
The Computer Modelling of Mathematical Reasoning
Alan Bundy

This digital edition is based on the fourth printing (1986 and 1990)
with corrections. It also incorporates the errata from the author’s website
(compiled by Helen Lowe in April 1997). Edited for online publication by
Tobias Edler von Koch.

This digital edition Copyright c©2010 by Alan Bundy.
All rights reserved.

Preface

This book started as notes for a postgraduate course in Mathematical Rea-
soning given in the Department of Artificial Intelligence at Edinburgh from
1979 onwards. Students on the course are drawn from a wide range of back-
grounds: Psychology, Computer Science, Mathematics, Education, etc. The
first draft of the notes was written during a terms sabbatical leave in 1980.
Later they were used for a similar course at undergraduate level.

While there are now several textbooks on Artificial Intelligence tech-
niques and, more particularly, on Problem Solving and Theorem Proving, I
felt the need for a book concentrating on applications of these techniques
to Mathematics. There was certainly enough material, but it was scattered
in research journals, conference proceedings and theses. If it were collected
together I hoped it might prove of interest to a wider audience than the
usual artificial intelligentsia; I hoped that mathematicians and educational-
ists might find it a eye opener to how computational ideas could shed light
on the process of doing Mathematics.

I also hoped to give more unity to some, rather disparate, pieces of re-
search. In particular, I wanted to show how the, so called, ‘non-Resolution
theorem proving’ techniques could be readily brought into a Resolution
framework, and how this helped us to relate the various techniques – cre-
ating coherence from confusion. In order to achieve this goal I have taken
strong historical liberties in my descriptions of the work of Boyer and Moore,
Gelernter, Lenat, etc. I have redescribed their work in a uniform framework,
ignoring aspects of peripheral interest, and focussing on what I take to be
their essential contribution. I call such descriptions, rational reconstruc-
tions. This does not imply that the original work was irrational – only that
my reconstructions are rational. I apologise to any of the rationally recon-
structed who feel mistreated. My excuse is that the reworking of research
into a coherent whole is a vital, but neglected, part of Artificial Intelligence
research, and that it is better to have tried and failed than never to have
tried at all.

i

ii Preface

Reading Strategies

It is not necessary to be a professional mathematician or computer scien-
tist to read this book, but the book does presuppose some mathematical
knowledge. For instance, it is necessary to know what a set and a group
are. I have endeavoured to make it fairly self contained, e.g. by including an
introduction to mathematical logic. But self-containedness brings its own
problems; if the book is not to be too long, then the pace must not be too
slow. I have tried to get the reader quickly to the heart of the book – the
techniques of automatic inference – without losing him on the way.

• Chapter 1 is a general introduction; it motivates the subject and gives
some of the historical background.

• Part I is a three chapter introduction to Mathematical Logic; it de-
scribes only those aspects of logic that are required to understand the
rest of the book, and may be omitted by anyone who understands
elementary predicate logic.

• Part II is a three chapter introduction to Resolution theorem proving.
It may be omitted by anyone who knows what SL Resolution is.

• Part III consists of five rational reconstructions of theorem proving
techniques or programs. Each was selected because it contributes an
important partial solution to the problem of guiding the search for a
proof. This part is the heart of the book.

• Part IV is a two chapter discussion of aspects of mathematical rea-
soning other than proving theorems – although they both reduce to
theorem proving in the end.

• Part V is a three chapter investigation of the more mathematical as-
pects of theorem proving, e.g. completeness proofs. It may have to be
omitted by those without a good background in Mathematics.

• The last chapter discusses some applications of the techniques de-
scribed in the book, from algebraic manipulation to education.

• The appendices include: computer programs, notational discussions
and solutions to exercises.

Scattered throughout the book are exercises of an elementary nature.
Readers may want to use these to test their understanding of the text.
Some of the exercises contain material that is drawn on later in the book.
Solutions may be found in appendix D.

Preface iii

Readers already familiar with the literature of mathematical reasoning
may be particularly interested in the non-standard presentations of Gelern-
ter’s Geometry Machine, in chapter 10, and Lenat’s AM, in chapter 13.
Section 10.5 onwards, of chapter 10, contains new results.

Acknowledgements

I would like to thank: Gordon Plotkin, who was an untiring source of in-
formation; Richard O’Keefe, Leon Sterling, Alan Borning, David Plummer,
Roy Dyckhoff, Lincoln Wallen and Alberto Pettorossi, who helped me de-
bug the drafts; Bob Boyer, J Moore, Gerard Huet, Woody Bledsoe, Robert
Shostak and Doug Lenat, who kindly read the chapters describing their work
and gave me invaluable feedback; Alan Black, Mike Howry, Bill Clocksin,
Jane Hesketh and Keh. Jiann Chen for giving feedback on the first edition
of the book; and Liam Lynch and Roberto Desimone for assisting with the
second edition. The students of the Department of Artificial Intelligence at
Edinburgh were involuntary guinea pigs.

iv Preface

Contents

1 Introduction 1

1.1 Why read this book? . 1

1.2 What good is Automatic Mathematical Reasoning 2

1.3 The Historical Perspective . 3

1.3.1 Mathematical Logic 3

1.3.2 Psychological Studies 5

1.3.3 Automatic Theorem Proving 7

1.4 Summary . 10

I Formal Notation 11

2 Arguments about Propositions 13

2.1 Truth Functional Connectives 14

2.1.1 Negation . 14

2.1.2 Conjunction . 14

2.1.3 Disjunction . 15

2.1.4 Implication . 16

2.1.5 Double Implication . 17

2.2 Propositional Formulae . 18

2.2.1 Semantic Trees . 19

2.2.2 Equivalences . 21

2.2.3 Tautologies and Contradictions 22

2.2.4 Identifying Correct Arguments - Part 1 23

2.3 Summary . 24

3 The Internal Structure of Propositions 25

3.1 Functions and Predicates: Variables and Constants 25

3.2 The Status of Variables . 28

3.3 The Meaning of Formulae . 31

3.3.1 Interpretations . 32

3.3.2 Interpreting Formulae 33

3.3.3 Some Definitions . 34

v

vi Preface

3.4 Identifying Correct Arguments - Part 2 35

3.5 Summary . 38

4 Miscellaneous Topics 39

4.1 Higher Order Logics . 39

4.1.1 Variable Functions and Predicates 39

4.1.2 Functionals . 40

4.1.3 Lambda Abstraction 41

4.1.4 Omega Order Logic 41

4.2 Mathematical Theories . 42

4.2.1 Equality . 42

4.2.2 Group Theory . 43

4.2.3 Natural Number Arithmetic 44

4.3 Some Practical Hints . 46

4.3.1 Function or Predicate? 47

4.3.2 An Advantage of Avoiding Functions 47

4.3.3 Variadic Functions and Predicates 48

4.3.4 Representing Negation 49

4.3.5 The Importance of a Semantics 50

4.4 Summary . 52

II Uniform Proof Procedures 53

5 Formalizing the Notion of Proof 55

5.1 The Resolution Rule . 57

5.1.1 Stage 1 – Variable Free Resolution 57

5.1.2 Stage 2 – Binary Resolution 58

5.1.3 Stage 3 – Full Resolution 59

5.1.4 Factoring . 60

5.2 Kowalski Form . 60

5.3 The Paramodulation Rule . 62

5.4 Summary . 64

6 Searching for a Refutation 65

6.1 Following Your Nose . 67

6.2 Representing Choice . 68

6.3 AND choices and OR choices 69

6.4 Preventing Looping . 71

6.5 Choosing Where to Start . 72

6.6 Non-Horn Clauses, Case Analysis and Ancestor Resolution . . 73

6.7 How to Make OR Choices . 76

6.7.1 Depth First Search . 76

6.7.2 Breadth First Search 77

Preface vii

6.7.3 Heuristic Search . 78

6.8 Summary . 80

7 Criticisms of Uniform Proof Procedures 81

7.1 The Contribution of Logic . 82

7.2 A Resolution Proof and the Combinatorial Explosion 83

7.3 Attempts to Guide Search . 85

7.3.1 Paramodulation . 85

7.3.2 Cheating Techniques 86

7.4 Analysing Human Proofs . 87

7.5 Alternative Axiomatization 89

7.6 A New Methodology . 91

7.7 Summary . 92

III Guiding Search 95

8 Decision Procedures for Inequalities 97

8.1 Axioms for Inequalities . 97

8.2 Some Human Proofs . 99

8.3 Types . 100

8.4 The Sup-Inf Method . 101

8.4.1 Bledsoe Real Arithmetic 101

8.4.2 An Overview of the Method 101

8.4.3 Assigning Types to Skolem Constants 103

8.5 Variable Elimination . 108

8.5.1 An Overview of the Extended Procedure 109

8.5.2 Elimination of Variables using Interpolation 111

8.6 Summary . 112

9 Rewrite Rules 113

9.1 What are Rewrite Rules? . 114

9.2 Some Sample Rewrite Rule Sets 115

9.2.1 Literal Normal Form 115

9.2.2 Algebraic Simplification 116

9.2.3 Evaluation . 117

9.3 Termination . 118

9.4 Other Important Properties 119

9.5 Applying Rewrite Rules . 119

9.5.1 Inside Out Application 120

9.5.2 Outside In Application 120

9.6 Proving Rules Canonical and Church-Rosser 122

9.6.1 Local Confluence . 124

9.6.2 Critical Pairs . 125

viii Preface

9.6.3 Improving Non-Confluent Rule Sets 129

9.7 Summary . 130

10 Using Semantic Information to Guide Proofs 131

10.1 Formalising Geometry . 132

10.2 Geometric Proofs . 134

10.3 Constructions . 135

10.4 What is the Diagram? . 138

10.5 Can the Diagram be Generalized? 141

10.6 The Trouble with Non-Horn Clauses 143

10.7 The Theoretical Underpinning for Semantic Checking 145

10.8 Summary . 147

11 The Productive Use of Failure 149

11.1 The Formal Theory of LISP 150

11.2 Symbolic Evaluation . 152

11.3 The Method of Induction . 154

11.4 Generalizing the Theorem to be Proved 157

11.5 Applications to Arithmetic 159

11.6 Summary . 161

12 Formalizing Control Information 163

12.1 Reading Between the Lines 164

12.2 Equation Solving Methods . 165

12.2.1 Isolation . 166

12.2.2 Collection . 167

12.2.3 Attraction . 168

12.3 Reasoning About Problems and Methods 170

12.3.1 Defining the Methods with Axioms 170

12.3.2 Searching for a Solution 172

12.3.3 Meta Level Reasoning 173

12.4 Summary . 174

IV Mathematical Invention 177

13 Concept Formation 179

13.1 How Definitions and Conjectures Can Be Made 180

13.2 Operations of Concept Formation 181

13.2.1 Creating New Concepts 181

13.2.2 Finding Examples of Concepts 182

13.2.3 Checking Examples of Concepts 182

13.2.4 Making Conjectures 183

13.3 Formalizing the Knowledge 183

Preface ix

13.3.1 Initial Concepts . 185

13.3.2 Formalizing Operations 186

13.4 Concept Formation as Heuristic Search 187

13.5 The Performance of AM . 189

13.6 Summary . 190

14 Forming Mathematical Models 191

14.1 Keyword Replacement . 191

14.2 Formalising the Intermediate Representation 195

14.3 Bridging the Gaps . 198

14.4 Extracting Equations from the Intermediate Representation . 201

14.5 Choosing Equations . 202

14.6 Meta-Level Knowledge . 203

14.7 Summary . 204

V Technical Issues 207

15 Clausal Form 209

15.1 Prenex Normal Form . 210

15.2 Skolem Normal Form . 212

15.3 Skolemizing Non-Prenex Formulae 214

15.4 Conjunctive Normal Form . 216

15.5 Clausal Form . 219

15.6 Weak Equivalence . 220

15.7 The Meaning of Formulae in Conjunctive Normal Form . . . 220

15.8 Summary . 221

16 Herbrand Proof Procedures 223

16.1 The Significance of Herbrand’s Theorem 223

16.2 Herbrand Interpretations . 225

16.3 A Worked Example . 230

16.4 The Proof of Herbrand’s Theorem 231

16.5 The Resolution Procedure . 233

16.6 The Soundness and Completeness of Resolution 233

16.7 Summary . 236

17 Pattern Matching 239

17.1 One Way Matching . 240

17.2 Combining Substitutions . 241

17.3 Unification . 243

17.3.1 Symmetric Application of Substitutions 244

17.3.2 Occurs Check . 244

17.3.3 General Unification . 245

x Preface

17.3.4 Theoretical Properties of gen-unify 246
17.4 Building-In Axioms . 246

17.4.1 Associative Unification 247
17.4.2 Theoretical Properties of assoc-unify 250

17.5 Lambda Calculus Unification 251
17.5.1 F-Matching . 252
17.5.2 Building-in the Laws of Lambda Calculus 252
17.5.3 The Laws of Lambda Calculus 253
17.5.4 The Lambda Unifiability Procedure 254
17.5.5 Theoretical Properties of lambda-unifiable 255

17.6 Summary . 256

18 Applications of Artificial Mathematicians 257
18.1 Algebraic Manipulation Systems 257
18.2 Automatic Theorem Proving 259
18.3 Computer Assisted Instruction 260
18.4 Understanding Student’s Subtraction Errors 261

18.4.1 What BUGGY Does 261
18.4.2 A Model for Subtraction 262
18.4.3 Psychological Validity 265

18.5 Determining the Meaning of English Text 266
18.6 Logic Programming . 268
18.7 Summary . 270

A Some Artificial Mathematicians Written in PROLOG 273

B The Language of Trees 291

C Alternative Notation 293

D Solutions to the Exercises 297

Chapter 1

Introduction

• Sections 1.1 and 1.2 provide motivation for studying mathematical
reasoning.

• Section 1.3 gives the background of the field, describing its origins in
Logic (section 1.3.1) and Psychology (section 1.3.2), and giving a short
history of the automation of inference (section 1.3.3).

1.1 Why read this book?

This book is aimed at people interested in the question

How do you do Mathematics?

i.e. at professional mathematicians, students of Mathematics, teachers of
Mathematics, psychologists studying mathematical reasoning and anyone
else who is curious about the apparently mysterious processes by which
mathematicians: conjecture theorems, formulate definitions, construct proofs
and build mathematical models. My theme is that light can be shed on
these ‘mysterious’ processes with the aid of a wonderful tool – the digital
computer. By building computer programs which ‘do’ mathematics we can
explore how it is possible to do mathematics; what the vital are talents
that separate success from failure; and how we all can learn to be better
mathematicians.

The building of computer programs for doing mathematics is part of the
new science of Artificial Intelligence. The aim of Artificial Intelligence is to
study all aspects of intelligence by ‘computational modelling’, mathematical
reasoning being just one such aspect of intelligence. Other aspects which
are studied include: the ability to coordinate hand and eye to manipulate
objects; the ability to hold a conversation in a so-called ‘natural’ language
like English (as opposed to an artificial programming language, like ALGOL
or FORTRAN) or the ability to diagnose an illness and prescribe a cure.

1

2 Computer Modelling of Mathematical Reasoning

Whatever aspect of intelligence you attempt to model in a computer
program - the stacking of bricks, a cocktail party conversation or the proving
of the compactness theorem - the same needs arise over and over again.

• The need to have knowledge about the domain

• The need to reason with that knowledge.

• The need for knowledge about how to direct or guide that reasoning.

Mathematical reasoning is a particularly convenient domain for studying
intelligence, because the knowledge required is neatly circumscribed and
the goals clear and unambiguous.

1.2 What good is Automatic Mathematical Rea-
soning

If we are successful in building artificial mathematicians, computer programs
which do mathematics, what practical benefits will this bring?

The professional mathematician and scientist can expect a range of
‘mathematical aids’: programs which help him with the more tedious or
complex parts of his work, programs which check his proofs, programs which
offer suggestions about what to do next. Simple versions of such programs
already exist. Many scientists have access to algebraic manipulation sys-
tems which can integrate symbolic expressions, simplify formulae and solve
equations. We will have more to say about such programs in chapters 12
and 18.

The teacher and student of Mathematics can expect a range of com-
putational theories which will lay bare the more mysterious aspects of the
mathematician’s art: how a good proof step is chosen from among the possi-
ble ones, how interesting conjectures are made, how a mathematical model
is made. The teacher may also be interested in models of poor students
which explain what it is that a student is doing wrong every time he gets
a wrong answer. Such ‘diagnostic models’ will enable the teacher to de-
sign remedial instruction, tailor made, to put the student on the right road
again. Again, simple versions of such theories already exist. Some primary
school teachers have been given access to a program which simulates a wide
range of commonly occurring, faulty, subtraction procedures. The teachers
gain experience in diagnosing the fault and learn in few minutes what might
otherwise take years: that most arithmetic errors are not due to ‘careless-
ness’, but are the result of carefully following a, slightly faulty, arithmetic
procedure. We will say more about such programs in chapter 18.

1. Introduction 3

1.3 The Historical Perspective

Of course, workers in Artificial Intelligence are not the first people to have
asked how Mathematics is done. Mathematicians themselves have devoted
a lot of thought to just this question. Before we start to get involved in the
world of computer programs it will behove us to look at the answers they
provide, see how adequate they are and how useful for our purposes.

This precomputational work on mathematical reasoning divides into two
camps: the normative work of Mathematical Logic, which asks

What are the legal modes of reasoning?

and tries to build a calculus of reasoning, and the psychological work of
people who, looking at themselves and others, ask

How do we actually go about doing mathematics?

We will see that both camps have something to offer us. Mathematical Logic
will give a start on how to represent the knowledge of Mathematics and how
to reason with it. It will not help us to guide that reasoning process, i.e.
to decide what to do when. For that help we will turn to the psychological
studies, but we will not find our needs satisfied in the kind of detail we
would like. Nobody has yet succeeded in giving a precise recipe for how to
be a successful mathematician. Instead we will find some good advice and
useful observations and hints. These will furnish a starting point.

Let us start by looking at the work in Logic. Space does not allow more
than the most superficial survey. In the succeeding chapters we will go a
little deeper, but we will only be studying concepts on a ‘need to know
basis’, so the reader wanting to know more should refer to one of the many
excellent introductory books on Mathematical Logic, e.g. [Mendelson 64].

1.3.1 Mathematical Logic

This story, as so many stories in Science, starts in Ancient Greece. Aristotle
was the first to try to describe the laws of Logic, i.e. the forms that correct
arguments could take. He discovered 19 correct forms, and called them
syllogisms. Here is an example of a syllogism

All Ancient Greeks were perfect.
Aristotle was an Ancient Greek

Therefore, Aristotle was perfect.

(i)

The two sentences above the line are called the hypothesis and the sentence
below the line is the conclusion. If the hypothesis is true then the conclusion
follows from it. Notice that this syllogism is a correct argument form, re-
gardless of whether the hypothesis is true, e.g. whether all Ancient Greeks

4 Computer Modelling of Mathematical Reasoning

were perfect or Aristotle was an Ancient Greek. Logicians do not worry
about the content of arguments - whether the hypothesis is true – but only
with the form – what sorts of argument are correct.

The form of (i) above is

All Ps were Q.
X was a P.

Therefore, X was Q.

The scholastics who studied and refined Aristotle’s work, in the middle ages,
gave names to all the valid syllogisms. The one above is called Darii. In our
example, P was ‘Ancient Greek’, Q was ‘perfect’ and X was ‘Aristotle’. We
could substitute anything else for P, Q and X and still have a correct form,
e.g. ‘syllogism’ for P, ‘invalid’ for ‘Q’ and ‘Darii’ for X. We can also change
the tense from past to present.

All syllogisms are invalid.
Darii is a syllogism.

Therefore, Darii is invalid.

All the sentences involved in the 19 syllogisms, whether as hypothesis or
conclusion, take one of a small number of fixed forms, like ‘All As were B.’
or ‘Some As are B.’, so it is not possible to capture with the syllogisms
alone, reasoning which involves sentences in other forms.

Thus Aristotle’s list of 19 syllogisms do not exhaust the correct argument
forms. Unfortunately, due to Aristotle’s prestige, it was believed for many
years that they did. The scholastics believed in the content, rather than
just the form, of syllogism (i) above. This misplaced faith held up the
development of logic for about a millennium and it took a considerable
effort of will by Boole in the 19th century to add to the accepted correct
forms. Here is one of Boole’s additions.

Either all reasoning is syllogistic or Aristotle was wrong.
All reasoning is not syllogistic.

Therefore, Aristotle was wrong.

(ii)

Boole invented Propositional Logic – a mathematical theory covering the
way in which elementary sentences (or propositions) can be combined with
connecting words (or connectives) like and, or, not, if, etc.

Notice how the first hypothesis of the form (ii) above consists of two
propositions: ‘all reasoning is syllogistic’ and ‘Aristotle was wrong’, con-
nected together with the connective, ‘Either ... or ...’. In fact the form of
(ii) is:

Either P or Q.
Not P.

Therefore, Q.

