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With several good research groups actively working in machine learning (ML) ap-
proaches, we have now the concept of self-containing machine learning solutions that
oftentimes work out-of-the-box leading to the concept of ML black-boxes. Although it
is important to have such black-boxes helping researchers to deal with several problems
nowadays, it comes with an inherent problem increasingly more evident: we have ob-
served that researchers and students are progressively relying on ML black-boxes and,
usually, achieving results without knowing the machinery of the classifiers. In this regard,
this paper discusses the use of machine learning black-boxes and poses the question of
how far we can get using these out-of-the-box solutions instead of going deeper into the
machinery of the classifiers. The paper focuses on three aspects of classifiers: (1) the
way they compare examples in the feature space; (2) the impact of using features with
variable dimensionality; and (3) the impact of using binary classifiers to solve a multi-
class problem. We show how knowledge about the classifier’s machinery can improve the
results way beyond out-of-the-box machine learning solutions.
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1. Introduction

In the digital age, information reaches us at remarkable speed and the amount of

data it brings is unprecedented. In the hope of understanding such flood of infor-

mation, data mining and machine learning approaches are required and a common
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problem we often face is data classification. To this task, there are several ap-

proaches in the literature and one of the problems they need to address in almost

every situation is how to take advantage of known information for inference over

unseen data examples.

Different approaches have been proposed to deal with classification problems.

Solutions range from supervised learning ones which aims at developing techniques

able to take advantage from labeled training samples to make decisions over unseen

examples1,2, to unsupervised ones in which label information is not used3,4,5. In

between these solutions, there are semi-supervised approaches designed to learn

from both labeled and unlabeled data6,7.

Recently, several tools have been presented in order to perform machine learning

(ML) in a more straightforward and transparent manner helping researchers to solve

hard classification problems. This increasing activity is also true for supervised

learning methods with several methods being proposed in the last two decades1.

With several good research groups actively working in ML approaches, there is

now the concept of self-containing machine learning solutions that oftentimes work

out-of-the-box leading to the concept of ML black-boxes. By black-box we mean

the researchers using well-known ML libraries and tools which, theoretically, come

‘ready-to-use’. When using an ML black-box, researchers frequently do not need

to worry about implementation details regarding the classifiers neither about some

confusing parameters needed to tune the classification training process.

There are several machine learning black-boxes implemented in software such

as: Wekaa, Rb, SVM Lightc, LibSVMd, LibOPFe, Matlab PRToolsf , among others.

Although it is important to have such black-boxes helping researchers to deal

with several problems nowadays, it comes with an inherent problem increasingly

more evident. After reviewing several papers across multi-disciplinary fields in which

the authors reported results involving machine learning solutions we observed that

the authors often misunderstand either the problem at hand or the employed ML

tools to solve such a problem. From this, we have observed that researchers and

students are progressively relying on ML black-boxes and, usually, achieving results

without knowing the machinery of the classifiers. Such decision sometimes just mean

the researchers can not explain their results but also mean they are achieving one

ahttp://www.cs.waikato.ac.nz/ml/weka/

bhttp://www.r-project.org/

chttp://svmlight.joachims.org/

dhttp://www.csie.ntu.edu.tw/∼cjlin/libsvm/

ehttp://www.ic.unicamp.br/∼afalcao/libopf/

fhttp://www.prtools.org/
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result that could be more effective if they had knowledge about some details about

the classifiers.

The questions we raise in this paper are somehow in line with the ones raised

by Andel and Yasinsac in their work8. However, in that work, the authors dealt

with validation issues in a different area: simulation in mobile ad hoc networks

(manets). According to the authors, “Simulation is a powerful tool, but it’s fraught

with potential pitfalls. We question this approach’s validity and show how it can

systematically produce misleading results”.

The main contribution of this paper is to discuss and present experiments, and

results related to some key choices one has to think of before using ML-based

solutions. In this sense, the paper discusses the use of machine learning black-boxes

and poses the question of how far researchers can get using these out-of-the-box

solutions instead of going deeper into the machinery of the classifiers. We focus on

three aspects of classifiers:

(1) the way they compare examples in the feature space;

(2) the impact of using features with variable dimensionality;

(3) the impact of using binary classifiers to solve a multi-class problem.

Knowledge about the classifier machinery can improve the results way beyond

out-of-the-box ML solutions. For instance, with the same descriptor and the same

classifier, sometimes it is possible to reduce the classification error in more than 50%

by just providing the classifier with a proper comparison (dis)similarity function. In

other situations, when using an intrinsic two-class classifier such as Support Vector

Machines (SVMs), it might be required knowledge about the implemented combi-

nation mechanisms used to perform N-Way classification. The proper choice of the

combination mechanism can not only save the researchers training computational

time but also improve the classification results.

To validate our observations, we show experiments and results using a series of

well known data sets, feature descriptors, and classifiers. The researchers can easily

see how the classifiers behave in each scenario and how they behave when changing

a few parameters regarding the policy for comparing examples, choices for N-Way

classification and also the correct means for dealing with features with varying

dimensionality. We believe the questions we raise in this paper may help researchers

across multi-disciplinary fields when thinking about using ML approaches to solve

their research problems.

