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Resumo

Neste trabalho de doutorado, propomos a utilizagao de classificadores e técnicas de aprendizado
de méquina para extrair informagoes relevantes de um conjunto de dados (e.g., imagens) para
solucao de alguns problemas em Processamento de Imagens e Visao Computacional.

Os problemas de nosso interesse sao: categorizacao de imagens em duas ou mais classes,
deteccao de mensagens escondidas, distincao entre imagens digitalmente adulteradas e imagens
naturais, autenticagao, multi-classificacao, entre outros.

Inicialmente, apresentamos uma revisao comparativa e critica do estado da arte em anélise
forense de imagens e deteccao de mensagens escondidas em imagens. Nosso objetivo é mostrar
as potencialidades das técnicas existentes e, mais importante, apontar suas limitagoes. Com
esse estudo, mostramos que boa parte dos problemas nessa drea apontam para dois pontos em
comum: a selecao de caracteristicas e as técnicas de aprendizado a serem utilizadas. Nesse
estudo, também discutimos questoes legais associadas & andlise forense de imagens como, por
exemplo, o uso de fotografias digitais por criminosos.

Em seguida, introduzimos uma técnica para andlise forense de imagens testada no contexto
de deteccao de mensagens escondidas e de classificagao geral de imagens em categorias como
indoors, outdoors, geradas em computador e obras de arte.

Ao estudarmos esse problema de multi-classificacdo, surgem algumas questoes: como re-
solver um problema multi-classe de modo a poder combinar, por exemplo, caracteristicas de
classificagdo de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos
demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utili-
zar diversos classificadores diferentes, cada um, especializado e melhor configurado para um
conjunto de caracteristicas ou classes em confusao? Nesse sentido, apresentamos, uma técnica
para fusao de classificadores e caracteristicas no cendrio multi-classe através da combinagao de
classificadores binarios. Nos validamos nossa abordagem numa aplicacao real para classificacao
automdtica de frutas e legumes.

Finalmente, nos deparamos com mais um problema interessante: como tornar a utilizagao
de poderosos classificadores bindrios no contexto multi-classe mais eficiente e eficaz? Assim,
introduzimos uma técnica para combinagao de classificadores binérios (chamados classificadores
base) para a resolucao de problemas no contexto geral de multi-classificacao.
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Abstract

In this work, we propose the use of classifiers and machine learning techniques to extract useful
information from data sets (e.g., images) to solve important problems in Image Processing and
Computer Vision.

We are particularly interested in: two and multi-class image categorization, hidden mes-
sages detection, discrimination among natural and forged images, authentication, and multi-
classification.

To start with, we present a comparative survey of the state-of-the-art in digital image foren-
sics as well as hidden messages detection. Our objective is to show the importance of the existing
solutions and discuss their limitations. In this study, we show that most of these techniques
strive to solve two common problems in Machine Learning: the feature selection and the classi-
fication techniques to be used. Furthermore, we discuss the legal and ethical aspects of image
forensics analysis, such as, the use of digital images by criminals.

We introduce a technique for image forensics analysis in the context of hidden messages
detection and image classification in categories such as indoors, outdoors, computer generated,
and art works.

From this multi-class classification, we found some important questions: how to solve a
multi-class problem in order to combine, for instance, several different features such as color,
texture, shape, and silhouette without worrying about the pre-processing and normalization of
the combined feature vector? How to take advantage of different classifiers, each one custom
tailored to a specific set of classes in confusion? To cope with most of these problems, we present
a feature and classifier fusion technique based on combinations of binary classifiers. We validate
our solution with a real application for automatic produce classification.

Finally, we address another interesting problem: how to combine powerful binary classifiers
in the multi-class scenario more effectively? How to boost their efficiency? In this context,
we present a solution that boosts the efficiency and effectiveness of multi-class from binary
techniques.
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Capitulo 1

Introducao

Em Processamento de Imagens e Visao Computacional, muitas vezes, a solucao de determinados
problemas pode exigir o correto entendimento do contexto da cena analisada ou mesmo das
inter-relagoes compartilhadas por cenas de um mesmo grupo semantico. No entanto, definir
precisamente as nuancas e caracteristicas que gostariamos de selecionar nao é uma tarefa facil.
Nesse contexto, técnicas de aprendizado de maquina e reconhecimento de padroes podem tornar-
se ferramentas valiosas.

A extragao de caracteristicas representativas de um conjunto de dados (e.g., imagens) é uma
tarefa complexa, e exige modelos sofisticados. Nao hd uma forma inica e sistemética para extrair
caracteristicas ou relagoes métricas entre exemplos. Como passo inicial, podemos utilizar duas
abordagens principais: generativa e discriminativa [146].

Com a abordagem generativa, procuramos resolver um problema dando énfase no processo
de geracao dos dados sob andlise. Normalmente, modelamos o sistema como uma distribuigao
conjunta de probabilidade (Joint probability function) e, desta forma, podemos criar exemplos
artificiais que podem ser inseridos no sistema. Exemplos de modelos que utilizam a abordagem
generativa sao: Classificadores Bayesianos, Markov Random Fields e Gaussian Mizture Mo-
dels [55]. Por outro lado, na abordagem discriminativa, procuramos encontrar as fronteiras que
melhor separam um conjunto de classes do nosso problema. Classificadores como Support Vector
Machines (SVMs) [31] utilizam esta abordagem. Para entender melhor, considere a Figura 1.1.
Nesse problema de classificacao, a abordagem generativa objetiva encontrar relacoes métricas na
classe dos circulos (41) e dos triangulos (—1), de modo a modelar o processo de geragao desses
dados. Em contrapartida, a abordagem discriminativa procura modelar a melhor fronteira de
separacao das duas classes.

De forma geral, os modelos generativo e discriminativo podem variar de acordo com cada
aplicacao. Nesta pesquisa de doutorado, nés avaliamos e aplicamos a melhor abordagem de
acordo com o problema analisado. Em alguns casos, pode ser necessario utilizar uma associacao
destas duas abordagens [69] construindo um modelo de extragao/classificacdo de caracteristicas
mais robusto.

A associacao de informacgoes aprendidas a partir de um conjunto de dados nao é uma idéia
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Figura 1.1: Diferentes abordagens de solucao de problemas em Aprendizado de Maquina: gene-
rativa e discriminativa.

nova. Muito se tem pesquisado para descobrir como ndés humanos interpretamos uma determi-
nada cena e como podemos extrair informacgoes de nossa interpretacao de modo que possamos
associd-las na resolucao de certos problemas.

Viola e Jones [182] apresentaram uma abordagem descritiva para detec¢ao de faces através
da codificacao de caracteristicas que demonstram um dominio de conhecimentos ad hoc das
imagens analisadas. Os autores extraem informagoes das imagens a partir de classificadores
bem simples dispostos em um modelo de cascata. Esta abordagem mostrou-se mais eficiente
que sistemas baseados em informagoes locais (pizels).

Lyu e Farid [99] apresentaram uma técnica que decompde uma imagem em um modelo de
posicao espacial, orientacao e escala capaz de fornecer descritores que podem ser utilizados para
extrair modelos artisticos de um determinado conjunto de obras de um certo artista. A partir
do aprendizado dessas informagoes, pode-se tracar o perfil do artista sendo analisado.

Nesta tese de doutorado, organizada na forma de coletanea de artigos, propomos a utilizagao
de classificadores e técnicas de aprendizado de méaquina para extrair informagoes relevantes
de um conjunto genérico de dados (e.g., imagens), similaridade entre um certo conjunto de
imagens ou dados, ou mesmo sua percep¢ao semantica, para solucao de alguns problemas em
Processamento de Imagens e Visao Computacional.

Os problemas de nosso interesse sdo: categorizagdo de imagens em duas ou mais classes,
deteccao de mensagens escondidas, distincao entre imagens digitalmente adulteradas e imagens
naturais, autenticacao, multi-classificagdo, entre outros.

Inicialmente, nos Capitulos 2 e 3, apresentamos uma revisao comparativa e critica do estado
da arte em andlise forense de imagens e deteccdo de mensagens escondidas em imagens. Nosso
objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas
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limitacoes. Com esse estudo, mostramos que boa parte dos problemas nessa area apontam
para dois pontos em comum: a selecdo de caracteristicas e as técnicas de aprendizado a serem
utilizadas. Nesse estudo, também discutimos questoes legais associadas a analise forense de
imagens como, por exemplo, o uso de fotografias digitais por criminosos.

Em seguida, no Capitulo 4, introduzimos uma técnica para analise forense de imagens tes-
tada no contexto de deteccdo de mensagens escondidas e de classificagdo geral de imagens em
categorias como indoors, outdoors, geradas em computador e obras de arte.

Ao estudarmos esse problema de multi-classificacdo, surgem algumas questoes: como re-
solver um problema multi-classe de modo a poder combinar, por exemplo, caracteristicas de
classificacdo de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos de-
masiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar
diversos classificadores diferentes, cada um, especializado e melhor configurado para um con-
junto de caracteristicas ou classes em confusao? Nesse sentido, no Capitulo 5, apresentamos
uma técnica para fusao de classificadores e caracteristicas no cenario multi-classe através da
combinacao de classificadores bindrios. Nos validamos nossa abordagem numa aplicacao real
para classificacdo automaética de frutas e legumes.

Finalmente, nos deparamos com mais um problema interessante: como tornar a utilizacao
de poderosos classificadores bindrios no contexto multi-classe mais eficiente e eficaz? Assim, no
Capitulo 6, introduzimos uma técnica para combinacao de classificadores binarios (chamados
classificadores base) para a resolugdo de problemas no contexto geral de multi-classificagao.

No restante do Capitulo 1, apresentamos um resumo de nossas contribuicoes nesse trabalho
de doutorado. Os capitulos posteriores apresentam mais detalhes sobre cada uma das contri-
buicoes. Antes de cada capitulo, apresentamos um breve resumo, em portugués, sobre o assunto
a ser tratado e, em seguida, apresentamos o capitulo em inglés. Ao final, apresentamos as
consideragoes finais de nosso trabalho.

1.1 Deteccao de adulteracoes em imagens digitais

Ao campo de pesquisas relacionado & andlise de imagens para verificagdo de sua autenticidade e
integridade denominamos Andlise Forense de Imagens. Com o advento da internet e das caAmeras
de alta performance e de baixo custo juntamente com poderosos pacotes de software de edicao
de imagens (Photoshop, Adobe Illustrator, Gimp), usuérios comuns tornaram-se potenciais es-
pecialistas na criagdo e manipulacao de imagens digitais. Quando estas modificagoes deixam de
ser inocentes e passam a implicar em questoes legais, torna-se necessario o desenvolvimento de
abordagens eficientes e eficazes para sua deteccao.

A identificacdo de imagens que foram digitalmente adulteradas é de fundamental importancia
atualmente [43,138,141]. O julgamento de um crime, por exemplo, pode estar sendo baseado em
evidéncias que foram fabricadas especificamente para enganar e mudar a opiniao de um juri. Um
politico pode ter a opiniao publica langada contra ele por ter aparecido ao lado de um traficante
procurado mesmo sem nunca ter visto este traficante antes.

No Capitulo 2, apresentamos um estudo critico das principais técnicas existentes na analise
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forense de imagens. No Capitulo 3, mostramos mais especificamente algumas técnicas para o
mascaramento digital de informagcoes e para a deteccdo de mensagens escondidas em imagens.
Nos dois capitulos, mostramos que boa parte dos problemas relacionados a andlise forense de
imagens apontam para dois pontos em comum: a selecdo de caracteristicas e as técnicas de
aprendizado a serem utilizadas.

Como discutimos nos Capitulos 2 e 3, atualmente, ndo existem metodologias estabelecidas
para verificar a autenticidade e integridade de imagens digitais de forma automaética. Embora
a marcagao digital (watermarking) possa ser utilizada em algumas situagoes, sabemos que a
grande maioria das imagens digitais ndo possui marcacdo. Adicionalmente, qualquer solucao
baseada em marcacao digital implicaria na implementacao de tal abordagem diretamente nos
sensores de aquisicao das imagens o que tornaria seu uso restritivo. Além disso, possivelmente
haveria perdas na qualidade do conteido da imagem devido a insercao das marcagoes.

De forma geral, as técnicas propostas na literatura para andlise forense de imagens sao
categorizadas em quatro grandes dreas de acordo com o seu foco principal (c.f., Cap. 2 e 3):
(1) identificagao da origem da imagem; (2) distin¢ao entre imagens naturais e imagens sintéticas;
(3) deteccao de mensagens escondidas; e (4) detecgao de falsificacdo em imagens.

1. Identificagao da origem da imagem. Consiste no conjunto de técnicas para investigar
e identificar as caracteristicas do dispositivo de captura de uma imagem (e.g., camera
digital, scanner, gravadora). Para estas técnicas, normalmente esperamos dois resultados:
(1) a classe ou modelo da fonte utilizada e (2) as caracteristicas da fonte especifica utilizada.

2. Identificagao de imagens sintéticas. Consiste no conjunto de técnicas para investigar e
identificar as caracteristicas que possam classificar uma imagem como falsa (néo natural).

3. Deteccgao de mensagens escondidas. Consiste no conjunto de técnicas para a detecgao
de mensagens escondidas em imagens digitais. Tipicamente, essas mensagens sao inseridas
através da modificagao de propriedades das imagens (e.g., pizels).

4. Identificagao de adulteragoes. Consiste na detecgao de adulteragdes em imagens digi-
tais. Tipicamente, uma imagem (ou parte dela) sofre uma ou mais manipulagdes digitais
tais como: operagoes afins (e.g., aumento, reducao, rotacao), compensacao de cor e brilho,
supressao de detalhes (e.g., filtragem, adi¢ao de ruido, compressao).

Resultados obtidos

A andlise critica que apresentamos no Capitulo 2 é uma compilacao de nosso trabalho submetido
ao ACM Computing Surveys. O banco de dados de imagens que discutimos nesse capitulo é
resultado de nosso artigo [154] no IEEE Workshop on Vision of the Unseen (WVU). Ambos os
trabalhos foram produzidos com a colaboracao dos pesquisadores Walter J. Scheirer e Terrance
E. Boult da Universidade do Colorado em Colorado Springs. Finalmente, o trabalho apresentado
no Capitulo 3 é o resultado de nosso artigo [149] na Revista de Informdtica Tedrica e Aplicada
(RITA).
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1.2 [Esteganalise e categorizacao de imagens

Pequenas perturbacoes feitas nos canais menos significativos de imagens digitais (e.g., canal LSB)
sao imperceptiveis aos humanos mas sao estatisticamente detectaveis no contexto de andlise de
imagens [147,188].

Nesse sentido, no Capitulo 4, apresentamos uma abordagem para meta-descricao de imagens
denominada Randomizagao Progressiva (PR!) para nos auxiliar nos problemas de: (1) Detecgao
de mensagens escondidas em imagens digitais; e (2) Categorizagao de imagens.

1.2.1 Deteccao de mensagens escondidas

Neste problema, procuramos aperfeicoar e dar robustez ao trabalho desenvolvido em meu mes-
trado [35]. Estudamos e desenvolvemos técnicas capazes de permitir a detecgao de mensagens
escondidas em imagens digitais.

Grande parte das técnicas de esteganografia, a arte das comunicagoes escondidas, possuem fa-
lhas e/ou inserem artefatos (padroes) detectaveis nos objetos de cobertura (utilizados para escon-
der uma determinada mensagem). A identificacao destes artefatos e sua correta utilizacdo na de-
teccao de mensagens escondidas constituem a arte e a ciéncia conhecida como estegandlise [149].

O método de randomizagao progressiva proposto permite a detecgao de mensagens escondidas
em imagens com compressao sem perdas (e.g., PNGs). Além disso, o método permite apontar
quais os tipos de imagens sao mais sensiveis ao mascaramento de mensagens bem como quais
tipos de imagens sao mais propicios a este tipo de operagoes.

1.2.2 Categorizacao de imagens — Cenario de duas classes

O conhecimento semantico sobre uma determinada midia nos permite desenvolver técnicas inteli-
gentes de processamento dessas midias baseadas em seu contetido. Cameras digitais ou aplicagoes
de computador podem corrigir cor e brilho automaticamente levando em consideragao propri-
edades da cena analisada. Nesses casos, informacgoes locais das midias podem ser insuficientes
para determinados problemas.

Nesse trabalho de doutorado, procuramos desenvolver uma técnica capaz de associar in-
formagoes coletadas através de relacoes encontradas em um grande banco de dados de imagens
para separar imagens naturais de imagens geradas em computador [37,98,119], imagens em
ambiente externo (outdoors) de imagens em ambiente interno (indoors) [92,128,162], e imagens
naturais de imagens de obras de arte [34]. Nossa abordagem consiste em capturar propriedades
estatisticas das duas classes analisadas de cada vez e buscar diferencas nestas propriedades.

1.2.3 Categorizagao de imagens — Cenario multi-classe

Denomina-se categorizacao de imagens ao conjunto de técnicas que distinguem classes de ima-
gens, apontando o tipo de uma imagem. Nesse problema, objetivamos desenvolver uma abor-

!Originalmente, denominamos nosso meta-descritor como Progressive Randomization (PR ).
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dagem de categorizacao de imagens para as classes indoors, outdoors, geradas em computador e
artes. Nao consideramos classes especificas de objetos tais como carros ou pessoas. Um cendrio
tipico para uma aplicacao é o agrupamento de fotos em albuns automaticamente de acordo com
classes. A solucao que apresentamos é simples, unificada e relativamente possui baixa dimensi-
onalidade?.

1.2.4 Randomizag¢ao Progressiva (PR)

PR é um novo meta-descritor que captura as diferencas entre classes gerais de imagens usando
os artefatos estatisticos inseridos durante um processo de perturbacao sucessiva das imagens
analisadas. Nossos experimentos demonstraram que esta técnica captura bem a separabilidade
de algumas classes de imagens. A observacao mais importante é que classes diferentes de imagens
possuem comportamentos distintos quando submetidas a sucessivas perturbagoes. Por exemplo,
um conjunto de imagens que nao possui mensagens escondidas apresenta diferentes artefatos
mediante sucessivas perturbagoes que um conjunto de imagens que possui mensagens escondidas.
No Algoritmo 1, resumimos os quatro passos principais da Randomizagao Progressiva apli-
cada a Estegandlise e a Categorizagdo de Imagens. Os quatro passos sdo: (1) o processo de
randomizagao; (2) selecao de regides caracteristicas; (3) descrigao estatistica; e (4) invariancia.

Algorithm 1 Meta-descritor de Randomizacao Progressiva (PR).
Require: Imagem de entrada I; Porcentagens P = {Py,... P, };
1: Randomizacao: faca n perturbagoes nos bits menos significativos de I

{0i}izo..m. ={1,T(I,P),...,T(I,P,)}.

(]

: Selecao de regioes: selecione r regices de cada imagem i € {O;}i—o.»

{OZ]}Z (;n - {0017---70717“}'

3: Descrigao estatistica: calcule m descritores estatisticos para cada regiao

{dijr} = {dr(Oi)}
4: Invariancia: normalize os descritores de acordo com seus valores na imagem de entrada [

9

doji.

dij
F = {fe}e:l...nxrxm = { jk} i
J
k

0...n,
1...7r,
1...m.