1. Introduction 5

Boole’s Propositional Logic and Aristotle’s syllogisms described two disjoint
families of correct argument forms, but they still did not exhaust all the
correct forms. Both families are too inflexible, but in different ways. The
syllogisms only allow reasoning between sentences of a few simple forms. We
cannot connect together several sentences to form a hypothesis in the way
that we can in Propositional Logic. Propositional Logic, on the other hand,
can be used to build hypotheses and conclusions of arbitrary complexity from
propositions, but we cannot delve inside an proposition itself as we can in a
syllogism, e.g. we cannot extract the bits, ‘reasoning’ and ‘syllogistic’ from
‘All reasoning is syllogistic.’.

The liberation of the correct argument forms was provided by Gottlieb
Frege, who invented Predicate Logic. Here the basic building blocks are
objects and relations (or predicates) between them. Predicate Logic combines
Propositional Logic’s ability to construct new sentences from old, with the
syllogistic ability to delve into the internal structure of the sentences. It
includes all the correct forms of both its predecessors, and more besides.
Here is one of the new forms

This is an argument.
This is not propositional.
This is not syllogistic.

Therefore, some arguments are neither propositional
nor syllogistic.

Notice how properties of being an argument, a proposition and syllo-
gistic are extracted from inside the three hypothesis sentences and used to
construct a new sentence, together with the quantifier, some, and the con-
nective, neither ... nor

Predicate Logic includes nearly all the correct argument forms we shall
have cause to use in this book, although we will occasionally stray into higher
order logics. We will be taking it up again in chapters 2 to 4, where we will
use it to represent mathematical knowledge and mathematical reasoning.
Our justification will be a theorem, due to Jacques Herbrand, which suggests
an automatic procedure for finding proofs to theorems, which is guaranteed
to find a proof if there is one. The procedure suggested by Herbrand’s
theorem turns out to be horribly inefficient, but it will serve as a starting
point.

1.3.2 Psychological Studies

Mathematical Logic concerns itself with justification rather than discovery.
That is, we can use its result to show that an existing mathematical proof
is correct, but despite Herbrand’s Theorem, it is not a lot of use in actu-
ally finding the proof in the first place. Finding a proof (or even deciding
what theorem to try and prove) is largely a matter of ‘experience’, ‘luck’,

6 Computer Modelling of Mathematical Reasoning

‘intuition’ and all the other mysterious processes which we sometimes feel
are beyond understanding. The purpose of this book is to establish that,
on the contrary, these processes can be understood, and even modelled in a
computer program. To help establish this, we will now appeal to those few
mathematicians who have tried to capture something of their skill in words.

The most famous of these is George Polya. In his book, ‘How to Solve It’
[Polya 45], he summarized and explained some advice, designed to improve
the reader’s problem solving ability. This advice took the form of questions
for the problem solver to ask himself.

What is the unknown?
Do you know a related problem?
Could you restate the problem?

Generations of students have found these questions an inspiration to their
problem solving efforts. They undoubtably help to liberate thought by sug-
gesting new avenues and pointing to the continuation of old ones. How
helpful are they to us in building an artificial mathematician?

Unfortunately, Polya’s exhortations lack the detail required to make
them immediately useful in our task. Consider, for instance, ‘Could you
restate the problem?’. This question presumes knowledge of English and
the way in which problems can be stated in it, which we are only just begin-
ning to give our computers. To be able to make use of a restatement of the
problem implies knowing subtle relationships between problem statements
and solution methods which our computers just do not know. We must
start by building up an armoury of solution methods and relating them to
problem types. Then we might be able to build a computer program which
could understand Polya’s advice – a first step on the road to using it.

All is not lost, however. A later book of Polya’s, ‘Mathematical Discov-
ery’ [Polya 65], holds out more hope. The advice given in this two volume
set is much more domain specific. For instance, the first chapter of the first
volume gives specific help on making geometric constructions. This advice
has been embodied in a computer program [Funt 73]. Polya’s attitude in
trying to understand the ‘mysterious’ aspects of problem solving is all too
rare. The usual attitude of mathematicians is reflected in their published
research papers and in mathematics textbooks. Proofs are revamped and
polished until all trace of how they were discovered is completely hidden.
The reader is left to assume that the proof came to its originator in a blind-
ing flash, since it contains steps which no one could possibly have guessed
would succeed. The painstaking process of trial and error, revision and
adjustment are all invisible.

The only attempt, of which I am aware, to explain the process by which
a proof was constructed, is B.L van der Waerden’s paper, ‘How the proof of
Baudet’s conjecture was found’, [Waerden 71]. Here is an excellent descrip-
tion of the process of trial and error, an induction hypothesis is proposed,

1. Introduction 7

and gradually modified, as successive attempts to prove the induction step
fail. Yet each failure suggests the modifications which take the next attempt
a step further.

Imre Lakatos undertook a more ambitious task – to chart the develop-
ment of a particular theorem through several centuries
[Lakatos 76]. He describes the trial and error processes which have given
us our modern version of Euler’s Theorem, that

for all polyhedra, V−E+F =2, where V is the number of vertices,
E the number of edges and F the number of faces.

The conjecture of the theorem from a number of examples, the derivation
of a proof, the discovery of a counterexample, the location of the fault in
the proof, the revision of the proof and the many forms this revision may
take. The theme of his book is the subtle interaction between proof and
counterexample: how a flawed proof may suggest a counterexample, how a
counterexample may suggest ways to improve a proof. For instance, we may
change the definitions of key concepts in the theorem, like the concept of
‘polyhedra’, in order to exclude the counterexample.

A major implication of Lakatos’s discussion, is that the notion of defi-
nition itself is a subtle one. Not only do different people at different times
have different definitions of concepts like polyhedra, but the definition of a
single person at a single time may be hazy, so that it cannot be used to
decide whether some difficult ‘borderline’ case is a polyhedron or not. How
useful are the observations of van der Waerden and Lakatos in our task of
building an artificial mathematician? Again, their advice, while extremely
important, is premature given our current state of development. Workers
in Artificial Intelligence have been struggling to build programs to generate
sensible first proof attempts, which could form the basis for such refinement
processes. Until they succeed at this, the observations of van der Waerden
and Lakatos will go unused.

However, we will see in chapters 10 and 11 that there have been some
attempts to guide the search for a proof both by the use of counterexamples
and by gathering evidence from an earlier failed attempt at a proof, although
neither of these computer programs displays the sophistication observed by
van der Waerden and Lakatos.

1.3.3 Automatic Theorem Proving

The idea of building an ‘artificial mathematician’ can be traced back to
two sources: the invention of the digital computer and the development of
Mathematical Logic. This was compounded by the fact that some very able
mathematicians, men like Alan Turing, were engaged in both enterprises.
Unfortunately, the psychological observations described above played a very
minor role in the early days.

8 Computer Modelling of Mathematical Reasoning

Mathematical Logic provides a formal theory of Mathematics. That is,
it shows how any branch of Mathematics can be described as the derivation
of theorems from a set of axioms using some rules of inference. These rules
of inference are just a selection of the correct argument forms which we
illustrated in section 1.3.1 above. The axioms are some sentences which we
decide to accept as true and which can then be used as the hypothesis of
a rule of inference to derive the conclusion of the rule as a theorem. The
classic model for this is Euclidean Geometry.

This suggests a simple procedure for developing a mathematical theory.
Starting with just the axioms as the ‘theorems’ of the theory we can pick
a rule of inference at random, find some theorems which can be used as its
hypothesis and add its conclusion to our pool of theorems. Thus if we pick
as our rule of inference the Darii syllogism

All Ps are Q.
X is a P.

Therefore, X is Q.

and we already have in our pool of theorems

All odd numbers are prime
and

9 is an odd number

then we could substitute ‘odd number’ for P, ‘prime’ for Q and 9 for X and
derive the new theorem

9 is prime

Of course, this would be a funny mathematical theory, but we should be able
to model correct reasoning from faulty assumptions as well as from correct
assumptions.

If we were interested in proving a particular conjecture we could just
go on generating new theorems hoping that the one we wanted would turn
up. This would be a hopeless method for humans to use. All sorts of
irrelevant, and probably uninteresting, theorems would get generated before
our conjecture was derived. Even if our conjecture were provable there is no
knowing when it might get proved. However, digital computers are known
for their speed and their capacity to do oodles of boring work without making
mistakes. This procedure might be a practical one for them.

Well it isn’t. Despite their impressive speed, the number of possible
moves in this mathematical game are too great. Using this technique, a
computer can be made to churn out trivial and uninteresting ‘theorems’ at
an enormous rate, but unless the one you are interested in has a particularly
simple proof it is unlikely to turn up this side of doomsday.

To see why this is so, consider the ‘substitution’ rule of inference, which
most mathematical theories contain.

1. Introduction 9

A(X)

A(T)

This is to be read as follows

If a theorem A contains a variable X then we may substitute
any term T for X in A to form a new theorem, A(T).

The catch here is the ‘any term T ’. If this is a theory about arithmetic
then ‘any term’ might mean any natural number, 0,1,2,3,... etc. and any
combination of these with arithmetic operations, +, ·, / etc. and even other
variables. So from the theorem X 6=X+1, we may generate 0 6=0+1, 1 6=1+1,
1+2 6= 1+2+1, 1+Y 6= 1+Y +1, and so on. This is an awful lot of new
theorems – an infinite number – and worse still those new theorems which
contain variables can now be used to generate new ones in their turn.

This is where Herbrand’s Theorem comes to the rescue. The effect of
his theorem, which is described in more detail in chapter 16, is to limit
the ‘any terms’ that we need consider substituting for X. We can restrict
ourselves to terms without variables, and we need only consider those which
can be constructed from symbols already occurring in the conjecture and
the axioms. It also suggests adding the negation of the conjecture as a
new axiom and searching for a contradiction, rather than searching for the
conjecture among those generated.

The theorem proving process implied by Herbrand’s Theorem was im-
plemented by Paul Gilmore in 1960 [Gilmore 60]. It turned out to be pretty
inefficient. It could generate the proofs of a few trivial theorems, but got
hopelessly lost when trying to prove anything slightly more complicated.

But Gilmore’s program showed that automatic theorem proving was pos-
sible in principle. During the rest of the decade there was a concerted at-
tempt to improve the basic Gilmore procedure. The key event in this period
was Alan Robinson’s invention of the Resolution procedure [Robinson 65].
Robinson showed how the standard axioms and rules of inference of Pred-
icate Logic could be replaced with the single, slightly complicated, rule he
called resolution. Naturally this rule included elements of the explosive,
substitution rule, but in a way made subservient to the context: the only
substitutions attempted were those which enabled other rules to be applied.
Appropriate substitutions were calculated by a procedure called unification.
We will study unification and resolution more in parts II and V.

For the remainder of the decade nearly all automatic theorem proving
systems were either refinements or extensions of the Resolution procedure.
Systems were built with wonderful sounding names, like Hyperresolution,
Paramodulation, P1 Deduction, SL Resolution, Lush Resolution, Connec-
tion Graphs. Each of them represented an improvement over the original
Resolution procedure and steady progress was made, with ever more difficult
theorems being proved. There seemed no reason why this situation could

10 Computer Modelling of Mathematical Reasoning

not continue indefinitely, until the whole of Mathematics was gradually con-
quered.

The tranquility was shattered by strident criticism from other workers
in Artificial Intelligence, especially those from the Massachusetts Institute
of Technology. They argued that this work, on what they termed ‘Uniform
Proof Procedures’, was not going to conquer the whole of Mathematics,
but only a trivially small subset of Mathematics. To generate proofs of
interesting, non-trivial theorems required the use of sophisticated, domain
specific knowledge, for which no provision was made in the Resolution family
of theorem provers.

This attack was at first resisted and then reluctantly accepted. The de-
velopment of Resolution theorem provers ceased, except in a few isolated
pockets of resistance. People began to look at the works of Polya and
Lakatos and to introspect about their own mathematical activity in order
to get inspiration as to how to proceed. A new family of Natural Deduc-
tion theorem provers emerged. All sorts of new techniques were attempted:
domain specific guidance, the use of models and counterexamples, rewrite
rules, analogical reasoning. A main goal of this book is to try to explain the
work done in this period and to give order to it.

1.4 Summary

This chapter has introduced the building of computer programs to do math-
ematical reasoning. We have motivated the building of ‘Artificial Mathe-
maticians’ and described some of the historical background to the attempt
to do so. In subsequent chapters we will consider how to do it.

Part I

Formal Notation

11

Chapter 2

Arguments about
Propositions

• This chapter is an introduction to Propositional Logic.

• Section 2.1 introduces the truth functional connectives.

• Section 2.2 considers formulae made from connectives and proposi-
tions. It defines the meaning of such formulae using semantic trees
(section 2.2.1) and shows how to use these to identify correct argu-
ment forms (sections 2.2.3 and 2.2.4).

Although those involved in the renaissance of systems and techniques
developed in the 1970s were not always aware of their debt, all of them
relied heavily on the 1960s work on Resolution. To help give unity to all
these later efforts we will recouch them all in the language of Predicate
Logic and Resolution. This will involve us in studying sufficient of the
field of Mathematical Logic to understand how mathematical knowledge and
reasoning can be represented in a mathematical calculus and to understand
the significance of Herbrand’s Theorem and the resolution rule of inference.
This chapter deals with Propositional Logic; the next chapter extends this
to Predicate (or First Order) Logic; and the chapter after that extends this
again to Omega Order Logic.

Readers familiar with Mathematical Logic may wish to skip now to part
II and those familiar with Resolution may wish to skip beyond that to
chapter 7. Let me tempt even the experts to stay by announcing that my
approach to Logic is a little nonstandard, having been specially designed to
support the theoretical demands of automated reasoning.

For those who are still with us we will start our story with logical notation
and how it can serve, as a alternative to mathematically flavoured English,
as a tool for representing mathematical statements in a form suitable for
manipulation by a computer.

13

14 Computer Modelling of Mathematical Reasoning

2.1 Truth Functional Connectives

In section 1.3.1 we mentioned the Propositional Logic connectives, and, or,
not etc, and how they can be used to connect propositions together. In
this section we explore these connectives a little more deeply: defining them
properly and illustrating them with examples drawn from Mathematics.

2.1.1 Negation

In Mathematics we have a variety of ways of saying that something is not
the case. We may use English and say

n is not a prime number

or we may use some special mathematical notation, like

a 6=0 or a 6< b

when we want to say that a=0 is not true or that a < b is not true.
Using English as an internal representation in a computer program brings

its own problems, not least of which is the essential ambiguity of English
statements. So we will want to avoid the English formulations. It will also be
helpful to regularize the various mathematical conventions. We will therefore
adopt the negation symbol ¬, writing ¬p when we mean that statement p
is not true. Thus we will write:

¬n is a prime number
¬a=0 and
¬a < b

¬, like the other propositional connectives, is truth functional, that is the
truth of ¬p depends only on the truth of p. ¬p is false just when p is true
and ¬p is true just when p is false. We can sum up this relationship with
a semantic tree, see figure 2.1. The word semantic means ‘concerned with
meaning’; the semantic tree is a tree which gives the meaning of ¬. For those
not familiar with mathematical trees, appendix B explains the terminology.
This, rather simple, tree has two arcs coming from the root, corresponding
to the two possible truth values for p, true and false (abbreviated as t and
f). At the tips of each branch it has the truth value of ¬p corresponding
to the values assigned to p on that branch. We will meet more complicated
trees in the following sections.

2.1.2 Conjunction

Next we will consider how two statements can be connected so that the
truth of both of them is asserted. In English, this can be done with words
like ‘and’, ‘but’, ‘where’, etc. Consider, for instance,

2. Arguments and Propositions 15

Figure 2.1: Semantic Tree for ¬p

2 < X and X < 10
2 < X but X 6=3
a ·X+b=0 where a 6=0

There are also special mathematical conventions like:

2 < X < 10

We will replace all of these with the conjunction symbol, ∧. That is, p ∧ q
will mean both p and q are true. Again we can make this rather more precise
by defining ∧ with a semantic tree, as in figure 2.2. The truth values given

Figure 2.2: Semantic Tree for p ∧ q

at the tips of the branches are determined by the values assigned to p and q
on those branches. Thus if we start from the root and follow the arc where
p is true then the arc where q is false, we find that p ∧ q is false.

2.1.3 Disjunction

Just as two statements can be connected to assert the truth of both, they
can also be connected to assert the truth of one or the other. This effect
can be achieved in English by saying

X ≤ Y or X ≥ Y (i)

16 Computer Modelling of Mathematical Reasoning

or we can use special mathematical conventions like

X=±2 (ii)

This is called disjunction.
As usual we will use a special symbol, ∨, to indicate disjunction. That

is, p ∨ q, will mean that at least one of p and q is true. We will write:

X < Y ∨X > Y
X = 2 ∨X=−2

The semantic tree for ∨ is shown in figure 2.1.3. Notice how we have

Figure 2.3: Semantic Tree for p ∨ q

settled the ambiguous case when both p and q are true. We have made p∨ q
true. This is called inclusive or. If we had chosen to make p ∨ q false we
would have defined exclusive or. Both cases are common in Mathematics
(we gave an example of each case in i and ii above). Inclusive or is usually
given precedence in Propositional Logic because it has a nice duality with
∧. To see this exchange the t’s for f’s, and vice versa, at the tips of the
semantic tree for ∨ and compare the result with the semantic tree for ∧.
Inclusive or is often sufficient to represent disjunctions like ii above, because
the exclusivity of the cases is implied by the context, e.g. X cannot equal
both −2 and +2, since ¬2=−2.

Exercise 1 Draw the semantic tree for exclusive or.

2.1.4 Implication

We often want to say that the truth of one statement implies the truth of
another. For instance,

If n is an odd number then n is prime
n is prime if n is an odd number
n is prime whenever n is an odd number
For n to be prime it is sufficient for n to be odd
n is an odd number implies n is prime

2. Arguments and Propositions 17

We will replace these English formulations with the implication arrow, →,
writing

n is an odd number → n is prime

The semantic tree for implication is given in figure 2.4. Notice how we

Figure 2.4: Semantic Tree for p→ q

have decided the ambiguous cases where p is false, by making p → q true,
regardless of the value of q. This version of implication is called, material
implication. It is the most common version in Propositional Logic, doubtless
because it bears a pretty relationship to ∨.

2.1.5 Double Implication

We often want to assert that not only p → q but also that q → p. This
is sometimes done by using the phrase ‘if and only if’ or its conventional
shortening ‘iff’. It is also done by phrases like ‘a necessary and sufficient
condition’.

X+2=3 if and only if X=−1

For a number to be divisible by 15 it is necessary and sufficient
that it be divisible by 3 and by 5

We will replace these English formulations with double implication doubled
headed arrow, ↔.

A note of caution: The word ‘if’ is often used where double implication
is intended, especially in definitions. Consider, for instance,

A number is prime if it has exactly two divisors.

Presumably, this is the only way a number can be prime. The reader is
meant to interpret the ‘if’ as ‘iff’.

The semantic tree for double implication is given in figure 2.5. Notice
the duality between this tree and the one for exclusive or which you drew
in exercise 1.

18 Computer Modelling of Mathematical Reasoning

Figure 2.5: Semantic Tree for p↔ q

2.2 Propositional Formulae

Now that we have some connectives: ¬, ∧, ∨, →, ↔, we can begin to use
them to put together some more complicated statements. Suppose we start
with the propositions:

n is an odd number,
n is prime

Then we can use negation to form

¬n is prime

and then disjunction to form:

¬n is an odd number ∨ n is prime

and then conjunction to form:

¬n is an odd number ∨ n is prime ∧ n is an odd number

and so on, and so on.

It will help clear up ambiguities if we establish a precedence ordering
among the connectives and use brackets to clear up any remaining conflicts,
e.g.

{ ¬n is an odd number ∨ n is prime} ∧
n is an odd number

We can omit brackets around ‘¬n is an odd number’ because the conven-
tional precedence ordering is that ¬ binds tighter than the other connectives,
so that ¬p ∨ q means (¬p) ∨ q rather than ¬(p ∨ q). This is similar to the
situation in arithmetic where −2 + 3 means (−2) + 3 rather than −(2 + 3).

The precedence order is that ¬ binds tightest, ∧ and ∨ bind next tightest,
and → and ↔ bind loosest. Hence,

2. Arguments and Propositions 19

¬p ∨ q means (¬p) ∨ q
p ∧ q → r ∨ s means (p ∧ q)→ (r ∨ s)
p ∧ q ∨ r is ambiguous

We can summarize this ability to form new formulae from old in the following
recursive definition. This definition is called recursive because it appeals to
itself, but without getting into an infinite regression.

Definition 2.1 Formulae

1. A proposition is a formula.

2. If p and q are formulae then the following are also formulae: ¬p, p∧q,
p ∨ q, p→ q, p↔ q.

3. Only expressions formed by rules 1 and 2 above are formulae.

It will be convenient to use the letters p, q, r etc, as above, to stand for
arbitrary propositions, e.g. {¬p ∨ q} ∧ p.

We will sometimes want to represent formulae as trees. The tips of these
trees will be labelled by propositions and the other nodes by connectives.
The label of the root node is said to be the dominant connective. For
instance, {¬p ∨ q} ∧ p will be represented as

Note how the tree reflects the recursive structure of the formula. Each
subformula is represented as a subtree. If a formula is made from a connec-
tive and some subformulae then its tree is formed from the subtrees of these
subformulae connected by a parent node labelled by the connective.