The remaining of this paper is organized as follows. Section 2 presents back-

ground information with respect to machine learning and image classification. Sec-

tion 3 brings the experiments that corroborate the paper hypothesis: a few choices

of parameters in the classifiers’ machinery can heavily influence the classification

outcomes. Finally, Section 4 closes this paper and discusses additional perspectives

to look at when using machine learning approaches to solve problems.
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2. Background

This section presents some concepts for the general understanding of the paper.

2.1. Machine Learning

Machine learning techniques attempt to learn the behavior of data samples in or-

der to fit decision boundaries that generalize over unseen data. Depending on the

amount of information we have about training samples, we can classify such tech-

niques in supervised, semi-supervised and unsupervised ones.

Supervised learning approaches are those that aim at estimating a classification

function f from a training data set. The commonest output of the function f is

a class indicator of an input object. The learning task is to predict the function

outcome of any valid input object after having seen a sufficient number of training

examples. In the literature, there are many different approaches for supervised

learning such as Linear Discriminant Analysis (LDA), Support Vector Machines,

Classification Trees, Neural Networks (NNs), Ensembles of Classifiers (Bagging and

Boosting), K-Nearest Neighbors (KNN), Optimum-Path Forest (OPF), and others1.

Unsupervised learning approaches are those in which no label information is

available. Often, these methods seek to determine how the data are organized.

Unsupervised learning relates to the problem of density estimation in statistics and

also encompasses many other techniques designed to summarize key features. In

the literature, there are many different approaches for unsupervised learning such

as Self-Organizing Maps (SOM), Adaptive Resonance Theory (ART), K-Means,

K-Medoids, Density-Based Partitioning, among others9. In between supervised and

unsupervised solutions, there are semi-supervised approaches designed to learn from

both labeled and unlabeled data6,7.

Regardless the kind of solution used, to perform the intended tasks most of

these approaches have to compute relationships between pairs of concepts. This

need leads to the pursuing of a proper feature space in which such computations

can be deployed. Often, these computations are performed upon feature descriptors

aimed at summarizing the underlying data they represent.

In this paper, we discuss that the choice of the comparison policy between

concepts has a major impact on the classification outcome. The main problem

is that some researchers do not have this in mind when using machine learning

black-boxes ultimately relying on their built-in comparison policies. Notwithstand-

ing, such built-in comparison policies sometimes are not appropriate to the set of

descriptors at hand.

2.2. Feature Description

In data classification, there is an input example to classify, the feature vector char-

acterizing it, and a (dis)similarity function to compare this concept to other valid

ones. The (dis)similarity measure is a matching function which gives the degree of

(dis)similarity for a given pair of concepts as represented by their feature vectors10.
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Formally, an example herein called stream is a sequence of elements of an ar-

bitrary type (e.g., bits, characters, images, etc.). A stream is a sequence whose

codomain is a nonempty set10. Representing such stream in the image processing

domain, an image stream (or simply image) Î is a pair (DI , ~I), where:

• DI is a finite set of coordinates or points in N
2 (DI ⊂ N

2);

• ~I : DI → R
n is a function that assigns to each coordinate p in DI a vector

~I(p) ∈ R
n (e.g., ~I(p) ∈ R

3 when a color in the RGB or HSV system is assigned

to a coordinate).

We can model a feature vector ~v
Î
of an image Î as a point in an R

m space such

that ~v
Î

= (v1, v2, . . . , vm), where m is the number of dimensions (dimensionality)

of the feature vector.

Proper descriptors to characterize the underlying data under analysis vary from

one application to another. In the image processing domain, we can list some well-

known ones such as: color histograms, multi-scale fractals, Fourier coefficients, tex-

ture descriptors, among others11. Essentially, an image descriptor seeks to encode

the maximum image properties as possible (e.g., color, texture, shape, silhouette,

etc.) in order to capture the underlying concepts they strive for summarizing10.

We may think of an image content descriptor D as a pair (fD, δD), such that

• fD : Î → R
m is a function, which extracts a feature vector ~v

Î
from an image Î;

• δD : R
m × R

m → R is a (dis)similarity function (e.g., based on a distance

metric) that computes the similarity between two concepts as the inverse of

the distance between their corresponding feature vectors.

After describing images, we can compare them using the (dis)similarity function

δD to determine how different they are.

The whole argument of this paper is that as machine learning black-boxes are

becoming increasingly available to general-purpose uses, researchers are forgetting

to think of their problems under the appropriate point of view. We would like to

stress that it is not difficult to find researchers that feed out-of-the-box classifi-

cation solutions with such feature vectors without worrying about the underlying

(dis)similarity function implemented. Sometimes, the outcome requirements are al-

ready met, for instance, when the machine learning black-box built-in (dis)similarity

function represents a good comparison metric for the supplied feature vector. How-

ever, we argue that, sometimes, the researchers could have more accurate results

by understanding the nature of their feature vector function extraction and its

underlying appropriate (dis)similarity function.

In this paper, we have used two different types of descriptors: global- and local-

based. Generally, global descriptors attempt to represent the image as a whole,

resulting in a feature vector with the same number of features for any image. On the

other hand, local descriptors often result a different number of features per image

hardening the use of classifiers. With respect to global descriptors, in this paper

we have used Moment Invariants12,13, Beam Angle Statistics (BAS)14, Tensor Scale
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Descriptor (TSD)15,16, Multiscale Fractal Dimension (MFD)17, Fourier Descriptor

(FD)18 and Border-Interior Descriptor (BIC)19. With respect to local descriptors,

we have used SIFT20, which is one of the most robust methods under translations,

scale and rotations transformations to date.