5: Use as caracteristicas {d;;z} € R"TV*"™*™ (njo-normalizadas) ou {d;;z} € R™"™™ (nor-
malizadas) em seu classificador de padroes favorito.

?Baixa dimensionalidade refere-se a um baixo nimero de caracteristicas no processo de descricio dos elementos
analisados.
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Perturbacao dos pixels

Seja x uma varidvel aleatéria com distribuicdo de Bernoulli com probabilidade
Prob{x = 0}) = Prob({x =1}) = 1, B uma seqiiéncia de bits composta por ensaios indepen-
dentes de x, p uma porcentagem, e S um conjunto aleatério de pizels em uma imagem de
entrada.

Dada uma imagem de entrada I com |I| pizels, nés definimos uma perturbacao T'(1,p) no
canal de bits menos significativo (LSB) como o processo de substituigdo dos LSBs de S de
tamanho p x |I| de acordo com a seqiiéncia de bits B.

Considere um pizel px; € S e um bit associado b; € B

L(px;) < b; para todo px; € S. (1.1)

onde L(pz;) é o LSB do pizel pr;. A Figura 1.2 mostra um exemplo de uma perturbagao usando
os bits B = 1110.

135 = 1000 0111 114 = 0111 0010
138 = 1000 1010 46 = 0010 1110

Figura 1.2: Um exemplo de perturbacao LSB usando os bits B = 1110.

O processo de randomizagao

Dado uma imagem original I como entrada, o processo de randomizacao consiste na aplicacao
sucessiva de perturbacoes T'(I, Py),...,T(I, P,) nos LSBs dos pizels de I. O processo retorna
n imagens que apenas diferem entre si nos canais LSBs usados nas perturbagoes e sao idénticas
ao olho nu.



8 Capitulo 1. Introducao

As T'(I, P;) transformagoes sao perturbagoes de diferentes porcentagens (pesos) nos LSBs dis-
poniveis. Em nosso trabalho base, utilizamos n = 6 onde P = {1%, 5%, 10%, 25%, 50%, 75%},
P; € P denota os tamanhos relativos dos conjuntos de pizels selecionados S.

Selecao de regioes

Propriedades locais nao aparecem diretamente sob uma investigagao global [188]. Nés utilizamos
descritores estatisticos em regioes locais para capturar as mudancas inseridas pelas perturbagoes
sucessivas (c.f., Sec. 1.2.4).

Dada uma imagem I, nés usamos r regioes com tamanho [ X [ pizels para produzir descritores
estatisticos localizados. Na Figura 1.3, nés mostramos uma configuragao com r = 8 regides com
sobreposicao de informagoes.

!'Pﬁ Q/, NN (&f,)'/z X \‘\ /i?,— X \\ (M% X \\\:\ .- >f/ X

< L W -‘ ;'
I e 1) et |G ]| Nen IS8 bl
3 17 B2 N 7 WS 8 7 WU [

Figura 1.3: Oito regites de interesse considerando sobreposicao de informagoes.

Descricao estatistica

As perturbagdes LSB mudam o conteiido de um conjunto selecionado de pizels e induzem mu-
dancas localizadas nas estatisticas dos pizels. Um pizel com L bits possui 2% valores possiveis

2L—1

e representa classes de invariancia se consideramos possiveis mudancas apenas no canal

LSB (c.f., Sec. 1.2.4). Chamamos estas classes de invariancia de pares de valores (PoV?).
Quando perturbamos todos os LSBs disponiveis em S com uma seqiiéncia B, a distribuicao
de valores 0/1 de um PoV sera a mesma de B. A andlise estatistica compara os valores tedricos
esperados com os observados dos PoVs apds o processo de perturbacao.
Nés aplicamos os descritores estatisticos x? (Teste do Chi-quadrado) [191] e Uz (Teste Uni-
versal de Ueli Maurer) [102] para analisar estas mudangas.

3Pair of Values.
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Invariancia

FEm algumas situagoes, é necessario usar um descritor de caracteristicas invariante. Para tal, usa-
mos a taxa de variagao de nossos descritores estatisticos em relagao a cada perturbacao sucessiva,
ao invés de seus valores diretos. Nés normalizamos todos os valores de descritores decorrentes
das transformagoes em relagado aos seus valores na imagem de entrada (sem perturbagao)

, 1.2
doir (1.2)

d;;
F:{fe}ezl...nxrxm = { ]k} i
J
k

0...n,
1...7,
1...m.

onde d denota um descritor 1 < k < m de uma regiao 1 < j <r de uma imagem 0 <i<ne F
é o vetor de caracteristicas final gerado para a imagem 1.

A necessidade da etapa de invaridncia depende da aplicacdo. Por exemplo, ela é necessdria
no contexto de deteccao de mensagens escondidas uma vez que queremos diferenciar imagens que
contém mensagens escondidas daquelas que ndo contém. A classe das imagens nao é relevante.
No contexto de categorizacao de imagens, os valores em si sdo mais importantes que a taxa de
variabilidade em perturbacoes sucessivas.

1.2.5 Resultados obtidos

O Capitulo 4 é uma compilacdo de nosso trabalho submetido a FElsevier Computer Vision and
Image Understanding (CVIU). Apdés um estudo que mostrou viabilidade comercial de nossa
técnica, conseguimos o depédsito de uma patente nacional® junto ao INPI® e sua versdo interna-
cional® junto ao PCT7.

Finalmente, o trabalho de deteccao de mensagens nos rendeu a publicacao [147] no IEEE
Intl. Workshop on Multimedia and Signal Processing (MMSP). A extensdo da técnica para
o cendrio multi-classe (indoors, outdoors, geradas em computador, e obras de arte) resultou o
artigo [148] no IEEE Intl. Conference on Computer Vision (ICCV).

1.3 Fusao multi-classe de caracteristicas e classificadores

Algumas vezes, problemas de categorizacao multi-classe sao complexos e a fusao de informacoes
de varios descritores torna-se importante.

Embora a fusdo de caracteristicas seja bastante eficaz para alguns problemas, ela pode produ-
zir resultados inesperados quando as diferentes caracteristicas nao estao normalizadas e prepara-
das de forma adequada. Além disso, esse tipo de combinacio tem a desvantagem de aumentar o
numero de caracteristicas do vetor base de descricao o que, por sua vez, pode levar a necessidade
de mais elementos para o treinamento.

‘http://www.inovacao.unicamp.br/report/patentes_ano2006-inova.pdf

SInstituto Nacional de Propriedade Industrial.
Shttp://www.inovacao.unicamp.br/report/inte-allpatentes2007-unicamp071228.pdf
"Patent Cooperation Treaty.
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Além disso, em certas ocasides, alguns classificadores produzem melhores resultados para
determinados descritores do que para outros. Isto sugere que a combinacao de classificadores
em problemas multi-classe, cada um especializado em um caso particular, pode ser interessante.

Embora a combinacao de classificadores e caracteristicas nao seja tao direta no cendrio
multi-classe, ela é um problema simples para problemas de classificacao bindrios. Nesse caso, é
possivel combinar diferentes classificadores e caracteristicas usando regras simples de fusao tais
como and, or, max, sum, ou min [16]. No entanto, para problemas multi-classe, a fusdo torna-se
um pouco mais complicada dado que uma caracteristica pode apontar como resultado a classe
C;, outra caracteristica apontar a classe C}, e ainda outra poderia produzir o resultado Cj.
Com muitos resultados diferentes para um mesmo exemplo de teste, torna-se dificil definir uma
politica consistente para combinar as caracteristicas selecionadas.

Uma abordagem muito usada consiste na combinacao dos vetores caracteristicos em um
grande vetor de descrigdo. Embora bem eficaz em alguns casos, esta abordagem pode, também,
produzir resultados inesperados quando o vetor ndo é normalizado e preparado da forma ade-
quada. Em primeiro lugar, para criar o vetor combinado de caracteristicas, precisamos lidar
com a natureza diferente de cada vetor caracteristico. Alguns podem ser bem condicionados
possuindo apenas varidveis continuas e limitadas, outros podem ser mal-condicionados para
essa combinagao tais como aqueles que possuem varidveis categoricas. Adicionalmente, algumas
variaveis podem ser continuas e nao limitadas. Em resumo, para unificar todas as caracteristicas,
precisamos de um pré-processamento e normalizacao adequados. Entretanto, algumas vezes esse
pré-processamento é trabalhoso.

Esse tipo de combinagao de caracteristicas eventualmente pode levar a maldicao da dimen-
sionalidade. Dado que temos mais dimensoes no vetor caracteristico combinado, precisamos de
mais exemplos de treinamento.

Finalmente, se precisarmos adicionar mais uma caracteristica aquelas existentes, temos que
pré-processar os dados novamente para uma nova normalizagao.

1.3.1 Solucgao proposta

No Capitulo 5, nés apresentamos uma abordagem para combinar classificadores e caracteristicas
capaz de lidar com a maior parte dos problemas citados anteriormente. Nosso objetivo é combi-
nar um conjunto de caracteristicas e os classificadores mais apropriados para cada uma de modo
a melhorar a performance sem comprometer a eficiéncia.

Nos propomos lidar com um problema multi-classe a partir da combinagao de um conjunto de
classificadores bindrios. Podemos definir a binarizacao de classes como um mapeamento de um
problema multi-classe para varios problemas bindrios (dividir para conquistar) e a subsequente
combinacao de seus resultados para derivar a predicao multi-classe. Nos referimos aos classifica-
dores binarios como classificadores base. A binarizacao de classes tém sido utilizada na literatura
para estender classificadores naturalmente bindrios tais como SVM para multi-classe [5,38,115].
Entretanto, de acordo com nosso conhecimento, esta abordagem néao foi utilizada anteriormente
para a fusao de classificadores e caracteristicas.
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Para entender a binarizacao de classes, considere um problema com trés classes. Nesse caso,
uma binarizacao simples consiste no treinamento de trés classificadores binarios. Nesse sentido,
nés precisamos O(N?) classificadores base, onde N é o niimero de classes.

Nos treinamos o ¢ classificador binario utilizando os padroes da classe i como positivos
e os padroes da classe j como negativos. Para obter o resultado final, calculamos a distancia
minima do vetor binario gerado para o padrao binario que representa cada classe.

Considere novamente o exemplo com trés classes como mostramos na Figura 1.4. Nesse
exemplo, nés temos as classes: Triangulos A, Circulos (), e Quadrados O. Claramente, uma
primeira caracteristica que podemos usar para categorizar os elementos dessas classes pode ser
baseado na forma. Podemos também utilizar propriedades de cor e textura. Para resolver esse
problema, treinamos alguns classificadores binarios diferenciando duas classes por vez, tais como:
A x (O, Ax0O e x 0O Adicionalmente, nés representamos cada uma das classes com um
identificador dnico (A = (+1,+1,0)).

A
Ab @B

+1+10 -0+

1=

Exemplo de entrada -

A ® A B B
Y AB ® <

+1+1 -1 +l-l ] ALl

+1 +1 -1

' [
------------------------ *| Resultado Final = A

Figura 1.4: Pequeno exemplo para combinagao de classificadores e caracteristicas.

Ao recebermos um exemplo para classificar, digamos um com a forma de tridngulo, como
mostramos na Figura 1.4, primeiro aplicamos nossos classificadores binarios para verificar se o
exemplo testado é um triangulo ou um circulo baseado na forma, textura e cor. Cada classi-
ficador nos dé uma resposta binaria. Por exemplo, digamos que nosso resultado seja os votos
(+1,4+1,—1) para o classificador bindrio A x (). Dessa forma, nés podemos usar o voto ma-
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joritario e selecionar uma resposta (41, neste caso, ou A). Entdo, repetimos o procedimento
e testamos se o exemplo analisado é um tridngulo ou um quadrado para cada uma das carac-
teristicas de interesse. Finalmente, depois de efetuar o ultimo teste, temos como resultado um
vetor binario. Basta entao calcularmos o minima distancia deste vetor aos vetores identificadores
de cada classe. Nesse exemplo, a resposta final é dada pela minima distancia de

min dist((1,1,—1),{(1,1,0), (—1,0,1), (0, —1,—1)}). (1.3)

Um aspecto importante dessa abordagem é que ela requer mais armazenamento dado que
apés o treinamento dos classificadores binarios nés precisamos armazenar seus parametros. Dado
que nés analisamos mais caracteristicas, precisamos de mais espago. Com respeito ao tempo de
execucao, tem também um crescimento dado que precisamos testar mais classificadores binarios
para obter uma resposta. Entretanto, muitos classificadores em nosso dia-a-dia empregam algum
tipo de binarizacao de classes (e.g., SVMs). Além disso, como apresentamos no Capitulo 6,
existem soluctes efetivas para combinar tais classificadores binarios de forma eficiente.

Embora precisemos de mais espaco de armazenamento, a abordagem apresentada tem as
seguintes vantagens:

1. Com a combinacao independente de caracteristicas, temos mais confianca na resposta
produzida dado que ela é calculada a partir de mais de uma simples caracteristica. Dessa
forma, temos um mecanismo simples de correcdo de erros que pode resistir a algumas
classificagoes erradas;

2. Podemos desenvolver classificadores e caracteristicas especificas para separar classes em
confusao;

3. Podemos selecionar as caracteristicas que realmente sao importantes na fusao. Esse proce-
dimento nao é direto quando temos apenas um grande vetor de caracteristicas combinadas.

4. A adicao de novas classes requer apenas o treinamento para os novos classificadores binarios
relacionados aquelas classes.

5. A adic@o de novas caracteristicas é simples e requer apenas treinamento parcial.

6. Como nao aumentamos o tamanho de nenhum vetor de caracteristicas, temos menor pro-
babilidade de sofrermos da maldicao da dimensionalidade, nao necessitando, portanto,
adicionar mais exemplos de treinamento quando combinando mais caracteristicas.

Finalmente, nds validamos nossa abordagem de fus@o de classificadores e caracteristicas
numa aplicagao real para categorizagao automatica de frutas e legumes, como apresentamos no
Capitulo 5.
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1.3.2 Resultados obtidos

O Capitulo 5 é uma compilacao de nosso trabalho submetido & Elsevier Computers and Electro-
nics in Agriculture (Compag) e do artigo [153] no Brazilian Symposium of Computer Graphics
and Image Processing (Sibgrapi). Esses trabalhos foram produzidos com a colaboragao dos
pesquisadores Daniel C. Hauagge e Jacques Wainer do Instituto de Computagao da Unicamp.

1.4 Multi-classe a partir de classificadores binarios

Muitos problemas reais de reconhecimento e de classificacdo freqiientemente necessitam ma-
pear varias entradas em uma dentre centenas ou milhares de possiveis categorias. Muitos pes-
quisadores tém proposto técnicas efetivas para classificacdo de duas classes nos tltimos anos.
No entanto, alguns classificadores poderosos tais como SVMs sao dificeis de estender para o
cenario multi-classe. Em tais casos, a abordagem mais comum ¢é a de reduzir a complexidade do
problema multi-classe para pequenos e mais simples problemas binarios (dividir para conquis-
tar) [38,82,127,145].

Ao utilizar classificadores bindrios com algum critério final de combinacao (reducao de com-
plexidade), muitas abordagens descritas na literatura partem do principio de que os classificado-
res bindrios utilizados na classificagdo sdo independentes e aplicam um sistema de votacao como
politica final de combinagdo. Entretanto, a hipotese da independéncia nao é a melhor escolha
em todos os casos.

Nesse trabalho, nés abordamos o problema de classificacao multi-classe apresentando uma
forma efetiva de agrupar dicotomias altamente correlacionadas (nao supondo independéncia
entre todas elas). Nés denominamos a técnica de Affine-Bayes (c.f., Sec. 1.4.1).

1.4.1 Affine-Bayes

Apresentamos, a seguir, nossa abordagem generativa Bayesiana para multi-classificacdo. Um
problema multi-classe tipico resolvido a partir da combinacao de classificadores binarios possui
trés etapas bédsicas [145]: (1) a criac@o da matriz de codificagao dos classificadores; (2) a escolha
dos classificadores binarios base; e (3) a estratégia de decodificagdo. A solugdo que propomos
enquadra-se, principalmente, na parte 3.

Considerando a etapa de decodificacao, nés introduzimos o conceito de relagdes afins entre
classificadores bindrios e apresentamos uma abordagem efetiva para achar grupos de classifi-
cadores binarios altamente correlacionados. Finalmente, apresentamos duas novas estratégias:
uma para reduzir o numero necessario de dicotomias na classificagdo multi-classe e a outra para
achar novas dicotomias para substituir aquelas menos discriminativas. Esses dois procedimentos
podem ser utilizados iterativamente para complementar a abordagem basica de Affine-Bayes e
melhorar a performance geral de classificacao.

Para classificar uma determinada entrada, nés usamos um time de classificadores bindrios
base 7. Nés chamamos O uma realizacao de 7. Cada elemento de 7 é um classificador bindrio
base (dicotomia) e produz uma saida € {—1,+1}.
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Dado uma entrada = para classificar, uma realizacao de Oy contem a informacao para
determinar a classe de z. Em outras palavras, P(y = ¢;|z) = P(y = ¢;|O7).
No entanto, nao temos a probabilidade P(y = ¢;|O7). Pelo teorema de Bayes, temos que

P(Orly = ci)P(y = )
P(Or)
x P(Orly=c)P(y = ¢;) (1.4)

Ply=c¢|O1) =

P(Or) é apenas um fator de normalizagdo e pode ser eliminado.

Abordagens anteriores resolveram o modelo acima considerando independéncia entre todas
as dicotomias no time 7 [127]. Se considerarmos independéncia entre todas as dicotomias, o
modelo na Equacao 1.4 se torna

Ply = ¢|07) « [ P(Okly = e Ply = <o), (15)
teT

e a classe da entrada x é dada por

cd(x) = arg max H POy = ¢;)P(y = ¢;). (1.6)
teT

Embora a restricao de independéncia simplifique o modelo, ela impde varias limitagoes e nao é a
melhor escolha em todos os casos. Em geral, é muito dificil resolver independéncia sem utilizar
fungoes de suavizagao para tratar instabilidades numéricas quando o niimero de termos na série
é muito grande. Em tais casos, é necessario achar uma funcao de densidade apropriada para
descrever os dados, tornando a solugdao mais complexa.

Em nossa abordagem, nds relaxamos a restricao de independéncia entre todos os classifica-
dores bindrios. Para tal, nés achamos grupos de classificadores afins. Dentro de um grupo, ha
grande dependéncia entre os classificadores, enquanto que cada grupo é independente dos outros.
No entanto, como a hipdtese de independéncia é apenas entre os grupos, ha menor possibilidade
de incorrer em instabilidade numérica ou utilizar funcées de suavizagao.

Noés utilizamos o conjunto de dados de treinamento para achar as probabilidades conjuntas
das dicotomias dentro de um grupo e construir a respectiva tabela de probabilidade condicional
(CPT) para este grupo de dicotomias afins.