2.2.1 Semantic Trees

We can draw semantic trees for these more complex formulae, just as we did
for the simple ones in section 2.1. Consider the formula:

¬(¬p ∨ ¬q)

20 Computer Modelling of Mathematical Reasoning

The first step is to list the propositions it contains: in this case just p and
q. We then build a semantic tree for these sentences, with no labels on the
tips.

Below this tree we can list the subformulae, of the formula in question,
in increasing order of complexity as shown in figure 2.6.

Figure 2.6: Semantic Tree Framework for Two Propositions: p and q

We can then fill in the values of each of these formulae, below each tip,
as follows:

• Consider each of the formulae in top/bottom order.

• Consider the dominant connective of the formula. Its parameters will
have been assigned values either on the corresponding branch of the
tree or by some previous iteration of this process.

• Look up the semantic tree for this connective. Find the branch which
assigns these values to its parameters. Find the value at the tip of this
semantic tree. This is the value of the formula on the current tip.

Thus, suppose we were trying to fill in the value of ¬p∨¬q below the second
tip (i.e. the slot marked ? in figure 2.6). We assume that the rows for ¬p and
¬q have already been filled in and the values f and t, respectively assigned
to the second tip. Looking at the semantic tree for ∨ (figure 2.1.3) we see
that when f and t are assigned to the parameters of ∨ that t is assigned to
the tip. Thus we replace ? with t.

Repeating this process for the remaining formulae and tips gives the
tree in figure 2.7. Compare this tree with the tree for p ∧ q. It is the same.
p∧ q and ¬(¬p∨¬q) have the same value for all assignments of truth values
to p and q. We say that the two formulae are logically equivalent or just
equivalent for short.

Exercise 2 Draw a semantic tree for the expression ¬p ∨ q. Compare this
with the semantic tree for p→ q.

2. Arguments and Propositions 21

Figure 2.7: Semantic Tree for ¬(¬p ∨ ¬q)

2.2.2 Equivalences

Using semantic trees we can establish equivalences between different propo-
sitional formulae. We have already seen that p ∧ q and ¬(¬p ∨ ¬q) are
equivalent. And when doing exercise 2 above you should have noticed that
¬p∨q and p→ q were also equivalent. You may also like to show that p↔ q
and (p→ q) ∧ (q → p) are also equivalent.

These discoveries should not come as too much of a surprise. Equivalent
formulae ‘say the same thing’. If you reflect on the meaning of p ↔ q {p if
and only if q} and (p→ q)∧ (q → p) {p implies q and q implies p} then you
will see that they are really two different ways of ‘saying the same thing’.
Try the same exercise with the other equivalent formulae above until you
convince yourself that they really say the same thing too.

The discovery of these equivalences means that there is some redundancy
in our connectives. We need not have introduced the connective, ↔, at all.
Whenever we felt the need for it we could have replaced it with the equivalent
(p→ q)∧(q → p). However, this equivalent expression is a bit clumbersome.
It is often more convenient to use the shorter, but redundant,↔.

In a similar way we could replace all occurrences of p∧ q with the equiv-
alent ¬[¬p ∨ ¬q] and all occurrences of p → q with the equivalent ¬p ∨ q.
In this way we can whittle down the connectives we actually need to two, ∨
and ¬.

In fact, if we had introduced the connectives, Sheffer stroke and dagger
(also known as Nand and Nor), we would have found that either one of them
would do, all on its own. Their definitions are:

p | q ↔ ¬(p ∧ q)
p ↓ q ↔ ¬(p ∨ q)

22 Computer Modelling of Mathematical Reasoning

2.2.3 Tautologies and Contradictions

Consider the formula, p ∨ ¬p. If we build its semantic tree we will discover
that the labels of all its tips are t. That is, it is always true, regardless of
the values assigned to its propositions. This is really not surprising. After
all it says that either p is true or p is not true. A fairly obvious observation.
Such a formula is called a tautology .

Figure 2.8: Semantic Tree for p ∨ ¬p

Exercise 3 Show that ¬¬p↔ p and (p→ q)↔ (¬p∨q) are also tautologies.

As well as formulae whose semantic trees have t at all their tips, we can
have formulae whose semantic trees have f at all their tips, i.e. formulae
which are false for all assignments. Such a formula is called a contradiction.

Exercise 4 Show that p ∧ ¬p is a contradiction.

In exercise 3 you will have shown that a tautology can be formed from
a double implication between two of the formulae we showed equivalent in
section 2.2.2. This is true in general. If A and B are two equivalent formulae,
then A ↔ B is a tautology. The reverse is also the case. If A ↔ B is a
tautology then A and B are equivalent.

Theorem 2.2 A and B are equivalent formulae if and only if A↔ B is a
tautology.

Proof: If A and B are equivalent then, by definition, they have the
same truth value for all assignments of truth values to the propositions they
contain. Consider any tip of the semantic tree of A ↔ B. On the branch
above this tip various assignments of truth values will have been made to
the propositions in A and B. Substitute these into A and B. The resulting
values of A and B will be either both t or both f. In either case the value of
A↔ B will be t (see semantic tree for↔). Therefore A↔ B is a tautology.

If A↔ B is a tautology then every tip of its semantic tree is labelled t.
This could only have happened if the assignment on the branch above made
A and B either both t or both f (see semantic tree for ↔). In either case A
and B have the same value. Therefore A and B are equivalent. QED

2. Arguments and Propositions 23

2.2.4 Identifying Correct Arguments - Part 1

The apparatus of semantic trees can be used to identify arguments whose
correctness only depends on the way the propositions in it are connected.
We will call such arguments, boolean, after George Boole who first classified
such arguments. Correct boolean arguments constitute the theorems of
the mathematical theory, Propositional Logic. We will have no need to
develop this theory, e.g. we do not need to give the axioms of Propositional
Logic, since they are not required in order to understand automatic theorem
proving.

For instance, consider the argument we met in section 1.3.1.

Either all reasoning is syllogistic or Aristotle was wrong.
All reasoning is not syllogistic.

Therefore, Aristotle was wrong.

(iii)

This contains only two constituent propositions, ‘all reasoning is syllogistic’
and ‘Aristotle was wrong’, connected by ∨, ¬, an implicit ∧ between the
two hypotheses and a→ between the hypotheses and the conclusion. Hence
we can formalize it as.

[(All reasoning is syllogistic ∨Aristotle was wrong) ∧
¬All reasoning is syllogistic]→ Aristotle was wrong

(iv)

The semantic tree for this formula is given in figure 2.9, from which we can
see that it is a tautology, i.e. its truth is independent of the truth of its
constituent propositions. Hence it is a correct argument form.

Figure 2.9: Semantic Tree for Formula (ii)

The technique exemplified above can easily be implemented in a com-
puter program which, given a formula in logical notation, e.g. (iv) above,
could extract the constituent propositions, build a semantic tree and check
to see if the formula is a tautology. Such a computer program would be

24 Computer Modelling of Mathematical Reasoning

a decision procedure, that is a procedure which, applied to an argument,
is guaranteed to stop after a while and say whether the argument is cor-
rect or not. Any area of Mathematics, like boolean arguments, for which
there is a decision procedure, is called decidable. In subsequent chapters
we will discover areas of Mathematics for which, not only do we not have a
decision procedure, but we could not ever have one. Such areas are called
undecidable.

It is even possible to write a computer program to translate the math-
ematical English formulation of the argument, e.g. (iii), to the logical for-
mulation, e.g. (iv), but for this we must wait until chapter 14.

Exercise 5 Show that ‘modus ponens’, i.e.

P implies Q
P

Therefore Q

is a correct argument form.

How about the other argument forms in section 1.3.1? Can we identify
these as correct too? Unfortunately, these rely on the internal structure of
the propositions, i.e. they are non-boolean, and we will need the apparatus
of the next chapter to deal with them.

2.3 Summary

In this chapter we have introduced the truth functional connectives: nega-
tion, conjunction, disjunction, implication and double implication, and de-
fined propositional formulae, which are composed of propositions joined to-
gether by connectives. The meaning of these formulae can be calculated by
constructing their semantic trees. Formulae which are true on all branches
of their semantic tree are called tautologies, and those which are false on all
branches are called contradictions. We can test whether a boolean argument
is correct by seeing whether it translates into a tautology.

Chapter 3

The Internal Structure of
Propositions

• This chapter is an introduction to Predicate Logic.

• Section 3.1 introduces the primitive parts of the proposition: the func-
tions, predicates, variables and constants.

• Section 3.2 introduces the quantifiers.

• Section 3.3 considers formulae made from these primitive parts and
defines the meaning of such formulae with the aid of interpretations.

• Section 3.4 uses interpretations to identify correct argument forms.

We have some machinery for representing the way in which propositions
can be combined and a mechanical method, using semantic trees, for decid-
ing when a formula is always true (a tautology) just by virtue of its structure
and, hence, for deciding the correctness of boolean arguments. But we are
still representing the propositions themselves in a mathematical English,
e.g. ‘n is prime’. We now turn our attention to representing the internal
structure of propositions. This will lead us to extend Propositional Logic to
Predicate Logic, and to a method for deciding the correctness of non-boolean
arguments.

3.1 Functions and Predicates: Variables and Con-
stants

We can draw some inspiration here from the existing practice in mathemat-
ics. A typical mathematical proposition is

sin(90−X) = cos(X) (i)

In this proposition we can identify several different kinds of beast.

25

26 Computer Modelling of Mathematical Reasoning

• First there is the constant, 90. In this case a number which represents
one of the objects about which algebraic laws, like (i), above express
some truth.

• Then there is the variable, X. This too represents a number, but not
a fixed one like 90. X here stands for any number.

• Next are the functions, sin, cos and −. These take in numbers and
return other numbers, e.g. sin takes 90 and returns 1; given 30, instead,
it would return 1

2 .

• Lastly is the predicate, =. This is similar to the functions, but instead
of taking in numbers and returning numbers, it takes in numbers and
returns a truth value, true or false.

We will adopt a convention that words starting with a capital letter
(sometimes just a single capital letter as here) stand for variables, whereas
words starting with a lower case letter stand for constants. This will enable
us to use a much wider range of symbols for variables than the normal, X,
Y , Z etc.

Each proposition contains only one predicate, but it may contain any
number of constants, variables and functions. Functions are applied to con-
stants and variables to form terms, e.g. 90 − X. 90 and X are called the
parameters of −. These terms can then, in their turn, be used as the pa-
rameters of further functions to form new terms, e.g. sin(90 −X). Finally
the terms are used as the parameters of a predicate to form a proposition,
e.g. sin(90−X) = cos(X).

Some functions and predicates take only one parameter, e.g. sin and cos.
They are called unary . Some take two parameters, e.g. − and =. They
are called binary . Some take three parameters, e.g. mod. They are called
ternary . More generally a function or predicate which takes n parameters
is called n-ary . The number of parameters a function or predicate takes
is called its arity . Unary predicates are sometimes called properties and
non-unary predicates relations. Nullary functions and predicates are also
allowed, i.e. those which take no parameters. In fact we have already met
them both: The nullary functions are just the constants and the nullary
predicates are the truth values, t and f.

Table 3.1 contains some standard functions and predicates of different
aritys (applied to variable parameters to aid clarity).

When we want to represent an arbitrary function or predicate of arity
n, applied to some parameters we will use the notation

f(t1,, tn)
and
p(t1,, tn)
where the ti are arbitrary terms.

3. The Internal Structure of Propositions 27

Arity Functions Predicates

0 13 t
e f

1 sin(X)
cos(X)

2 X + Y X = Y
X − Y X < Y
XY X | Y
logX Y

3 X = Y mod Z

Table 3.1: Standard Functions and Predicates of Different Aritys

When the ti are of only peripheral interest we will sometimes use bold
face letters to indicate a vector of n parameters, e.g. f(t) and p(t).

This notation, where the function or predicate symbol is followed by its
parameters contained in parenthesis, is called Functional Form. As can be
seen in table 3.1, it is rarely used in practice. Symbols are often infixed
between the parameters, e.g. X + Y . Parameters appear as sub- or super-
scripts to symbols and even to other parameters. No holds are barred! We
will generally stick to the established mathematical practice, otherwise this
book runs the risk of becoming more obscure than necessary, with expres-
sions like = (+(2, 2), 4).

Some alternative notations to Functional Form are discussed in appendix
C.

Armed with all this terminology we are in a position to make proper
(recursive) definitions of terms and propositions.

Definition 3.1 Terms and Propositions

1. A variable or a constant is a term.

2. If t1,, tn are terms, f is an n-ary function and p is an n-ary pred-
icate then

f(t1,, tn) is a term
and
p(t1,, tn) is a proposition

3. Only expressions formed using rules 1 and 2 above are terms or propo-
sitions.

Our representation of formulae as expression trees can be extended to
propositions and terms. For instance, the expression sin(90−X) = cos(X)
can be represented by the tree in figure 3.1.

28 Computer Modelling of Mathematical Reasoning

Figure 3.1: The Representation of sin(90 −X) = cos(X) as an Expression
Tree

Here the tips are labelled by constants or variables and the other nodes
by functions or predicates.

Where does all this leave our initial example proposition, ‘n is prime’?
Since this expresses a proposition which may either be true or false it must
contain a predicate. Let us invent a new predicate, is prime. Let it be a
unary predicate, which takes in a number and returns true if and only if
that number is prime. Then our proposition can be represented by

is prime(N)

where n is represented as the variable N . (Should n be a variable or a con-
stant? Does ‘n is prime’ assert all numbers are prime or only one particular
number?)

3.2 The Status of Variables

Variables in mathematical expressions often have an ambiguous status, whose
resolution depends on the context. For instance, the X in

(X + Y) · (X − Y) = X2 − Y 2 (ii)

is usually intended to stand for any X and similarly for Y . We will call this
the universal usage. However, the X in

Solve X2 + 2 ·X + 1 = 0 for X (iii)

stands for some particular number, whose exact value is not yet revealed.
We will call this the existential usage.

Mathematicians sometimes try to resolve this ambiguity by calling the
first equation an identity and using the predicate ≡ instead of =. But this
will not do because there are equations in which different variables are to
be interpreted in different ways. Consider, for instance,

Solve A ·X2 +B ·X + C = 0 for X (iv)

3. The Internal Structure of Propositions 29

Here the A, B and C stand for any number, whereas the X stands for some
particular number, whose precise value will depend on A, B and C.

We will resolve this ambiguity by announcing the status of each variable
with the aid of a quantifier, either a universal quantifier or an existential
quantifier. A universal quantifier consists of an upside-down A followed
by the variable whose status is being announced, e.g. ∀X. An existential
quantifier consists of a back-to-front E followed by the variable, e.g. ∃X.
Thus if we want to assert that (ii) holds for all X and Y we will write

∀X∀Y (X + Y) · (X − Y) = X2 − Y 2

On the other hand, if we want to assert that (iii) has a solution we will write

∃X X2 + 2 ·X + 1 = 0

In the case of (iv) the precise value of X depends on A, B and C and this
can be represented by the order of the quantifiers

∀A∀B∀C∃X A ·X2 +B ·X + C = 0

Putting the existential quantifier forX before the universal quantifiers would
imply that all quadratic equations had the same solution.

Some of the most subtle questions of variable status occur in Analysis.
Consider the assertion that 1/X tends to∞ as X tends to 0. This is usually
expressed in English as

For all M , there exists a ∆ such that |X| ≤ ∆ implies that
|1/X| > M

Expressed in our notation this becomes

∀M∃∆∀X |X| ≤ ∆→ |1/X| > M (v)

Note how (as implied by the definition) ∆ depends on M , but not on X

Exercise 6 Consider the following assertions that ex is continuous and uni-
formly continuous. Express each of them in our formal notation. Compare
the resulting formulae.

Continuous - At each point x, for any positive ε there exists a δ
such that |ey − ex| < ε whenever |y − x| < δ.

Uniformly Continuous - For any positive ε there exists a δ such
that |ey − ex| < ε whenever |y − x| < δ.

In section 2.2 we gave a definition of ‘formula’. This must now be up-
dated to include the quantifiers. The first step is to retract clause 3 of the
definition, which restricted the formulae to those defined using the connec-
tives - we are going to add a new way to form formulae, using quantifiers.

30 Computer Modelling of Mathematical Reasoning

For the sequel we will find it useful to pay attention to the variables whose
status has not been announced with quantifiers; the free variables. This
entails redoing the definitions of terms and propositions giving the set of
free variables they contain. We use the standard curly bracket notation for
sets, e.g. the set containing just X, Y and Z is written {X,Y, Z}.

Definition 3.2 Terms, Propositions, Formulae and Sentences.

1. A constant is a term with free variables {}

2. A variable, X, is a term with free variables {X}.

3. If t is a vector of n terms with free variables vars, v is the union of
these variables, f is an n-ary function and p is an n-ary predicate then

f(t) is a term with free variables v
and
p(t) is a proposition with free variables v

4. Only expressions formed using rules 1, 2 and 3 above are terms or
propositions.

5. A proposition with free variables v is a formula with free variables v.

6. If A and B are formulae with free variables va and vb then ¬A is a
formula with free variables va and A ∧B, A ∨B, A→ B and A↔ B
are formulae with free variables va ∪ vb.

7. If A is a formula with free variables v containing X then ∀XA and
∃XA are formulae with free variables v minus X.

8. Only expressions formed by rules 5, 6 and 7 are formulae.

9. A formula with no free variables is a sentence.

The sentences, or formulae with no free variables, are of especial inter-
est to us because they are the only formulae in which the statuses of the
variables are unambiguous and thus are the only formulae which can be
unambiguously assigned a truth value, t or f. Even though the status of a
free variable is ambiguous, the universal status is the preferred reading. The
sentence obtained from a formula by attaching a universal quantifier to it
for each of its free variables is called its closure. In subsequent chapters we
will often use an unquantified formula as an abbreviation for its closure.

3. The Internal Structure of Propositions 31

3.3 The Meaning of Formulae

When is a sentence containing quantified variables true and when false? If
symbols like =, 0, etc are interpreted in the conventional way then it is clear
that

∀X X=X is true
∀X X=0 is false
∃X X=0 is true
and ∃X X=X + 1 is false

For instance, ∀X X =X is true because 0 = 0, 1 = 1, 2 = 2, etc are true.
∃X X = 0 is true because if X were 0 then X = 0 is true. A formula A′,
formed by substituting objects from a set, e.g. the natural numbers, for all
free variables in A′ is called an instance of A, e.g. 2+2 = 4 and 2+2 = 5 are
both instances of X + Y = Z. Our intuitive interpretation of the meaning
of the quantified formulae above used the rules,

• ∀X A is true iff every instance of A is true.

• ∃X A is true iff some instance of A is true.

From the semantic trees in section 2.1 we can deduce similar rules for the
connectives, e.g.

A ∧B is true iff A is true and B is true.

Thus the truth value of a sentence can be recursively reduced to the truth
value of each member of a collection (possibly infinite) of propositions not
containing variables.

The meaning of formulae, which are not sentences, can be defined as
follows. A formula will be said to be true iff all its instances are true (i.e.
iff its closure is true). A formula will be said to be false iff all its instances
are false . This leaves a lot of unsettled cases with some true instances and
some false ones. In particular, note that a formula which is not true is not
necessarily false and that a formula which is not false is not necessarily true.

We will find it useful to be able to manipulate substitutions as entities
in their own right. A substitution is a set of pairs, where each pair is a
variable, X, and the term, t, substituted for it. If we represent such a pair
by t/X then the substitutions which form 2 + 2 = 4 and 2 + 2 = 5 from
X = Y , can be denoted by {2 + 2/X, 4/Y } and {2 + 2/X, 5/Y }. We can
read t/X as ‘t is substituted for X’ or ‘X is bound to t’. We will let Greek
letters like, φ, θ and ψ, stand for arbitrary substitutions. We will denote
the result of applying a substitution, φ, to the formula, A, by writing the
substitution immediately after the formula, i.e. Aφ. Using this notation

(X=Y){2 + 2/X, 4/Y } ≡ (2 + 2 = 4)

32 Computer Modelling of Mathematical Reasoning

where ≡ means ‘is identical to’.
Note that bound variables are immune from substitution. For instance,

substituting 0 for X in ∀X X = X causes no change.

(∀X X=X){0/X} ≡ (∀X X=X)

Note also that instances are formed by substituting objects from some
set (e.g. 1, 2, 3) for all free variables in a formula, rather than substituting
arbitrary terms (e.g. 2 + 2, 2 +X).

3.3.1 Interpretations

This discussion leaves an open question

What objects must we consider substituting for the variable X
in A when calculating the truth value of ∀X A or ∃X A.

The truth value of the formula may hang on our choice. Consider the formula

∀X ∃Y Y + 1 = X

This is true over the integers, but false over the natural numbers. That is, if
we consider substituting integers for the variables, X and Y , then whatever
integer is substituted for X, the number 1 less can be substituted for Y to
make a true instance. However, if we are not allowed negative numbers then
there is no number to substitute for Y to make Y + 1 = 0 true. Similarly,
the formula

∀X ∀Y {X < Y → ∃Z (X < Z ∧ Z < Y)}

is true over the reals, but false over the integers.
We need a relative notion of truth rather than an absolute one. In future

we will talk about truth in an interpretation, where the interpretation is a
system which provides

(a) A set of objects for the variables to range over. For instance, this might
be the set of natural numbers, integers or reals, or it might be a finite
set of objects. We will call it the universe of the interpretation.