(Dis)similarity functions

To compare feature vectors, we need to use (dis)similarity functions, which attempt

to tackle two distinct situations: in the first one, we have features with the same

size while in the second, we may face samples represented by features with variable

dimensionality.

With respect to feature vectors with the same dimensionality, we can use

pointwise (dis)similarity functions, such as Manhattan, Euclidean, Canberra21 and

dLOG19.

Basically, there are two options to deal with feature vectors with variable di-

mensionality. The first option is to use an appropriate (dis)similarity function which

calculates the (dis)similarity between the point clouds of a pair of images consid-

ering the feature points as distributions, and calculating the differences between

the two distributions. We can implement this approach using the Earth Mover’s

Distance (EMD)22 or the Integrated Region Matching (IRM)23 (dis)similarity func-

tions. The second option is to preserve the distinctiveness power of such descriptors

while increasing their generalization and ease of handling with standard machine

learning classifiers. This is possible, for instance, by using the concept of visual

vocabularies24,25.

Visual Vocabularies

A visual vocabulary or dictionary-based approach consists of three stages:

• PoI Localization. This stage finds the points of interest (PoIs) of all the

available training images;

• Words Selection. This stage selects (e.g., via clustering) the k most repre-

sentative PoIs within all the calculated ones;

• Quantization. The k words represent the visual dictionary onto which all

other points must be be mapped or quantized to.

To create a visual dictionary, we can perform clustering such as k-means1 for

finding representative centers for the cloud of PoIs or randomly select k PoIs of

potential interest. After the quantization, each image results in a quantized feature

vector (histogram) with k dimensions. At this point, any machine learning classifier

or (dis)similarity function can be used given that the initial PoIs are now mapped

onto a meaningful (although potentially sparse) space.

For testing, the input image is characterized and all of its PoIs are mapped

onto the visual dictionary resulting in a feature vector also with k dimensions. This
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feature vector is fed to the trained classifier to produce the final answer.

In this paper, we show the effects of choosing direct comparisons (such as when

using EMD or IRM) with respect to the use of visual dictionaries. Each of these

choices comes with a price which we shall discuss in Section 3.

2.3. Multi-class Mechanism

Choosing the right descriptor and the suitable comparison policy for the available

examples is just the beginning. Sometimes, the use of naturally multi-class classi-

fiers is not possible. For instance, although many statistical classification techniques

do have natural multi-class extensions, some, such as the Support Vector Machines,

do not. As SVMs are powerful two-class classifiers, many researchers have studied

approaches for mapping multi-class problems onto a set of simpler binary classifica-

tion problems (class binarization). In general, we can classify such approaches into

three broad groups26 as we describe bellow. In the following, let NT be the number

of binary classifiers used to solve a multi-class problem with N classes.

(1) One-vs-All (OVA). This approach uses NT = N = O(N) binary classifiers.

We train the ith classifier using all patterns of class i as positive (+1) examples

and the remaining class patterns as negative (−1) examples27,28.

(2) One-vs-One (OVO). This approach uses NT =
(

N
2

)

= O(N2) binary classi-

fiers. We train the ijth classifier using all patterns of class i as positive and all

patterns of class j as negative examples.

(3) Error Correcting Output Codes (ECOC). This approach uses a cod-

ing matrix M ∈ {−1, 0, 1}N×NT that induces a partition of the classes into

two meta-classes29,30. Passerini et al.31 extended this approach introducing a

decoding function that combines the margins through an estimation of their

class conditional probabilities assuming that all base learners are independent.

Rocha and Goldenstein32 extended Passerini el al.’s approach relaxing the base

learners independence constraint and introducing the concept of high-correlated

groups of binary classifiers.

Most of the current available machine learning black-boxes have some class

binarization approaches implemented by default and the choice of the right one is

an important research problem.

3. Experiments and Discussion

This section shows the experiments we perform to validate the hypotheses in this

paper. We show that the choice of the comparison policy in the classifiers’ machin-

ery influences the classification outcomes and, furthermore, must be tackled when

dealing with ML problems.

We also analyze categorization problems using features with variable dimen-

sionality. The experiments compare the use of a direct (dis)similarity function to
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the mapping of the features onto a meaningful space. After mapping the features

in R
k, we are able to use a more standard and faster (dis)similarity function.

Finally, we discuss what happens if a researcher decides to solve a given N-

Wayclassification problem with combinations of binary classifiers. The SVM clas-

sifier, for instance, uses combinations of binary classifiers to produce the N-Way

classification results. We show the impacts on the final classification results when

changing the multi-class policies regarding the choice of binary classifiers involved

and their final decision-making mechanisms.

We organize the experiments in three rounds:

(1) In the first round, we assess the impacts of choosing the comparison policy in

the classifiers’ machinery. We evaluate a series of shape descriptors over the

MPEG-7 CE Shape-1 Part-B data set (c.f., Sec. 3.1:1). We also evaluate a

well known color image descriptor over the Corel color images RRSets data

set (c.f., Sec. 3.1:2);

(2) In the second round, we evaluate how to solve classification problems using

features with variable dimensionality. We perform experiments using the Corel

color images RRSets data set (c.f., Sec. 3.1:2) and the Darmstadt ETH data

set (c.f., Sec. 3.1:3);

(3) In the third and final round of experiments, we evaluate the impacts on the

final classification results when using combinations of binary classifiers to solve

multi-class classification problems. We evaluate SVM, the most famous classifier

that uses combinations of binary classifiers to perform N-Way classification.