Nés modelamos o problema de classificagdo multi-classe condicionado a grupos de dicotomias
afins Gp. O modelo na Equacao 1.4 torna-se

P(y = ¢i|Or1,Gp) < P(O1,Gply = ;) P(y = ci). (1.7)

Nés assumimos independéncia apenas entre os grupos de dicotomias afins g; € Gp. Desta forma,
a classe de uma entrada = é dada por

c(x) = arg max H P(O%, gily = ¢j)P(y = ¢;). (1.8)
g9i € Up
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Para achar os grupos de classificadores bindrios afins Gp, nés definimos uma matriz de
afinidade A entre os classificadores. Esta matriz indica quao afins (correlacionadas) sdo duas
dicotomias quando classificando um conjunto de dados de treinamento X. Se as dicotomias
produzem saidas todas iguais (diferentes), elas s@o correlacionadas e tem alta afinidade. Por
outro lado, se seus resultados sao metade iguais e metade diferentes, elas sdo nao-correlacionadas
e, portanto, possuem baixa afinidade.

Apés o célculo da matriz de afinidade A, nds utilizamos um algoritmo de clusterizagao para
achar grupos de classificadores bindrios afins em A. Os grupos de classificadores afins podem con-
ter classificadores que nao contribuem muito para o processo geral de classificagao. No processo
de Shrinking, apresentamos um procedimento para identificar as dicotomias menos importan-
tes dentro de um grupo de classificadores bindrios afins e elimina-los. Para isso, calculamos a
entropia acumulada de cada grupo testando um elemento do grupo de cada vez. Aqueles que
produzem o menor ganho de informagao sao marcados como menos importantes.

A eliminacado de dicotomias menos importantes nos abre a oportunidade de substitui-las
por outras mais discriminativas. No processo de Augmenting, encontramos novas dicotomias
candidatas para repor aquelas eliminadas na etapa de Shrinking. Para isso, analisamos a matriz
de confusao calculada durante o treinamento. Em seguida, representamos as classes como um
grafo onde os nds sdo os identificadores das classes e as arestas o grau de confus@o. A partir do
grafo, conseguimos criar uma hierarquia de classes em confusao. Apds ordenarmos os grupos de
classes de acordo com a sua confusao, achamos o corte de cada subgrafo que nos permite separar
otimamente os nés. Isso nos dé conjuntos de dicotomias que representam classes em confusao e
podem ser substitutas daquelas eliminadas no processo de Shrinking.

Finalmente, podemos utilizar as etapas de Shrinking e Augmenting iterativamente de modo
a otimizar ainda mais o algoritmo base do Affine-Bayes.

1.4.2 Resultados obtidos

O Capitulo 6 é uma compilagao de nosso trabalho submetido a IEEFE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) e do artigo [150] no Intl. Conference on Computer
Vision Theory and Applications (VISAPP).






Deteccao de Adulteracoes em
Imagens Digitais

No Capitulo 2, apresentamos um estudo critico das principais técnicas existentes na analise
forense de imagens. Discutimos que boa parte dos problemas relacionados & analise forense
apontam para dois pontos em comum: a selecao de caracteristicas e as técnicas de aprendizado
a serem utilizadas.

Conforme argumentamos, ainda nao existem metodologias estabelecidas para verificar a au-
tenticidade e integridade de imagens digitais de forma automética.

A identificagdo de imagens que foram digitalmente adulteradas é de fundamental importancia
atualmente [43,138,141]. O julgamento de um crime, por exemplo, pode estar sendo baseado em
evidéncias que foram fabricadas especificamente para enganar e mudar a opinido de um juri. Um
politico pode ter a opiniao publica langada contra ele por ter aparecido ao lado de um traficante
procurado mesmo sem nunca ter visto este traficante antes. Dessa forma, discutimos também
questoes legais associadas & andlise forense de imagens como, por exemplo, o uso de fotografias
digitais por criminosos.

O trabalho apresentado no Capitulo 2 é uma compilacao de nosso artigo submetido ao
ACM Computing Surveys. Os autores desse artigo, em ordem, sdo: Anderson Rocha, Walter J.
Scheirer, Terrance E. Boult e Siome Goldenstein.

O banco de dados de imagens que discutimos nesse capitulo é resultado de nosso artigo [154]
no IEEE Workshop on Vision of the Unseen (WVU).
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Chapter 2

Current Trends and Challenges in
Digital Image Forensics

Abstract

Digital images are everywhere — from our cell phones to the pages of our newspapers. How
we choose to use digital image processing raises a surprising host of legal and ethical questions
we must address. What are the ramifications of hiding data within an innocent image? Is
this security when used legitimately, or intentional deception? Is tampering with an image
appropriate in cases where the image might affect public behavior? Does an image represent a
crime, or is it simply a representation of a scene that has never existed? Before action can even
be taken on the basis of a questionable image, we must detect something about the image itself.
Investigators from a diverse set of fields require the best possible tools to tackle the challenges
presented by the malicious use of today’s digital image processing techniques.

In this paper, we introduce the emerging field of digital image forensics, including the main
topic areas of source camera identification, forgery detection, and steganalysis. In source camera
identification, we seek to identify the particular model of a camera, or the exact camera, that
produced an image. Forgery detection’s goal is to establish the authenticity of an image, or
to expose any potential tampering the image might have undergone. With steganalysis, the
detection of hidden data within an image is performed, with a possible attempt to recover any
detected data. Each of these components of digital image forensics is described in detail, along
with a critical analysis of the state of the art, and recommendations for the direction of future
research.

2.1 Introduction

With the advent of the Internet and low-price digital cameras, as well as powerful image edition
software tools (Adobe Photoshop and Ilustrator, GNU Gimp), normal users have become digital
doctoring specialists. At the same time our understanding of the technological, ethical, and
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legal implications associated with image editing falls far behind. When such modifications are
no longer innocent image tinkerings and start implying legal threats to a society, it becomes
paramount to devise and deploy efficient and effective approaches to detect such activities [141].

Digital Image and Video Forensics research aims at uncovering and analyzing the underlying
facts about an image/video. Its main objectives comprise: tampering detection (cloning, healing,
retouching, splicing), hidden data detection/recovery, and source identification with no prior
measurement or registration of the image (the availability of the original reference image or
video).

Image doctoring in order to represent a scene that never happened is as old as the art
of the photograph itself. Shortly after the Frenchman Nicéphore Niepce [29] created the first
photograph in 1814', there were the first indications of doctored photographs. Figure 2.1 depicts
one of the first examples of image forgery. The photograph, an analog composition comprising
30 images?, is known as The Two Ways of Life and was created by Oscar G. Rejland in 1857.

Figure 2.1: Oscar Rejland’s analog composition, 1857.

Though image manipulation is not new, its prevalence in criminal activity has surged over
the past two decades, as the necessary tools have become more readily available, and easier
to use. In the criminal justice arena, we most often find tampered images in connection with
child pornography cases. The 1996 Child Pornography Prevention Act (CPPA) extended the
existing federal criminal laws against child pornography to include certain types of “virtual
porn”. Notwithstanding, in 2002, the United States Supreme Court found that portions of the
CPPA, being excessively broad and restrictive, violated First Amendment rights. The Court
ruled that images containing an actual minor or portions of a minor are not protected, while
computer generated images depicting a fictitious “computer generated” minor are constitution-
ally protected. However, with computer graphics, it is possible to create fake scenes visually
indistinguishable from real ones. In this sense, one can apply sophisticated approaches to give

'Recent studies [101] have pointed out that the photograph was, indeed, invented concurrently by several
researchers such as Nicéphore Niepce, Louis Daguerre, Fox Talbot, and Hercule Florence.
2 Available in http://www.bradley.edu/exhibit96/about/twoways .html
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more realism to the created scenes deceiving the casual eye and conveying a criminal activity.
In the United States, a legal burden exists to “a strong showing of the photograph’s competency

37 when such evidence is presented in court. In response, tampering detection

and authenticity
and source identification are tools to satisfy this requirement.

Data hidden within digital imagery represents a new opportunity for classic crimes. Most
notably, the investigation of Juan Carlos Ramirez Abadia, a Columbian drug trafficker arrested
in Brazil in 2008, uncovered voice and text messages hidden within images of a popular cartoon
character* on the suspect’s computer. Similarly, a 2007 study® performed by Purdue University
found data hiding tools on numerous computers seized in conjunction with child pornography
and financial fraud cases. While a serious hinderance to a criminal investigation, data hiding is
not a crime in itself; crimes can be masked by its use. Thus, an investigator’s goal here is to
identify and recover any hidden evidence within suspect imagery.

In our digital age, images and videos fly to us at remarkable speed and frequency. Unfortu-
nately, there are currently no established methodologies to verify their authenticity and integrity
in an automatic manner. Digital image and video forensics are still emerging research fields with
important implications for ensuring the credibility of digital contents. As a consequence, on a
daily basis we are faced with numerous images and videos — and it is likely that at least a
few have undergone some level of manipulation. The implications of such tampering are only
beginning to be understood.

Beyond crime, the scientific community has also been subject to these forgeries. A recent
case of scientific fraud involving doctored images in a renowned scientific publication has shed
light to a problem believed to be far from the academy. In 2004, the South Korean professor
Hwang Woo-Suk and colleagues published in Science important results regarding advances in
stem cell research. Less than one year later, an investigative panel pointed out that nine out of
eleven customized stem cell colonies that Hwang had claimed to have made involved doctored
photographs of two other, authentic, colonies. Sadly, this is not a detached case. In at least one
journal® [129], it is estimated that as many as 20% of the accepted manuscripts contain figures
with improper manipulations, and +1% with fraudulent manipulations [45,129].

Photo and video retouching and manipulation are also present in general press media. On
July 10*", 2008, various major daily newspapers published a photograph of four Iranian missiles
streaking heavenward (see Figure 2.2(a)). Surprisingly, shortly after the photo’s publication,
a small blog provided evidence that the photograph had been doctored. Many of those same
newspapers needed to publish a plethora of retractions and apologies [107].

On March 31st, 2003 the Los Angeles Times showed on its front cover an image from pho-
tojournalist Brian Walki, in which a British soldier in Iraq stood trying to control a crowd
of civilians in a passionate manner. The problem was that the moment depicted never hap-
pened (see Figure 2.2(b)). The photograph was a composite of two different photographs merged

3Bergner v. State, 397 N.E.2d 1012, 1016 (Ind. Ct. App. 1979).
‘http://afp.google.com/article/ALegM5ieulvbrvmfofm0t800YfXzbysVuQ
*http://www.darkreading.com/security/encryption/showArticle. jhtml?articleID=208804788
Journal of Cell Biology.
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to create a more appealing image. The doctoring was discovered and Walski was fired.

In the 2004 presidential campaign, John Kerry’s allies were surprised by a photomontage that
appeared in several newspapers purporting to show Kerry and Jane Fonda standing together at
a podium during a 1970s anti-war rally (see Figure 2.2(c)). As a matter of fact, the photograph
was a fake. Kerry’s picture was taken at an anti-war rally in Mineola, NY., on June 13th, 1971
by photographer Ken Light. Fonda’s picture was taken during a speech at Miami Beach, FL. in
August, 1972 by photographer Owen Franken.

(a) Iranian montage of missiles streaking heav- (b) Montage of a British soldier in Iraq trying
enward. to control a crowd of civilians in a passionate
manner. Credits to Brian Walski.

(¢c) Montage of John Kerry and Jane Fonda standing together at a podium during a 1970s
anti-war rally. Credits to Ken Light (left), AP Photo (middle), and Owen Franken (right).

Figure 2.2: Some common press media photomontages.

It has long been said that an image worth a thousand words. Recently, a study conducted
by Italian Psychologists have investigated how doctored photographs of past public events affect
memory of those events. Their results indicate that doctored photographs of past public events
can influence memory, attitudes and behavioral intentions [158]. That might be one of the
reasons that several dictatorial regimes used to wipe out of their photographic records images
of people who had fallen out of favor with the system [44].

In the following sections, we provide a comprehensive survey of the most relevant works with
respect to this exciting new field of the unseen in digital imagery. We emphasize approaches
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that we believe to be more applicable to forensics. Notwithstanding, most publications in
this emerging field still lack important discussions about resilience to counter-attacks, which
anticipate the existence of forensic techniques [58]. As a result, the question of trustworthiness
of digital forensics arises, for which we try to provide some positive insights.

2.2 Vision techniques for the Unseen

In this section, we survey several state-of-the-art approaches for image and video forgery detec-
tion, pointing out their advantages and limitations.

2.2.1 Image manipulation techniques

In the forensic point of view, it is paramount to distinguish simple image enhancements from
image doctoring. Although there is a thin edge separating both, in the following we try to make
this distinction clear.

On one extreme, we define image enhancements as operations performed in one image with
the intention to improve its visibility. There is no local manipulation or pixel combination. Some
image operations in this category are contrast and brightness adjustments, gamma correction,
scaling, and rotation, among others. On the other extreme, image tampering operations are
those with the intention to deceive the viewer at some level. In these operations, normally one
performs localized image operations such as pixel combinations and tweaks, copy/paste, and
composition with other images. In between these extremes, there are some image operations
that by themselves are not considered forgery creation operations but might be combined for
such objective. Image sharpening, blurring, and compression are some of such operations.

Some common image manipulations with the intention of deceiving a viewer:

1. Composition or splicing. It consists in the composition (merging) of an image /. using
parts of one or more parts of images [ ... I. For example, with this approach, a politician
in I; can be merged beside a person from I, without even knowing such person.

2. Retouching, healing, cloning. These approaches consist in the alteration of parts of an
image or video using parts or properties of the same image or video. Using such techniques,
one can make a person 10 or 20 years younger (retouching and healing) or even change a
crime scene eliminating a person in a photograph (cloning).

3. Content embedding or Steganography. It consists in the alteration of statistical or
structural properties of images and videos in order to embed hidden contents. Most of the
changes are not visually detectable.

Figure 2.3 depicts some possible image manipulations. From the original image (top left), we
clone several small parts of the same image in order to eliminate some parts of it (for example,
the two people standing in front of the hills). Then we can use a process of smoothing to feather
edges and make the cloning less noticeable. We can use this image as a host for another image
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(bottom left) and then create a composite. After the combination, we can use healing operations
to adjust brightness, contrast, and illumination. This toy example was created in five minutes

using the open-source software Gimp.

Cloning

Splicing

Splicing

Figure 2.3: Toy example of possible image manipulations.

Sometimes the edge between image enhancing and faking is so thin that depending on the
context, only the addition of text to a scene may fool the viewer. Figure 2.4 depicts one
example of two photographs presented by Colin Powell at the United Nations in 2003. The
actual photographs are low-resolution, muddy aerial surveillance photographs of buildings and
vehicles on the ground in Iraq. They were used to justify a war. Note that the text addition in
this case was enough to mislead the United Nations [104].

2.2.2 Important questions

In general, in digital image and video forensics, given an input digital image, for instance, one
wants to answer the following important questions [161]:

e Is this image an original image or has it been created from the composition (splicing) of

other images?

e Does this image represent a real moment in time or has it been tampered with to deceive

the viewer?
e What is the processing history of this image?

e Which part of this image has undergone manipulation and to what extent? What are the

impacts of such modifications?

e Was this image acquired from camera vendor X or Y7
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Figure 2.4: Photographs presented by Colin Powell at the United Nations in 2003. (U.S. De-
partment of State)

e Was this image originally acquired with camera C as claimed?

e Does this image conceal any hidden content? Which algorithm or software has been used
to perform the hiding? Is it possible to recover the hidden content?

It is worth noting that most of such techniques are blind and passive. The approach is blind
when it does not use the original content for the analysis. The approach is passive when it does
not use any watermarking-based solution for the analysis.

Although digital watermarking can be used in some situations, the vast majority of digital
contents do not have any digital marking. Any watermarking-based solution would require an
implementation directly in the acquisition sensor, making its use restrictive. Furthermore, such
approaches might lead to quality loss due to the markings [118,161].

We break up the image and video forensics approaches proposed in the literature in three
categories:

1. Camera sensor fingerprinting or source identification;
2. Image and video tampering detection;

3. Image and video hidden content detection/recovery.

2.2.3 Source Camera Identification

With Source Camera Identification, we are interested in identifying the data acquisition device
that generated a given image for forensics purposes. Source camera identification may be bro-
ken into two classes: device class identification and specific device identification. In general,
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Figure 2.5: The image acquisition pipeline.

source camera identification relies on the underlying characteristics of the components of digital
cameras. These characteristics may take the form of image artifacts, distortions, and statistical
properties of the underlying data. These characteristics are usually imperceptible to the human
eye, but visible effects can also contribute clues for identification.

In general, we treat digital image acquisition as a pipeline of stages. Figure 2.5 illustrates
the flow of data, with light initially passing through a lens and possibly through a filter (to
remove infrared or ultra-violet light, for example). If the camera supports color, a Color Filter
Array (CFA) is usually placed over the sensor to accommodate different color channels. Popular
CFA configurations include the RGB Bayer Pattern (most common), and the CMYK subtractive
color model (available on some higher end sensors). In a standard consumer grade camera, the
sensor will be a silicon CCD or CMOS. The image processing will take place in logic designed
by individual camera or chipset manufacturers within the camera itself. Each of these pipeline
components induce anomalies in images that can be used to identify a source camera.

Device Class Identification

The goal of device class identification is to identify the model and/or manufacturer of the device
that produced the image in question. For digital cameras, we consider the image acquisition
pipeline, where the lens, size of the sensor, choice of CFA, and demosaicing and color processing
algorithms found in the camera processing logic to provide features. It is important to note
that many manufacturers use the same components, thus, the discriminatory power of some
techniques may be limited. Many of the techniques that we will discuss here treat the underlying
camera characteristics as features for machine learning, which separates images into particular
camera classes. Thus, we can treat device class identification as a traditional classification
problem. Support Vector Machines (SVM), shown in Figure 2.6, is a popular binary classifier
for device class separation. It can also be extended for multi-class classification. In this section,
we will review the relevant techniques used to identify device classes.

From the lens, radial distortions can be introduced immediately into the image acquisition
pipeline. Radial distortion is commonly found with inexpensive cameras/lenses. Choi et al. [27]
introduces a method to extract aberrations from images, which are then treated as features for
classification. As described in [27], radial distortion can be modeled through the second order



2.2. Vision techniques for the Unseen 27

Figure 2.6: An example of binary camera classification with SVM. A feature vector is constructed
out of the calculated features for a given image. Training sets are built out of a collection of
feature vectors for each camera class. The machine learning is used for classification of images
with unknown sources.

for reasonable accuracy:
T = 1q + k175 + kot (2.1)

where k1 and ko are the first and second degree distortion parameters, and r, and r4 are the
undistorted radius and the distorted radius. The radius is simply the radial distance \/x2 + 12
of some point (z,y) from the center of the distortion (typically the center of the image). ki
and ko are treated as features for an SVM learning system. These features, however, are not
used in [27] by themselves — they are combined with the 34 image features introduced in [81]
(described below), in a fusion approach. Thus, the utility of this approach may be seen as a
supplement to other, stronger features derived from elsewhere in the acquisition pipeline. The
average accuracy of this technique is reported to be about 91% for experiments performed on
three different cameras from different manufacturers.