(b) An assignment of meaning to the functions and predicates that appear
in the formula, e.g. +, =, etc. We will want to be able to specify
the conventional meanings we appealed to informally above, and some
unconventional meanings.

Part (a) of the interpretation is provided by naming a non-empty set of
objects as the universe, e.g. the natural numbers, {0, 1, 2, 3, 4, 5, ...}.

Part (b) of the interpretation is provided by associating calculation pro-
cedures with the constants, functions and predicates of the formula.

3. The Internal Structure of Propositions 33

• The calculation procedure associated with a constant is trivial; it con-
sists of assigning it a member of the universe as its value. We will
often construct universes from the constants of a theory and assign a
constant to itself as its own value.

• The calculation procedure associated with a function should specify
the result of applying the function to all combinations of parameters
drawn from the universe. This result will be another object in the
universe.

• The calculation procedures associated with a predicate should specify
the truth value obtained by applying the predicate to all combinations
of parameters drawn from the universe.

One way of specifying these calculation procedures is to give tables like those
in figure 3.2. Another way is to give a computer program.

Note that the tables defining each function and predicate give one and
only one result for each combination of parameters from the universe. Thus
this method of interpreting formula does not allow the possibility of multiply
defined functions, e.g.

√
4 = 2 and

√
4 = −2

or ambiguous predicates, nor does it allow the possibility of functions and
predicates undefined in some region, e.g. 2

0 must be assigned some default
value. The assignment of a default value to normally undefined regions of
functions and predicates can be something of a practical nuisance.

3.3.2 Interpreting Formulae

For instance, consider the formula

∀X ∃Y X=Y ∨X=Y +1

To keep matters simple we will use an interpretation with the finite universe,
{0, 1}, and assign the constants 0 and 1 to themselves. The formula includes
the binary function, +, so we must specify the results of applying + to 0 and
1 in all possible ways, and these results must always be either 0 or 1. One
way of doing this is given by the addition table in figure 3.2. The formula
also includes the binary predicate, =, so we must specify the truth value
obtained by applying = to 0 and 1 in all possible ways. A way of doing this
is also given in figure 3.2. We will call the interpretation so defined boole.

The meaning of our formula is determined by boole.

∀X∃Y X=Y ∨X=Y +1 is true in boole
iff (by meaning of ∀)

∃Y 0=Y ∨ 0=Y +1 is true in boole and

34 Computer Modelling of Mathematical Reasoning

+ 0 1 = 0 1

0 0 1 0 t f
1 1 0 1 f t

Figure 3.2: Calculation Procedures for + and =

∃Y 1=Y ∨ 1=Y +1 is true in boole
iff (by meaning of ∃)

either 0=0 ∨ 0=0+1 or 0=1 ∨ 0=1+1 is true in boole and
either 1=0 ∨ 1=0+1 or 1=1 ∨ 1=1+1 is true in boole

iff (by semantic tree for ∨)
either 0=0, 0=0+1, 0=1 or 0=1+1 is true in boole and
either 1=0, 1=0+1, 1=1 or 1=1+1 is true in boole

iff (by table for +)
either 0=0, 0=1, 0=1 or 0=0 is true in boole and
either 1=0, 1=1, 1=1 or 1=0 is true in boole

iff (by table for =)
either t, f, f or t is true in boole and
either f, t, t or f is true in boole

iff (by meaning of English)
t

When we design some axioms to capture a mathematical theory, for
which there are established calculation procedures, say the theory of natu-
ral numbers, then we will want all the axioms to be true in the interpretation
defined by these procedures. It will be convenient to be able to refer to this
standard interpretation. We will call it arith. That is, arith is the inter-
pretation with the natural numbers as universe and the standard arithmetic
calculation procedures associated with = (equality), . (multiplication) and
+ (addition).

3.3.3 Some Definitions

When a formula is true in an interpretation the interpretation is said to be
a model of the formula. This notion can be extended to a set of axioms by
considering the formula made by conjoining all the axioms together (taking
care not to get any accidental coincidences of variables). Thus a set of
axioms can have a model. An axiomatization of the arithmetic of the natural
numbers would have arith as a model.

Consider how each of the interpretations of a sentence might treat it.
The following cases can arise.

1. If all the interpretations are models of the sentence then we say that
the sentence is logically valid. Otherwise, the sentence is logically

3. The Internal Structure of Propositions 35

invalid.

2. If none of the interpretations are models of the sentence then we say
the sentence is unsatisfiable. Otherwise, the sentence is satisfiable.

Note that a sentence can be satisfiable without being valid and invalid with-
out being unsatisfiable. For example,

• ∀X (X = 0 → X = 0) is logically valid, because all its instances are
tautologies.

• ∀X X=0 is logically invalid, because arith is not a model.

• ∀X (X = 0 ∧ ¬X = 0) is unsatisfiable, because all its instances are
contradictions.

• ∀X X=X is satisfiable, since arith is a model.

The notion of a logically valid sentence extends the notion of a tautology,
that we met in section 3. In fact, the logically valid sentences constitute the
theorems of the mathematical theory, Predicate Logic, also known as First
Order Logic. Similarly, the notion of an unsatisfiable sentence extends the
notion of a contradiction. We establish this connection more formally in
chapter 16.

3.4 Identifying Correct Arguments - Part 2

Can we now use the extended definition of the meaning of a formula, to deal
with the remaining argument forms of section 1.3 – the non-boolean ones?
Consider, for instance, the substitution rule:

A(X)

A(T)
(vi)

The first thing to note is that this does not mean the same thing as

A(X)→ A(T) (vii)

In fact (vii), while plausible at first sight, is not logically valid: In fact it is
not true even in the standard interpretation, arith. This may be clearer in
a particular case. Let A(X) be X=0 and T be 1 then (vii) is

X=0→ 1=0

However, one of the instances of this is

0=0→ 1=0

36 Computer Modelling of Mathematical Reasoning

under the substitution {0/X}; and this is false in arith, since arith assigns
0=0 to t and 1=0 to f and t→ f is f.

(vi), however, does not suffer this defect. It asserts that 1 = 0 can be
deduced from X = 0, which is fair enough since X = 0 means ‘all numbers
are equal to 0’. It does not allow us to deduce 1=0 from 0=0.

This means that we cannot represent arguments as implications between
hypothesis and conclusion and test for tautologyhood, as we did in section
2.2.4. Instead we must interprete the hypothesis and conclusion separately.
We will use the following criterion

Definition 3.3 An argument

H

C

is correct iff every interpretation of H and C which is a model of H is also
a model of C. We will say that C is a logical consequence of H.

If, in addition, H is a logical consequence of C, we will say that they are
logically equivalent. This extends the definition of section 2.2.2 to formulae
with variables.

Consider how we may use this definition to show the correctness of the
substitution rule

A(X)

A(T)

There is a caveat to attach to this rule; T should not contain a
free variable which is bound in A(X). For instance, we are not
allowed to substitute Y+1 for X in ∃ Y =X, giving ∃Y Y =Y+1.

Let M be a typical model of A(X) (which is also an interpretation of A(T)).
We must show that M is also a model of A(T), i.e. that A(T) is true in M .
Now every instance of A(T) is also an instance of A(X) and hence true in
M . Therefore A(T) is true in M . QED.

In a similar manner we can show the correctness of the other arguments
from section 1.3.1. Consider, for instance,

This is an argument.
This is not propositional.
This is not syllogistic.

Therefore, some arguments are neither propositional
nor syllogistic.

This can be formalized as

argument(this) ∧
¬ propositional(this) ∧
¬ syllogistic(this)

∃X argument(X) ∧ ¬ [propositional(X) ∨ syllogistic(X)]

3. The Internal Structure of Propositions 37

The universe of any interpretation of the hypothesis contains the object,
‘this’, hence the calculation procedures for the predicates must assign mean-
ings to the propositions:

argument(this),
propositional(this) and
syllogistic(this)

Any model of the hypothesis must assign the first of these to t and the second
and third to f. Thus, by the semantic trees for ∨, ¬ and ∧, the instance of
the conclusion defined by the substitution

{this/X}

will be true and hence the conclusion will be true in all models of the hy-
pothesis. QED.

Exercise 7 Show the Darii syllogism of section 1.3.1 is a correct argument
form.

Exercise 8 Show that ∃X ¬A(X) is a logical consequence of ¬∀X A(X).

The technique illustrated above, for testing the correctness of non-boolean
arguments, cannot be as easily translated into a computer program as the
boolean technique of section 2.2.4 could. We cannot always test all models
of a hypothesis because there may be infinitely many of them and testing the
conclusion may involve considering an infinite number of instances. Thus the
technique does not constitute a decision procedure, because it may not ter-
minate; it may grind on forever without giving an answer. It can be shown
that non-boolean arguments constitute an essentially undecidable area of
Mathematics, i.e. there could not be a decision procedure.

The arguments above either deal with finite cases or exploit some special
trick. The best we can do in general is to design a computer program which
is guaranteed to terminate only if the argument is correct. This is done by
trying to show that the theory consisting of the hypothesis and the negation
of the conclusion is unsatisfiable, i.e. has no models. If the conclusion is not
a logical consequence of the hypothesis then the model testing may end with
a counterexample, but it may go on forever, inconclusively. Fortunately, if
the conclusion is a logical consequence of the hypothesis this eventually
becomes apparent. This is achieved by doing the model testing by a process
of deducing theorems of the theory; the deduction of f demonstrates that the
theory is unsatisfiable. Programs, which are guaranteed to terminate only
if the argument is correct, are called semi-decision procedures. In chapter 5
we look at how theorems of a theory can be deduced, and in chapter 6 we
investigate semi-decision procedures for logical consequence.

38 Computer Modelling of Mathematical Reasoning

3.5 Summary

In this chapter we have looked inside the proposition and defined its internal
structure. We found constants, variables, functions and predicates, and gave
formal definitions of how these parts could be combined to form terms and
propositions. We considered the status of variables, and showed how to
distinguish the cases that arise by using quantifiers. This new notation was
given meaning by introducing the idea of an interpretation.

We considered non-boolean arguments, which relied on the internal struc-
ture of the propositions. Such arguments were defined to be correct when
the conclusion was a logical consequence of the hypothesis. This definition
was used to show some arguments correct, but in general the procedure to
do this is not a decision procedure; it is not guaranteed to terminate.

Chapter 4

Miscellaneous Topics

• This chapter consists of three loosely related sections.

• Section 4.1 is an introduction to higher order logics, especially typed
lambda calculus.

• Section 4.2 gives the axioms for 3 mathematical theories: equality
4.2.1, group theory 4.2.2 and Peano arithmetic 4.2.3.

• Section 4.3 is a series of practical hints on how to represent knowledge
using mathematical logic.

4.1 Higher Order Logics

The logical notation introduced so far is that of the Predicate Logic of
Frege, sometimes called First Order Logic. This will be enough for most of
our purposes, but occasionally we will require something more.

4.1.1 Variable Functions and Predicates

Suppose we want to assert that if two objects, X and Y , are equal then they
have the same properties. We will want to use a variable predicate, P , to
stand for any property.

∀P ∀X ∀Y X=Y → {P (X)↔ P (Y)}

Similarly, we might want to say that equal objects have equal values
under the same function. We will want to use a variable function, F , to
stand for any unary function.

∀F ∀X ∀Y X=Y → F (X)=F (Y)

First Order Logic only allows variables ranging over objects, e.g. X
ranging over 90, e, etc. A logic in which variable functions and predicates
are allowed and can be quantified over is called Second Order.

39

40 Computer Modelling of Mathematical Reasoning

4.1.2 Functionals

Where there is a first and second, there must be a third. Consider the
differential expression

d cos(X)
dX

What sort of beast is the differential operator, d
dX ? Clearly it is not a con-

stant, variable or predicate. Is it a function? If it is, what are its parameters?
Well it is dependent on the term cos(X), so this must be one parameter,
and we must know what this term is to be differentiated with respect to, so
X must be another parameter. Hence we could standardize the differential
notation to:

d(cos(X), X)

Unfortunately, this will not do. The X above is not really a free variable.
For instance, we cannot substitute 90 for X and get a meaningful expression.

#d cos(90)
d90

(A # sign in front of an expression indicates that the expression is illegally
formed.)

We may also change the variable of differentiation without changing the
value of the expression.

d cos(X)
dX = d cos(Y)

dY

One way out of this difficulty is remove the variable of differentiation, and
make d

dX a function of a function, e.g. d takes cos to sin.

d(cos) = sin

Such a function is called a functional. Allowing variable functionals and
quantification over them takes us into Third Order Logic.

Similar problems occur with integration and limits, and can be solved in
similar ways.

Exercise 9 What notation might we use to represent the limit of a function,
f(X), as X tends to some value l?

Exercise 10 Give a general definition of what it means for the limit of a
unary function f(X) to be ∞ as x→ l.

4. Miscellaneous Topics 41

4.1.3 Lambda Abstraction

Functionals apply to functions, rather than to terms, e.g. to sin rather than
to sin(X). This is all very well when we have a convenient symbol to apply
it to, but what does d apply to in the differential:

d sin(X).eX

dX
? (i)

We do not want to be constantly introducing new functions, e.g.

foo(X) = sin(X).eX

just so we can replace (i) above by

d(foo)

A solution to this is the notion of lambda abstraction. We can turn an
arbitrary term into the corresponding function by the following device.

λX(sin(X).eX) is foo

So now (i) above can be written as:

d(λX(sin(X).eX))

4.1.4 Omega Order Logic

Now we can iterate the process, allowing functions of functionals (Fourth Or-
der), functions of functions of functionals (Fifth Order) and so on. Allowing
all of these then takes us to Omega Order Logic.

A nice way of capturing all the sorts of functions, functionals etc is
provided in the Typed Lambda Calculus [Church 40], which is one version of
Omega Order Logic. Each of the constants is assigned a type. For instance,
90, e and 1

2 , may all be assigned type real, for real number. and t and f may
be assigned the type truth, for truth value.

• Unary functions, e.g. sin, are then mappings from type real to real. If
we use the arrow, 7→ to represent mappings, then this can be summa-
rized as real 7→ real.

• Binary functions, e.g. +, have type real × real 7→ real.

• The functional d has type (real 7→ real) 7→ (real 7→ real), that is,
unary function to unary function.

• Binary predicates, e.g. =, have type real × real 7→ truth.

• Binary connectives (e.g. ∧) have type truth× truth 7→ truth.

42 Computer Modelling of Mathematical Reasoning

• λX sin(X).eX has type real 7→ real, since X has type real and sin(X).eX

has type real.

Thus all the various expressions we have met so far: formulae, propo-
sitions, terms, functions, predicates, connectives, variables and constants
can be defined in a uniform manner using the terminology of the Lambda
Calculus.

Definition 4.1 The Expressions

1. If s is an expression of type τ containing free variables, X1, ..., Xn, of
types, τ1, ..., τn, respectively then λX1...λXns is an expression of type
τ1× ...×τn 7→ τ whose free variables are those of s minus {X1, ..., Xn}

2. If f is an expression of type τ1× ...× τn 7→ τ and s1, ..., sn are expres-
sions of type τ1, ..., τn, respectively, then f(s1, ..., sn) is an expression
of type τ whose free variables are the union of those of f and s1, ..., sn.

3. If p is an expression of type truth containing free variable X then
∀X p and ∃X p are expressions of type truth whose free variables are
those of P minus {X}.

4. Expressions can only be formed from constants and variables and by
application of rules 1, 2 and 3 above. A constant has no free variables.
The free variables of a variable X are {X}.

4.2 Mathematical Theories

Now that we have developed our notation we can achieve our original aim
of representing mathematical knowledge in a form suitable for manipulation
by a computer program. We will give some sample sets of axioms, so that
later we may consider how theorems may be proved from them.

4.2.1 Equality

= is a predicate which crops up throughout mathematics, not just in arith-
metic and algebra, but in group theory, set theory etc. Thus the axioms
which define =, form a subset of the axioms of all these theories.

Each of the axioms of equality is sufficiently famous to have earned itself
a name. The first is reflexivity – an object is always equal to itself.

X = X

The second is symmetry – it does not matter how the parameters of = are
ordered.

X = Y → Y = X

4. Miscellaneous Topics 43

The third is transitivity – that equality is inherited.

X = Y ∧ Y = Z → X = Z

The fourth and fifth are very similar and share the name substitution axiom.
They assert that having equal parameters ensures equal results.

X1 = Y1 ∧ ... ∧Xn = Yn → f(X1, ..., Xn) = f(Y1, ..., Yn)
X1 = Y1 ∧ ... ∧Xn = Yn ∧ p(X1, ..., Xn)→ p(Y1, ...Yn)

In fact, these are axiom schemata – we need a version for each n-ary function,
f , and each n-ary predicate, p, in our theory. Hence we will need different
versions of the fourth and fifth axioms in different theories.

These substitution axioms are not to be confused with the substitution
rule, which allows the substitution of terms for variables.

Exercise 11 How many of the equality axioms are true for the inequality
predicates, ≥ and >, between real numbers? What additional axioms are
needed for inequality over those needed for equality?

Note that these axioms guarantee that, as mentioned in section 3.3.1,
functions are defined everywhere and are not multiply defined. We will call
these properties of functions existence and uniqueness, respectively. For
instance, if f is a unary function, its existence property is guaranteed by
the theorem

∃Y f(X) = Y

which is easily proved from reflexivity (let Y be f(X)), and its uniqueness
property is guaranteed by the theorem

f(X) = Y ∧ f(X) = Z → Y = Z

which is easily proved from symmetry and transitivity.

4.2.2 Group Theory

The group axioms are another important constituent of mathematical the-
ories. To start with we will need the equality axioms, reflexivity, symmetry,
transitivity and some versions of substitution – just which versions we con-
sider below.

In addition, we will need the axioms to define an identity element, e,

X = e ◦X
X = X ◦ e
where ◦ is a binary function.

and some axioms to assert that every element, X, has an inverse, i(X),

44 Computer Modelling of Mathematical Reasoning

X ◦ i(X) = e
i(X) ◦X = e

and the associativity axiom for ◦.

X ◦ (Y ◦ Z) = (X ◦ Y) ◦ Z

The functions which occur above are e, i and ◦, and the only predicate
is =. Since e is nullary its substitution axiom is just an instance of the
reflexivity axiom, and so can be omitted. The substitution axiom for = is
a simple consequence of transitivity, symmetry and reflexivity and can also
be omitted. The remaining substitution axioms are:

X1 = Y1 → i(X1) = i(Y1) and
X1 = Y1 ∧X2 = Y2 → X1 ◦X2 = Y1 ◦ Y2

4.2.3 Natural Number Arithmetic

The last in our series of classic sets of axioms are the Peano axioms for the
Arithmetic of the natural numbers, 0, 1, 2, 3, This theory also requires
the equality axioms.

The key observation behind the axiomatization is that all the natural
numbers may be generated by a process of succession, starting at 0 and
incrementing in 1s. The process of adding a 1 to a number is called forming
its successor and is denoted by the successor function, s, i.e. s(X) = X + 1.

By using the successor function we can avoid having to have an infinite
number of constants in our theory, i.e. 0, 1, 2, 3, ... We have one constant,
0, and represent other numbers by applying s to 0 repeatedly, e.g. 3 is
s(s(s(0))).

As with group theory we start with the equality axioms. The first two
arithmetic axioms assert that the process of succession will keep generating
new numbers: it will never loop back, either to 0

¬ 0 = s(X)

or to some other number

s(X) = s(Y)→ X = Y

The next pair of axioms provide a recursive definition of addition in
terms of successor. Before giving it let us think about the different kinds of
definition we can make in mathematics:

• The simplest kind are explicit definitions. The function (or predicate)
to be defined appears once, dominating one side of the equation (or
double implication), with distinct variables in each parameter position,
e.g. X2 = X.X

4. Miscellaneous Topics 45

• A definition which is not explicit is an implicit definition. The function
may appear on both sides of the equation, or may have non-variable
parameters, or may appear in a non-dominating position, etc. Even so,
the implicit definition may lay down enough conditions to determine
uniquely the function, e.g. the definition of square root over the real
numbers by (

√
X)2 = X ∧

√
X ≥ 0.

• A recursive definition is implicit, but in a format which guarantees
that the defined function is uniquely determined. It relies on the fact
that the objects in the domain can be generated by a process like
succession.

The Peano recursive definition of + in terms of s is by two cases: the
second argument of + is either 0

X + 0 = X (ii)

or is the successor of some number

X + s(Y) = s(X + Y) (iii)

In the second case X+ s(Y) is defined in terms of X+Y . This is, of course,
a circular definition, but not a vicious circle, since we can use it to calculate
the sum of any two numbers, e.g.

s(s(0)) + s(s(0))=s(s(s(0)) + s(0)) by (iii)
=s(s(s(s(0)) + 0)) by (iii)
=s(s(s(s(0)))) by (ii)

Thus + is uniquely determined by (ii) and (iii), even though it is not explic-
itly defined.

The third pair of axioms are a recursive definition of multiplication in
terms of addition. Again we have the same two cases: the second parameter
of · is either 0

X · 0 = 0 (iv)

or is the successor of some number

X · s(Y) = X · Y +X (v)

Again X · s(Y) is defined in terms of X · Y .