We perform experiments using the MNist data set (c.f., Sec. 3.1:4) and the

Australian Sign Language (Auslan) data set (c.f., Sec. 3.1:5).

3.1. Data sets

To corroborate the hypothesis we discuss in this paper, we have used a series of

image descriptors and image data sets. This section presents some details about the

data sets we have used and how they can be freely obtained through the Internet:

(1) MPEG-7. MPEG-7 CE Shape-1 Part-B data set includes 1,400 shape samples,

20 for each class encompassing 70 classes. The shape classes are very distinct,

but the data set shows substantial within-class variationsg;

(2) Corel Relevants. This data set comprises 1,624 images from Corel Photo

Gallery19. The collection contains 50 color image categories and is referred to

as the Corel Relevant sets (RRSets)h;

(3) Darmstadt ETH. This data set comprises 3,280 images of objects grouped

into 8 equally-sized classes. The images portrait just one object each time and

ghttp://www.cis.temple.edu/∼latecki/TestData/mpeg7shapeB.tar.gz

hhttp://webdocs.cs.ualberta.ca/∼mn/BIC/
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vary in pose and point of viewi;

(4) MNIST. MNist digits test data set comprises 10,000 digits divided into 10

classes. Each digit is described with 785 pre-computed features distributed

along with the data setj;

(5) Auslan. This data set comprises 2,565 australian sign language documents

divided into 95 classes. Each document is described with 22 pre-computed fea-

tures distributed along with the data setk.

3.2. Quality Assessment

The accuracy Acc of each classifier we report in this paper is described bellow. Let

Zi, i = 1, 2, . . . , c, be the number of samples in the test set Z for each class i. We

define

ei,1 =
FP (i)

|Z| − Zi

and ei,2 =
FN(i)

Zi

, i = 1, . . . , c (1)

where FP (i) and FN(i) are the false positives and false negatives, respectively.

That is, FP (i) is the number of samples from other classes that were classified as

being from the class i in Z, and FN(i) is the number of samples from the class

i that were incorrectly classified as being from another class in Z. The errors ei,1
and ei,2 are used to define

E(i) = ei,1 + ei,2, (2)

where E(i) is the partial sum error of class i. Finally, the accuracy Acc is defined

as

Acc =
2c−

∑c

i=1 E(i)

2c
= 1−

∑c

i=1 E(i)

2c
. (3)

The accuracy Acc has a good behavior even for classes of very distinct size, as

reported in33.

For all the experiments we perform in this paper, we have used a 10-fold cross-

validation procedure to assess how the results generalize to an independent data

set1. All the experiments were carried out on an Intel Xeon X5670 computer with

2.93 GHz and 12Gb of RAM. Since most of ML black-boxes do some fine-tuning

by default with no user warning, we have decided to use the training sets to tune

SVM parameters (e.g., gamma/sigma, C etc.). We thus provide results (for the test

sets) considering the best parameters found in the training sets.

ihttp://www.mis.informatik.tu-darmstadt.de/Research/Projects/eth80-db.html
or http://people.csail.mit.edu/jjl/libpmk/samples/eth.html

jhttp://yann.lecun.com/exdb/mnist/

khttp://archive.ics.uci.edu/ml/datasets/Australian+Sign+Language+signs+(High+Quality)
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3.3. Experiments – Round I

3.3.1. Part A

The Part A of the first round of experiments explores the MPEG-7 CE Shape-1

Part-B data set to verify the hypothesis on the importance of the (dis)similarity

function used in the classification. In this experiment, we have considered the clas-

sifiers SVM with a Linear, Sigmoid, and RBF kernels (from LibSVM) as well as

an SVM with no kernel (LibSVM Linear). In addition, we have tested ANN and

SOM classifiers as well as KNN and OPF (LibOPF) with different (dis)similarity

functions to show how this choice influence the final classification outcome.

In this paper, we define the classification error as ǫ = 100% − Acc, where Acc

is the classification accuracy. For instance, if a method A achieves an accuracy of

AccA = 80%, it has an error ǫA = 20%. In addition, if a method B, under the

same scenario, has a classification error ǫB = 10%, we can say that B reduced the

classification error in ∆ = 100%− ǫB/ǫA = 50%.

Table 1 shows a series of classifiers used with the BAS descriptor characteriz-

ing the chosen data set. Note how the well-known out-of-the-box SVM classifier

achieves better classification accuracies as we change the way the feature vectors

are compared. This is also true for the KNN and OPF classifiers which take more

advantage of some (dis)similarity function than others.

The out-of-box KNN classifier (with an L2 comparison metric) has a classifica-

tion error of ǫ = 100%− 79.1% = 20.9%. The KNN classifier adapted to compare

the examples according to the OCS function, KNN-OCS, has a classification error

of ǫ = 100%− 85.5% = 14.5%, which means a reduction of ∆ = 1− 14.5%
20.9%

= 30.6%

in the classification error. The reader might ask why the OCS function allows such

an improvement. The reason is that OCS (dis)similarity function strives for finding

the minimum effort to match two different alphabet sequences (e.g., a shape rep-

resentation). OCS is also more robust to rotations in the images yielding a more

reliable measure of matching between two shapes considering BAS descriptor.