Image color features exist as artifacts induced by the CFA and demosaicing algorithm of a
color camera, and represent a rich feature set for machine learning based classification. Kar-
razi et al. [81] defines a set of image color features that are shown to be accurate for device
class identification using SVMs. Average pixel values, RGB pairs correlation, neighbor distri-
bution center of mass, RGB pairs energy ratio, and wavelet domain statistics are all used as
features. Further, image quality features are also used to supplement the color features in [81].
Pixel difference based measures (including mean square error, mean absolute error, and mod-
ified infinity norm), correlation based measures (including normalized cross correlation, and
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the Czekonowksi correlation, described below), and spectral distance based measures (including
spectral phase and magnitude errors) are all used. For binary classification, Kharrazi et al. [81]
reports between 90.74% and 96.08% prediction accuracy. For multi-classification considering
5 cameras, prediction accuracy between 78.71% and 95.24% is reported. These results were
confirmed in [176].

The CFA itself as a provider of features for classification has been studied in [23]. The
motivation for using just the CFA and its associated demosaicing algorithm is that proprietary
demosaicing algorithms leave correlations across adjacent bit planes of the images. Celiktu-
tan et al. [23] defines a set of similarity measures {mq,mg, m3}, with kNN and SVM used for
classification.

The first approach is a binary similarity measure. A stencil function is first defined:

if z.=0 x,=0
if =0 z,=1
if xe=1 x,=0
if xe=1 z,=1

o (k,b) = (2.2)

=W N =

where b is a bit plane (image matrix), the subscript ¢ defines some central pixel, and n denotes
one of the four possible neighbor pixels. The function is summed over its four neighbors, as well
as all of the pixels in the bit plane. k indicates one of four agreement scores: 1,2,3,4. al(k,b)
is summed over its four neighbors, and over all Mx/N pixels. Before feature generation, the
agreement scores are normalized:

pi. = a(k,b)/ > (k,b) (2.3)
k

p is the normalized agreement score in the Kullback-Leibler distance, mi defined as:

4 7

p

mp = — E pZLlog—g (2.4)
n=1 P

The second approach is also a binary similarity measure, but uses a neighborhood weighting
mask as opposed to a stencil function. Each binary image yields a 512-bin histogram computed
using the weighted neighborhood. Each score is computed with the following function:

7
S=> 2 (2.5)
=0

The neighborhood weighting mask applied to a pixel z; by the above function is:

1 2 4
128 |1 256 | 8
64 32 | 16
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The final binary similarity is computed based on the absolute difference between the n'* his-
togram bin in the 7% bit plane and same of the 8" after normalization:

511
mg =Y |k — S5 (2.6)
n=0

Quality measures, as mentioned earlier, make excellent features for classification. The
Czenakowski distance is a popular feature for CFA identification because it is able to com-
pare vectors with non-negative components — exactly what we find in color images. The third
feature of [23] is the Czenakowski distance defined as:

i LM_lN_l - 22%:1 mzn(Ck(z,]),C’k(z,j))
2 (1 Sh1(Cili §) + Cili ) > >0

Denoising is necessary for calculating this distance metric. Cy(i,j) represents the (i, )" pixel
of the k' band of a color image, with Cr being the denoised version. With these three simi-
larity measures the authors of [23] generate 108 binary similarity features and 10 image quality
similarity features per image. The best reported performance for this technique (using SVM for
classification) is near 100% accuracy for the two camera classification problem, 95% accuracy
for the three camera classification problem, and 62.3% accuracy for a six camera classification
problem.

A major weakness of the approaches described thus far is a lack of rigor in the analysis
of the experimental results reported, compared with other security related vision and pattern
recognition fields such as biometrics and tracking. All report raw classification results for only
a handful of different cameras. Thus, it is often difficult to determine how well these techniques
perform in practice. This is a common problem of this sub-field in general. By varying the SVM
margin after classification, a set of marginal distances can be used to build a Receiver Operator
Characteristic curve. From this curve, a more thorough understanding of the False Reject Rate
(FRR) and False Accept Rate (FAR) can be gained. Also of interest is more comprehensive
testing beyond limited camera classes. For a more accurate picture of the FAR, a statistically
large sampling of images from cameras outside the known camera classes should be submitted
to a system. None of the papers surveyed attempted this experiment. Further, the techniques
introduced thus far are all shown to succeed on images with low levels of JPEG compression.
How well these techniques work with high levels of compression has yet to be shown. Not all
work suffers from a dearth of analysis, however.

The Expectation/Maximization algorithm [138] is a powerful technique for identifying demo-
saicing algorithms, and does not rely on classification techniques directly, but can take advantage
of them in extensions to the base work ( [12] , [13]). The motivating assumption of the E/M
algorithm is that rows and columns of interpolated images are likely to be correlated with their
neighbors. Kernels of a specified size (3 x 3, 4 x 4, and 5 x 5 are popular choices) provide
this neighborhood information to the algorithm. The algorithm itself can be broken into two
steps. In the Ezpectation step, the probability of each sample belonging to a particular model
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is estimated. In the Maximization step, the specific form of the correlations between samples is
estimated. Both steps are iterated till convergence.

In detail, we can assume that each sample belongs to one of two models. If a sample is
linearly correlated with its neighbors, it belongs to M. If a sample is not correlated with its
neighbors, it belongs to Ms. The linear correlation function is defined as:

N
f(x,y) = Z au,vf(x+u7y+v) —i—n(az,y) (28)

u,v=—N

In this linear model, f(-,-) is a color channel (R, G, or B) from a demosaiced image, N is
an integer, and n(x,y) represents independent, identically distributed samples drawn from a
Gaussian distribution with zero mean and unknown variance. & is a vector of linear coefficients
that express the correlations, with ago = 0.
The expectation step estimates the probability of each sample belonging to M7 using Bayes’
Pr{f () € My|f(,1)} = fr{f(x,y)\f(%y) € Mi}Pr{f(z,y) € M1} (2.9)
> i1 Pr{f(z, y)If(z,y) € Mi}Pr{f(z,y) € M;}

Pr{f(xz,y) € M;} and Pr{f(z,y) € My} are prior probabilities assumed to be equal to 1/2. If
we assume a sample f(x,y) is generated by M;, the probability of this is:

rule:

1 1 N 2
Prifeal o) € M) = —=| = o (e = 3 awdltuytn) | 0

u,v=—N

We estimate the variance o2

in the Maximization step. My is assumed to have a uniform
distribution.
The Maximization step computes an estimate of @ using weighted least squares (in the first

round of the Expectation step, @ is chosen randomly):

N

E@ZEjM%M(ﬂ%w— )3

2
%wﬂ$+wy+@> (2.11)
T,y u,v=—N

The weights w(x,y) are equivalent to Pr{f(x,y) € Mi|f(z,y)}. This error function is minimized
via a system of linear equations before yielding its estimate. Both the steps are executed until
a stable @ results. The final result maximizes the likelihood of observed samples.

Popescu [138] asserts that the probability maps generated by the E/M algorithm can be used
to determine which demosaicing algorithm a particular camera is using. These probabilities tend
to cluster — thus, an external machine learning algorithm for classification is not necessary. For
a test using eight different demosaicing algorithms [138], the E/M algorithm achieves an average
classification accuracy of 97%. In the worst case presented (3 x 3 median filter vs. variable
number of gradients), the algorithm achieves an accuracy of 87%. Several extensions to the
E/M algorithm have been proposed. Bayram et al. [12] applies the E/M algorithm to a camera
identification problem, using SVM to classify the probability maps. Bayram et al. [12] reports
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success as high as 96.43% for the binary classification problem, and 89.28% for the multi-class
problem. Bayram et al. [13] introduces better detection of interpolation artifacts in smooth
images as a feature to fuse with the standard E/M results. For a three camera identification
problem, Bayram et al. [13] achieves results as high as 97.74% classification accuracy. Other
variations include the use of modeling error, instead of interpolation filter coefficients [89], and
the computation of error based on the assumption of CFA patterns in an image [172].

Specific Device Identification

The goal of specific device identification is to identify the exact device that produced the image in
question. For specific device identification, we require more detail beyond what we’ve discussed
so far with source model identification. Features in this case may be derived from:

e hardware and component imperfections, defects, and faults
o effects of manufacturing process, environment, operating conditions

e aberrations produced by a lens, noisy sensor, dust on the lens

It is important to note that these artifacts may be temporal by nature, and thus, not reliable
in certain circumstances.

Early work [76] in imaging sensor imperfections for specific device identification focused on
detecting fixed pattern noise caused by dark current in digital video cameras. Dark current is
the rate that electrons accumulate in each pixel due to thermal action. This thermal energy is
found within inverse pin junctions of the sensor, and is independent of light falling on it. The
work, as presented in [76], provides no quantitative analysis, and thus, the actual utility of dark
currents cannot be assessed.

A more comprehensive use of sensor imperfections is presented in [57], where “hot pixels,”
cold /dead pixels, pixel traps, and cluster defects are used for detection. Hot pixels are individual
pixels on the sensor with higher than normal charge leakage. Cold or dead pixels (figure 2.7) are
pixels where no charge ever registers. Pixel traps are an interference with the charge transfer
process and results in either a partial or whole bad line, that is either all white or all dark. While
these features are compelling for identifying an individual sensor, Geradts et at. [57] also does
not provide a quantitative analysis. Thus, we turn to more extensive work for reliable forensics.

Lukas et al. [91] presents a more formal quantification and analysis of sensor noise for iden-
tification, with work that is the strongest for this type of forensics. Referring to the hierarchy
of sensor noise in Figure 2.8, we see two main types of pattern noise: fixed pattern noise and
photo-response non-uniformity noise. Fixed pattern noise (FPN) is caused by the dark currents
described above, and is not considered in [91]. Photo-response non-uniformity noise (PRNU)
is primarily cause by pixel non-uniformity noise (PNU). PNU is defined as different sensitivity
various pixels have to light caused by the inconsistencies of the sensor manufacturing process.
Low frequency defects are caused by light refraction on particles on or near the camera, optical
surfaces, and zoom settings. Lukas et al. [91] does not consider this type of noise, but [39] does.
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Figure 2.7: Dead pixels (circled in yellow) present in an image from a thermal surveillance

camera.

Pattern Noise

—

Photo Response

Fhed Paltem Nolse Non-Uniformity Noise

o

Low-frequency
Defects

Pixel Non-Uniformity

Figure 2.8: Hierarchy of Pattern Noise.
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The temporal nature of such particle artifacts brings into question their reliability, except when
dealing with short sequences of images from the same period, in most cases.

To use PNU as a characteristic for sensor fingerprinting, the nature of the noise must first be
isolated. An image signal r exhibits properties of a white noise signal with an attenuated high
frequency band. The attenuation is attributed to the low-pass character of the CFA algorithm
(which, in this case, we are not interested in). If a large portion of the image is saturated
(pixel values set to 255), it will not be possible to separate the PNU from the image signal.
In a forensics scenario, we will likely not have a blank reference image that will easily allow
us to gather the PNU characteristics. Thus, the first stage of the PNU camera identification
algorithm is to establish a reference pattern P,, which is an approximation to the PNU. The
approximation, p(*) is built from the average of N different images:

1 .
—(k) __ 7
p()_ﬁ E b (2.12)

The approximation can be optimized to suppress the scene content by applying a de-noising
filter F, and averaging the noise residuals n®) instead of the original images P®):

" = (® — F(p*))/N (2.13)

Lukas et al. [91] reports that a wavelet-based denoising filter works the best.
To determine if an image belongs to a particular known camera, a correlation p. is simply
calculated between the noise residual of the image in question n = p — F(p) and the reference

pattern P.: B
(n—mn)- (P.— F)

() = ! 9.14
Pelt) = [ RITE = B (2.14)

The results of [91] are expressed in terms of FRR and FAR (proper ROC curves are not provided,
however), with very low FRR (between 5.75 x 107! and 1.87 x 1073) reported when a FAR of
1073 is set for an experiment with images from nine different cameras. Excellent correlations
are shown for all tests, indicating the power this technique has for digital image forensics. An
enhancement to this work has been proposed by [171], with a technique to fuse the demosaicing
characteristics of a camera described earlier with the PNU noise. Performance is enhanced by
as much as 17% in that work over the base PNU classification accuracy.

Counter Forensic Techniques Against Camera Identification

Like any sub-field of digital forensics, camera identification is susceptible to counter forensic
techniques. Gloe et al. [58] introduces two techniques for manipulating the image source iden-
tification of [91]. This work makes the observation that applying the wavelet denoising filter
of [91] is not sufficient for creating a quality image. Thus, a different method, flatfielding, is
applied to estimate the FPN and the PRNU. FPN is a signal independent additive noise source,
while PRNU is a signal dependent multiplicative noise source. For the FPN estimate, a dark
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frame d is created by averaging K images xgqr taken in the dark (with the lens cap on, for
instance):

1
d= - ; T dark (2.15)

For the PRNU estimate, L images of a homogeneously illuminated scene x;4,; with d subtracted
are required. To calculate the flatfield frame f, these images are averaged:

f= % > (wiight — d) (2.16)

L

With an estimate of the FPN and PRNU of a camera, a nefarious individual can suppress
the noise characteristics of an image from a particular camera to avoid identification. An image
Z with suppressed noise characteristics is simply created by noise minimization:

x—d
f

The authors of [58] note that perfect flatfielding is, of course, not achievable, as an immense

(2.17)

T =

number of parameters (exposure time, shutter speed, and ISO speed) would be needed to gen-
erate d and f. Thus, they fix upon a single parameter set for their experiments. Results for this
technique are reported for RAW and TIFF images. While powerful, flatfielding is not able to
prevent identification in all images it is applied to.

Simply reducing the impact of camera identification by PRNU is not the only thing one can
do with flatfielding. After the above technique has been applied, a noise pattern from a different
camera can be added with inverse flatfielding. An image ¢ with forged noise characteristics is
created from the pre-computed flatfielding information from any desired camera:

g=1a- fforge + dforge (2.18)

Experiments for this technique are also presented in [58], where images from a Canon Powershot
S70 are altered to appear to be from a Canon Powershot S45. While most correlation coefficients
mimic the S45, some still remain characteristic of the S70. The counter forensic techniques of [58]
are indeed powerful, but are shown to be too simplistic to fool a detection system absolutely.
Further, such limited testing only hints at the potential of such techniques. As the “arms race”
continues, we expect attacks against camera identification to increase in sophistication, allowing
for more comprehensive parameter coverage and better noise modeling.

2.2.4 Image and video tampering detection

In general, image and video tampering detection approaches rely on analyzing several properties
such as: detection of cloned regions, analysis of features’ variations collected from sets of original
and tampered scenes, inconsistencies in the features, inconsistencies regarding the acquisition
process, or even structural inconsistencies present in targeted attacks. In the following, we
describe each one of such approaches and their limitations.
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Image cloning detection

Cloning is one of the simplest forgeries an image can undergo. It is known as copy/move and
also is present in more sophisticated operations such as healing. Often, the objective of the
cloning operation is to make an object “disappear” from one scene using properties of the
same scene (for example, neighboring pixels with similar properties). Cloning detection is a
problem technically easy to solve using exhaustive search. However, brute-force solutions are
computationally expensive.

Fridrich et al. [53] have proposed a faster and more robust approach for detecting image
duplicated regions in images. The authors use a sliding window over the image and calculate
the discrete cosine transform (DCT) for each region. Each calculated DCT window is stored
row-wise in a matrix A. The authors propose to calculate a quantized DCT in order to be
more robust and perform matchings for non-exact cloned regions. The next step consists of
lexicographically sorting matrix A and searching for similar rows. To reduce the resulting false
positives, the authors proposed a post-processing step in which they only consider two rows as a
clone candidate if more rows share the same condition and are close in the image space to these
two rows. Popescu and Farid [139] proposed a similar approach switching the DCT calculation
to a Karhunen-Loeve Transform and reported comparable results.

As we discussed in Section 2.1, forgeries are also present in the scientific community. Some
authors may use image tampering to improve their results and make them look more attrac-
tive. Farid [45] has framed the detection of some scientific image manipulations as a two-stage
segmentation problem. The proposed solution is suited for grayscale images such as gel DNA
response maps. In the first iteration, the image is grouped, using intensity-based segmentation
into regions corresponding to the bands (gray pixels) and the background. In the second itera-
tion, the background region is further grouped into two regions (black and white pixels) using
the texture-based segmentation. Both segmentations are performed using Normalized cuts [165].
The authors suggest that the healing and cloning operations will result in large segmented cohe-
sive regions in the background that are detectable using a sliding window and ad-hoc thresholds.
This approach seems to work well for naive healing and cloning operations, but only a few images
were tested. It would be interesting to verify if a copied band of another image still would lead
to the same artifacts when spliced in the host image.

Video splicing and cloning detection

Wang and Farid [187] have argued that the two previous approaches are too computationally
inefficient to be used in videos or even for small sequences of frames and proposed an alternative
solution to detect duplicated regions across frames. Given a pair of frames f(x,y,7) and
f(z,y,m), from a stationary camera, the objective is to estimate a spatial offset (A,, A,)
corresponding to a duplicated region of one frame placed in another frame in a different spatial
location. Towards this objective, the authors use phase correlation estimation [22]. First, the
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normalized cross power spectrum is defined:

F(we,wy, 1) F* (wa, wy, 72)
P = Y Y 2.19
(W:mwy) ||F(wm,wy,Tl)F*(W:mwy,ﬁH, ( )

where F(-) is the Fourier transform of a frame,  is the complex conjugate, and || - || is the
complex magnitude. Phase correlation techniques estimate spatial offsets by extracting peaks
in p(z,y), the inverse Fourier transform of P(w,,w,). A peak is expected at origin (0,0) as it is
a stationary camera. Peaks at other positions denote secondary alignments that may represent
a duplication but also simple camera translations (for non-stationary cameras). The spatial
location of a peak corresponds to candidate spatial offsets (A, A,). For each spatial offset,
the authors calculate the correlation between f(z,y, ) and f(x,y,72) to determine if an offset
corresponds to a determined duplication. Toward this objective, each frame is tiled into 16 x 16
overlapping (1 pixel) blocks and the correlation coefficient between each pair of corresponding
blocks is computed. Blocks whose correlation is above a threshold are flagged as duplications.
The authors also propose an extension for non-stationary cameras. For that, they calculate a
rough measure of the camera motion and compensate the calculation by selecting subsequent
non-overlapping frames. One drawback of this approach is that it assumes that the duplicated
regions are rough operations (do not undergo significant adjustments in the host frame).

