T:Tridimensional trajectory of the object;
points=|[;
for e €c e do
points = points|J Create RandomPoints(V, Np);
for p € points do
for c € {1..C'} do

u, = ProjectPoint(Calib(c), p);

if not Acceptable(p,Calib(c),U(c),e) then

‘ RejectPoint(p);

end

end

end

end
Algorithm 1: Base algorithm
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parameter €, for all cameras, the point is preserved, otherwise it is discarded. Then we
reduce the value of the parameter € and the process is repeated. These iterations stop after
a minimum value for € is considered.

If the result is required to be a function of time, one of the cameras can be used as
reference. In this case, we associate each random point with the value of the parameter of
the closest point of the spline, which corresponds to the time of the closest sample. Note
that, even in this case, the time information of the other cameras is completely ignored.

Finally, the random points that are preserved after the last iteration are used to estimate
the tridimensional trajectory of the object. We considered a smoothing spline, parametrized
by the time of the reference camera, but similar methods can be used as well. We evaluated
this spline for the integer values corresponding to the frames of the reference camera, leading
to the desired tridimensional result.

A very interesting feature of our method is that since the involved operations always
project tridimensional points of the scene into bidimensional points on the images, we do
not back-project points or compute the inverse of the lens distortion model. Any distortion
model can be used. In fact, any calibration method can be used, even neural networks or
other closed methods.

2.1 Implementational Considerations

The base algorithm we presented on the previous section has inherent problems. One of
them is a well known problem for space carving reconstruction, the presence of false positives
in the reconstruction results. Similarly to space carving, our method works by removing
regions of the space, leaving only the plausible answer, but all other plausible points are
accepted. One easy way to lessen this issue is to divide the video into separated segments,
and to run the reconstruction on these segments separately, as long as each segment covers
roughly the same period of time. Proper camera positioning is also a key factor for this
problem.

Another interesting issue is convergence. Due to the randomness nature of the method,
we have a compromise between its accuracy and the time necessary to process all points.
Thus, a set of too few points may not properly fall in our region of interest, while too many
points can significantly increase computational cost.

In our implementation, we tried to keep the number of points near a certain control
parameter Np. If too many points were present, we removed random points until the total
of them was equal to this parameter.

The introduction of new points is also relevant to the final result. We considered the
introduction of new points in three different ways:

e Linear combinations of existing points: We add points from the line formed by two
random points.

e Random points around the existing points: We create points around existing ones,
using a normal distribution.

e Random points: we introduce new points by considering an uniform distribution in
the volume of interest. At the start, this volume is the whole possible region of
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Figure 2: Position of the object in our experiment.

the movement. In the refinement iterations, it is defined by the mean and standard
deviation of the existing points. We create new points until we reach our control
parameter concerning the corresponding number of points.

To improve the point coverage, we introduce another parameter, an integer N,,;,. For
each iteration, we keep generating points until we have at least N,,;, acceptable points.

3 EXPERIMENTAL RESULTS

In this section, we evaluate our proposed method using only synthetic data, so the errors we
find are not caused by calibration or quantization, but due to the imposed synchronization
errors.

We created an artificial dataset containing 300 trajectory points, interpolated from 6
random points. The trajectory of the object is depicted in figure 2. We then placed three
cameras, at coordinates ¢; = (30, 5,20), c2 = (5,30,20) and ¢3 = (—20, —20,20). However,
to ensure that the samples are not synchronized, each camera captured only 100 frames.

For this experiment, we divided the trajectory in twenty segments. To improve the
results, in between segments, we also processed the last half of the previous segment, com-
bined with the first half of the next segment. This approach improves the results because
our method usually focus the random points in the middle of the segment, leaving holes in
the coverage. The parameter € was set to the following values: [10,5,2,1,0.5]. The random
and acceptable points, for the first segment, are illustrated on figure 3 for three different
values of €, to demonstrate how the points converge to the desired result, depicted as a
black line. The random points are depicted as red circles, while the accepted points are
depicted as blue dots.

The control parameter for the number of points, N, was 2,000. In each iteration, we
required at least N,,;, = 500 points. The resulting points and the smoothing spline are
depicted in figure 4. Since we have the original data, we can compute the reconstruction
error. The mean error found was 0.0108, with standard deviation of 0.0140. The error
graph for our reconstruction method is depicted on figure 5.
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(a) Points for e = 10. (b) Points for € = 2. (¢) Points for € = 0.5.

Figure 3: Random and acceptable points for the first segment.

(a) Points found. (b) Smoothing spline from the
points.

Figure 4: Results of our method using three cameras.
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Figure 5: Error graph for our method
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Figure 6: Naive reconstruction error [see text].

For comparison purposes, we also computed a naive reconstruction, assuming that
frames of same number correspond to the same time. While this should perform worse
than most of the methods from the literature, it provides an estimate of the involved error.
The mean error found was 0.2078 with standard deviation 0.1332, using the first camera as
time reference. The error graph is depicted in figure 6.

As we can see from the error values and graphs, our method greatly outperforms the
naive reconstruction, which is expected, since it falsely assumes that the frames are synchro-
nized. However, further investigation is needed to properly assess its performance against
better methods from the literature. Our method also needs to better address the point
coverage in the extremes of the segments, as we can see from the error graph, where we
have an error peak.

Previously, we stated that proper camera position is a key factor to good results. To
illustrate this point, we removed the third camera from the setup used previously. To
increase the error further, we doubled the segment size, dividing the sequence into ten
segments, instead of twenty. The resulting points of the first segment is illustrated, along
with the original trajectory, on figure 7.

The effects of such outliers can probably be reduced by considering a filtering step
before the final result, since they generate a very distinguished discontinuity, but this was
not considered here. However, by dividing the trajectory into small segments, both their
occurrence and magnitude can be reduced.

4 CONCLUSIONS

In this work we presented a different approach to the tridimensional reconstruction of a
punctual object which does not require the computation of time differences between the
cameras, can be used with any camera calibration structure and can be easily used for
many cameras at once, including cameras with very different frame rates. Additionally, our
method can generate a continuous curve that can be evaluated at any required interval.
While our experimental results are promising, the main contribution of this work is the
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Figure 7: Example of false positives [see text].

difference in the approach. To the best of our knowledge, this method is not only original
but quite different from the methods found in the literature.

There are several factors to be considered in this method, such as the optimal camera
positioning and the limits of several control parameters. The last step of our method, when
we use the resulting points to generate a spline, can also be improved to reject the kind of
outliers we demonstrated on the experimental section. This is indeed a work in progress,
but it is our opinion that this approach is quite interesting and should, with more work,
yield excellent results.

Our implementation and data are freely available on https://code.google.com/p/
ucr-timeless/. We invite the readers that wish to replicate, or further investigate, our
results to refer to them.
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