More important than just establishing comparisons among classifiers, is to see

that even with variations on the same classifier, results can be improved with a

proper choice of the comparison (dis)similarity function. Sometimes, this choice is

not as easy as in the KNN case. SVM classifiers often require a complex mathe-

matical knowledge in designing kernel functions respecting a series of constraints1.

When the researcher verifies that the comparison (dis)similarity function has a ma-

jor role in his/her experiments, it might be the case of selecting a classifier in which

it is straitforward to switch and evaluate different (dis)similarity functions.

This experiment gives another conclusion: with the appropriate (dis)similarity

function, it is possible to obtain the classification results faster without paying the

price of a worse classification accuracy. For instance, KNN classifier achieves 85.5%

with the computational cost of 0.01 seconds for testing an entire fold (140 elements).

In contrast, SVM-RBF requires 0.47 seconds and achieves a classification accuracy

of 81.2%. The choice of a better (dis)similarity function does not mean an increase
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in the computational time. Also, OPF and KNN classifiers with OCS function are

not necessarily computationally more intensive than their L2 versions.

Classifier Acc Stdev. ttrain ttest
SVM No-Kernel 71.8% 1.76% 2116.18 0.01

SVM Kernel Linear 72.0% 1.57% 88.85 0.07

SVM Kernel Sigmoid 50.0% 0.01% 77.12 0.06

SVM Kernel RBF 81.2% 1.64% 2185.83 0.47

ANN 50.4% 0.48% 1554.20 0.01

SOM 50.0% 0.01% 2376.28 0.39

KNN-L2 79.0% 1.00% 1.12 0.01

KNN-OCS 85.5% 1.42% 1.08 0.01

OPF-L1 84.5% 1.06% 0.05 0.01

OPF-L2 82.8% 1.62% 0.46 0.05

OPF-CAN 84.20% 1.20% 0.05 0.01

OPF-OCS 87.1% 1.43% 0.04 0.01

Table 1. MPEG-7 CE Shape-1 Part-B 10-fold cross-validation average (Acc) and stdev classifica-
tion results for BAS descriptor. The table also shows the average training (ttrain) and testing
(ttest) times for each fold, in seconds.

Figure 1 shows a series of classifiers used with the Moments descriptor char-

acterizing the chosen data set. Note that the out-of-the-box OPF classifier with

its L2 default (dis)similarity function is not as good as its adapted version with

an appropriate Canberra comparison function. The difference of the comparison

policies also holds for the SVM classifier. With a more appropriate kernel, we have

better classification results. The standard out-of-the-box OPF classifier (with an

L2 metric) has a classification error of ǫ = 100% − 68.9% = 32.1%. Compared to

the out-of-the-box OPF, OPF classifier enhanced with the Canberra (dis)similarity

measure has a classification error of ǫ = 100%− 77.3% = 22.7% which means a

reduction of ∆ = 100%− 22.7%
32.1%

= 29.3% in the classification error.

Although the comparison of different classifiers requires a more strict proto-

col, we can see that KNN classifiers have statistically similar classification errors

compared to SVM-RBF classifier regardless the (dis)similarity measures. However,

when this is the case, a researcher might want to choose the less time-consuming

classifier (usually KNN is faster). Notwithstanding speed issues, sometimes we also

have to take into consideration the available space for parameter storage. When

this is the case, SVM classifier requires less space and is recommended.

This experiment also shows that neural network-based classifiers such as ANN

and SOM do not perform well without parameter tuning. Furthermore, often neural

networks have complex configuration parameters and to evaluate different compar-

ison (dis)similarity function with them is not straightforward. Neural Networks
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enthusiasts would say that with the proper choice of parameters, NNs are able to

implicitly learn several (dis)similarity functions but we will not discuss this point

any further.
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Figure 1. MPEG-7 CE Shape-1 Part-B 10-fold cross-validation average classification results and
the corresponding confidence intervals with 95% confidence for Moments descriptor.

Sometimes, the comparison (dis)similarity measure does not have a statistically

relevant variation contrary to what we have shown in the previous experiments. Fig-

ure 2 shows a series of classifiers used with the Tensor Scale descriptor characterizing

the chosen data set. In this case, OPF and KNN classifiers have statistically simi-

lar classification accuracies (∼= 77%) when the (dis)similarity function is changed.

However, SVM presents statistically better results in this experiment when RBF

comparison policy is used.

3.3.2. Part B

The Part B of the first round of experiments explores the Corel Relevants data set in

order to verify the hypothesis on the importance of the (dis)similarity function used

in the classification in the context of color image classification. In this experiment,

we have considered the classifiers SVM with a Linear, Sigmoid, and RBF kernels as

well as an SVM with no kernel. In addition, we have tested ANN and SOM classifiers

as well as KNN and OPF with different (dis)similarity functions to show how this

choice influences the final classification outcome. For this particular experiment, we

have chosen the well-established color image descriptor BIC.

Table 2 shows a series of classifiers used with BIC descriptor characterizing the
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Figure 2. MPEG-7 CE Shape-1 Part-B 10-fold cross-validation average classification results and
the corresponding confidence intervals with 95% confidence for Tensor Scale descriptor.

chosen data set. BIC descriptor allows the generation of a feature vector with an

embedded dLOG space. When that is the case, we refer to the classifier used in the

experiment followed by the embedded space and the comparison policy used. For

instance, SVM-dLOG Kernel Linear uses the SVM classifier with a linear kernel fed

with a feature vector in an embedded dLOG space. On the other hand, if we have

the label KNN-L2, it means we have used KNN classifier fed with a feature vector

without dLOG embedding and L2 is the chosen comparison policy.