Wang and Farid [186] presented an approach for detecting traces of tampering in interlaced
and de-interlaced videos. For de-interlaced videos, the authors use an expectation maximization
algorithm to estimate the parameters of the underlying de-interlacing algorithm. With this
model, the authors can point out the spatial/temporal correlations. Tampering in the video is
likely to leave telltale artifacts that disturb the spatial/temporal correlations. For interlaced
videos, the authors measure the inter-field and inter-frame motion which are often the same
for an authentic video, but may be different for a doctored video. Although effective to some
extent, it is worth discussing some possible limitations. The solution suitable for interlaced
videos is sensitive to compression artifacts hardening the correlations estimation. In addition,
a counter-attack to the de-interlacing approach consists of performing the video tampering and
then generating an interlaced video (splitting the even and odd scan lines), and applying a de-
interlacing algorithm on top of that to generate a new de-interlaced video whose correlations
will be intact.

Variations in image features

Avcibas et al. [11] have framed the image forgery detection problem as a feature and classification
fusion problem. The authors claim that doctoring typically involves multiple steps, which often
demand a sequence of elementary image processing operations such as scaling, rotation, contrast
shift, smoothing, among others. The authors develop single weak “experts” to detect each
such elementary operations. Thereafter, these weak classifiers are fused. The authors have
used features borrowed from the Steganalysis literature (c.f., Sec. 2.2.5) such as image quality
metrics [10], binary similarity measures [8], and high order separable quadrature mirror filters
statistics [97]. The main limitation with such approach is that the elementary operations by
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themselves do not constitute doctoring operations. Hence, this approach needs to be used wisely
to point out localized operations. In this case, abrupt brightness and contrast changes in regions
in the host image may point to forgeries (for example, when splicing different images). However,
local intrinsic changes need to be accounted for in order to reduce the high rate of false positives.
Finally, for criminal forgeries, it is likely that the forger will seek to match the target and host
images in such a way to reduce these subtleties.

Ng and Chang [117] have proposed a feature-based binary classification system using high
order statistics to detect image composition. For that, the authors use bicoherence features mo-
tivated by the effectiveness of the bicoherence features for human-speech splicing detection [116].
Bicoherence is the third order correlation of three harmonically related Fourier frequencies of
a signal X (w) (normalized bispectrum). The authors report an accuracy of ~ 71% on the
Columbia Splicing data set. The Columbia data set, however, is composed of small composite
images without any kind of post-processing. Figure 2.9 depicts four images in such a data set.
Finally, it is worth noting that the bicoherence features calculation is a computational intensive
procedure, often O(N?) where N is the number of pixels of an image.

Figure 2.9: Some examples from the Columbia Splicing data set. We emphasize the splicing
boundaries in yellow.

Shi et al. [167] have proposed a natural image model to separate spliced images from natural
images. The model is represented by features extracted from a given set of test images and 2-D
arrays produced by applying multi-size block discrete cosine transform (MBCT) to the given
image. For each 2-D array, the authors calculate a prediction-error 2-D array, its wavelet sub-
bands, and 1-D and 2-D statistical moments. In addition, the authors also calculate Markov
transition probability matrices for the 2-D arrays differences which are taken as additional
features. Although effective for simple image splicing procedures (copying and pasting) such
as the ones in the Columbia Splicing data set [103] with ~ 92% accuracy, the approach does
not seem to be effective for more sophisticated compositions that deploy adaptive edges and
structural propagation [170]. This is because the transition matrices often are unable to capture
the subtle edge variation upon structural propagation. In addition, such an approach is a
binary-based solution. Up to now, it does not point out possible forgery candidate regions.
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Inconsistencies in image features

When splicing two images to create a composite, one often needs to re-sample an image onto a
new sampling lattice using an interpolation technique (such as bi-cubic). Although impercepti-
ble, the re-sampling contains specific correlations that, when detected, may represent evidence of
tampering. Popescu and Farid [141] have described the form of these correlations, and proposed
an algorithm for detecting them in an image. The authors showed that the specific form of the
correlations can be determined by finding the neighborhood size, N, and the set of coefficients,
a, that satisfy: @; = Z]kV:_N apd;yy in the equation

N
<ai - akai+k) L Z=0, (2.20)
k=—N

where & is the signal, and @; is the i*® row of the re-sampled matrix. The authors pointed out
that, in practice, neither the samples that are correlated, nor the specific form of the correlations
are known. Therefore, the authors employ an expectation maximization algorithm (EM) similar
to the one in Section 2.2.3 to simultaneously estimate a set of periodic samples correlated to
their neighbors and, an approximation form for these correlations. The authors assume that
each sample belongs to one of two models. The first model My, corresponds to those samples y;
that are correlated to their neighbors and are generated according to the following model:

-N

My -y = Z Naygyir + n(i), (2.21)
K

where n(i) denote independently, and identically distributed samples drawn from a Gaussian
distribution with zero mean an unknown variance 2. In the E-step, the probability that each
sample y; belonging to model M; can be estimated through Bayes rule similarly to the Equa-
tion 2.9, Section 2.2.3, where y; replaces f(z,y). The probability of observing a sample y; know-
ing it was generated by M is calculated in the same way as in Equation 2.10, Section 2.2.3,
where y; replaces f(z,y). The authors claim that the generalization of their algorithm to color
images is fairly straightforward. The authors propose to analyze each color channel indepen-
dently. However, the authors do not show experiments for the performance of their algorithm
under such circumstances and to what extent such independence assumption is valid. Given
that demosaiced color images present high pixel correlation, such analysis would be valuable.
It is assumed that the probability of observing samples generated by the outlier model,
Pr{y;ly; € Ms}, is uniformly distributed over the range of possible values of y;. Although, it
might seem a strong assumption, the authors do not go into more detail justifying the choice
of the uniform distribution for this particular problem. In the M-step, the specific form of the
correlations between samples is estimated minimizing a quadratic error function. It is important
to note that the re-sampling itself does not constitute tampering. One could just save space by
down-sampling every picture in a collection of pictures. However, when different correlations
are present in one image, there is a strong indication of image composition. The authors have
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reported very good results for high-quality images. As the image is compressed, specially under
JPEG 2000, the re-sampling correlates and hence tampering becomes harder to detect. It is
worth noting that it is also possible to perform a counter attack anticipating the tampering
detection and, therefore, destroying traces of re-sampling. Gloe et al. [58] presented a targeted
attack in which the pixel correlations are destroyed by small controlled geometric distortions.
The authors superimpose a random disturbance vector € to each individual pixel’s position. To
deal with possible jitter effects, the strength of distortion is adaptively modulated by the local
image content using simple edge detectors.

When creating a digital composite (for example, two people standing together), it is often dif-
ficult to match the lighting conditions from the individual photographs. Johnson and Farid [70]
have presented a solution that analyzes lighting inconsistencies to reveal traces of digital tamper-
ing. Standard approaches for estimating light source direction begin by making some simplifying
assumptions such as: (1) the surface is Lambertian (it reflects light isotropically); (2) it has a
constant reflectance value; (3) it is illuminated by a point light source infinitely far away; among
others. However, to estimate the lighting direction, standard solutions require knowledge of the
3-D surface normals from, at least, four distinct points on a surface with same reflectance, which
is hard to find from a single image and no objects of known geometry in the scene. The authors
have used a clever solution first proposed by [121] that estimates two components of the light
source direction from a single image. The authors also relax the constant reflectance assumption
by assuming that the reflectance for a local surface patch is constant. This requires the tech-
nique to estimate individual light source directions for each patch along a surface. Figure 2.10(a)
depicts an example where lighting inconsistencies can point out traces of tampering.

More recently, Johnson and Farid [71] have extended this solution to complex lighting en-
vironments by using spherical harmonics. Under the aforementioned simplifying assumptions,
an arbitrary lighting environment can be expressed as a non-negative function on the sphere,
L(V), V is a unit vector in Cartesian coordinates and the value of L(V) is the intensity of the
incident light along direction V. If the object being illuminated is convex, the irradiance (light
received) at any point on the surface is due to only lighting environment (no cast shadows or
inter-reflections).

It is worth noting, however, that even if the authors’ assumptions were true for an object,
which is rather limiting, they are virtually never true for a scene of interest given that a collection
of convex objects is no longer convex.

As a result, the irradiance, E(]\7 ), can be parametrized by the unit length surface normal
N and written as a convolution of the reflectance function on the surface, R(V,N ), with the

—

lighting environment L(V):
B(N) = / LP)R(V, W) (2.22)
Q

where () represents the surface. For a Lambertian surface, the reflectance function is a clamped
cosine:

—

R(V,N) =max(V - N,0). (2.23)
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The convolution in Equation 2.22 can be simplified by expressing both the lighting envi-
ronment and the reflectance functions in terms of spherical harmonics. The main drawback of
such an approach is that in order to generate a good estimation of the lighting environment it
is necessary to learn the light behavior on a series of light probe images. A light probe image is
an omnidirectional, high dynamic range image that records the incident illumination conditions
at a particular point in space (see Figure 2.10(b)). Lighting environments can be captured by a
variety of methods such as photographing a mirror sphere or through panoramic photographic
techniques [36]. This is necessary to represent the lighting environment function L(V) that is
then integrated to result in the spherical harmonics representing the scene lighting.

Galileo's Tomb, Grace Cathedral,

Santa Croce, Florence A San Francisco

.
-
The Uffizi Gallery, St. Peter's Basilica,
Florence Rome
. 7\ J/
(a) Composite example with lighting inconsis- (b) Four light probes from different lighting environments.
tencies. Credits to Paul Debevec and Dan Lemmon.

Figure 2.10: Lighting and forgeries.

More recently, Johnson and Farid [72] have also investigated lighting inconsistencies across
specular highlights on the eyes to identify composites of people. The position of a specular
highlight is determined by the relative positions of the light source, the reflective surface and
the viewer (or camera). According to the authors, specular highlights that appear on the eye
are a powerful cue as to the shape, color, and location of the light source(s). Inconsistencies
in these properties of the light can be used as telltales of tampering. It is worth noting that
specular highlights tend to be relatively small on the eye giving room to a more skilled forger
to manipulate them to conceal traces of tampering. To do so, shape, color, and location of the
highlight would have to be constructed so as to be globally consistent with the lighting in other
parts of the image.
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Acquisition inconsistencies

In the same way that we can use camera properties to point out the sensor that captured an
image, we also can use them as a digital X-ray for revealing forgeries [25].

Lin et al. [87] have presented an approach that explores camera response normality and
consistency functions to find tampering footprints. An image is tagged as doctored if the response
functions are abnormal or inconsistent to each other. The camera response function is a mapping
relationship between the pixel irradiance and the pixel value. For instance, suppose a pixel
is on an edge and the scene radiance changes across the edge and is constant on both sides
of the edge (Figure 2.11(a)). Therefore, the irradiance of the pixel on the edge should be a
linear combination of those of the pixels clear off the edges (Figure 2.11(b)). Due to nonlinear
response of the camera, the linear relationship breaks up among the read-out values of these
pixels (Figure 2.11(c)). The authors estimate the original linear relationship when calculating
the inverse camera response function [86]. Although effective in some situations, this approach

(a) (b) (c)

Scene Radiance Image Irradiance Measured Color

M = f(I)

Figure 2.11: Camera Response Function Estimation. (a) R; and Ry are two regions with
constant radiance. The third column images are a combination of R; and Ry. (b) The irradiances
of pixels in R; map to the same point I;, in RGB color space. The same happens for pixels
in Ro which maps to Is. However, the colors of the pixels in the third column is the linear
combination of I; and I5. (c¢) The camera response function f warps the line segment in (b)
into a curve during read-out.

has several drawbacks. Namely, (1) to estimate the camera response function, the authors must
calculate an inverse camera response function which requires learning a Gaussian Mixture Model
from a database with several known camera response functions (DoRF) [87]. If the analyzed
image is a composite of regions from unknown cameras, the model is unable to point out an
estimation for the camera response function; (2) the approach requires the user to manually select
points on edges believed to be candidates for splicing; (3) the solution requires high contrast
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images to perform accurate edge and camera normality estimations; (4) the approach might fail
if the spliced images are captured by the same camera and not synthesized along the edges of
an object; (5) Finally, it is likely the solution does not work with CMOS adaptive sensors that
dynamically calculate the camera response function to produce more pleasing pictures.

Chen et al. [25] have proposed to use inconsistencies in the photo-response non-uniformity
noise (c.f., Sec. 2.2.3) to detect traces of tampering. The method assumes that either the camera
that took the image or at least some other pristine images taken by the camera are available. The
algorithm starts by sliding a 128 x 128 block across the image and calculating the value of the
test statistics, pg, for each block B. The probability distribution function p(z|Hy) of pp under
Hj is estimated by correlating the PRNU noise residuals from other cameras and is modeled as
a generalized Gaussian. For each block, the pdf p(z|H;) is obtained from a block correlation
predictor and is also modeled as a generalized Gaussian. For each block B, the authors perform
a Neyman-Pearson hypothesis testing by fixing the false alarm rate a and decide that B has been
tampered if pg < Th. The threshold Th is determined from the condition o = [, p(x|Ho)d.

Structural inconsistencies

Some forgery detection approaches are devised specifically for a target. Popescu and Farid [140]
have discussed the effects of double quantization for JPEG images and presented a solution to
detect such effects. Double JPEG compression introduces specific artifacts not present in single
compressed images. The authors also note that evidence of double JPEG compression, however,
does not necessarily prove malicious tampering. For example, it is possible for a user to simply
re-save a high quality JPEG image with a lower quality. Figure 2.2.4 depicts an example of the
double quantization effect over a 1-d toy example signal z[t| normally distributed in the range
[0, 127].
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Figure 2.12: The top row depicts histograms of single quantized signals with steps 2 (left) and
3 (right). The bottom row depicts histograms of double quantized signals with steps 3 followed
by 2 (left), and 2 followed by 3 (right). Note the periodic artifacts in the histograms of double
quantized signals. Credits to Alin Popescu.
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Inspired by the pioneering work of [140] regarding double quantization effects and their use
in forensics, He et al. [65] have proposed an approach to locate doctored parts in JPEG images
by examining the double quantization effect hidden among DCT coefficients. The idea is that
as long as a JPEG image contains both the doctored part and the pristine part, the discrete
cosine coefficient histograms of the pristine part will still have the double quantization effect
(DQ), because this part of the image is the same as that of the double compressed original
JPEG image. However, the histograms of a doctored part will not have the same DQ effects.
Some possible reasons for these observations are: (1) absence of the first JPEG compression in
the doctored part; (2) mismatch of the DCT grid of the doctored part with that of the pristine
part; or (3) composition of DCT blocks along the boundary may carry traces of the doctored
and pristine parts given that it is not likely that the doctored part exactly consists of 8 x 8
blocks. It is worth noting, however, that this solution will not work in some circumstances. For
instance, if the original image to contribute to the pristine part is not a JPEG image, the double
quantization effect of the pristine part cannot be detected. In addition, the compression levels
also affect the detection. Roughly speaking, the smaller the ratio of the second quantization
step with respect to the first one, the harder the detection of the DQ effects. Finally, if the
forger re-samples the grid of the DCT (shift the image one pixel), it is possible to destroy the
traces of the double quantization and generate a complete new quantization table.

2.2.5 Image and video hidden content detection/recovery

Steganography is the art of secret communication. Its purpose is to hide the presence of com-
munication — a very different goal than Cryptography, which aims to make communication
unintelligible for those that do not possess the correct access rights [6].

Applications of Steganography can include feature location (identification of subcomponents
within a data set), captioning, time-stamping, and tamper-proofing (demonstration that original
contents have not been altered). Unfortunately, not all applications are harmless, and there
are strong indications that Steganography has been used to spread child pornography on the
Internet [64,113], and as an advanced communication tool for terrorists and drug-dealers [105,
106].

In response to such problems, the forensic analysis of such systems is paramount. We refer
to Forensic Steganalysis as the area related to the detection and recovery of hidden messages. In
this forensic scenario, we want to distinguish non-stego or cover objects, those that do not contain
a hidden message, and stego-objects, those that contain a hidden message with the additional
requirement of recovering its content as a possible proof basis for the court.

Steganography and Steganalysis have received a lot of attention around the world in the
past few years [149]. Some are interested in securing their communications through hiding the
very fact that they are exchanging information. On the other hand, others are interested in
detecting the existence of these communications — possibly because they might be related to
illegal activities. In the aftermath of 9/11 events, some researchers have suggested that Osama
Bin Laden and Al Qaeda used Steganography techniques to coordinate the World Trade Center
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attacks. Almost six years later, nothing was proved [21,83,149,184]. However, since then, there
has been strong evidences that Steganography has been used as a private communication means
for drug-dealers and child pornographers in their illegal activities [64, 105, 106, 113]. Indeed,
according to the High Technology Crimes Annual Report [108,120], Steganography threats can
also appear in conjunction with dozens of other cyber-crimes such as: fraud and theft, terrorism,
computer cracking, online defamation, intellectual property offenses, and online harassment.

In the following sections, we present representative research with respect to the identification
and recovery of hidden messages in digital multimedia. When possible, we emphasize approaches
that can be used as an aid for criminal prosecution in a court of law. The fundamental goal
of Steganalysis is to reliably detect the existence of hidden messages in communications and,
indeed, most of the approaches in the literature have addressed only the detection problem.
However, for forensics purposes, we are interested in the higher level of analysis going one step
further and attempting to recover the hidden content.

We can model the detection of hidden messages in a cover medium as a classification problem.
In Steganalysis, we have two extreme scenarios: (1) Eve has only some level of suspicion that
Alice and Bob are covertly communicating; and (2) Eve may have some additional information
about Alice and Bob’s covert communications such as the algorithm they have used, for instance.
In the first case, we have a difficult forensic scenario where Eve would need to deploy a system
able to detect all forms of Steganography (Blind Steganalysis). In the latter case, Eve might
have additional information reducing her universe of possible hiding algorithms and cover media
(Targeted Steganalysis).

In general, steganographic algorithms rely on the replacement of some component of a digital
object with a pseudo-random secret message [6]. In digital images, common components used to
conceal data are: (1) the least significant bits (LSBs); (2) DCT coefficients in JPEG-compressed
images; and (3) areas with richness in details [32].

Figure 2.13 depicts a typical Steganography and Steganalysis scenario. When embedding
a message in an image, one can take several steps in order to avoid message detection such
as choosing an embedding key, compressing the message, and applying statistical profiling in
the message and the cover media in order to minimize the amount of changes. On the other
hand, in the Steganalysis scenario, we can try to point out the concealment whether making
statistical analysis on the input image, or on the image and on a set of positive and negative
training examples. If we have additional information, we can also use them in order to perform
a targeted attack. In the following, we present some approaches used to detect such activities
using either targeted or blind attacks.

Targeted Steganalysis

Some successful approaches for targeted Steganalysis proposed in the literature can estimate
the embedding ratio or even reveal the secret message with the knowledge of the steganographic
algorithm being very useful for forensics.

Basic LSB embedding can be reliably detected using the histogram attack as proposed
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Figure 2.13: Typical Steganography and Steganalysis scenario.

by [191]. Any possible LSB embedding procedure will change the contents of a selected number
of pixels and therefore will change the pixel value statistics in a local neighborhood.

An L-bit color channel can represent 2 possible values. If we split these values into 251
pairs that only differ in the LSBs, we are considering all possible patterns of neighboring bits
for the LSBs. Each of these pairs are called pair of value (PoV) in the sequence [191].