Exercise 12 Calculate s(0) · s(s(0)) using (iv), (v), (ii) and (iii).

The format of the recursive definitions of + and · was the same:

46 Computer Modelling of Mathematical Reasoning

F (X, 0,Z) = G(X,Z)
F (X, s(Y),Z) = H(F (X,Y,Z), X, Y,Z)
where Z is a vector of n additional parameters

(except that Z was empty in the definitions of + and ·). Such a defini-
tion is called primitive recursive and is a very common type of recursive
definition. More general types of recursive definition can be obtained by
allowing, for instance, simultaneous recursion on two variables, X and Y ,
i.e. F (s(X), s(Y),Z) is defined in terms of F (X,Y,Z).

Exercise 13 Give a primitive recursive definition of exponentiation, XY ,
(for natural numbers) in terms of multiplication.

Some versions of natural number arithmetic allow the addition of any
number of new axioms provided they conform to the format for explicit or
recursive definitions of new functions or predicates, e.g. these theories would
allow as new axioms the definition of exponentiation you just designed in
the above exercise.

Lastly we need an axiom which says that all the numbers are generated
by the succession process. The axiom of mathematical induction has essen-
tially this message, because it says that a formula is valid if it is valid for
all numbers defined by the succession process.

P (0,Z) ∧ ∀X [P (X,Z)→ P (s(X),Z)]→ ∀Y P (Y,Z)

Note that induction is a second order axiom since P is a variable predicate.

There is a dual relation between induction and recursion which we will
make explicit in chapter 11.

That completes our examples of axiom sets for this chapter. We will
be considering further axiom sets as they arise in the context of particular
Mathematical Reasoning programs. We complete this chapter with some
hints on how to build axiom sets.

4.3 Some Practical Hints

Those who intend to build computational models of mathematical (or any
other kind of) reasoning are well advised to learn the art of representing
knowledge in a logical calculus. One of the main aims of this book is to
teach that art and that is why we have invested a disproportionate amount of
effort (by the standards of conventional logic textbooks, e.g. [Mendelson 64])
in explaining logical notation. To conclude this teaching we would like to
summarize a few practical hints and standard pitfalls.

4. Miscellaneous Topics 47

4.3.1 Function or Predicate?

We have a relationship, r, between some objects, x and y, which we wish to
represent. Should we represent it with a function and equality, i.e. r(x) = y
or with a predicate, i.e. r(x, y)?

This will depend on r. As noted in section 4.2.1, the equality axioms give
function notation two properties that predicate notation lacks: the existence
of a suitable y given x and the uniqueness of this y, up to equality.

Suppose we want to represent the relationship between a formula, fm,
and its proof, prf . Now given fm, prf is neither guaranteed to exist (since
fm may not be a theorem) nor is it unique if it does exist (since a theorem
may have several proofs). So we cannot represent the relationship by an
equation

#proof of(fm) = prf

On the other hand, fm is uniquely determined by prf – a proof proves
one and only one theorem. So the relationship can be represented by the
equation

theorem of(prf) = fm

where theorem of is a function which extracts the theorem proved by a
proof, and returns some default value, say ‘undef’, for terms which are not
proofs.

The relationship between a sentence, sent, and a model, m, however,
cannot be represented by a function in either direction. A sentence can
have several models or none. An interpretation can be a model of several
sentences. So we must be contented with a relation, i.e.

is model(sent,m)

If we must represent an essentially non-function relationship, r, between x
and y, with a function, we can always employ the following trick: a function,
fr, is defined from x to the set Y of all y for which r(x, y).

fr(x) = {y : r(x, y)}

If there are no ys, such that r(x, y) for some x, then fr(x) = {}. If there are
several then fr(x) is a non-singleton set.

4.3.2 An Advantage of Avoiding Functions

Despite the advice in the above section there is a strong advantage to be
gained if an entire mathematical theory – axioms and theorems – can be
expressed without the use of proper functions, but with only predicates,
constants, variables and universal quantifiers. In section 16.2, we will see
that arguments in such theories are essentially boolean and can be settled

48 Computer Modelling of Mathematical Reasoning

by testing a finite number of variable free, quantifier free formulae for tau-
tologyhood using the techniques of propositional logic.

As an illustration, consider the following alternative axioms for group
theory. These are modified from the axioms in section 4.2.2 by exchanging
expressions of the form, S ◦T = U and i(S) = T , for, ◦(S, T, U) and i(S, T),
respectively.

identity ◦(e,X,X)
◦(X, e,X)

inverse i(X,Y)→ ◦(X,Y, e) ∧ ◦(Y,X, e)

associativity ◦(X,Y, U) ∧ ◦(U,Z,W) ∧ ◦(Y,Z, V)
→ ◦(X,V,W)

◦(Y,Z, V) ∧ ◦(X,V,W) ∧ ◦(X,Y, U)
→ ◦(U,Z,W)

Axioms like these have been used with great success, by George Robinson
and Lawrence Wos, as a basis for an automatic theorem prover for group
theory, [Wos 65]. This success must be attributable, at least in part, to the
essential finiteness of the processes involved.

Naturally, there is a price to be paid for such success. The price is
that not all theorems of group theory can be proved from these axioms.
In particular, it is not possible to prove any theorem which expresses the
existence or uniqueness properties of ◦ or i, e.g.

∀X ∃Y i(X,Y)

For a way round this difficulty see chapters 10 and 14.

4.3.3 Variadic Functions and Predicates

There are some functions and predicates which we tend to think of as being
able to take any number of parameters – of being of variable arity or variadic.
This is sometimes expressed by writing a chain of parameters and functions
(or predicates), e.g.

2 + 3 + 2
3 · a · sin(x)
2 · 3 = 3 · 2 = 6
2 ≤ a ≤ 5

(Note that for this chain notation to be used unambiguously on functions
they must be associative. Division, X/Y , is not associative, so 2/3/2 is
ambiguous between (2/3)/2 and 2/(3/2).)

4. Miscellaneous Topics 49

Unfortunately, Predicate Logic does not allow the variadic functions; the
arity of a function must be fixed, and we have fixed the arity of +, ·, = and
≤ at 2.

We can regain something of the flexibility of variadic functions and pred-
icates by the following device. The function or predicate in question is made
unary but given a composite parameter; one containing all the original pa-
rameters. A set of the original parameters is the sort of composite parameter
I have in mind, but this is not quite right. Two of the properties of a set are
wrong: the elements of a set are unordered and multiple occurrences of an
element are merged. The sort of composite parameter we want is a tuple,
which is usually called a list in computer circles. In a list the elements are
ordered and multiple occurrences of the same element are allowed. Lists are
delimited with angle brackets and the elements are separated by commas,
e.g. <2, 3, 2>. Our unary (variadic) +, is written as

+(<2, 3, 2>)

our unary (variadic) =, as

= (<2 · 3, 3 · 2, 6>)

and our unary (variadic) ≤, as

≤ (<2, a, 5>)

Although the order of the parameters of functions and predicates is impor-
tant in general, it is actually immaterial for two of the examples above, +
and =, because they are commutative (or symmetric). Thus, it would ac-
tually be more convenient to use a composite parameter for such functions
which built in commutativity, i.e. in which order was ignored, but multiple
occurrences of elements were retained. Such a composite object has been
invented in Artificial Intelligence: it is called a bag . (If you put two cans
of baked beans and a pound of sausages in a shopping bag, they may get
jumbled about, but no cans will disappear.) We will delimit bags by square
brackets and separate the elements by commas, e.g. [2, 3, 2]. Our unary
(variadic) +, is written as

+([2, 3, 2])

4.3.4 Representing Negation

Suppose we want to say that a sentence, sent, is unsatisfiable – has no model.
A common error is to formalize this as

#is model(sent, none) (vi)

where ‘none’ is a special object denoting non-existence. But (vi) means that
sent has a model called none!

50 Computer Modelling of Mathematical Reasoning

Suppose we had a theorem that f (false) was not deducible from a set
of axioms with a model, expressed as:

is model(Ax,M)→ ¬deducible(Ax, f)

Then substituting sent for Ax and none for M and applying modus ponens
we could deduce:

¬deducible(sent, f)

which would not be an intended consequence of (vi).
The correct way to represent the information that sent has no models is:

¬∃M is model(sent,M)

or equivalently

∀M ¬is model(sent,M)

4.3.5 The Importance of a Semantics

We have expended a lot of effort in this chapter on defining a semantics
for all our logical expressions. That is, we have given recursive definitions
of what sort of expressions are allowed and, with the aid of semantic trees,
explained what they mean. This effort was not wasted. It was this we
were relying on in the last section when we rejected a way of representing
negation, which looked plausible, but could have stored up trouble for the
future. It is this we will be using in the next chapter, when we prove that
the theorem proving processes we design will work correctly.

This ability, to judge representations and processes, is not an idle lux-
ury. The Artificial Intelligence literature abounds with plausible looking
formalisms, without a proper semantics. As soon as you depart from the
toy examples illustrated in the paper, it becomes impossible to decide how
to represent information in the formalism or whether the processes described
are reasonable or what these processes are actually doing.

Consider, for example, the beta structures of the Merlin system [Moore 73].
A beta structure is a way of describing concepts, e.g. in [Cunningham 78]
the concept ‘monkey’ is described by:

monkey : (mammal (hands 4) tail intelligent)

which we are told ‘means’, mammal further specified by (hands 4), tail and
intelligent. mammal here looks like the ‘type’ of any monkey. hands looks
like a function, which applied to a particular monkey will always return 4,
e.g. hands(jacko) = 4. tail and intelligent, on the other hand, look like
unary predicates, e.g. tail(jacko) ∧ intelligent(jacko), meaning ‘has a tail’
and ‘is intelligent’, respectively.

Also in [Cunningham 78] ape is described by

4. Miscellaneous Topics 51

ape : (mammal (tail none) intelligent (hands 4)).

Here, however, tail has started to behave like a function, e.g. tail(washoe) =
none, where none is an alias of 0.

A process of ‘matching’ is described by which new descriptions can be
generated from old ones. Matching can be achieved in several ways, in
particular, if the beta structures, (heada furthera) and (headb furtherb),
describing a and b have the same head word, i.e. heada ≡ headb, and the
further specification of b is an extension of the further specification of a then
b can be described by (a extras) where extras are the further specifications
in furtherb which are not in furthera.

This process applies to monkey and ape above, since they both have
the same head word, mammal and ((tail none) intelligent (hands 4)) is an
extension of ((hands 4) tail intelligent). The extra bit is (tail none), so
ape can be described by

#ape : (monkey (tail none)) (vii)

It is not clear whether (vii) is an intended consequence of matching.
Its obvious interpretation, that apes are a type of monkey without tails, is
strictly false in the real world, whereas the obvious interpretations of the
original descriptions are not. However, it has a metaphorical interpretation
that apes are rather like monkeys without tails, which is reasonable.

The fault of the Merlin system is that it is not clear what the intended
interpretation of the formalisms are, and while we may be able to guess one
when the concepts described are everyday objects, we may lose this ability
as things get more complicated. Worst of all we cannot judge the correct-
ness of processes like matching, because the meanings of the structures they
manipulate are unclear. As long as the meaning is left unspecified by the
authors of Merlin a user is free to choose any meaning whatever for his
descriptions: and this may prove fatal if his choice violates some implicit as-
sumptions behind the matching process, e.g. the kind of ‘mistake’ exhibited
above may be much more serious for him.

There are times when the meaning of even the toy examples given in
[Cunningham 78] elude me. I could understand

psum: (+ 3 para1 4)

as a term with dominating function +, where psum is presumably an acronym
of ‘partial sum’. However, one of the other Merlin processes returned the
‘value’ of this as

(7 para1)

and here I am at a loss. What is 7? If it is a constant then how can it be
further specified? Can it be a function or a type?

52 Computer Modelling of Mathematical Reasoning

Note that these last two beta structures overthrow all our assumptions
about what kind of thing a beta structure can be and make us look again
at the matching process above. Is it still correct? Can it withstand another
assault like this? Only a semantics could provide an answer.

4.4 Summary

This chapter has covered a variety of topics.

• We considered higher order logic, involving variable functions, pred-
icates, functionals, etc. We looked particularly at the typed lambda
calculus.

• We gave sets of axioms for: equality, groups and natural numbers.

• We gave some hints on representing mathematical knowledge, includ-
ing: whether to use functions or predicates; how to represent variadic
functions and predicates; how not to represent negation and why se-
mantics is important.

Further Reading Suggestion for Part I

We have now introduced all the mathematical logic necessary to have a for-
mal notation for describing mathematical knowledge to a computer. For fur-
ther reading in mathematical logic the reader is referred to [Mendelson 64].

Part II

Uniform Proof Procedures

53

Chapter 5

Formalizing the Notion of
Proof

• This chapter defines ‘proof’ formally and introduces clausal form and
two rules of inference: resolution and paramodulation.

• Section 5.1 defines the resolution rule of inference in easy stages.

• Section 5.2 introduces Kowalski form.

• Section 5.3 defines the paramodulation rule of inference.

Now we have developed our formal notation for expressing mathematical
knowledge we can return to the question of how it can be manipulated in
a computer program. That is, we can continue our look at procedures for
‘doing’ Mathematics. In section 2.2.4 we described a decision procedure for
identifying correct propositional arguments. But in section 3.4 we saw that
there were practical difficulties in extending this procedure to arguments
involving the internal structure of propositions. So in this chapter we develop
an alternative technique: instead of trying to show that the conclusion of
an argument is a logical consequence of its hypothesis, we will try to prove
the conclusion from the hypothesis.

In order for a computer to prove theorems it is necessary that it should
be able to represent proofs internally. So we must extend our notation for
expressing mathematical knowledge to include proofs.

Definition 5.1 A proof is a sequence of formulae, each of which is either
an axiom or follows from earlier formulae by a rule of inference.

This definition captures the idea that to prove a theorem: we start with
some axioms; apply a rule of inference to derive a lemma from these axioms;
add the lemma to the original axioms; and and continue recursively until we
arrive at the theorem we wanted. For instance,

55

56 Computer Modelling of Mathematical Reasoning

1. X=X (axiom)
2. U=V → (W =V → U=W) (axiom)
3. X=X → (W =X → X=W) (from 2. by substitution)
4. W =X → X=W (from 3. by modus ponens)

The skill of a mathematician consists in picking an appropriate rule of in-
ference and applying it in such a way that he arrives quickly at the theorem
he was trying to prove. This aspect is not covered by the definition, but it
is the main theme of the rest of this book.

The theorem proving procedures described in this book follow the follow-
ing pattern. The hypotheses, Hyp, of the theorem to be proved are added
as temporary additional axioms to those, Ax, of the theory we are working
in. A proof by contradiction is then sought, by adding the negation of the
conclusion of the theorem, Conc, as an additional temporary axiom, and
trying to prove the formula, f . If this succeeds then we have proved

Ax ∧Hyp ∧ ¬Conc→ f

which is equivalent to

Ax→ (Hyp→ Conc)

Procedures based on this pattern are called refutation systems. We will see
that refutation systems can direct the search for a proof, to some extent, by
eliminating some of the more ridiculously inappropriate steps.

In this chapter we introduce two rules of inference, for deriving new the-
orems from old: Resolution and Paramodulation. Resolution is the Sheffer
stroke of rules of inference: in a refutation system, it is the only rule of
inference that is necessary in order to find proofs to all correct arguments.
We say that resolution is complete. The proof of this, called the complete-
ness theorem, is too technical for this introductory chapter, but is given in
chapter 16. Paramodulation is introduced as an alternative to the axioms of
equality. Both rules of inference apply only to First Order Logic, i.e. vari-
able functions, variable predicates, variable functionals, etc are not allowed.
In this chapter then, and until further notice, we restrict ourselves to First
Order Logic.

Resolution and Paramodulation apply to only a restricted class of first or-
der formulae, those in clausal form. This is not a significant restriction, since
all mathematical theories and theorems can be translated into an equivalent
clausal form. Again, the proof of this is too technical for an introductory
chapter, and is relegated to chapter 15.

Clausal form is a normal form for logical formulae, in which some of the
redundancy of the representation is eliminated. The use of a normal form
for formulae, assists the computer to find proofs, by eliminating some du-
plication of effort. It helps avoid the situation where the computer develops

5. Formalizing the Notion of Proof 57

two, apparently different, but essentially identical proofs, consisting of se-
quences of pairwise equivalent formulae. The equivalent formulae translate
into the same normal form and the apparent difference between the proofs,
disappears.

Definition 5.2 Clausal Form.

A set of formulae is in clausal form iff each formula is a clause. A clause
is a disjunction of literals,

L1 ∨ ... ∨ Ln

where each literal is either a proposition or a negated proposition, e.g.

x = 0 ∨ x > 0 ∨ ¬x = 2

is a clause consisting of 3 literals, x = 0, x > 0 and ¬x = 2.

Note that clauses contain no quantifiers. Universal quantification is indi-
cated by leaving variables free. Existential quantification is indicated by the
introduction of new functions and constants called Skolem functions and
Skolem constants.

5.1 The Resolution Rule

What is this resolution rule, about which we have heard so much? Let
me start by explaining it in the simplest case, when no substitutions are
required, and then gradually deal with more complex cases until we reach
resolution in its full glory.

5.1.1 Stage 1 – Variable Free Resolution

Suppose we have two clauses, one containing the literal P and the other the
literal ¬P , where C ′ and C ′′ are the respective remaining disjoined literals.
The resolution rule enables us to deduce C ′ ∨ C ′′, i.e.

1. C ′ ∨ P
2. C ′′ ∨ ¬P
3. C ′ ∨ C ′′

1 and 2 are called the parents of the resolvant, 3. P and ¬P are called
complementary literals.

Exercise 14 Check that 3 is a logical consequence of 1 and 2, using the
techniques of section 3.4.

58 Computer Modelling of Mathematical Reasoning

It may help you verify this rule in your own mind if you rewrite 1 as ¬C ′ → P
and 2 as P → C ′′, deduce ¬C ′ → C ′′ and rewrite this to C ′ ∨ C ′′.

For any formula A, A∨ f is equivalent to A, by the semantic tree for ∨.
Hence we adopt the convention that a disjunction of no literals is equivalent
to f . In the definition of resolution above, either C ′ or C ′′ or both may
contain no literals. We say that they are empty. If both C ′ and C ′′ are
empty then we can derive the empty clause, denoted by f . This is the aim
of a refutation system, and hence having C ′ and/or C ′′ empty is a Good
Thing.

Example

The two clauses:

¬y = y ∨ ¬x = y ∨ y = x and ¬y = x

contain the complementary literals, y = x and ¬y = x, where C ′ is ¬y =
y ∨ ¬x = y and C ′′ is empty. Thus we can resolve the clauses to form:

¬y = y ∨ ¬x = y

5.1.2 Stage 2 – Binary Resolution

Now the parent clauses may not contain complementary literals, but it may
be possible to apply substitutions to each of them so that the resulting
clauses do, i.e. we may have clauses C ′ ∨P ′ and C ′′ ∨¬P ′′ such that P ′φ′ ≡
P ′′φ′′ for some φ′ and φ′′, where ≡ to means ‘is identical with’. In this
case we can deduce (C ′ ∨ C ′′)φ′φ′′. It is usual to combine φ′ and φ′′ into a
single substitution, φ. Since a major objective of resolution is to minimize
the amount of substitution going on, we will want φ to be the most general
substitution such that P ′φ ≡ P ′′φ. Fortunately, there is only one such,
most general φ (up to permutations of variables) and there is a procedure
for calculating it, given P ′ and P ′′, called unification. φ is called the most
general unifier of P ′ and P ′′. Details of the unification procedure are too
technical for this introductory chapter, and are given in chapter 17.

So the rule now is:

1. C ′ ∨ P ′
2. C ′′ ∨ ¬P ′′
3. (C ′ ∨ C ′′)φ

where φ is the most general unifier of P ′ and P ′′.

This is called the binary resolution rule.

5. Formalizing the Notion of Proof 59

Example

The two clauses:

¬U = V ∨ ¬W = V ∨ U = W and ¬y = x

contain the literals, U = W and ¬y = x, respectively, which can be made
complementary by the substitution {y/U, x/W}. Thus we can resolve them
to form:

¬y = V ∨ ¬x = V

The newly derived clause should have its variables standardized apart before
it is used as a parent of a new resolution, that is, its variables should be
given new names, e.g.

¬y = V ′ ∨ ¬x = V ′

The reason for standardizing apart is to stop spurious coincidences prevent-
ing unification, e.g. p(X) and p(X + 1) will not unify, whereas p(X) and
p(Y + 1) will.

5.1.3 Stage 3 – Full Resolution

One last wrinkle. It may be possible to eliminate, not just one, but several
literals from the parent clause, at a stroke. Suppose the parent clauses are
C ′ ∨ P ′1 ∨ ... ∨ P ′m and C ′′ ∨ ¬P ′′1 ∨ ... ∨ ¬P ′′n and φ is a most general unifier
of P ′1, ..., P

′
m, P ′′1 , ..., P

′′
n then we may deduce (C ′ ∨ C ′′)φ, i.e.

1. C ′ ∨ P ′1 ∨ ... ∨ P ′m
2. C ′′ ∨ ¬P ′′1 ∨ ... ∨ ¬P ′′n
3. (C ′ ∨ C ′′)φ

where φ is the most general unifier of all P ′s and P ′′s.