This experiment shows that the SVM is better with a dLOG embedded space

regardless the comparison policy. This happens because the dLOG mapping trans-

forms the feature vector in a well-conditioned feature vector where each bin ranges

from 0 to 919. This behavior allows SVM black-boxes to generalize well. However,

when we use the normal feature vector where each bin does not have an upper

bound, the comparison policy between elements presents additional normalization

problems to SVM, hardening the localization of meaningful hyperplanes to separate

the elements.

ANN and SOM classifiers do not take advantage of dLOG embedding and pro-

duce poor results. In this experiment, the classifiers KNN and OPF once more take

advantage of simple changes in the comparison policies and produce good results

with no significant increase in the classification computational time. KNN with an

L1 metric over the embedded dLOG space (KNN-dLOG-L1) reduces 31.9% of the

classification error when compared to SVM with a linear kernel (SVM-dLOG Kernel

Linear) fed with the same feature vector.

We also can observe that OPF classifier with an embedded dLOG space
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achieves 89.7% classification accuracy (10.3% classification error) while achieving

87.8% classification accuracy using the L1 comparison policy and no embedded

space. This is because OPF is more robust for comparing feature vectors with no

upper bounds. The OPF classifier does not only use the distance between samples

to classify them. Papa et al.33 have showed that the path-cost function applied by

OPF to partition the graph into optimum-path trees encodes a power of connec-

tivity between the samples, which makes OPF more robust to handle overlapped

classes. On the other hand, KNN is more sensitive to L2 metric than the other clas-

sifiers. We believe this happens because, with an unbounded feature vector, some

ill-conditioned bins (in the feature vector) dominates the others when squared.

Finally, this experiment reinforces this paper’s hypothesis: it is important to

think about the classification choices taking place and how to compensate them. A

bad decision can lead unsatisfactory results such as 54.6% classification accuracy

when using ANN and an embedded dLOG metric space. On the other hand, a better

planning and knowledge about the classifier and the problem under consideration

can lead to more effective results (e.g., 89.7% classification accuracy when using

OPF and an embedded dLOG metric space).

3.4. Experiments – Round II

The second round of experiments evaluates how to solve classification problems

when dealing with descriptors with features with variable dimensionality. For in-

stance, in the image categorization case, this often happens when using local feature

descriptors such as Scale and Invariant Feature Transform (SIFT)20 or Speeded Up

Robust Features (SURF)34.

Consider a categorization problem in which we have to deal with descriptors

producing features with variable dimensionality. In this case, there are several ap-

proaches to tackle the variable dimensionality, but two of them are often considered.

The first one consists of choosing a direct and often expensive (dis)similarity func-

tion that takes the varying dimensionality into consideration. The second approach

consists in embedding features with variable dimensionality onto the space R
k in

which standard and cheaper (dis)similarity functions can be used.

The problem with the first solution is the time consumed to perform the

(dis)similarity computations. In addition, the use of specific and more complex

(dis)similarity functions ties the approach to classification algorithms that supports

the use of such (dis)similarity computations (e.g., K-Nearest Neighbors).

The problem with the second solution is that the pre-computation to embed

features in R
k can lead to results that are not as good as the direct computations.

To complicate, choosing the appropriate embedding is not always straightforward.

However, after the embedding, this approach has the advantage of allowing the di-

rect use of standard machine learning classifiers such as Liner Discriminant Analysis

and Support Vector Machines1.

Figure 3 depicts the experiment results for direct (dis)similarity computations
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Classifier Acc. Stdev. ttrain ttest
SVM-dLOG No-Kernel 79.1% 2.89% 3.72 0.01

SVM-dLOG Kernel Linear 83.7% 2.85% 2670.83 0.06

SVM-dLOG Kernel Sigmoid 83.5% 3.01% 55.20 0.06

SVM-dLOG Kernel RBF 83.2% 3.09% 68.40 0.06

SVM No-Kernel 72.3% 2.56% 20.90 0.01

SVM Kernel Linear 76.4% 3.50% 56.74 0.05

SVM Kernel Sigmoid 50.0% 0.01% 52.91 0.06

SVM RBF 50.2% 0.32% 69.20 0.06

ANN-dLOG 54.6% 1.45% 141.29 0.01

ANN 55.7% 1.57% 138.51 0.01

SOM-dLOG 63.4% 3.39% 272.19 0.35

SOM 58.4% 3.16% 196.09 0.32

KNN-dLOG-L1 88.9% 1.50% 9.01 0.06

KNN-dLOG-L2 71.2% 2.74% 9.08 0.08

KNN-dLOG-CAN 88.9% 1.50% 8.96 0.07

KNN-L1 84.8% 1.43% 8.33 0.06

KNN-L2 63.4% 2.02% 9.07 0.08

KNN-CAN 84.8% 1.43% 9.04 0.07

OPF-dLOG-L1 89.7% 1.56% 0.06 0.01

OPF-dLOG-L2 81.2% 2.94% 0.03 0.01

OPF-dLOG-CAN 85.0% 2.78% 0.06 0.01

OPF-L1 87.8% 2.07% 0.06 0.01

OPF-L2 73.4% 2.92% 0.03 0.07

OPF-CAN 87.2% 2.40% 0.07 0.01

Table 2. Corel Relevants 10-fold cross-validation average (Acc) and standard deviation (Stdev.).
classification results for BIC descriptor (c.f., Sec. 2.2). The table also shows the average training
(ttrain) and testing (ttest) times for each fold, in seconds.

compared to the R
k embedding. Direct computation approaches here use IRM or

EMD (dis)similarity functions in conjunction with KNN and OPF classifiers. On the

other hand, embedding-based approaches use some form of explicit mapping onto

a specific space. In this paper, we use the visual vocabularies concept to embed

features into an R
k space.