When we use all the available LSB fields to hide a message in an image, the distribution of
odd and even values of a PoV will be the same as the 0/1 distribution of the message bits. The
idea of the statistical analysis is to compare the theoretically expected frequency distribution
of the PoVs with the real observed ones [191]. However, we do not have the original image and
thus the expected frequency. In the original image, the theoretically expected frequency is the
arithmetical mean of the two frequencies in a PoV. As we know, the embedding function only
affects the LSBs, so it does not affect the PoV’s distribution after an embedding. Therefore the
arithmetical mean remains the same in each PoV, and we can derive the expected frequency
through the arithmetic mean between the two frequencies in each PoV.

As presented in [143,191], we can apply the x? (chi squared-test) S over these PoVs to detect
hidden messages

obs __ £€xp\2
S = Z (fl%), (2.24)
i=1 fi
where k is the number of analyzed PoVs, f* and I are the observed frequencies and the
expected frequencies respectively. A small value of S points out that the data follows the

expected distribution and we can conclude that the image was tweaked. We can measure the
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statistical significance of S by calculating the p-value, which is the probability that a chi-square
distributed random variable with & — 1 degrees of freedom would attain a value larger than or
equal to S:

k—1

p(S) = ;/ e T Ldz. (2.25)
25T Js

If the image does not have a hidden message, S is large and p(S) is small. In practice, we
calculate a threshold value Sy, so that p(Sy,) = o where « is the chosen significance level. The
main limitation with this approach is that it only detects sequential embeddings. For random
embeddings, we could apply this approach window-wise. However, in this case it is effective
only for large embeddings such as the ones that modify, at least, 50% of the available LSBs. For
small embeddings, there is a simple counter-attack that breaks down this detection technique.
For that, it is possible to learn the basic statistics about the image and to keep such statistics
when embedding the message. For instance, for each bit modified to one, another one is flipped

7 is one approach that uses such tricks when

to zero. Indeed, as we shall show later, Outguess
performing embeddings in digital images.

Fridrich et al. [50] have presented RS analysis. It consists of the analysis of the LSB loss-
less embedding capacity in color and gray-scale images. The loss-less capacity reflects the fact
that the LSB plane — even though it looks random — is related to the other bit planes [50].
Modifications in the LSB plane can lead to statistically detectable artifacts in the other bit
planes of the image. The authors have reported good results (detection for message-sizes as
small as &~ 2 — 5% on a limited set of images for the Steganography tools: Steganos, S-Tools,
Hide4PGP, among others®.

A similar approach was devised by [40] and is known as sample pair analysis. Such an
approach relies on the formation of some subsets of pixels whose cardinalities change with
LSB embedding, and such changes can be precisely quantified under the assumption that the
embedded bits form a random walk on the image. Consider the partitioning of the input image
in vectorized form V into pairs of pixels (u,v). Let P be the set of all pairs. Let us partition P
into three disjoint sets X,Y, and Z, where

X ={(u,v) € P | (viseven and u < v) or (v is odd and u > v) }
Y ={(u,v) € P | (viseven and u > v) or (visodd and u < v) }
Z={(u,v) eP | (u=0v)} (2.26)

Furthermore, let us partition the subset Y into two subsets, W, and V', where V =Y \ W, and
Y ={(u,v) € P| (u=2k,v=2k+1)or (u=2k+1,v=2k)} (2.27)

The sets X, W, V, and Z are called primary sets and P = X UW UV U Z. When one embeds
content in an image, the LSB values are altered and therefore the cardinalities of the sets will
change accordingly. As we show in Figure 2.14, we have four possible cases 7w € {00, 01,10, 11}.

"http://www.outguess.org/
®http://members.tripod.com/steganography/stego/software.html
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Let p be the relative amount of modified pixels in one image due to embedding. Hence, the
probability of a state change is given by

p(00,P) = (1-p/2)?
p(0L,P) = p(10,P) = p/2(1 - p/2)?
p(1L,P) = (p/2). (2.28)

and the cardinalities after the changes are

(X' = [X](1—p/2)+|V]p/2
V| = [VI(1-p/2) +|X]|p/2
W' = [W|1—-p+p*/2) +|ZIp(1 - p/2) (2.29)
It follows that
(X' = V| = (X[ -V - p). (2.30)

The authors have empirically noted the, on average, for natural images (no hidden content)
|X| = |Y|. Therefore,
[X'| = V[ = [W|(1 - p). (2.31)

Observe in Figure 2.14 that the embedding process does not alter W U Z. Hence, we define
v=|W|+1|Z] = |W'|+ |Z'| yielding

W' = (1X'| = [V')(1 = p)* + yp(1 — p/2). (2.32)

Given that |X'| 4+ |V'| + |W'| 4+ |Z'| = |P|, we have the estimation of the embedded content size
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Figure 2.14: Transitions between primary sets under LSB changing.
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0.57p° + (2|X'| = [P])p + [Y'| - |X'| = 0. (2.33)

This approach has been tested in [32] over three data sets summing up to 5,000 images. The
data sets comprise raw, compressed, and also scanned images. The approach is able to detect
messages as small as 5% of the available space for normal LSB embedding with no statistical
profiling.

Ker [80] has studied the statistical properties of the analysis of pairs and also proposed
an extension using weighted least squares [80]. Recently, Bohme [17] presented an extension
for JPEG covers. Several other approaches have been designed to detect targeted Steganalysis
specifically in the JPEG domain [49, 56, 133].

Shi et al. [166] have analyzed the gradient energy flipping rate during the embedding process.
The hypothesis is that the gradient energy varies consistently when the image is altered to conceal
data.

For most of the above techniques, the authors do not discuss possible counter-attacks to
their solutions. For instance, the sample pairs solution [40] and the RS analysis [50] rely on the
analysis of groups of modified and non-modified pixels. What happens if someone knows these
detection solutions and compensates for the group distribution for each modified pixel? Do the
solutions still work after such kind of embedding statistical profiling?

Blind Steganalysis

Most of the blind- and semi-blind detection approaches rely on supervised learning techniques.
The classifiers used in existing blind and semi-blind Steganalysis refer to virtually all categories
of classical classification such as regression, multi-variate regression, one class, two class, and
hyper-geometric classifications, among others.

Both in blind and semi-blind scenarios, the classifier is a mapping that depends on one or
more parameters that are determined through training and based on the desired tradeoff between
both type of errors (false alarm and false detection) that the classifier can make. Therefore,
Steganalysis begins with the appropriate choice of features to represent both the stego and
non-stego objects.

In the semi-blind scenario, we select a set of stego algorithms and train a classifier in the hope
that when analyzing an object concealing a message embedded with an unknown algorithm, the
detector will be able to generalize. On the other hand, in the complete blind scenario, we only
train a set of cover objects based on features we believe will be altered during the concealment
of data. In this case, we train one-class classifiers and use the trained model to detect outliers.

Some of the most common features used in the literature to feed classifiers are based on
wavelet image decompositions, image quality metrics, controlled perturbations, moment func-
tions, and histogram characteristic functions.

Lyu and Farid [95,96] have introduced a detection approach based on probability distribution
functions of image sub-bands coefficients. This work has become a basis for several others. The
motivation is that natural images have regularities that can be detected by high-order statistics
through quadrature mirror filter (QMF) decompositions [180].
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The QMF decomposition divides the image into multiple scales and orientations. We denote
the vertical, horizontal, and diagonal sub-bands in a given scale {i = 1 ... n} as Vj(z,vy),
Hi(x,y), Di(z,y), respectively. Figure 2.15 depicts one image decomposition with three scales.
The authors of [95,96] propose to detect hidden messages using two sets of statistics collected

Figure 2.15: Image sub-bands QMF decomposition.

throughout the multiple scales and orientations. The first set of statistics comprises mean,
variance, skewness, and kurtosis. These statistics are unlikely to capture the strong correlations
that exist across space, orientation, scale and color. Therefore, the authors calculate a second
set of statistics based on the errors in a linear predictor of coefficient magnitude. For the sake of
illustration, consider a vertical sub-band of a gray image at scale i, V;(z,y). A linear predictor
for the magnitude of these coefficients in a subset of all possible spatial, orientation, and scale
neighbors is given by

Vilz,y)l = wi|Vi(z = Ly)| +w2|Vi(z + 1,y)| + ws|Vi(z,y — V)| + wa|Vi(z,y + 1)]
+ ws |Vips (g, %)’ + we|Di(z, y)| + wr ‘DiJrl (g, %)’ , (2.34)
where | - | represents absolute value and wy, are the weights. We can represent this linear
relationship in matrix form as V= QW, where the column vector @ = (wy, ...,wr)T, the

vector V contains the coefficient magnitudes of V;(z,y) strung out into a column vector, and
the columns of the matrix @) contain the neighboring coefficient magnitudes as in Equation 2.34
also strung out into column vectors. The coefficients are determined through the minimization
of the quadratic error function

E@W@) = [V — Q). (2.35)

This error is minimized through differentiation with respect to . Setting the result equal to
zero, and solving for W, we have

W= (QTQ)'QV. (2.36)

Finally, the log error in the linear predictor is given by

E = logaV — 1oga(QD). (2.37)



50 Chapter 2. Current Trends and Challenges in Digital Image Forensics

It is from this error that the additional mean, variance, skewness, and kurtosis statistics are
collected. This process is repeated for each sub-band, and scale. From this set of statistics, the
authors train the detector with images with and without hidden messages.

Lyu and Farid [93,97] have extended this set of features to color images and proposed an
one-class classifier with hyper-spheres representing cover objects. Outliers of this model are
tagged as stego objects. A similar procedure using Parzen-Windows was devised by [156] to
detect anomalies in stego systems.

Rocha and Goldenstein [147] have presented the Progressive Randomization meta-descriptor
for Steganalysis. The principle is that it captures the difference between image classes (with
and without hidden messages) by analyzing the statistical artifacts inserted during controlled
perturbation processes with increasing randomness.

Avcibas et al. [10] have presented a detection scheme based on image quality metrics (IQMs).
The motivation is that the embedding can be understood as an addition of noise to the image
therefore degrading its quality. They have used multivariate regression analysis. Avcibas et al. [8]
have introduced an approach that explores binary similarity measures within image bit planes.
The basic idea is that the correlation between the bit planes as well as the binary texture
characteristics within the bit planes differ between a stego image and a cover image.

Histogram characteristic functions and statistics of empirical co-occurrence matrices also
have been presented with relative success [26,49,168,193,194].

Despite of all the advances, one major drawback of the previous approaches is that most
of them are only able to point out whether or not a given image contains a hidden message.
Currently, with classifier-based blind or semi-blind approaches it is extremely difficult or even
impossible to identify portions of the image where a message is hidden and perform message
extraction or even only point out possible tools used in the embedding process. A second
drawback in this body of work is the lack of counter-analysis techniques to assess the viability
of the existing research. Outguess® [142] and F5 [190] are two early examples of such works.

Outguess is a steganographic algorithm that relies on data specific handlers that extract
redundant bits and write them back after modification. For JPEG images, Outguess preserves
statistics based on frequency counts. As a result, statistical tests based on simple frequency
counts are unable to detect the presence of steganographic content [142]. Outguess uses a
generic iterator object to select which bits in the data should be modified. In addition, F5 was
proposed with the goal of providing high steganographic capacity without sacrificing security.
Instead of LSB flipping (traditional embedding approaches), the embedding operation in F5
preserves the shape of the DCT histogram. The embedding is performed according to a pseudo-
random path determined from a user pass-phrase. Later on, Fridrich et al. [52] have provided
a targeted attack that detects embedded messages using F5 algorithm throughout a process
called calibration. We estimate the original cover-object from the suspected stego-object. In
the case of JPEG images, for instance, this is possible because the quantized DCT coefficients
are robust to small distortions (the ones performed by some steganographic algorithms) [32].

“http://www.outguess.org/
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Fridrich et al.’s [52] approach is no longer as effective if we improve F5 with some sort of
statistical profiling preserving not only the DCT histogram shape but also compensating for the
modified coefficients.

Much more work of this sort is essential, given that this scenario looks like an arm’s race in
which Steganographers and Steganalyzers compete to produce better approaches in a techno-
logical escalation.

In the Stegi@Work section, we present a common framework that allows us to combine most
of the state of the art solutions in a compact and efficient way toward the objective of recovering
the hidden content.

Some other flaws related to the classifier-based blind or semi-blind approaches are

e The choice of proper features to train the classifier upon is a key step. There is no
systematic rule for feature selection. It is mostly a heuristic, trial and error method [24].

e Some classifiers have several parameters that have to be chosen (type of kernels, learning
rate, training conditions) making the process a hard task [24].

e To our knowledge, a standard reference set has yet to emerge in the Steganalysis field
to allow fair comparison across different approaches. One step in that direction is the
work of [154] which presents two controlled data sets to test hidden message detection
approaches and the work of [79] which presents a new benchmark for binary steganalysis
methods.

Stegi@Work

What is needed for today’s forensics applications is a scalable framework that is able to process a
large volume of images (the sheer volume of images on sites such as Flickr and Picasa is testament
to this). As we have repeatedly seen throughout this paper, individual techniques for forensic
analysis have been developed for specific tools, image characteristics, and imaging hardware,
with results presented in the limited capacity of each individual work’s focus. If a high capacity
framework for digital image forensics was available, the forensic tools presented in this paper
could be deployed in a common way, allowing the application of many tools against a candidate
image, with the fusion of results giving a high-confidence answer as to whether an image contains
steganographic content, is a forgery, or has been produced by a particular imaging system. In
our own work in the “Vision of the Unseen,” we have focused on the development of a cross-
platform distributed framework specifically for Steganalysis, embodying the above ideas, that
we call Stegi@Work. In this section, we will summarize the overall architecture and capabilities
of the Stegi@Work framework as an example of what a distributed forensics framework should
encompass.

Stegi@Work, at the highest architectural level (details in Figure 2.16), consists of three
entities. A requester client issues jobs for the system to process. Each job consists of a file that
does or does not contain steganographic content. This file is transmitted to the Stegi server,
which in turn, dispatches the job’s processing to the worker clients. Much like other distributed
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computing frameworks such as Seti@home'? and Folding@home!!, worker clients can be ordinary
workstations on a network with CPU cycles to spare. The Stegi server collects the results for
each job, and performs fusion over the set of results, to come to a final conclusion about the
status of the file in question. Each network entity may be connected via a LAN, or logically
separated by firewalls in a WAN, facilitating the use of worker clients or requestor clients on
a secure or classified network, while maintaining presence on an insecure network, such as the
Internet. The Stegi server exists as the common point of contact for both.

The specifics of job communication (details in Figure 2.17), include the specific definitions
for each job packet transmitted between network entities. Between the requester client and
the Stegi server, both job request and job results packets are exchanged. In a job request, the
file in question is transmitted to the server, along with optional tool selection and response
requests. If these are not specified, the server can choose them automatically based on the
type of the submitted file, as well as a defined site policy. The server receives a detailed report
packet from each worker client, including the results of all of the tools applied against a file, as
well as additional details about the job, such as execution time. Additional status packets are
transmitted between all network entities, including server status to a worker client, notifying
it that a job (with the file and appropriate tools) is ready, worker client status to the server,
indicating the current state of a job, and server status to a worker client indicating what should
be known about a job that is in the system.

The Stegi@Work architecture provides tool support for each worker client in the form of a
wrapper API around the tool for each native platform. This API defines process handling, pro-
cess status, and control signaling, allowing the Stegi server full control over each process on each
worker client. The current system as implemented supports wrappers written in C/C++, Java,
and Matlab, thus supporting a wide range of tools on multiple platforms. Network communica-
tion between each native tool on the worker client and the Stegi@Work system is defined via a
set of XML messages. We have created wrappers for the popular analysis tools stegdetect'? and
Digital Invisible Ink Toolkit'3, as well as a custom tool supporting signature-based detection,
as well as the statistical y? test.

In order for high portability, allowing for many worker clients, the Stegi@Work framework
has been implemented in Java, with tool support, as mentioned above, in a variety of different
languages. This is accomplished through the use of Java Native Interface!® (JNI), with Win32
and Linux calls currently supported. The Stegi@Work server is built on top of JBOSS', with
an Enterprise Java Beans!® (EJB) 3.0 object model for all network entities. GUI level dialogues
are available for system control at each entity throughout the framework.

The actual use cases for a system like Stegi@Work extend beyond large-scale forensics for

Ohttp://setiathome. berkeley.edu/
Yhttp://folding.stanford.edu/

2http: //www.outguess.org/detection.php
http://diit.sourceforge.net/
Ynhttp://swik.net/INI+Tutorial
Yhttp://www. jboss.org/
http://www.conceptgo.com/gsejb/index . html
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intelligence or law enforcement purposes. Corporate espionage remains a critical threat to
business, with loss estimates as high as $200 billion!”. An enterprise can deploy requestor clients
at the outgoing SMTP servers to scan each message attachment for steganographic content. If
such content is detected, the system can quarantine the message, issue alerts, or simply attempt
to destroy [74,132] any detected content automatically, and send the message back on its way.
This last option is desirable in cases where false positives are more likely, and thus, a problem
for legitimate network users. Likewise, a government agency may choose to deploy the system

in the same manner to prevent the theft of very sensitive data.
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2.3 Conclusions

A remarkable demand for image-based forensics has emerged in recent years in response to a
growing need for investigative tools for a diverse set of needs. From the law enforcement com-
munity’s perspective, image based analysis is crucial for the investigation of many crimes, most
notably child pornography. Yet, crime that utilizes images is not limited to just pornography,
with entities as diverse as Colombian drug cartels taking advantage of steganography to mask
their activities. From the intelligence community’s perspective, the ability to scan large amounts
of secret and public data for tampering and hidden content is of interest for strategic national
security. As the case of the Iranian missiles has shown, state based actors are just as willing to
abuse image processing as common criminals.

But the obvious crimes are not necessarily the most damaging. The digital world presents
its denizens with a staggering number of images of dubious authenticity. Disinformation via the
media has been prevalent throughout the last century, with doctored images routinely being used
for political propaganda. But now, with the near universal accessibility of digital publishing,
disinformation has spread to commercial advertising, news media, and the work of malicious
pranksters. Is it at all possible to determine whether an image is authentic or not? If we cannot
determine the authenticity, what are we to believe about the information the image represents?

Digital Image and Video Forensics research aims at uncovering and analyzing the underlying
facts about an image/video. Its main objectives comprise: tampering detection (cloning, healing,
retouching, splicing), hidden messages detection/recovery, and source identification with no
prior measurement or registration of the image (the availability of the original reference image
or video). In this paper, we have taken a look at many individual algorithms and techniques
designed for very specific detection goals. However, the specific nature of the entire body of
digital image and video forensics work is its main limitation at this point in time. How is an
investigator able to choose the correct method for an image at hand? Moreover, the shear
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magnitude of images that proliferate throughout the Internet poses a serious challenge for large-
scale hidden content detection or authenticity verification.