This is called the full resolution rule.

Example

Consider the two clauses:

¬U = V ∨ ¬W = V ∨ U = W and ¬y = X ∨ ¬Y = x

The first clause contains the literal U = W , and the second the literals ¬y =
X and ¬Y = x. These 3 propositions can be unified with the substitution,
{y/U, x/W, x/X, y/Y }. Thus we can resolve the two clauses to form:

¬y = V ∨ ¬x = V

Exercise 15 Apply the full resolution rule, in all possible ways, to the fol-
lowing pairs of clauses

60 Computer Modelling of Mathematical Reasoning

1. p ∨ q ∨ ¬r s ∨ ¬p
2. p(X) ∨ q(f(X)) ¬r(Y) ∨ ¬p(f(Y))
3. p(X, a) ∨ p(f(a), Y) ∨ q(X,Y) r(Z) ∨ ¬p(f(Z), Z)

NB You can apply the rule to pair 3 in three different ways.

5.1.4 Factoring

In some Resolution systems, resolution is divided into two rules: binary
resolution and factoring , i.e.

1. C ∨ P1 ∨ ... ∨ Pn

2. (C ∨ P1)φ

where φ is the most general unifier of all the P s.

This is just a special case of the substitution rule.

Example

Consider the clause:

¬y = X ∨ ¬Y = x

This contains the literals ¬y = X and ¬Y = x, which can be unified with
the substitution {x/X, y/Y }. Thus, with ¬y=X as P1, ¬Y =x as P2 and
C empty, we can factor the clause to form:

¬y = x

Everything we have to say about Resolution systems applies to both versions
– the one rule or two rule systems.

5.2 Kowalski Form

Representing clauses as disjunctions of literals is convenient for theoretical
discussions, but when we come to do actual resolution proofs (see chapter
6), a variant of clausal form due to Bob Kowalski and called Kowalski form
will be more natural.

Definition 5.3 Kowalski Form.
A clause,

¬P1 ∨ ... ∨ ¬Pm ∨Q1 ∨ ... ∨Qn

where P1, ..., Pm, Q1, ..., Qn are propositions and m and n are ≥ 0 is in the,
logically equivalent, Kowalski form, when it written as:

P1 ∧ ... ∧ Pm → Q1 ∨ ... ∨Qn

5. Formalizing the Notion of Proof 61

That is, all the unnegated literals are collected in a disjunction of proposi-
tions on the right of an implication arrow, called the consequent, and all the
negated literals are collected in a conjunction to the left of the arrow, called
the antecedent.

Some authors draw the arrow pointing to the left with the propositions
switched round, i.e.

Q1 ∨ ... ∨Qn ← P1 ∧ ... ∧ Pm

We prefer the former notation since it preserves the format of the im-
plication arrow.

The meaning of→ must be extended to deal with the cases where either
m or n is 0. When m is 0 we will interpret

→ Q1 ∨ ... ∨Qn

as meaning

Q1 ∨ ... ∨Qn

When n is 0 we will interpret

P1 ∧ ... ∧ Pm →
as meaning

¬{P1 ∧ ... ∧ Pm}
When both m and n are 0, we will interpret the empty clause, →, as f , i.e.
false.

Exercise 16 Go back to section 4.2 and check how many of the axioms are
clauses in Kowalski form.

In this form the full resolution rule is.

1. H ′ → C ′ ∨ P ′1 ∨ ... ∨ P ′m
2. H ′′ ∧ P ′′1 ∧ ... ∧ P ′′n → C ′′

3. (H ′ ∧H ′′ → C ′ ∨ C ′′)φ
where φ is the most general unifier of the P ′s and P ′′s.

To see that this rule is true note that applying φ to 1 gives a formula
equivalent to

H ′φ ∧ ¬C ′φ→ P

where P ≡ P ′iφ ≡ P ′′j φ.
Similarly, applying φ to 2 gives a formula equivalent to

P → ¬H ′′φ ∨ C ′′φ
From these we can deduce

H ′φ ∧ ¬C ′φ→ ¬H ′′φ ∨ C ′′φ
which is equivalent to 3.

62 Computer Modelling of Mathematical Reasoning

Example

Consider the two clauses:

U = V ∧W = V → U = W and y = X ∧ Y = x→

The first clause contains the proposition U = W in its consequent. and
the second the propositions y = X and Y = x in its antecedent. These
3 propositions can be unified with the substitution, {y/U, x/W, x/X, y/Y }.
Thus, with U = V ∧W = V as H ′ and C ′, H ′′ and C ′′ empty, we can resolve
the two clauses to form:

y = V ∧ x = V →

An especially important class of clauses, both because they arise so often
in practice and because simplified theoretical results apply to them are the
Horn clauses, named after Alfred Horn, who originally isolated them. These
are clauses with at most one unnegated literal, i.e those clauses in one of
the four forms:

Implication Clause
P1 ∧ ... ∧ Pn → P

Goal Clause
P1 ∧ ... ∧ Pn →

Assertion Clause
→ P

Empty Clause →

Exercise 17 Go back to section 4.2 and check how many of the axioms are
Horn clauses.

5.3 The Paramodulation Rule

We have seen in section 4.2 that the equality axioms are a common ingredient
of mathematical theories. Unfortunately, their inclusion in a set of clauses
input to a Resolution theorem prover is a source of many difficulties, one of
which is illustrated below.

Suppose that we have derived

f(a) = b→ and → c = a

and wish to substitute c for a in f(a) = b to form

f(c) = b→

5. Formalizing the Notion of Proof 63

Using the resolution rule this requires that the term, a, which is to be
replaced must be isolated in an equation of its own, which can then be
resolved with → c = a. This requires several unpacking steps: each one of
which reduces the depth of the term, followed by a re-orientation and then
the main resolution, namely

• resolving with transitivity to derive f(a) = V ∧ V = b→

• and resolving with substitution to derive a = V 2 ∧ f(V 2) = b→.

• The term is now isolated, but needs reorienting using symmetry to
V 2 = a ∧ f(V 2) = b→, before it can be resolved with → c = a.

• The resolution with→ c = a can now take place producing f(c) = b→.

Thus a lot of rather unnatural looking steps are required to effect a
rather simple substitution of equals for equals. One way round this problem
is to make the substitution of equals for equals an inference rule of logic, i.e.
to introduce a rule

1. C(T)
2. T = S

3. C(S)

where C(T) is a clause containing a term T and S is another term. This is
the simplest case of a rule we will call paramodulation.

We will encounter a further problem with the equality axioms: their
tendency to increase dramatically the branching rate of search trees. In
chapter 7 we will consider this problem and whether paramodulation offers
a solution to it.

The first wrinkle we will add to paramodulation is allow only one occur-
rence of T to be replaced by S, instead of all of them. Several occurrences
can then be replaced by repeated application. We will indicate that C con-
tains a distinguished occurrence of T by using square brackets, i.e., C[T].

The second wrinkle is to recognize that the literal defining the substitu-
tion, T=S, is unlikely to appear in a clause on its own. It may have other
disjuncts and these must be inherited by the derived clause.

The third wrinkle is to allow the substitution literal to be either way
round, i.e. either T = S or S = T . The paramodulation rule now looks like

1. C[T]
2. T = S ∨D (or S = T ∨D)

3. C[S] ∨D

Finally we will let the two occurrences of T in 1. and 2. be unifiable
rather than identical.

64 Computer Modelling of Mathematical Reasoning

1. C[T ′]
2. T = S ∨D (or S = T ∨D)

3. (C[S] ∨D)θ where θ is the most general unifier of
T ′ and T .

The paramodulation rule can be used to replace nearly all the equal-
ity axioms, that is if we allow derivations using paramodulation as well as
binary resolution and factoring then the equality axioms of symmetry, tran-
sitivity and substitution can be omitted. The only axiom we must retain is
reflexivity, X = X. In addition we must add a family of new axioms, called
the functional reflexive axioms, namely

f(x1, ..., xn) = f(x1, ..., xn)
for each n-ary function f

The functional reflexive axioms are something of an embarrassment to
researchers in theorem proving: repeated attempts to prove the complete-
ness of paramodulation + resolution without them have failed; but every-
one’s conviction is that they are really superfluous. The paramodulation
completeness proof is complicated enough even with the functional reflex-
ive axioms and we omit it (it is given in [Robinson 69]). The conviction
that completeness can be proved without these extra axioms is called the
Paramodulation conjecture. For an attempted proof of the result, now be-
lieved to be faulty, see [Richter 74].

5.4 Summary

We have defined a formal notion of proof as a sequence of formulae, starting
with axioms and continuing with theorems derived from earlier members of
the sequence by rules of inference. We have defined two such rules of infer-
ence: resolution and paramodulation. The first of these rules is sufficient to
prove all correct arguments. The proof of this is given in chapter 16. The
second is an alternative to the equality axioms.

To prove theorems by resolution, they and the axioms must be put into
clausal form. Most of the axioms of section 4.2 are already in clausal form.
A procedure for putting other formulae into clausal form is given in chapter
15.

Application of the resolution rule involves the unification of two or more
literals, i.e. the calculation of the most general substitution which unifies
the two literals to a common instantiation. A procedure for making this
calculation is given in chapter 17.

Chapter 6

Searching for a Refutation

• In this chapter we consider how to use resolution and paramodulation
to search for a refutation.

• Section 6.1 introduces the linear format for representing refutations as
paths and defines the linear and input refinements.

• Section 6.2 shows how to represent the search for a refutation as a
tree.

• Section 6.3 defines Lush Resolution.

• Section 6.4 defines subsumption and discusses loop prevention.

• Section 6.5 defines and contrasts forwards and backwards search.

• Section 6.6 discusses the difficulties with non-Horn clauses and intro-
duces case analysis and ancestor resolution.

• Section 6.7 defines various search strategies: depth first 6.7.1, breadth
first 6.7.2 and heuristic 6.7.3.

Now we have some rules of inference and some axioms, we can consider
putting them together to generate some proofs. In this chapter we will
consider the problems of getting a computer program to do this.

We will start by considering a simple resolution proof: the proof of the
symmetry axiom for = from the reflexivity axiom and a slightly twisted
version of the transitivity axiom (see section 4.2.1). The reflexivity and
twisted transitivity axioms, put in Kowalski form are:

1. → X = X
2. U = V ∧W = V → U = W

These are just as in section 4.2.1 except that the variables have been stan-
dardized apart and the second literal of the transitivity axiom has had its
parameters switched around.

65

66 Computer Modelling of Mathematical Reasoning

The conjecture we want to prove is the symmetry axiom X=Y → Y =X.
To prove a conjecture in a refutation system it must be: negated, put in
clausal form, added to the axioms, and the empty clause derived. To ensure
that the negation is done correctly, the conjecture must first have all its free
variables bound by universal quantifiers, e.g.

∀X ∀Y X=Y → Y =X

This process is called forming the closure. The conjecture can then be
negated.

¬∀X ∀Y X=Y → Y =X

To put this formula in clausal form: the negation sign must be brought
inside the universal quantifiers, changing them to existential quantifiers;

∃X ∃Y ¬{X=Y → Y =X}

the existentially bound variables, X and Y , must be replaced with new
constants, x and y, respectively;

¬{x=y → y=x}

the negation sign must be taken inside the implication arrow;

¬{¬x=y ∨ y=x}
¬¬x=y ∧ ¬y=x
x=y ∧ ¬y=x

and the formula separated into two clauses in Kowalski form.

3. → x=y and
4. y=x→

A general procedure for transforming a formula into clausal form is given
in chapter 15 together with a proof that a formula has model iff its clausal
form has a model. These give a technical justification of the above steps.

An intuitive justification is as follows. In order to prove a conjecture
of the form P → Q, we assert → P as a new axiom and set up Q → as a
goal to be proved. Free variables in conjectures, like X and Y , are regarded
as ‘typical’ objects, for which, if P is true then Q is true. In a refutation
system, such ‘typical’ objects cannot be represented by free variables, or else
there is a danger that a faulty ‘proof’ will be found. For instance, if clause
4 were

4′. Y =X →

then the empty clause could be derived by resolution with either

1. → X=X or even → 0=0

6. Searching for a Refutation 67

without reference to the other axioms. To prevent this kind of faulty ‘proof’
we must represent ‘typical’ objects by constants, but not existing constant,
like 0 or 3. We must create new constants, x and y, about which nothing is
already known. x and y are called Skolem constants after Thoralf Skolem
who first invented this device. We will adopt the convention of using the
lower case version of a existential variable when converting it into a Skolem
constant.

We are now in a position to derive a proof of the conjecture. We have
four axioms: 1, 2, 3 and 4. 4 and 2 can be resolved to form

5. y=V ′ ∧ x=V ′ →

and 3 can be resolved with this to form

6. y=y →

Finally, 1 can be resolved with 6 to form

7. →

the empty clause.
Notice how this refutation takes the result of each resolution and resolves

this in turn with one of the original clauses. We can represent this situation
with the path in figure 6.1 where the nodes are labelled with the goal clause

Figure 6.1: The Refutation as a Path

and the subsequently derived clauses and the arcs are labelled with the
numbers of the original clauses.

6.1 Following Your Nose

This kind of refutation is very natural. It models, in a simple way, the
‘mental set’ of a real mathematician who takes the original conclusion of
a conjecture and, working backwards, worries away at it with axioms and

68 Computer Modelling of Mathematical Reasoning

hypothesis. It is called Linear, Input Resolution. Linear because we keep
using the last resolvent as the parent of the next resolution and so can
represent the refutation as a linear path: we do not resolve 4 and 2 and
then, say 1 and 2 Input because we always resolve the last resolvent with
one of the original, input clauses, not with a derived clause, e.g. having
derived 6 we may resolve it with 1, 2, 3 or 4, but not with 5.

Linear, Input Resolution is an example of a refinement of full resolution.
Since it excludes various possibilities it is inherently more efficient than full
resolution, i.e. it involves less search. It is complete for sets of Horn clauses
(like those in our example), i.e. it will find a refutation if there is one.
This follows form the Horn clause completeness of Lush Resolution below.
For non-Horn clauses we must relax the Input constraint, but we can keep
the Linear one. A non-Input resolution, e.g. 6 with 5, is called ancestor
resolution, because 6 resolves with one of its ancestors higher up the path.

6.2 Representing Choice

Of course, the path in figure 6.1 is not the only possible one. Figure 6.2
is another one (which succeeds) and figure 6.3 another (which represents a

Figure 6.2: Another Refutation Path

loop).

We can fit all these paths together to make a new kind of tree, a search
tree.

Once again trees come to our aid as a descriptive device. This time to
describe the process of searching for a refutation.

Exercise 18 Represent the applications of clause 2 to clause 5 by labelling
the two unlabelled arcs in figure 6.4.

6. Searching for a Refutation 69

Figure 6.3: A Loop

Figure 6.4: A Search Tree

6.3 AND choices and OR choices

Consider the choices represented by the five way branching from clause 5 in
figure 6.4. There are really two kinds of choice packed together here:

• the choice of which literal (or in general, which group of literals) to
resolve away;

• the choice of which clause to resolve the literal away with.

If the first literal is chosen then it can be resolved away in two ways: with
1 to yield

x=y →

or with 2 to yield

y=V ′′ ∧ V ′=V ′′ ∧ x=V ′ →

If the second literal is chosen then it can be resolved away in three ways:
with 1, 2 or 3.

These two kinds of choice are essentially different.

70 Computer Modelling of Mathematical Reasoning

• The choice of literal is only a question of order: all literals must even-
tually be resolved away, we may only choose what order to do this in.
We call such a choice an AND choice, because we must first choose
one clause AND then another.

• The choice of which clause to resolve with is a genuine choice. If this
branch of the tree leads to the empty clause then the other branch
does not need to be developed. We call such a choice an OR choice,
because we may choose either one clause OR another.

AND choices are innocuous. It does not affect the completeness of Linear
Input Resolution in what order the literals of a clause are resolved away.
So we can pick an order, either at random or exercising extreme cunning,
and stick to it. This means that branch points representing AND choices
can be pruned from our search tree. The resulting tree for our running
example is given in figure 6.5. The literal selected to be resolved away next
is underlined.

Figure 6.5: A Lush Resolution Search Tree

OR choices are not innocuous. They are a (the?) major source of diffi-
culty in automatic theorem proving. We will address this difficulty in section
6.7.

Thus if our original clauses are all Horn clauses we may apply Linear
Input Resolution with the following additional restriction; that a literal be
selected from the current clause and that any resolutions between the current
clause and the input clauses must involve that selected literal. The resulting
Resolution restriction is called Lush Resolution [Hill 74]. Lush stands for
Linear Resolution with unrestricted selection function for Horn clauses. In
the case of non-Horn clauses the choice of selected literal is restricted to be
one of the most recently introduced. This restriction is called SL Resolution
[Kowalski 71]. SL stands for Selected Literal.

6. Searching for a Refutation 71

6.4 Preventing Looping

In figure 6.3 we give an example of a loop: the derivation of a clause identical
to one derived previously. There is no point continuing to develop this clause,
since it can only lead to clauses which could already have been derived from
its predecessor: we will merely be duplicating work. We will certainly want
to build a loop checker into our theorem prover, i.e. a piece of program which
detects loops and prevents them from being developed further.

In fact, we can go further than this. Suppose the clauses

y=x→ (i)

and
Y =x→ (ii)

have been derived. Now since (i) is an instantiation of (ii) anything derivable
from (i) can also be derived from (ii). Thus (i) is a kind of loop and further
derivations from it should be blocked. (i) is said to be subsumed by (ii)
and the resolution restriction of blocking further development of subsumed
clauses is called subsumption checking .

The clauses
y=x ∧ a > b→ (iii)

and
y=x→ (iv)

exhibit another kind of subsumption relationship. Any derivation of the
empty clause from (iii) can be pruned into a derivation of the empty clause
from (iv) by deleting occurrences of a > b and those resolutions required to
resolve it and its descendants away. Thus (iii) cannot produce any refuta-
tions that cannot be produced better from (iv) and further derivations from
it can be blocked without loosing completeness.

Definition 6.1 In general, a clause, C, subsumes a clause, D, if there is a
substitution θ such that

D ↔ Cθ ∨ E

For instance,

¬y=x↔ ¬(Y =x){y/Y } ∨ f
¬y=x ∨ ¬a > b↔ ¬(y=x){} ∨ ¬a > b

Subsumption checking preserves the completeness of most Resolution re-
strictions provided care is taken when the subsuming and subsumed clauses
are identical. In this case the second clause derived must be the one whose
further development is blocked or the looping may continue. Otherwise, it
does not matter whether the subsumed or subsuming clause is derived first.

72 Computer Modelling of Mathematical Reasoning

Because we have chosen to represent the process of searching for a refu-
tation with search trees, a clause which can be derived in more than one
way is represented by more than one node. If we decide to identify nodes in
the tree labelled by the same clause, then the resulting structure is called a
search graph. 1 Figure 6.6 is a graphical representation of the tree in figure
6.4.

Figure 6.6: A Search Graph

When a loop check is built into the theorem proving program the graph
representation of the search is particularly appropriate.

6.5 Choosing Where to Start

In all our example refutation paths we started with 4 as the top clause,
so this is the root of the tree in figure 6.4. Starting with 4 seemed like a
good idea. Since 4 was inherited from the conjecture, it seemed bound to
be involved in any refutation. Using it as the top clause guaranteed that we
didn’t try to make a refutation involving just 1, 2 and 3. In fact, all four
clauses are bound to be involved, so it would have been as good to start
with any one of them.

{1,2,3,4} form a minimally unsatisfiable set of clauses. That is, they are
unsatisfiable, but dropping any one of them will result in a satisfiable set.
It is not possible to derive the empty clause from a satisfiable set of clauses,
so 1, 2, 3 and 4 must all be involved in any refutation.

Suppose that the theorem prover were provided with an additional ax-
iom, e.g.

1Contrary to common expectations the branches of a wooden tree can be made to
rejoin by careful grafting. Maybe this is the origin of the term graph.

6. Searching for a Refutation 73

5. → X + 1 > X

It would not have been a good idea to use 5 as top clause, because no
other clause will resolve with it, and so the empty clause will not be derived.
Put in another way, 5 is not a member of a minimally unsatisfiable subset
of {1,2,3,4,5}. The top clause should always be chosen from a minimally
unsatisfiable set. If a minimally unsatisfiable set cannot be detected then
it is necessary to try each clause in turn as top clause. Only if all these
refutation attempts fail can we be sure that the conjecture is not a theorem.

If a minimally unsatisfiable set can be detected then we only need try
one of its members as top clause. If this refutation attempt fails then the
conjecture is not a theorem. This is called the set of support strategy.

The usual trick for choosing the top clause, is the one we used, of choosing
a clause inherited from the conjecture, e.g. 3 or 4. However, such a clause
is not guaranteed to belong to a minimally unsatisfiable set, because the
conjecture may not be theorem, or the clause we choose may not play a
role in any proof. A trick like this, which is not guaranteed to succeed, but
probably will, is called a heuristic.

Exercise 19 Draw a Lush Resolution search tree, of at least size 6, with
clause 3, → x=y, as top clause.