Figure 3(a) shows that direct (dis)similarity computation with EMD is more

effective than with IRM regardless the classifier used (KNN or OPF). For instance,

OPF with EMD (OPF-EMD) achieves 87.4% classification accuracy. Using the R
k

embedding, the result is 61.7% classification accuracy with OPF classifier. This

embedding is performed using a visual dictionary with the 100 most representative

words calculated with K-Means, setting K = k = 100. Each word represents a

dimension, so this approach embedded the original features in R
100.
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The experiment in Figure 3(b) confirms the experiment results of Figure 3(a)

using another data set. In this case, the R
k embedding yields a classification result

closer to the one obtained with direct (dis)similarity computations.

We believe that the broader the image context in which the local descriptors

are used for characterization, the closer will be the classification results either using

direct (dis)similarity computations or explicit embedding. As local descriptors are

very distinctive, they play a key role in describing objects for direct matching

purposes as we show in the experiment of Figure 3(a). On the other hand, for a

broader categorization task, as we show in the experiment of Figure 3(b), the visual

vocabulary-based mapping is comparable to the direct (dis)similarity computations.

We now turn to the training and classification times when using KNN classifier

for direct EMD (dis)similarity computation versus the explicit embedding using

visual words. The computational time we report is for the average time over the 10-

fold cross-validation procedure executions. Tables 3(a) and 3(b) show the training

and classification time for both approaches.

Table 3. Training and classification time for KNN classifier. The training time in (b) already
includes the time for K-Means clustering to find the projecting space as well as the mapping onto
such space. The testing time in (b) already includes the time for mapping the testing image to
the found dictionary.

(a) Considering the direct EMD (dis)similarity approach.

Training time Testing time for one example

ETH-80 + EMD 3.8 hour(s) 4.7 sec(s).
Relevants + EMD 17.7 hour(s) 43.0 sec(s).

(b) Considering the L2 Euclidean (dis)similarity approach on the space.

Training time Testing time for one example

ETH-80 with 100 Visual Words 0.30 hour(s) 0.5 sec(s).
Relevants with 100 Visual Words 0.03 hour(s) 0.1 sec(s).

For the experiments results, the direct computation of EMD approach is one or

two orders of magnitude more expensive than the mapping onto the space using

100 visual words. To conclude, two aspects must be highlighted: (1) the number of

representative words used in the R
k embedding greatly influences the final classi-

fication outcome. The 100-visual words used herein are just an example; and (2)

although R
k embedding led to worse results than the direct (dis)similarity compu-

tation, embedding-based solutions tend to be faster than the approaches based on

direct (dis)similarity calculations. IRM (dis)similarity has time complexity O(m2)

to calculate the distance between two features of dimension m while EMD’s time

complexity is O(m3). Conversely, the (dis)similarity computations in R
k is, most

of the times, linear in the space dimension.
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(a) Direct (dis)similarity computation (e.g., IRM and EMD) vs. Explicit Map-

ping (e.g., Visual Vocabularies) – ETH-80 Data set.
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ping (e.g., Visual Vocabularies) – Relevants Data set.

Figure 3. The effects of using descriptors producing features with variable dimensionality..

3.5. Experiments – Round III

The third and final round of experiments evaluates the impacts on the final clas-

sification results when using combinations of binary classifiers to solve multi-class
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classification problems.

It is not unusual to find researchers discussing about the speed (or lack of) of

Support Vector Machines when dealing with N-Way classification problems. Before

discussing speed issues, however, we need to understand what is going on in the

machinery of an SVM-based classifier.

For N-Way classification problems, SVMs use some form of combination of sev-

eral binary SVMs. For instance, if SVM solves the multi-class from binary problem

using OVA, it will use less binary classifiers but will have imbalanced training sets.

On the other hand, if it solves the multi-class from binary problem using OVO, it

will have balanced and small training sets but will have many binary classifiers. In

the experiments, we show the impacts of such choices.

We do not defend whether multi-class from binary classifiers such as SVMs are

better or worse than any other naturally multi-class classifier such as K-Nearest

Neighbors1 or Optimum-Path Forest33. We discuss what happens if one has decided

to solve a given N-Way classification problem with a given multi-class from binary

classifier such as SVMs.

We compare five different approaches to combine binary classifiers to solve

multi-class problems. We present results for three data sets using the One-vs-All,

One-vs-One, Error Correcting Output Codes, and two optimizations proposed by

Passerini et al.31 and Rocha and Goldenstein32 over Error Correcting Output Codes.

Figures 4 and 5 depict results for five different approaches that combine bi-

nary classifiers for N-Way classification. The experiments comprise the MNist, and

Auslan data sets considering combinations of SVM binary classifiers.