In response to this challenge, we make several recommendations. First, work on decision level
and temporal fusion serves as an excellent basis for operational systems. Combining information
from many algorithms and techniques yields more accurate results — especially when we do not
know precisely what we are looking for. Second, the need for large distributed (or clustered)
systems for parallel evaluation fills an important role for national and corporate security. Our
Stegi@Work system is an example of this. Third, the evaluation of existing and new algorithms
must be improved. The analysis of detection results in nearly all papers surveyed lacks the rigor
found in other areas of digital image processing and computer vision, making the assessment of
their utility difficult. More troubling, in our paper, only a few papers on counter-forensics for
image based forensics were found, leading us to question the robustness of much of the work
presented here to a clever manipulator. Finally, for forgery detection and steganalysis, more
powerful algorithms are needed to detect specifics about manipulations found in images, not
just that an image has been tampered with. Despite these shortcoming, the advancement of the
state of the art will continue to improve our Vision of the Unseen.
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Esteganografia e Esteganalise nos
Meios Digitais

No Capitulo 3, discutimos algumas das principais técnicas para o mascaramento digital de
informacoes e para a detecgdo de mensagens escondidas em imagens.

Mostramos que uma das areas que tém recebido muita atengao recentemente é a estegano-
grafia. Esta é a arte de mascarar informagoes e evitar a sua deteccao. Esteganografia deriva
do grego, onde estegano = “esconder, mascarar” e grafia = “escrita”. Logo, esteganografia é a
arte da escrita encoberta.

Aplicagbes de esteganografia incluem identificagdo de componentes dentro de um subconjunto
de dados, legendagem (captioning), rastreamento de documentos e certificacao digital (time-
stamping) e demonstracdo de que um conteido original nao foi alterado (tamper-proofing).
Entretanto, ha indicios recentes de que a esteganografia tem sido utilizada para divulgar imagens
de pornografia infantil na internet [64,113].

Desta forma, é importante desenvolvermos algoritmos para detectar a existéncia de mensa-
gens escondidas. Neste contexto, aparece a estegandlise digital, que se refere ao conjunto de
técnicas que sao desenvolvidas para distinguir entre objetos que possuem conteido escondido
(estego-objetos) daqueles que nao o possuem (nao-estego).

Finalmente, apresentamos as principais tendéncias relacionadas & Esteganografia e Este-
ganalise digitais bem como algumas oportunidades de pesquisa.

O trabalho apresentado no Capitulo 3 é o resultado de nosso artigo [149] na Revista de
Informdtica Tedrica e Aplicada (RITA).
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Chapter 3

Steganography and Steganalysis in
Digital Multimedia: Hype or
Hallelujah?

Abstract

In this paper, we introduce the basic theory behind Steganography and Steganalysis, and present
some recent algorithms and developments of these fields. We show how the existing techniques
used nowadays are related to Image Processing and Computer Vision, point out several trendy
applications of Steganography and Steganalysis, and list a few great research opportunities just
waiting to be addressed.

3.1 Introduction

De artificio sine secreti latentis suspicione scribendi!*. (David Kahn)

More than just a science, Steganography is the art of secret communication. Its purpose is
to hide the presence of communication, a very different goal than Cryptography, that aims to
make communication unintelligible for those that do not possess the correct access rights [6].
Applications of Steganography can include feature location (identification of subcomponents
within a data set), captioning, time-stamping, and tamper-proofing (demonstration that original
contents have not been altered). Unfortunately, not all applications are harmless, and there are
strong indications that Steganography has been used to spread child pornography pictures on
the internet [64,113].

In this way, it is important to study and develop algorithms to detect the existence of hidden
messages. Digital Steganalysis is the body of techniques that attempts to distinguish between

Y The effort of secret communication without raising suspicions.
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non-stego or cover objects, those that do not contain a hidden message, and stego-objects, those
that contain a hidden message.

Steganography and Steganalysis have received a lot of attention around the world in the
past few years. Some are interested in securing their communications through hiding the very
own fact that they are exchanging information. On the other hand, others are interested in
detecting the existence of these communications — possibly because they might be related to
illegal activities.

In this paper, we introduce the basic theory behind Steganography and Steganalysis, and
present some recent algorithms and developments of these fields. We show how the existing
techniques used nowadays are related to Image Processing and Computer Vision, point out
several trendy applications of Steganography and Steganalysis, and list a few great research
opportunities just waiting to be addressed.

The remainder of this paper is organized as follows. In Section 3.2, we introduce the main
concepts of Steganography and Steganalysis. Then, we present historical remarks and social
impacts in Sections 3.3 and 3.4, respectively. In Section 3.5, we discuss information hiding for
scientific and commercial applications. In Sections 3.6 and 3.7, we point out the main techniques
of Steganography and Steganalysis. In Section 3.8, we present common-available information
hiding tools and software. Finally, in Sections 3.9 and 3.10, we point out open research topics
and conclusions.

3.2 Terminology

According to the general model of Information Hiding: embedded data is the message we want
to send secretly. Often, we hide the embedded data in an innocuous medium, called cover
message. There are many kinds of cover messages such as cover texrt, when we use text to hide
a message; or cover image, when we use an image to hide a message. The embedding process
produces a stego object which contains the hidden message. We can use a stego key to control
the embedding process, so we can also restrict detection and/or recovery of the embedded data
to other parties with the appropriate permissions to access this data.

Figure 3.1 shows the process of hiding a message in an image. First we choose the data we
want to hide. Further, we use a selected key to hide the message in a previously selected cover
image which produces the stego image.

When designing information hiding techniques, we have to consider three competing aspects:
capacity, security, and robustness [144]. Capacity refers to the amount of information we can
embed in a cover object. Security relates to an eavesdropper’s inability to detect the hidden
information. Robustness refers to the amount of modification the stego-object can withstand
before an adversary can destroy the information [144]. Steganography strives for high security
and capacity. Hence, a successful attack to the Steganography consists of the detection of the
hidden content. On the other hand, in some applications, such as watermarking, there is the
additional requirement of robustness. In these cases, a successful attack consists in the detection
and removal of the copyright marking.
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e __ Message to be hidden

The cover medium

to be used

he produced stego image

Figure 3.1: A data hiding example.

Figure 3.2 presents the Information Hiding hierarchy [135]. Covert channels consist of the
use of a secret and secure channel for communication purposes (e.g., military covert channels).
Steganography is the art, and science, of hiding the information to avoid its detection. It derives
from the Greek steganos ~ “hide, embed” and graph ~ “writing”.

We classify Steganography as technical and linguistic. When we use physical means to conceal
the information, such as invisible inks or micro-dots, we are using technical Steganography. On
the other hand, if we use only “linguistic” properties of the cover object, such as changes in
image pixels or letter positions, in a cover text we are using linguistic Steganography.

Information Hiding

Covert channels Steganography Anonymity Copyright marking
|
| |
Linguistic Technical Robust watermarking Fragile watermarking
|
| |
Fingerprinting Watermarking

Perceptible Imperceptible

Figure 3.2: Information Hiding hierarchy.

Copyright marking refers to the group of techniques devised to identify the ownership of
intellectual property over information. It can be fragile, when any modification on the media
leads to the loss of the marking; or robust, when the marking is robust to some destructive
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attacks.

Robust copyright marking can be of two types: fingerprinting and watermarking. Finger-
printing hides an unique identifier of the customer who originally acquired the information,
recording in the media its ownership. If the copyright owner finds the document in the posses-
sion of an unwanted party, she can use the fingerprint information to identify, and prosecute,
the customer who violated the license agreement.

Unlike fingerprints, watermarks identify the copyright owner of the document, not the iden-
tity of the customer. Furthermore, we can classify watermarking according to its visibility to
the naked eye as perceptible or imperceptible.

In short, fingerprints are used to identify violators of the license agreement, while watermarks
help with prosecuting those who have an illegal copy of a digital document [131,135].

Anonymity is the body of techniques devised to surf the Web secretly. This is done using

2

sites like Anonymizer® or remailers (blind e-mailing services).

3.3 Historical remarks

Throughout history, people always have aspired to more privacy and security for their commu-
nications [77,122]. One of the first documents describing Steganography comes from Histories
by Herodotus, the Father of History. In this work, Herodotus gives us several cases of such
activities. A man named Harpagus killed a hare and hid a message in its belly. Then, he sent
the hare with a messenger who pretended to be a hunter [122].

In order to convince his allies that it was time to begin a revolt against Medes and the
Persians, Histaieus shaved the head of his most trusted slave, tattooed the message on his head
and waited until his hair grew back. After that, he sent him along with the instruction to shave
his head only in the presence of his allies.

Another technique was the use of tablets covered by wax, first used by Demeratus, a Greek
who wanted to report from the Persian court back to his friends in Greece that Xerxes, the Great,
was about to invade them. The normal use of wax tablets consisted in writing the text in the
wax over the wood. Demeratus, however, decided to melt the wax, write the message directly
to the wood, and then put a new layer of wax on the wood in such a way that the message
was not visible anymore. With this ingenious action, the tablets were sent as apparently blank
tablets to Greece. This worked for a while, until a woman named Gorgo guessed that maybe
the wax was hiding something. She removed the wax and became the first woman cryptanalyst
in History.

During the Renaissance, the Harpagus’ hare technique was “improved” by Giovanni Porta,
one of the greatest cryptologists of his time, who proposed feeding a message to a dog and then
killing the dog [77].

Drawings were also used to conceal information. It is a simple matter to hide information
by varying the length of a line, shadings, or other elements of the picture. Nowadays, we have

2WWW . anonymizer .com
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proof that great artists, such as Leonardo Da Vinci, Michelangelo, and Rafael, have used their
drawings to conceal information [77]. However, we still do not have any means to identify the
real contents, or even intention, of these messages.

Sympathetic inks were a widespread technique. Who has not heard about lemon-based ink
during childhood? With this type of ink, it is possible to write an innocent letter having a very
different message written between its lines.

Science has developed new chemical substances that, combined with other substances, cause
a reaction that makes the result visible. One of them is gallotanic acid, made from gall nuts,
that becomes visible when coming in contact with copper sulfate [137].

With the continuous improvement of lenses, photo cameras, and films, people were able to
reduce the size of a photo down to the size of a printed period [77,122]. One such example
is micro-dot technology, developed by the Germans during the Second World War, referred to
as the “enemy’s masterpiece of espionage” by the FBI’s director J. Edgar Hoover. Micro-dots
are photographs the size of a printed period that have the clarity of standard-sized typewritten
pages. Generally, micro-dots were not hidden, nor encrypted messages. They were just so
small as to not draw attention to themselves. The micro-dots allowed the transmission of large
amounts of data (e.g., texts, drawings, and photographs) during the war.

There are also other forms of hidden communications, like null ciphers. Using such tech-
niques, the real message is “camouflaged” in an innocuous message. The messages are very hard
to construct and usually look like strange text. This strangeness factor can be reduced if the
constructor has enough space and time. A famous case of a null cipher is the book Hypterono-
machia Poliphili of 1499. A Catholic priest named Colona decided to declare his love to a young
lady named Polya by putting the message “Father Colona Passionately loves Polia” in the first
letter of each chapter of his book.

3.4 Social impacts

Science and technology changed the way we lived in the 20" century. However, this progress
is not without risk. Evolution may have a high social impact, and digital Steganography is no
different.

Over the past few years, Steganography has received a lot of attention. Since September 11,
2001, some researchers have suggested that Osama Bin Laden and Al Qaeda used Steganography
techniques to coordinate the World Trade Center attacks. Several years later, nothing was
proved [21,83,147,184]. However, since then, Steganography has been a hype.

As a matter of fact, it is important to differentiate what is merely a suspicion from what is
real — the hype or the hallelujah. There are many legal uses for Steganography and Steganaly-
sis, as we show in Section 3.5. For instance, we can employ Steganography to create smart data
structures and robust watermarking to track and authenticate documents, to communicate pri-
vately, to manage digital elections and electronic money, to produce advanced medical imagery,
and to devise modern transit radar systems. Unfortunately, there are also illegal uses of these

techniques. According to the High Technology Crimes Annual Report [108,120], Steganography
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and Steganalysis can be used in conjunction with dozens of other cyber-crimes such as: fraud
and theft, child pornography, terrorism, hacking, online defamation, intellectual property of-
fenses, and online harassment. There are strong indications that Steganography has been used
to spread child pornography pictures on the internet [64,113].

In this work, we present some possible techniques and legal applications of Steganography
and Steganalysis. Of course, the correct use of the information therein is all part of the reader’s
responsibility.

3.5 Scientific and commercial applications

In this section, we show that there are many applications for Information Hiding.

e Advanced data structures. We can devise data structures to conceal unplanned infor-
mation without breaking compatibility with old software. For instance, if we need extra
information about photos, we can put it in the photos themselves. The information will
travel with the photos, but it will not disturb old software that does not know of its exis-
tence. Furthermore, we can devise advanced data structures that enable us to use small
pieces of our hard disks to secretly conceal important information [63,125].

e Medical imagery. Hospitals and clinical doctors can put together patient’s exams, im-
agery, and their information. When a doctor analyzes a radiological exam, the patient’s
information is embedded in the image, reducing the possibility of wrong diagnosis and/or
fraud. Medical-image steganography requires extreme care when embedding additional
data within the medical images: the additional information must not affect the image
quality [85,157].

e Strong watermarks. Creators of digital content are always devising techniques to de-
scribe the restrictions they place on their content. These technique can be as simple as
the message “Copyright 2007 by Someone” [188], as complex as the digital rights man-
agement system (DRM) devised by Apple Inc. in its iTunes store’s contents [175], or the
watermarks in the contents of the Vatican Library [110].

e Military agencies. Militaries’ actions can be based on hidden and protected communica-
tions. Even with crypto-graphed content, the detection of a signal in a modern battlefield
can lead to the rapid identification and attack of the involved parties in the communi-
cation. For this reason, military-grade equipment uses modulation and spread spectrum
techniques in its communications [188].

e Intelligence agencies. Justice and Intelligence agencies are interested in studying these
technologies, and identifying their weaknesses to be able to detect and track hidden mes-
sages [64,109,113].
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e Document tracking tools. We can use hidden information to identify the legitimate
owner of a document. If the document is leaked, or distributed to unauthorized parties,
we can track it back to the rightful owner and perhaps discover which party has broken
the license distribution agreement [188].

e Document authentication. Hidden information bundled into a document can contain
a digital signature that certifies its authenticity [188].

e GGeneral communication. People are interested in these techniques to provide more
security in their daily communications [184,188]. Many governments continue to see the
internet, corporations, and electronic conversations as an opportunity for surveillance [164].

e Digital elections and electronic money. Digital elections and electronic money are
based on secret and anonymous communications techniques [135,188].

e Radar systems. Modern transit radar systems can integrate information collected in a
radar base station, avoiding the need to send separate text and pictures to the receiver’s
base stations.

e Remote sensing. Remote sensing can put together vector maps and digital imagery of a
site, further improving the analysis of cultivated areas, including urban and natural sites,
among others.

3.6 Steganography

In this section, we present some of the most common techniques used to embed messages in
digital images. We choose digital images as cover objects because they are more related to
Computer Vision and Image Processing. However, these techniques can be extended to other
types of digital media as cover objects, such as text, video, and audio files.

In general, steganographic algorithms rely on the replacement of some noise component of
a digital object with a pseudo-random secret message [6]. In digital images, the most common
noise component is the least significant bits (LSBs). To the human eye, changes in the value
of the LSB are imperceptible, thus making it an ideal place for hiding information without any
perceptual change in the cover object.

The original LSB information may have statistical properties, so changing some of them
could result in the loss of those properties. Thus, we have to embed the message mimicking the
characteristics of the cover bits’ [137]. One possibility is to use a selection method in which we
generate a large number of cover messages in the same way, and we choose the one having the
secret embedded in it. However, this method is computationally expensive and only allows small
embeddings. Another possibility is to use a constructive method. In this approach, we build a
mimic function that also simulates characteristics of the cover bits noise.
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Generally, both the sender and the receiver share a secret key and use it with a keystream
generator. The key-stream is used for selecting the positions where the secret bits will be
embedded [137].

Although LSB embedding methods hide data in such a way that humans do not perceive
it, these embeddings often can be easily destroyed. As LSB embedding takes place on noise, it
is likely to be modified, and destroyed, by further compression, filtering, or a less than perfect
format or size conversion. Hence, it is often necessary to employ sophisticated techniques to
improve embedding reliability as we describe in Section 3.6.3. Another possibility is to use tech-
niques that take place on the most significant parts of the digital object used. These techniques
must be very clever in order to not modify the cover object making the alterations imperceptible.

3.6.1 LSB insertion/modification

Among all message embedding techniques, LSB insertion/modification is a difficult one to de-
tect [6,147,188], and it is imperceptible to humans [188]. However, it is easy to destroy [147]. A
typical color image has three channels: red, green and blue (R,G,B); each one offers one possible
bit per pixel to the hiding process.

In Figure 3.3, we show an example of how we can possibly hide information in the LSB fields.
Suppose that we want to embed the bits 1110 in the selected area. In this example, without
loss of generality, we have chosen a gray-scale image, so we have one bit available in each image
pixel for the hiding process. If we want to hide four bits, we need to select four pixels. To
perform the embedding, we tweak the selected LSBs according to the bits we want to hide.

135=10000111  114= 01110010 115
138=10001010 46 = 0010 1110

Figure 3.3: The LSB embedding process.
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3.6.2 FFTs and DCTs

A very effective way of hiding data in digital images is to use a Direct Cosine Transform (DCT),
or a Fast Fourier Transform (FFT), to hide the information in the frequency domain. The DCT
algorithm is one of the main components of the JPEG compression technique [60]. In general,
DCT and FFT work as follows:

1. Split the image into 8 x 8 blocks.

2. Transform each block via a DCT/FFT. This outputs a multi-dimensional array of 64
coefficients.

3. Use a quantizer to round each of these coefficients. This is essentially the compression
stage and it is where data is lost. Small unimportant coefficients are rounded to 0 while
larger ones lose some of their precision.

4. At this stage you should have an array of streamlined coefficients, which are further com-
pressed via a Huffman encoding scheme or something similar.

5. To decompress, use the inverse DCT/FFT.

The hiding process using a DCT/FFT is useful because anyone that looks at pixel values of
the image would be unaware that anything is different [188].

Least significant coefficients.

It is possible to use LSB of the quantized DCT/FFT coefficients as redundant bits, and embed
the hidden message there. The modification of a single DCT/FFT coefficient affects all 64 image
pixels in the block [144]. Two of the simpler frequency-hiding algorithms are JSteg [179] and
Outguess [142].

JSteg, Algorithm 2, sequentially replaces the least significant bit of DCT, or FF'T, coefficients
with the message’s data. The algorithm does not use a shared key, hence, anyone who knows
the algorithm can recover the message’s hidden bits.

On the other hand, Outguess, Algorithm 3, is an improvement over JSteg, because it uses a
pseudo-random number generator (PRNG) and a shared key as the PRNG’s seed to choose the
coefficients to be used.

Block tweaking.

It is possible to hide data during the quantization stage [188]. If we want to encode the bit value
0 in a specific 8 x 8 square of pixels, we can do this by making sure that all the coefficients are
even in such a block, for example by tweaking them. In a similar approach, bit value 1 can be
stored by tweaking the coefficients so that they are odd.