When a goal clause, like 4, is chosen as top clause, the resulting refutation
is called a backwards proof and the search process a backwards search,
because they start from the conclusion of the theorem and work backwards
to the axioms and hypothesis of the theorem.

When an assertion, inherited either from the theorem, like 3, or an axiom,
like 1, is used as the top clause the refutation and search process are called
a forwards proof and a forwards search, respectively.

6.6 Non-Horn Clauses, Case Analysis and Ances-
tor Resolution

To demonstrate the incompleteness of Lush Resolution when there are non-
Horn clauses, consider the following example.

1. → natural(n) ∨ non neg(n)
2. natural(n)→ non neg(n)
3. non neg(n)→ natural(n)
4. natural(n) ∧ non neg(n)→

natural(n) means n is a natural number. non neg(n) means n is a non-
negative number. The clauses can be interpreted as a request to show that
n is both a natural number and a non-negative number (clause 4) under the
assumptions that: it is either one or the other (clause 1); if it is natural

74 Computer Modelling of Mathematical Reasoning

then it is non-negative (clause 2); and if it is non-negative then it is natural
(clause 3). Clearly, this should be possible.

However, clause 1 is a non-Horn clause. Let us choose the goal clause,
4, as top clause and consider the partial refutation in figure 6.7

Figure 6.7: A Non-Horn Clause Partial Proof

Clause 7 will only resolve with input clauses 2 or 4. Resolution with 2
will result in → non neg(n), which is a loop. Resolution with 4 will result
in non neg(n)→, which is a symmetrical situation to the one we now face.
Similar situations occur on all the other branches and so the empty clause
cannot be derived.

Exercise 20 Develop the complete, Lush Resolution, search tree for clauses
1–4, using 4 as the top clause. Check that the tree is finite, but does not
contain the empty clause.

The partial refutation in figure 6.7 has several interesting features.

• Note the use of full resolution to resolve away two occurrences of
natural(n) simultaneously.

• Note also that clause 6 and 7 are not goal clauses, i.e. they have
non-empty consequents. If the top clause is a goal clause and the
input clauses are Horn clauses then this situation cannot arise. It has
happened here because of the resolution with the non-Horn clause 1.

One way to deal with the incompleteness of Lush Resolution is to allow
case analysis by splitting clause 1 into two clauses,

1a. → natural(n)
1b. → non neg(n)

and seeking two Lush Resolution refutations, one from clauses 1a, 2, 3 and
4, and one from clauses 1b, 2, 3 and 4. The resulting refutations are shown
in figure 6.8.

6. Searching for a Refutation 75

Figure 6.8: Proof by Case Analysis

An alternative technique is to relax the input restriction to allow ances-
tor resolution, i.e. the resolution of the current clause with on of its own
ancestors. This allows us to resolve clause 7 in figure 6.7 with its ancestor,
clause 5, to derive the empty clause. The result is exhibited in figure 6.9.
One way to think of this refutation is as a combination of the two case anal-

Figure 6.9: An Ancestor Resolution Refutation

ysis refutations of figure 6.8. The steps of the two case analysis refutations
are input resolutions with 2 and 1a and with 3 and 1b. Inverting the second
pair, and merging 1a and 1b to give 1, gives a sequence of resolutions with 2,
1 and 3. These are the steps of the ancestor resolution refutation. The use
of ancestor resolution in the last step can be read as the ability to assume
¬natural(n) in the second case, since the case where natural(n) has already
been dealt with in the first case.

76 Computer Modelling of Mathematical Reasoning

6.7 How to Make OR Choices

In a search tree, every node with more than one daughter represents a choice.
Following one path may lead to success (the empty clause). Following an-
other may lead to failure (only loops and non-empty clauses without daugh-
ters). How can we choose? Or rather how can we instruct our computer
programs to choose?

We could let them use random number generators – a sort of computa-
tional coin toss. The programs would then be simulating one of the ‘myste-
rious’ processes mentioned in the introduction – luck! (Certainly the easiest
of the ‘mysterious’ processes to simulate.) Or we could try to find heuristics
to guide the search, and simulate instead the remaining ‘mysterious’ pro-
cesses, of experience and intuition. Finding such heuristics is certainly the
hardest problem in automatic theorem proving!

6.7.1 Depth First Search

Let us start by following up the ideas of ‘mental set’ discussed in section 6.1.
We claimed that a natural way to search for a refutation was to take the
last clause derived and employ it as the parent of the next resolution. This
suggests a search strategy in which a path is pursued until this development
is blocked in some way: either by success, the derivation of the empty clause:
or by failure, a loop having been detected or no further resolution being
possible. In the case of failure we will then want to back-up and try some
other path. If we stick to our desire to model mental set we will want to
retreat as little as possible – only as far as the last choice point – then plunge
on down again.

The search strategy just described is called depth first search. It is
illustrated in figure 6.10. Each node is labelled with a letter indicating the
order in which it was developed. (The actual clauses are irrelevant here
and are omitted.) A cross represents some kind of failure, causing back-up.
Back-up from node F passed through nodes E and C, back to B, indicating

Figure 6.10: Depth First Search

6. Searching for a Refutation 77

that no further choices were available at E and C.
Depth first search leaves mostly unanswered the central question of auto-

matic theorem proving: how the choices are to be made. It gives no grounds
for the choice of developing C before G, but once this is made it forces the
choice of F before H. The unforced choices may be made arbitrarily or with
extreme cunning: the search will still be depth first provided two criteria
are met.

• The current path is pursued until further progress is blocked.

• Back-up is always to the latest choice point.

6.7.2 Breadth First Search

Not only does depth first search fail to settle the central question, it fails to
answer two simpler questions.

• Complete Search
How can the tree be searched so that every node is eventually reached?
In depth first search we may pursue an infinite branch indefinitely
and never back-up to the rest of the tree. Thus we may choose a
complete inference system (e.g. Linear Resolution), but still invalidate
our guarantee of being able to prove all theorems, if we then choose
an incomplete search strategy like depth first search.

• Shortest Proofs
How can the tree be searched so that the shortest refutation is found
first? In depth first search we may find a solution on one branch,
but a shorter refutation may be lurking, undiscovered, on another,
unsearched branch.

One answer to both these questions is provided by breadth first search.
In breadth first search all the nodes at depth 1 are developed first, then
all the nodes at depth 2 and so on (see the illustration in figure 6.11 in
which the labels on the nodes again illustrate the order in which they were
developed).

A breadth first search strategy develops the search tree in stages: at
stage n all nodes of depth n are developed. Since there are only a finite
number of nodes with depth n, stage n will terminate eventually, and stage
n+ 1 will commence. Hence,

• All nodes will eventually be developed. A node of depth n, will be
developed during stage n.

• The first refutation to be found will be shorter than any other. If the
length of the shortest refutation is n then it will be found at stage n
before any other refutation is found.

78 Computer Modelling of Mathematical Reasoning

Figure 6.11: Breadth First Search

These arguments confirm that breadth first search answers the questions
about complete search and shortest refutations. It also provides a partial
answer to the central question – each node is developed during stage n –
the only remaining choice is the order of development of nodes within each
stage.

Thus breadth first search provides answers to all our questions, but not
very intelligent answers. The strategy has no psychological plausibility. Peo-
ple never search for refutations like this. Besides the abandonment of ‘mental
set’ – the flipping about from one path to another – this method has huge
memory overheads. At stage n, all the nodes of depth n must be remem-
bered. The number of such nodes usually grows exponentially! For instance,
if each node has approximately 10 daughters there will be of the order of a
million nodes at depth 6. This is quite a problem for computers too. They
soon get bogged down in the memory overhead.

6.7.3 Heuristic Search

Depth first and breadth first search are both uninformed search strategies:
that is, they both search the search tree without regard to the particular
problem being solved. In this section we consider how knowledge about the
problem can be used to influence the direction of the search.

When a human is searching for a refutation he sometimes has a feeling
he is on the right track and sometimes that he is hopelessly lost. Some steps
seem to take him closer to the goal and some further from it. How can we
capture these feelings and use them to guide the search?

One simple and crude technique is to associate a number with each node
of the search tree, called its score, where the smaller the score the better
the node. Whenever we have a choice, of which node to search next, we
choose the node with the smallest score. This search strategy is called
heuristic search. It is illustrated in figure 6.12. The score of each node
is written beside it and the letters, as usual, indicate the order in which

6. Searching for a Refutation 79

Figure 6.12: Heuristic Search Tree

the nodes are developed. Lower case o, indicates a node which is open, i.e.
the undeveloped daughter of a developed node. Note that, at each stage,
the next node developed is always the open node with the lowest score. In
programming heuristic search, open nodes are usually stored on a list, called
an agenda, in increasing order of score. The node to be developed next is,
thus, the first node on the agenda.

Exercise 21 Which node should be developed next in figure 6.12?

Where do the numerical scores come from? The score is assigned to a
node by applying to it an evaluation function. The evaluation function is
heuristic. It may be general purpose or special purpose, i.e. it may be useful
for guiding the search for the refutation of any conjecture from any set of
axioms or it may exploit special properties of the domain it is used in.

Length of clause is an example of a general purpose evaluation function.
The length of a clause is the number of literals it contains. The idea of
this evaluation function is that the empty clause has length 0 and that the
shorter the clause the fewer literals have to be resolved away to derive the
empty clause – thus the shorter the better. Suppose the current clause were

y=V ′ ∧ x=V ′ →

and we can resolve the first literal with the reflexivity axiom to produce

x=y → (v)

or with the twisted transitive axiom to produce

y=V ′′ ∧ V ′=V ′′ ∧ x=V ′ → (vi)

Now clause (vi) has length 3, whereas clause (v) only has length 1 and
hence will be developed first by heuristic search. Conjectures can be found
in which this would be the correct choice and others for which it would be
the wrong choice, but on the whole it is sensible practice.

80 Computer Modelling of Mathematical Reasoning

A more elaborate evaluation function could be defined by assigning a
subscore to each literal based on its complexity and then summing these
subscores. The depth of a literal considered as an expression tree is one
simple measure of its complexity. This is sometimes called the depth of
function nesting . The depth of x=y is 1 and the depth of x+ 1=2 · y − 1
is 3, so that the score of

x=y ∧ x+ 1=2 · y − 1→

is 4.
We could get more elaborate still, by assigning different subscores to

different functions and predicates, e.g. = might rate 1, + and − might rate
1 and · might rate 2; expressing a conviction that literals containing · are
hardest to resolve away and those containing only + are easier, etc. Such an
evaluation function is special purpose because it relies, in part, on heuristics
specific to the domain of arithmetic.

To find out more about heuristic search, including what conditions must
be placed on the evaluation function to guarantee that shortest refutations
are always found first, see [Nilsson 80].

6.8 Summary

We have been considering how to search for the refutation of a theorem
by applying rules of inference to formulae in different ways. Such a search
process can be described with the aid of search trees and search graphs.

In particular, we have looked at refining resolution by only considering
refutations which obey the linear, input, selected literal or subsumption
restrictions. In the case of non-Horn clauses we saw that the input restriction
was too strong and that ancestor resolution had to be allowed. We saw that
an additional rule of inference, paramodulation, made refutations involving
equality shorter and more natural.

We also looked at various search strategies including: backwards versus
forwards search; and depth first, breadth first and heuristic search.

Further Reading Suggestions for Chapters 5 and 6

The last two chapters have only scratched the surface of the immense amount
of work on uniform proof procedures. [Chang 73] gives a more comprehen-
sive survey. [Nilsson 80] is a general introduction to Artificial Intelligence
problem solving techniques.

Chapter 7

Criticisms of Uniform Proof
Procedures

• This chapter reviews and evaluates the contribution of resolution type
proof procedures to mathematical reasoning.

• Section 7.1 lists the ways in which mathematical logic has contributed
to mathematical reasoning.

• Section 7.2 uses a group theory example to illustrate the combinatorial
explosion.

• Section 7.3 describes various uniform techniques for avoiding or over-
coming the combinatorial explosion, including a discussion of whether
additional rules of inference, e.g. paramodulation, reduce the amount
of search (7.3.1), and a discussion of ways of disguising how bad things
are (7.3.2).

• Section 7.4 begins a discussion non-uniform guidance techniques, start-
ing with an analysis of a human proof of the group theory example.

• Section 7.5 formalizes the knowledge used in the human proof.

• Section 7.6 generalizes the last two sections into a new methodology
for mathematical reasoning.

The previous chapters have described some of the work done in ‘Au-
tomatic Theorem Proving’ during the 1960s, especially the resolution and
paramodulation rules of inference and the formalization of mathematical
knowledge using the Predicate Calculus. The time has now come to take
stock: to consider how effective these techniques are in enabling us to build
artificial mathematicians; and to present some of the criticisms of such ‘uni-
form proof techniques’ levelled by other workers in Artificial Intelligence.

81

82 Computer Modelling of Mathematical Reasoning

7.1 The Contribution of Logic

Automatic Theorem Proving was based on the solid foundation of earlier
work in Mathematical Logic. This is not surprising: both fields had similar
aims. Mathematical Logic was concerned to justify mathematical activity,
that is to analyse and explain the existing proofs of Mathematics; relating
fields together, discovering and correcting inconsistencies and omissions etc.
Automatic Theorem Proving was concerned to explain how proofs could be
discovered in the first place. Though similar, these aims are different, and
we cannot expect that Logic should provide all the answers, or even that
it should suggest the right approach, to the problem of explaining proof
discovery.

Let us start by listing what I take to be the major contributions of
Mathematical Logic to Automatic Theorem Proving.

1. The notation of Logic (see chapters 2, 3 and 4) gives us a precise lan-
guage, suitable for describing mathematical knowledge to a computer.

2. The semantics of this language. This enables us to relate the notation
to actual pieces of mathematics and to eliminate faulty representations
(see especially section 4.3).

3. The definition of a proof as a sequence of applications of rules of in-
ference to axioms or previously proved theorems. This enables us to
be precise about what we are hoping to discover. Before the advent of
Logic a proof was any convincing argument.

4. Hilbert’s claim that any mathematical activity can be regarded as
finding proofs in some formal system. For instance, equation solving
can be regarded as theorem proving where our main interest is in the
substitutions for variables on route. This gives theorem proving a
central role in mathematical reasoning.

5. The standard axiomatizations of many mathematical theories. In sec-
tion 4.2 we gave the axiomatizations of equality, groups and arithmetic
and used some of these axioms to demonstrate the workings of the res-
olution and paramodulation rules.

We will see that the value of these contributions diminishes as we move
down the list. Numbers 4 and 5 are especially suspect and two major themes
of the chapters ahead will be: the investigation of areas of mathematical
reasoning other than theorem proving; and the provision of non-standard
axiomatic theories.

However, they have provided a useful first approximation to a solution.
They have enabled us to design theorem proving systems and prove ele-
mentary theorems artificially. To improve on this and move on to a second

7. Criticisms of Uniform Proof Procedures 83

approximation we must turn our attention to an actual resolution proof
attempt and see in what ways it goes wrong.

7.2 A Resolution Proof and the Combinatorial Ex-
plosion

Consider the theorem in group theory that

Every group of exponent 2 is abelian.

This problem can be formalised in a way suitable for solution by a Resolution
theorem prover by taking the clausal form of

(a) the axioms of equality,

(b) the remaining axioms of group theory,

(c) the axiom, X ◦X = e,

(d) and the negation of the commutativity axiom, A ◦B = B ◦A. (This is
the goal clause, a ◦ b = b ◦ a→.)

and trying to derive the empty clause from them using the resolution rule.

The complete set of clauses is:

1. → X1=X1.
2. X2=Y 2→ Y 2=X2.
3. X3=Y 3 ∧ Y 3=Z3→ X3=Z3.
4. X4=Y 4 ∧ Z4=W4→ X4 ◦ Z4=Y 4 ◦W4.
5. X5=Y 5→ i(X5)= i(Y 5).
6. → X6=e ◦X6
7. → X7=X7 ◦ e.
8. → e=X8 ◦ i(X8)
9. → e= i(X9) ◦X9.
10. → X10 ◦ (Y 10 ◦ Z10)=(X10 ◦ Y 10) ◦ Z10.
11. → X ◦X=e.
12. a ◦ b=b ◦ a→ .

The empty clause can be derived from these clauses after 42 resolutions
starting with number 12 as the top clause. In figure 7.1 we give the very
beginning of the search tree generated by Lush Resolution.

From this it can be seen that the search tree rapidly grows as the depth
increases. In fact, the average number of daughters per parent, or the
branching rate, is 3. At this stage only the equality axioms are applicable.
Later on some of the group theory axioms get a look in and the branching
rate goes up.

84 Computer Modelling of Mathematical Reasoning

a◦b=b◦a→

b◦a = a◦b →

2.

a◦b=X ∧ X=b◦a →

3.

a=b ∧ b=a →

4.

a◦b=b◦a →
loop

2.

b◦a=X ∧ X=a◦b → b=a ∧ a=b →

3. 4.

a◦b=b◦a →
loop

a◦b=X ∧ b◦a=X →

1.

2.

a◦b=X ∧ X=Y ∧ Y=b◦a →

3. a◦b=Y◦Z ∧ Y=b ∧ Z=a →

4.

a=b → a=b ∧ b=X ∧ X=a →

2. 3.

Figure 7.1: Lush Resolution Search Tree to Depth 2

Even with this, rather conservative, estimate of a branching rate of 3,
there will be 342 nodes at depth 42, where the first empty clause can be
found. This is a very big number! It is of the order of 1021. That number
of clauses could not be stored in any one of todays digital computers, so a
breadth first search strategy is obviously out of the question. A depth first
or a heuristic search is feasible, but is unlikely to find the proof unless it
receives very cunning guidance. There are too many losing choices available.
This rapid growth of the size of the search tree with the depth is called the
combinatorial explosion. It is a stick with which to beat uniform proof
procedures.

This particular theorem has a special place in my heart. When I first got
the opportunity to feed theorems to an automatic theorem prover this was
the theorem I fed. It seemed about the right level of difficulty. Not trivial,
but easy enough to be the sort of theorem to give to beginning students
of group theory. Imagine my surprise when the Lush Resolution theorem
prover I was using had found no proof after 3/4 hour (I turned it off to put
it out of its misery). I printed out the partial search tree to see what had
gone wrong. All the steps were perfectly legal, but that was about all you
could say for them! It was clear that without guidance the theorem prover
would do the most amazingly silly things.

My experience is pretty standard. An unguided theorem prover can
prove trivial theorems by sheer brute strength, but collapses under the
weight of anything the least bit difficult. It is hard to imagine, in advance,
what silly things it might try to do. We humans tend to be so prejudiced in
favour of the proof we know is in there, that we overlook most of the blind
alleys.

7. Criticisms of Uniform Proof Procedures 85

Let us look at some of the silly things which are going on even in the
little bit of search tree in figure 7.1.

• The path marked in heavy type consists of repeated applications of
the transitivity axiom. The effect of these is to break equations into
two, inserting a new variable in the openings thus created. We saw
in section 5.3 that such a move is occasionally essential. However,
repeated applications to no purpose are silly. They create a situation
a little like looping, but which, unfortunately, cannot be picked up by
a conventional subsumption check.

• The application of clause 4 to the top clause creates the goals a = b
and b = a. These are certainly unprovable, since a and b are arbitrary,
and hence unequal, constants. It is silly to pursue this branch any
longer. (In chapter 10 we will describe a mechanism for automatically
pruning such branches.)

7.3 Attempts to Guide Search

Clearly, a theorem prover which is going to tackle non-trivial theorems needs
some guidance. A variety of techniques have been explored for providing
such guidance. Let us look at some.

The most common way is to introduce some completeness preserving
restriction to basic resolution. We have already seen some of these: the
Linear and Input restrictions and the selection of literals; the use of set of
support and the deletion of subsumed clauses. In fact we employed all of
these in the search tree of figure 7.1 and still ran into trouble.

Another technique is to expand the inference system in the hope of find-
ing shorter proofs or of decreasing the branching rate by being able to delete
axioms. The introduction of the paramodulation rule was such an expansion.
Let us see what effect its introduction has on our group theory example.

7.3.1 Paramodulation

The use of paramodulation telescopes our 42 step resolution proof into a 10
step proof. This is because, as shown in section 5.3, several resolution steps
are required to make an equality substitution, and these steps collapse into
one paramodulation step. The actual paramodulation plus resolution proof
is given in figure 7.2.

A reduction from 42 steps to 10 steps is very good news and encourages
us to think that the the automatic proof of the theorem may now be within
the grasp of an automatic theorem prover.

The bad news is that the branching rate is also dramatically increased
from about 3 to about 12! So we have gone from a deep thin tree to a

86 Computer Modelling of Mathematical Reasoning

shallow bushy tree. Since 1210 is less than 342, this seems like it might be
an improvement, however the branching rates of 3 and 12 were only very
crude estimates so we cannot be sure without a more careful analysis and
we certainly cannot deduce anything about the general case from this. And
1210 is still a very big number.

There is a marked improvement in the naturalness and readability of the
paramodulation proof and this is a positive step. It makes it much easier
to bring to bear our intuitions about how the proof should be guided if the
theorem prover is making steps comparable to our own.

7.3.2 Cheating Techniques

All the above methods are uniform ones: that is, they can be used when
trying to prove any theorem from any set of axioms. They do not rely on
any domain dependant proof techniques. Uniform methods are generally
regarded as having failed. New inference systems, either restrictions or
extensions, may offer some slight improvement, may bring another trivial
theorem within reach, but they do not substantially affect the situation.