For Figure 4, if we use all the Nc =
(

10
2

)

, we need 45 binary SVM classifiers and

achieve a classification accuracy of 93.0%. Any other number of binary classifiers

does not yield a good result as the blue curve shows. OVA approach only requires

10 binary classifiers achieving 91.0% classification accuracy. However, the OVA

approach gives rise to highly imbalanced training sets having one positive and

nine negative classes for each binary classifier. ECOC-based solutions present good

results achieving the same 91.0% classification accuracy but using more balanced

training sets.

As the number of classes increases (Fig. 5), ECOC-based approaches lead to

better results with less binary classifiers. This result shows that it is possible to

combine a few binary classifiers to produce high classification rates taking advantage

of binary classifiers such as SVMs. Figure 5 shows a problem with 96 classes. In this

case, the OVO approach requires all the Nc =
(

96
2

)

= 4, 560 binary SVM classifiers

achieving a classification accuracy of 90.0%.

The imbalance problem mentioned earlier when using an OVA approach is more

pronounced in this experiment. OVA approach requires 96 binary classifiers achiev-

ing 47.0% classification accuracy. This is worse than the OVO-based results. ECOC-

based solutions such as the ones showed in the red, green and black curves yield

good classification results using a small number of binary classifiers. For instance,

the original ECOC approach achieves 87.0% classification accuracy with 100 bi-
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nary classifiers. This result uses about the same number of binary classifiers as

OVA approach and it is 100% more accurate.

The experiments in this section lead to two conclusions: (1) binary classifiers can

be used to solve N-Way classification problems; and (2) the existing combination

approaches for this intent can lead to different results, some of them with serious

imbalance training problems.

As a recommendation, researchers can perform a small experiment with a

smaller version of the problem under consideration using some of the standard

combination approaches in order to determine the most appropriate combination

policy.

4. Conclusions

In this paper we have discussed the problems with respect to the use of machine

learning black-boxes which shall be taken into account when solving classification

problems. Despite the initial good results obtained with such out-of-the-box classi-

fiers, it is important to go deeper into the classifier machinery and, with the proper

knowledge, change a few parameters to obtain a more discriminative classifier.

For this discussion, we have focused on three aspects of the classifiers: (1) the

way they compare examples in the feature space; (2) the impact of using features

with different dimensionality; and (3) the impact of using binary classifiers to solve

multi-class problems.

We have shown how the knowledge about the classifier machinery improves

the results beyond out-of-the-box ML solutions. For instance, using KNN classifier

and BAS descriptor with the appropriate OCS metric, it is possible to reduce the

classification error in the MPEG-7 CE Shape-1 Part-B data set in ǫ = 30.9% when

compared to the out-of-the-box KNN classifier using the standard (non-tweaked)

L2 metric (c.f., Sec. 3.3).

As another example, we discussed two approaches to deal with a classification

problem considering features with variable dimensionality. It is possible either to

use an appropriate (dis)similarity function that takes this difference into account

such as the Earth Mover’s Distance or to embed the features in R
k using the concept

of visual dictionaries. In the experiments results, embedding-based solutions tend

to be faster than the approaches based on direct (dis)similarity calculations while

not loosing much in classification accuracy.

We also have showed that some well known binary classifiers such as Support

Vector Machines are widely used for solving multi-class problems. As SVM is in-

herently a binary classifier, we discussed how some out-of-the-box machine learning

black-boxes extend it to the multi-class operational scenario. We also discussed

and presented experiments showing that the choice of the class binarization policy

can improve the results beyond the ones obtained by default while reducing the

computational time in some cases.

It is important to state that we are not defending any particular classifier.
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We believe that each situation requires a proper problem understanding for the

deployment of a good solution. The experiments we have performed reinforces this

paper’s hypothesis: it is important to think about the classification choices taking

place and how to compensate them.

In face of the results we show in this paper and based on our experience, we

are not in favor of the use of machine learning black-boxes. Independent of our

position, however, we know some researchers and practitioners still will use such

black-boxes either due to time constraints or due to unawareness on how to do

otherwise. For them, we believe the paper will be useful as a guide to perform a good

choice of which black-box to use and how to deal with its implemented methods.

If one, otherwise, uses the classifiers directly (e.g., own author’s implementation of

a classifier), this paper will also provide him/her with a basis for some of the key

choices to think about when solving a given problem.

Sometimes, these so called black-boxes are restrictive and do not offer basic

options of changing important parameters of the implemented methods. As an

example, take the case of SVM. An important SVM companion is the option to

perform grid search for choosing its parameters. This option might be missing in an

ML black-box. Another example, also related to SVM, refers to the behavior of such

classifier when dealing with multi-class problems. Normally, this is implemented in

the black-boxes using either OVA or OVO approaches. As we showed in this paper,

the former suffers from imbalance on the training data while the latter requires the

training of N2 binary base learners.

Finally, there are several other important choices we need to think of when

solving a machine learning problem either directly or using an ML black-box. We

have discussed three of them. Other aspects to consider include (1) the parameter

choice for modeling the kernels in kernel-based classifiers (e.g., SVMs); (2) the use of

categorical variables in conjunction with numerical ones; and finally (3) the behavior

of other important classifiers in the literature such as Maximum Likelihood1 with

respect to all of these questions.
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