With the block tweaking technique, a large image can store some data that is quite difficult
to destroy when compared to the LSB method. Although this is a very simple method and
works well in keeping down distortions, it is vulnerable to noise [6,188].
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Algorithm 2 JSteg general algorithm
Require: message M, cover image I;
1: procedure JSTEG(M, I)
2 while M # NULL do
3 get next DCT coefficient from I;
4 if DCT # 0 and DCT # 1 then > We only change non-0/1 coefficients
5: b « next bit from M;
6
7
8
9

replace DCT LSB with message bit b;
M «— M — b;
end if
: Insert DCT into stego image S;
10: end while
return S,
11: end procedure

Algorithm 3 Outguess general algorithm
Require: message M, cover image I, shared key k;
1: procedure OuTGUESS(M, I, k)
2 Initialize PRNG with the shared key &
3 while M # NULL do
4: get pseudo-random DCT coefficient from I;
5: if DCT # 0 and DCT # 1 then > We only change non-0/1 coefficients
6:
7
8
9

b < next bit from M;
replace DCT LSB with message bit b;

M — M — b;
end if
10: Insert DCT into stego image S|
11: end while
return S;

12: end procedure
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Coefficient selection.

This technique consists of the selection of the k largest DCT or FFT coefficients {71 ...~} and
modify them according to a function f that also takes into account a measure « of the required
strength of the embedding process. Larger values of « are more resistant to error, but they also
introduce more distortions.

The selection of the coefficients can be based on visual significance (e.g., given by zigzag
ordering [188]). The factors « and k are user-dependent. The function f(-) can be

FOi) = i + abs, (3.1)

where b; is a bit we want to embed in the coefficient ~;.

Wavelets.

DCT/FFT transformations are not so effective at higher-compression levels. In such scenarios,
we can use wavelet transformations instead of DCT/FFTs to improve robustness and reliability.

Wavelet-based techniques work by taking many wavelets to encode a whole image. They
allow images to be compressed by storing the high and low frequency details separately in the
image. We can use the low frequencies to compress the data, and use a quantization step to
compress even more. Information hiding techniques using wavelets are similar to the ones with
DCT/FFT [188].

3.6.3 How to improve security

Robust Steganography systems must observe the Kerckhoffs’ Principle [160] in Cryptography,
which holds that a cryptographic system’s security should rely solely on the key material. Fur-
thermore, to remain undetected, the unmodified cover medium used in the hiding process must
be kept secret or destroyed. If it is exposed, a comparison between the cover and stego media
immediately reveals the changes.

Further procedures to improve security in the hiding process are:

e Cryptography. Steganography supplements Cryptography, it does not replace it. If
a hidden message is encrypted, it must also be decrypted if discovered, which provides
another layer of protection [73].

e Statistical profiling. Data embedding alters statistical properties of the cover medium.
To overcome such alterations, the embedding procedure can learn the statistics about the
cover medium in order to minimize the amount of changes. For instance, for each bit
changed to zero, the embedding procedure changes another bit to one.

e Structural profiling. Mimicking the statistics of a file is just the beginning. We can
use the structure of the cover medium to better hide the information. For instance, if our
cover medium is an image of a person, we can choose regions of this image that are rich in
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details such as the eyes, mouth and nose. These areas are more resilient to compression
and conversion artifacts [60].

e Change of the order. Change the order in which the message is presented. The order
itself can carry the message. For instance, if the message is a list of items, the order of the
items can itself carry another message.

e Split the information. We can split the data into any number of packets and send them
through different routes to their destination. We can apply sophisticated techniques in
order to need only k out of n parts to reconstruct the whole message [188].

e Compaction. Less information to embed means fewer changes in the cover medium,
lowering the probability of detection. We can use compaction to shrink the message and
the amount of needed alterations in the cover medium.

3.7 Steganalysis

With the indications that steganography techniques have been used to spread child pornography
pictures on the internet [64, 113], there is a need to design and evaluate powerful detection
techniques able to avoid or minimize such actions. In this section, we present an overview of
current approaches, attacks, and statistical techniques available in Steganalysis.

Steganalysis refers to the body of techniques devised to detect hidden contents in digital
media. It is an allusion to Cryptanalysis which refers to the body of techniques devised to break
codes and cyphers [160].

In general, it is enough to detect whether a message is hidden in a digital content. For
instance, law enforcement agencies can track access logs of hidden contents to create a network
graph of suspects. Later, using other techniques, such as physical inspection of apprehended
material, they can uncover the actual contents and apprehend the guilty parties [73,147]. There
are three types of Steganalysis attacks: (1) aural; (2) structural; and (3) statistical.

1. Aural attacks. They consist of striping away the significant parts of a digital content in
order to facilitate a human’s visual inspection for anomalies [188]. A common test is to
show the LSBs of an image.

2. Structural attacks. Sometimes, the format of the digital file changes as hidden infor-
mation is embedded. Often, these changes lead to an easily detectable pattern in the
structure of the file format. For instance, it is not advisable to hide messages in images
stored in GIF format. In such a format an image’s visual structure exists to some degree

224

in all of an image’s bit layers due to the color indexing that represents colors using

only 256 values [191].

3. Statistical attacks. Digital pictures of natural scenes have distinct statistical behavior.
With proper statistical analysis, we can determine whether or not an image has been
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altered, making forgeries mathematically detectable [109]. In this case, the general purpose
of Steganalysis is to collect sufficient statistical evidence about the presence of hidden
messages in images, and use them to classify [16] whether or not a given image contains
a hidden content. In the following section, we present some available statistical-based
techniques for hidden message detection.

3.7.1 ? analysis

Westfeld and Pfitzmann [191] have present x? analysis to detect hidden messages. They showed
that an L-bit color channel can represent 2~ possible values. If we split these values into 251
pairs which only differ in the LSBs, we are considering all possible patterns of neighboring bits
for the LSBs. Each of these pairs is called a pair of value (PoV) in the sequence [191].

When we use all the available LSB fields to hide a message in an image, the distribution
of odd and even values of a PoV will be the same as the 0/1 distribution of the message bits.
The idea of the x? analysis is to compare the theoretically expected frequency distribution of
the PoVs with the real observed ones [191]. However, we do not have the original image and
thus the expected frequency. In the original image, the theoretically expected frequency is the
arithmetical mean of the two frequencies in a PoV. As we know, the embedding function only
affects the LSBs, so it does not affect the PoV’s distribution after an embedding. Given that,
the arithmetical mean remains the same in each PoV, and we can derive the expected frequency
through the arithmetic mean between the two frequencies in each PoV.

Westfeld and Pfitzmann [191] have showed that we can apply the x? (chi squared-test) over
these PoVs to detect hidden messages. The y? test general formula is
v+1 (fiobs . fgxp)g

=D R (3.2)

i=1 i

where v is the number of analyzed PoVs, fi"bs and

;* are the observed frequencies and the

expected frequencies respectively.
The probability of hiding, ph, in a region is given by the complement of the cumulative

, X2 p(v=2)/2,-1/2 ;
=1- ————dt 3.3

distribution

where I'(-) is the Euler-Gamma function. We can calculate this probability in different regions
of the image.

This approach can only detect sequential messages hidden in the first available pixels’ LSBs,
as it only considers the descriptors’ value. It does not take into account that, for different
images, the threshold value for detection may be quite distinct [147].

Simply measuring the descriptors constitutes a low-order statistic measurement. This ap-
proach can be defeated by techniques that maintain basic statistical profiles in the hiding pro-
cess [143,147].
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Improved techniques such as Progressive Randomization (PR) [147] addresses the low-order
statistics problem by looking at the descriptors’ behavior along selected regions (feature regions).

3.7.2 RS analysis

Fridrich et al. have presented RS analysis [50]. It consists of the analysis of the LSB loss-
less embedding capacity in color and gray-scale images. The loss-less capacity reflects the fact
that the LSB plane — even though it looks random — is related to the other bit planes [50].
Modifications in the LSB plane can lead to statistically detectable artifacts in the other bit
planes of the image.

To measure this behavior, Fridrich and colleagues have proposed simulation of artificial new
embeddings in the analyzed images using some defined functions.

Let I be the image to be analyzed with width W and height H pixels. Each pixel has values
in P. For an 8 bits per pixel image, we have P = {0...255}. We divide I into G disjoint
groups of n adjacent pixels. For instance, we can choose n = 4 adjacent pixels. We define a
discriminant function f responsible to give a real number f(x1,...,z,) € R for each group of
pixels G = (z1,...,x,). Our objective using f is to capture the smoothness of G. Let the
discrimination function be

n—1
f@n, mn) = |wien — . (34)
=1

Furthermore, let F} be a flipping invertible function F} : 0 «» 1,2 « 3,...,254 « 255, and F_4
be a shifting function F_; : =1 < 0,1 <> 2,...,255 < 256 over P. For completeness, let Fy be
the identity function such as Fy(z) =z V= € P.

Define a mask M that represents which function to apply to each element of a group G. The
mask M is an n-tuple with values in {—1,0,1}. The value -1 stands for the application of the
function F_1; 1 stands for the function Fi; and 0 stands for the identity function Fy. Similarly,
we define —M as M’s complement.

We apply the discriminant function f with the functions Fy_; oy defined through a mask
M over all G groups to classify them into three categories:

e Regular. G € Ry & f(FMm(G)) > f(G)
e Singular. G € S & f(Fm(G)) < f(G)

e Unusable. G € Uy < f(Em(G)) = f(G)

Similarly, we classify the groups R_aq, S_a, and U_pq for the mask — M. As a matter of
fact, it holds that

Mél and WSL

where T' is the total number of G groups.
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The method’s statistical hypothesis is that, for typical images
Ry~ R_pm and SM ~ S_M.

What is interesting is that, in an image with a hidden content, the greater the message size, the
greater the R_ ¢ and S_, difference, and the lower the difference between Raq and Sxq. This
behavior points out to high-probability chance of embedding in the analyzed image [50].

3.7.3 Gradient-energy flipping rate

Li Shi et al. have presented the Gradient-Energy Flipping Rate (GEFR) technique for Steganal-
ysis. It consists in the analysis of the gradient-energy variation due to the hiding process [166].
Let I(n) be an unidimensional signal. The gradient r(n), before the hiding is

r(n)=1I(n)—I(n—1), (3.5)
and the I(n)’s gradient energy (GE), is
GE=) [In)-I(n-1)]*=> r(n) (3.6)

After the hiding of a signal S(n) in the original signal, I(n) becomes I'(n) and the gradient
becomes

r(n) = I(n)—1I(n—1)
(I(n)+S(n))—I(n—-1)+Sn—-1))
= r(n)+S(n)—Snh-1). (3.7)

The probability distribution function of S(n) is

~ 1
Lz T a9
After any kind of embedding, the new gradient energy GE’ is
GE' = Y |r) =) lr(n)+5n) - Sn—1)f
= Z [r(n) + A(n)|?, where A(n) = S(n) — S(n — 1). (3.9)

To perform the detection, it is necessary to define a process of inverting the bits of an
image’s LSB plane. For that, we can use a function F' which is similar to the one we described
in Section 3.7.2.

Let I be the cover image with W x H pixels and p < W x H be the size of the hidden
message. The application of the function F' results in the properties:

W x H
e For p =W x H, there is X

pixels with inverted LSB. That means that the embedding
W x H
5 .

rate is 50% and the gradient energy is given by GE = <
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e The original image’s gradient energy is given by EG(0). After inverting all available LSBs
using F, the gradient energy becomes GE' = W x H.

e For p < W x H, there is g pixels with inverted LSB. Let I (g) be the modified image. The

2
resulting gradient energy is GE = Wpi 7= EG(0) + p. If F is applied over I(g), the
. . . W x H—p/2
It dient EG=—rn—-"—.
resulting gradient energy is W H

With these properties, Li Shi et al. have proposed the following detection procedure:

. . . p/2
1. Find the test s gradient GE | =22 ),
in e test image’s gradient energy <W » H)’

9

W x H
. WxH\ p/2 W x H—p/2 '
W x H

W x H—p/2
2. Apply F over the test image and calculate GE <><—p/>

w

e~

GE(0) is based on GE < > =GE(0)+ W x H;

t

. Finally, the estimated size of the hidden message is given by

P =GE <Wpr> — GE(0).

3.7.4 High-order statistical analysis

Lyu and Farid [41,42,95,96] have introduced a detection approach based on high-order statis-
tical descriptors. Natural images have regularities that can be detected by high-order statistics
through wavelet decompositions [96]. To decompose the images, Lyu and colleagues have used
quadrature mirror filters (QMFs) [180]. This decomposition divides the image into multiple
scales and orientations resulting in four subbands: vertical, horizontal, diagonal, and low-pass
which can be recursively used to produce subsequent scales.

Let Vi(z,y), Hi(z,y), and D;(x,y) be the vertical, horizontal, and diagonal subbands for a
given scale i € {1...n}. Figure 3.4 depicts this process.

From the QMF decomposition, the authors create a statistical model composed of mean,
variance, skewness, and kurtosis for all subbands and scales. These statistics characterize the
basic coefficients’ distribution. The second set of statistics is based on the errors in an optimal
linear predictor of coefficient magnitude. The subband coefficients are correlated to their spatial,
orientation, and scale neighbors [20]. For illustration purposes, consider first a vertical band,
Vi(z,y), at scale i. A linear predictor for the magnitude of these coefficients in a subset of all
possible neighbors is given by

Vitz,y) = wiVi(z —1,y) +weVi(x + 1,y) + w3Vi(z,y — 1) + wsVi(z,y + 1) +

X X
+wsVip1 (5 g) +weDi(x,y) + wrDiy1(5 y),

= 1
272 272 (310)
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Figure 3.4: QMF decomposition scheme.

where wy denotes the scalar weighting values. The error coefficients are calculated using
quadratic minimization of the error function

E(w) = [V — Qul?, (3.11)

where w = (w1, ...,wr)T, V is a column vector of magnitude coefficients, and @ is the magnitude
neighbors’ coefficients as proposed in Equation 3.10. The error function is minimized through
differentiation with respect to w

dE(w)
dw

After simplifications, we calculate wy directly with the linear predictor log error

=2Q7V — Qu). (3.12)

E =logy(V) — logy(|Qul). (3.13)

With a recursive application of this process to all subbands, scales, and orientation, we have
a total of 12(n — 1) error statistics plus 12(n — 1) basic ones. This amounts to a 24(n — 1)-sized
feature vector. This feature vector feeds a classifier, which is able to output whether or not an
unknown image contains a hidden message. Lyu and colleagues have used Linear Discriminant
Analysis and Support Vector Machines to perform the classification stage [16].

3.7.5 Image quality metrics

Avcibas et al. have presented a detection scheme based on image quality metrics (IQMs) [1,9,10].
Image quality metrics are often used for coding artifact evaluation, performance prediction of
vision algorithms, quality loss due to sensor inadequacy, etc.
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Steganographic schemes, whether by spread-spectrum, quantization modulation, or LSB
insertion/modification, can be represented as a signal addition to the cover image. In this
context, Avcibas and colleagues’ hypothesis is that steganographic schemes leave statistical
evidences that can be exploited for detection with the aid of IQMs and multivariate regression
analysis (ANOVA).

Using ANOVA, the authors have pointed out that the following IQMs are the best feature
generators: mean absolute error, mean square error, Czekznowski correlation, image fidelity,
cross correlation, spectral magnitude distance, normalized mean square, HVS error, angle mean,
median block spectral phase distance, and median block weighted spectral distance.

After measuring the IQMs in a training set of images with and without hidden messages,
the authors propose a multivariate normalized regression to values —1 and 1. In the regression
model, each decision is expressed by y; in a set of n observation images and ¢ available IQMs.
A linear function of the IQMs is given by

y1 = Py + foriz + ...+ Byxig + €
y2 = [owor + ooy + ...+ Byrag + €2

, o (3.14)
YN = Bpwp1+ B2+ ...+ ﬁqan + €n,

where x;; is the quality coefficient for the image i € {1...n} and IQM j € {1...¢}. Finally, Gy
is the regression coefficient, and ¢ is random error.

Once we calculate these coefficients, we can use the resulting coefficient vector to any new
image in order to classify it as stego or non-stego image.

3.7.6 Progressive Randomization (PR)

Rocha and Goldenstein [147] have presented the Progressive Randomization descriptor for Ste-
ganalysis. It is a new image descriptor that captures the difference between image classes (with
and without hidden messages) using the statistical artifacts inserted during a perturbation pro-
cess that increases randomness with each step.

Algorithm 4 summarizes the four stages of PR applied to Steganalysis: the randomization
process (c.f., Sec. 3.7.6); the selection of feature regions (c.f., Sec. 3.7.6); the statistical descriptors
analysis (c.f., Sec. 3.7.6), and invariance (c.f., Sec. 3.7.6).

Pixel perturbation.

Let x be a Bernoulli distributed random variable with Prob{x = 0}) = Prob({x = 1}) = 1/2,
B be a sequence of bits composed by independent trials of x, p be a percentage, and S be a
random set of pixels of an input image.

Given an input image I of |I| pixels, we define the LSB pixel perturbation T'(I, p) the process
of substitution of the LSBs of S of size p x |I| according to the bit sequence B. Consider a pixel
pzr; € S and an associated bit b; € B

L(pz;) < b; for all px; € S. (3.15)
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Algorithm 4 The PR descriptor
Require: Input image I; Percentages P = {Py,... P, };
1: Randomization: perform n LSB pixel disturbances of the original image > Sec. 3.7.6

{OZ}Z:()n = {LT(L Pl)v s ,T(I, Pn)}

2: Region selection: select r feature regions of each image i € {O; }i=0..n > Sec. 3.7.6
{0i;} =g = {Oo1;...,Onr }.
3: Statistical descriptors: calculate m descriptors for each region > Sec. 3.7.6
{dijr} = {dr(O4j)} i=0..m
k=1...m.
4: Invariance: normalize the descriptors based on 1 > Sec. 3.7.6

dojk

d"k
F={fe}e=1.nxrxm = { - i=0...n,
j=1...mr
k=1...m.

5. Classification. Use F' € R"*"*™ in your favorite machine learning black box.

where L(pz;) is the LSB of the pixel px;.

The randomization process.

Given an original image I as input, the randomization process consists of the progressive ap-
plication I,T(I, Py),...,T(I, P,) of LSB pixel disturbances. The process returns n images that
only differ in the LSB from the original image and are identical to the naked eye.

The T'(I, P;) transformations are perturbations of different percentages of the available LSBs.
Here, we use n = 6 where P = {1%, 5%, 10%, 25%, 50%, 75%}, P; € P denotes the relative sizes

of the set of selected pixels S. The greater the LSB pixel disturbance, the greater the resulting
LSB entropy of the transformation.

Feature region selection.

Local image properties do not show up under a global analysis [188]. The authors use statistical
descriptors of local regions to capture the changing dynamics of the statistical artifacts inserted
during the randomization process (c.f., Sec. 3.7.6).

Given an image I, they use r regions with size [ x [ pixels to produce 