Nevertheless there is always someone, who after enormous effort locating
and stamping out some source of inefficiency, believes that his new system
offers a panacea. In the literature one may find glowing reports of such inno-
vations. The inadequacies of such systems are easy to overlook or (horrors!)
to coverup. The reports of successful experiments with the new system may
not always be what they seem!

To forearm you against possible misrepresentations, either deliberate or
unintentional, (and, as an unwitting side effect, to show you how to cheat
yourself) we record below some of the most common cheating techniques.

• Displaying only proofs obtained by the system and not the search tree
generated in the process. As we have seen above, it is often possible
to trade a deep narrow tree for a short wide tree, but this is not
automatically an improvement.

• Feeding to the theorem prover only those axioms known to be required
in the proof. Irrelevant axioms can dramatically increase the size of
the search tree.

• Generating only that part of the search tree which lies within some
arbitrary limits, but which is known to include the proof. Typically,
the sought proof is examined to see: how long it is; what the maximum
depth of function nesting is and what the maximum length of clauses
is: and then the tree is only searched within those limits.

• Of course, if such techniques are applied uniformly and without pre-
examination of the sought proof then they are legitimate (although

7. Criticisms of Uniform Proof Procedures 87

they will always lose completeness). One could imagine, for instance,
such a technique being proposed as a psychological theory of the mem-
ory limitations of human mathematicians.

• The program implementing the new system, may be rejigged for each
new proof by a variety of other techniques, e.g. changing the criteria
by which literals are selected and clauses chosen.

We would not want to suggest that these techniques are peculiar to
Automatic Theorem Proving. Their analogues can be found in all areas of
Artificial Intelligence and, one gathers, in most other branches of Science.

So if uniform methods have failed, what are we to do?

7.4 Analysing Human Proofs

One way forward is to turn our attention to the way in which humans go
about solving problems. Experienced human mathematicians prove theo-
rems, like our group theory example, which appear to involve huge combi-
natorial explosions. How do they do it? In particular, I found a proof of
that group theory example, which was 42 resolutions long. How did I do it?

Well I did not start from the statement of the problem as a set of 12
clauses and then resolve away. I started from my statement given in section
7.2 above, namely

Every group of exponent 2 is abelian.

This description of the problem uses a different language from that of the
standard axiomatization of group theory – it suggests a different axiomati-
zation. An axiomatization, perhaps, in which the the search tree is not so
big?

Abelianness (or commutativity) is a significant concept in group theory,
related, in my mind, to other concepts like commutators and commutator
subgroups.

Definition 7.1 If G is group, a commutator is a term i(A) ◦ i(B) ◦ A ◦ B
where A and B are in G.

The commutator subgroup, G′, of G is generated by {i(A) ◦ i(B) ◦A ◦B
for all A and B in G}.

The link between these concepts is a theorem that

G is abelian iff G′ is trivial, i.e. G′ = {e}

This theorem in turn is related to a common technique for proving a group
abelian, namely to show that G′ is trivial by proving

i(a) ◦ i(b) ◦ a ◦ b = e for typical elements a and b in G

88 Computer Modelling of Mathematical Reasoning

The ‘commonness’ of this technique was a piece of guidance information
which caused me to select it as the technique to try first.

Not all groups are abelian, so clearly the idempotency of G must be used
(more guidance information). Idempotency is another important concept in
group theory and is also related to other key concepts and theorems, in this
case the key concept is that of inverse and the key theorem that

Every element of a group of exponent 2 is its own inverse,

i.e. X = i(X) for all X in G. If we use this theorem our goal is to prove
that:

a ◦ b ◦ a ◦ b = e for typical elements a and b in G

Now comes the only hard part of the proof, noticing that the idempotency
of G can be used again on the element a ◦ b.

a ◦ b ◦ a ◦ b = (a ◦ b) ◦ (a ◦ b) = e

Now we have a proof, but can we translate it into a resolution proof from
the clauses 1-12? To do this we must recover the elementary proof that

G is abelian if G′ is trivial

and modify it.
The standard proof of this result is:

a ◦ b = e ◦ a ◦ b
= b ◦ i(b) ◦ a ◦ b
= b ◦ e ◦ i(b) ◦ a ◦ b
= b ◦ a ◦ i(a) ◦ i(b) ◦ a ◦ b
= b ◦ a ◦ e
= b ◦ a

Our proof above involved substituting a and b for i(a) and i(b). Doing this
yields:

a ◦ b = e ◦ a ◦ b
= b ◦ b ◦ a ◦ b
= b ◦ e ◦ b ◦ a ◦ b
= b ◦ a ◦ a ◦ b ◦ a ◦ b
= b ◦ a ◦ e
= b ◦ a

It was fairly straightforward to transform this proof into the 10 step
paramodulation proof. The trickiest bit was locating the implicit applica-
tions of associativity and inserting applications of clause 10. Then, the
42 step resolution proof was constructed by a laborious replacement of
paramodulation steps by applications of equality axioms.

What can we learn from this exercise?

7. Criticisms of Uniform Proof Procedures 89

• That we should look at alternative axiomatizations of mathematical
theories, which utilize a language closer to the one with which we
ourselves describe the problem. It may be that the search tree in this
new axiomatization is smaller. But even if it is not, it will certainly be
easier to express our intuitions about guiding search in such a language.

• That guidance information is available, given a language to express it
in. We saw: an example where this information was domain specific,
concerning common techniques for proving that a group is abelian;
and an example which was more general purpose, that one should try
to use all the hypotheses of the theorem.

7.5 Alternative Axiomatization

Can we use logical notation to formalize the reasoning described in the
previous section? What would that look like?

The theorem on which the whole proof was based was:

G is abelian iff G′ is trivial

Clearly this is a double implication between two propositions the predi-
cates of which are ‘abelian’ and ‘trivial’. We will also want to represent
the relationship between G and G′. Since G′, the commutator subgroup,
is uniquely determined by G, we should represent the relationship with a
function, ‘commutator subgroup’. So the theorem can be formalized as:

abelian(G)↔ trivial(commutator subgroup(G)).

Our original statement also contained a definition of ‘trivial’

i.e. G′ = {e}.

Again this can be represented as a double implication between
trivial(G′) and G′ = {e} Actually there is a catch. Each group, G, has
a different identity element, so e should be replaced by e(G). But this has
repercussions. ‘trivial’ is not such a trivial concept as it at first appeared
– it is dependant on a particular e and therefore on a particular group. It
should have G as an additional parameter. Thus the axiomatization so far
is:

abelian(G)↔ trivial(commutator subgroup(G), G) (i)

trivial(G′, G)↔ G′ = {e(G)}

We also gave a definition of commutator subgroup above, as consisting of
all commutators of a group. Can we formalize this? We will need to discuss
the typical element of the commutator subgroup and how it relates to two
typical elements of the group. For this we will want some functions, el and
el′, which take a group as parameter and represent typical elements of that
group. The definition of commutator subgroup can then be represented as:

90 Computer Modelling of Mathematical Reasoning

el(commutator subgroup(G))
= i(el(G)) ◦ i(el′(G)) ◦ el(G) ◦ el′(G)

el(G) and el′(G) are rather like skolem functions. We know nothing about
their values other than that they are elements of the group G.

Converting what we have so far into clausal form results in the clauses

1. trivial(commutator subgroup(G1), G1)→ abelian(G1)
2. abelian(G2)→ trivial(commutator subgroup(G2), G2)
3. G3′ = {e(G3)} → trivial(G3′, G3)
4. trivial(G4′, G4)→ G4′ = {e(G4)}
5. → el(commutator subgroup(G5)) =

i(el(G5)) ◦ i(el′(G5)) ◦ el(G5) ◦ el′(G5)

To this we may add our conjecture

Every group of exponent 2 is abelian

negated and put in clausal form

6. → exponent(g, 2)
7. abelian(g)→

Now taking 7 as top clause we can resolve it with 1 to form

8. trivial(commutator subgroup(g), g)→

and this with 3 to form

9. commutator subgroup(g) = {e(g)} →

At this stage we are stuck. We would like to combine 9 in some way
with 5, but no resolutions or paramodulations are possible. There is a gap.
If we consult the proof we are modelling we will see that the gap is filled by
the knowledge that to show a group consists of one individual, show that a
typical element of it is that individual, i.e.

10. el(G10) = X10→ G10 = {X10}

Now 10 resolves with 9 to give

11. el(commutator subgroup(g)) = e(g)→

and 11 paramodulates into 5 to give

12. i(el(g)) ◦ i(el′(g)) ◦ el(g) ◦ el′(g) = e(g)→

Exercise 22 Continue in this way representing the knowledge used in the
proof, converting it into clausal form and trying to form a proof by resolution
and paramodulation. Did you uncover any gaps? Can you fill them?

7. Criticisms of Uniform Proof Procedures 91

But this was not the only type of reasoning going on as we made the
proof. Most of the time was spent discussing the theorems available. We
said that (i) above was a theorem

→ theorem((i)).

We said (i) was a common technique for proving the abelianness of groups

→ common technique((i), abelianness)

We gave a standard proof of (i)

→ proof((i),a ◦ b = e ◦ a ◦ b = = b ◦ a)

Whenever we pop up a level like this and start discussing and reasoning
about the level below, it is called meta-level reasoning. The lower level is
called the object-level. In chapter 12 we will discuss meta-level reasoning
and how it can induce and guide a proof at the object-level.

7.6 A New Methodology

Subsequent chapters of this book will elaborate this second approximation to
the automation of mathematical reasoning: we will describe some attempts
to apply the methodology of the last two sections, namely to analyse the
proofs of experienced human mathematicians and to try and formalize what
we see there.

Thus, instead of trying to describe uniform, domain independent tech-
niques for guiding search – techniques which are derived from work in Math-
ematical Logic and which have failed to produce successful theorem provers
– we will seek guidance techniques in actual proofs and then try to generalize
these.

In rejecting the uniform proof procedure methodology of the 1960s we
must be careful not to throw out the baby with the bath water. Resolution
theorem provers gained us a number of advances.

• They enabled us to specify a problem and the axioms from which its
solution must be built without having to specify the solution itself.

• This was achieved with the aid of a language for the representation of
knowledge, a semantics for defining the meaning of this language and
a definition of proof.

• They contributed a number of procedures for manipulating this lan-
guage - especially pattern matching procedures for applying the ax-
ioms to the problem and search techniques to enable the computer to
change its mind and attempt a different solution.

92 Computer Modelling of Mathematical Reasoning

• Occasionally we were able to prove theorems about our procedures,
e.g. that they were sound or complete. When we can do it, this is
a good trick. It is often a great help in correcting or improving our
procedures. However, there is a danger here, of which we should be-
ware, of designing procedures we can prove theorems about, rather
than ones which are successful.

The principle deficiency of uniform proof procedures was the lack of a
way of guiding the search. Control knobs were provided whereby the search
could be directed. These were the selection of which literal to resolve away
and the choice of which clause to resolve it with. But almost no advice was
provided about how these control knobs were to be twiddled. Worst of all
the control knobs were not designed to meet the needs of people who knew
how they wanted the search to be directed. They were not designed at all,
but emerged as a by-product of the construction of the theorem provers.

We will want to see what sort of control advice emerges from our analyses
so that we can design the search control knobs ergonomically.

7.7 Summary

In this chapter we have seen that uniform proof procedures, like SL Resolu-
tion, are inadequate to prove non-trivial theorems. General purpose search
guiding and pruning techniques have only a minor effect on curbing the com-
binatorial explosion. If we are build expert artificial mathematicians, then
we must use domain specific guidance information. A useful source of such
information is the analysis of human generated proofs. The results of this
methodology are the subject of part III of this book.

7. Criticisms of Uniform Proof Procedures 93

Figure 7.2: A Paramodulation and Resolution Proof

94 Computer Modelling of Mathematical Reasoning

Part III

Guiding Search

95

Chapter 8

Decision Procedures for
Inequalities

• This chapter describes decision procedures for some simple theories
involving inequalities.

• Section 8.1 gives axioms for inequalities.

• Section 8.2 analyses some human proofs of inequality theorems.

• Section 8.3 clarifies the operations on types which occur in these proofs.

• Section 8.4 describes the Sup-Inf decision procedure. The various sub-
sections and sub-sub-sections describe its various sub-procedures and
sub-sub-procedures.

• Section 8.5 describes an extension to the Sup-Inf procedure, and dis-
cusses some other decision procedures.

In this chapter we adopt our new methodology; analysing the proofs of
experienced mathematicians and trying to formalize what we see there. We
begin with reasoning about inequalities between numbers.

8.1 Axioms for Inequalities

Some of the axioms for inequalities are closely analogous to those for equality.
For instance, the analogues of reflexivity, transitivity and substitution for ≤
are:

Reflexivity: → X ≤ X
Transitivity: X ≤ Y ∧ Y ≤ Z → X ≤ Z
Substitution: X ≤ Y ∧ Z ≤W → X + Z ≤ Y +W

X ≤ Y ∧W ≤ Z → X − Z ≤ Y −W
etc

97

98 Computer Modelling of Mathematical Reasoning

There is, of course, no analogue for symmetry. Note the twist in the substi-
tution axiom for subtraction. The versions for multiplication and division
are even worse, and there are no versions at all for some functions. Of
course, the existence or non-existence of substitution axioms for a function
depends on its monotonicity with respect to each of its parameters, e.g. +
is monotonically increasing on both its parameters and − is monotonically
increasing on its first and decreasing on its second parameter.

There are analogues of reflexivity, transitivity and substitution for ≥,
and analogues of transitivity and substitution (but not reflexivity) for <
and >. There are also hybrid versions of transitivity and substitution like:

Hybrid Transitivity: X ≤ Y ∧ Y < Z → X < Z
Hybrid Substitution: X < Y ∧ Z ≤W → X + Z < Y +W

But these variants are not necessary if <, ≥ and > are defined in terms of
≤, i.e.

Less Than: X < Y ↔ (X ≤ Y ∧ ¬X = Y)
Greater Than or Equal: X ≥ Y ↔ Y ≤ X
Greater Than: X > Y ↔ (Y ≤ X ∧ ¬Y = X)

We also need an axiom to show that any two numbers are comparable,
that is one is less than or equal to the other. Or in other words that the
numbers are totally ordered by ≤.

Total Order: → X ≤ Y ∨ Y ≤ X

Note that this axiom is a non-Horn clause, and often gives rise to arguments
by cases.

The axioms given so far are true for natural, integer, rational or real
numbers, but there are some additional special axioms which only hold for
each kind of number. For instance, if the numbers are known to be naturals
or integers then the order induced by ≤ is discrete and we have a more
specific definition of < , namely

Discrete: X < Y ↔ X + 1 ≤ Y

If the numbers are naturals then 0 is a lower bound, i.e.

Lower Bound: → 0 ≤ X

The order induced by ≤ and < on the rationals and reals is a dense order;
between any two numbers we can always find a third. The axiom which
expresses this property is called interpolation.

Interpolation: X < Y ↔ ∃Z (X < Z ∧ Z < Y)

The Discrete axiom above is very useful for eliminating < in terms of ≤.
Unfortunately, it is not available for reals and rationals. To make up this
difficiency we will introduce a special infinitesimal number, ε, and the axiom

8. Decision Procedures for Inequalities 99

Pseudo Discrete: X < Y ↔ X + ε ≤ Y

An infinitesimal number is one which is smaller than any positive real num-
ber, but bigger than 0. The use of infinitesimals in analysis has recently
been made respectable, by Abraham Robinson and others, but we will not
be using them in a serious way, we will only use ε to keep track of which in-
equalities are strict and which non-strict. Similarly, we will use the numbers
±∞ in a non-serious way to keep track of terms which are unbounded.

Recalling the explosive properties of equality, exhibited in chapter 7, and
the close analogies between the axioms for inequality and equality, it is clear
that the above inequality axioms would also be very explosive if applied in
an exhaustive way by a uniform proof procedure.

8.2 Some Human Proofs

Human proofs of theorems involving inequalities rarely involve the explicit
application of these axioms. Consider the following example.

If X is a natural number then show that,
5 ·X < 11→ 7 ·X < 16

A ‘natural’ way to prove this conjecture is to assume 5 · X < 11 and
to deduce 7 · X < 16 as a consequence. Of course, X is a typical natural
number and we are not allowed to substitute for it. This much of the proof
is modelled nicely by Resolution; we negate the conjecture and put it in
clausal form to get

→ 5 ·X < 11
7 ·X < 16→

Note that the hypothesis is an assertion and the conclusion is a goal clause.
The variable X has been translated into a Skolem constant, where it can be
interpreted as a ‘typical number’.

An obvious consequence of the hypothesis is that X is less than or equal
to 2, since if it were 3 or greater then 5 ·X would be 15 or greater, which is
not less than 11. Hence the maximum value that 7 ·X can take is 14, which
is less than 16, QED.

This part of the proof seems to reason by assigning a type to X, i.e.
establishing that X lies within some set of numbers. In this case X is
assigned the type {0,1,2}, that is, X is known to be either 0 or 1 or 2. The
proof then proceeds to reason about the upper bound of this type, i.e. to
reason that X is less than or equal to 2.

Here is another example. If a, b and X are real numbers then prove that:

a ≤ 2 ∧ 2 ≤ b→ ∃X(0 ≤ X ∧X ≤ 5 ∧ a ≤ X)

100 Computer Modelling of Mathematical Reasoning

Once again we assert the hypothesis and deduce the conclusion, a process
which can be modelled by negating the conjecture and deriving the clauses:

→ a ≤ 2
→ 2 ≤ b
0 ≤ X ∧X ≤ 5 ∧ a ≤ X →

The goal is to find an X which lies between the maximum of 0 and a,
at one extreme, and 5 at the other. By the interpolation axiom, we know
this can be done provided the maximum of 0 and a is less than or equal to
5. There are two cases to consider, when 0 is the maximum and when a is
the maximum. If 0 is the maximum then we are finished since 0 ≤ 5. If a is
the maximum then, since a cannot be greater than 2 and 2 ≤ 5 then a ≤ 5
and this case is also proved. Note that the hypothesis, → 2 ≤ b is not used
in the proof.

Again the proof uses types. It tries to show that X can be assigned a
non-empty type, i.e. one with a lower bound less than or equal to its upper
bound. To prove this it deduces a type for a and reasons about the upper
bound of this type.

8.3 Types

The traditional method of representing the types of real numbers is as a pair
of numbers, the upper and lower bounds, using square or round brackets
according to whether the number can or cannot equal the bounds. For
instance, the type of the constant a at the start of the above proof is (−∞, 2],
which means that −∞ < a∧ a ≤ 2. In the case that 0 was a maximum this
changed to (−∞, 0], meaning −∞ < a ∧ a ≤ 0, and in the case that a was
a maximum it changed to [0,2].

We can summarize the techniques which arose in these examples as fol-
lows:

• The assignment and/or updating of a type to constants or variables.

• The use of upper or lower bounds of these types to settle questions.

• The elimination of variables by translating questions about variables
into questions about the legality of their types.

These type manipulation techniques offer an efficient alternative to reso-
lution with inequality axioms for proving many conjectures about inequali-
ties. Such conjectures frequently arise as subproblems when reasoning about
algebra, analysis and computer programs, for instance. Type manipulation
techniques have been used extensively by Woody Bledsoe and his co-workers
when building theorem provers for these areas (see [Bledsoe 77]). Bledsoe’s

8. Decision Procedures for Inequalities 101

techniques have matured over the years, becoming more powerful and effi-
cient, but also less intuitive. The rest of this chapter is devoted to a mature
technique, the Sup-Inf Method.

8.4 The Sup-Inf Method

The Sup-Inf Method is a decision procedure for an area of real number
arithmetic. A slightly modified version is also applicable to natural num-
ber and integer arithmetic. In fact, it was originally developed for natural
numbers [Bledsoe 74], but does not constitute a decision procedure for the
corresponding area of natural number arithmetic. The whole of real number
arithmetic is known to be undecidable. A decidable subpart can be carved
out by allowing only the additive functions, i.e. by excluding multiplication,
exponentiation, etc.

8.4.1 Bledsoe Real Arithmetic

A more precise definition of this decidable area, which we will call Bledsoe
Real Arithmetic, is given below.

• Constants: all real numbers, e.g. 3.141....

• Functions: + and −, but we will adopt multiplication by a natu-
ral number as an abbreviation for repeated addition, e.g. 3 · x is an
abbreviation for x+ x+ x.

• Predicates: ≤ , < , ≥, > and =.

• Formulae: Built from the above in the normal way, but using only
universal quantifiers and only at the top level.

• Axioms: The equality axioms plus the inequality axioms for real
numbers listed in section 8.1 above.

By substituting integers or natural numbers for reals in the first clause of
the above definition we can define the similar theories of Bledsoe Integer
Arithmetic and Bledsoe Natural Arithmetic. The formula

∀Y ∀Z (5 · Z ≥ 2 · Y + 3 ∧ Z ≤ X − Y ∧ ¬3 ·X = 5→ 2 · Y + 1 < 3) (i)

is a formula of all three theories.

8.4.2 An Overview of the Method

The idea of the Sup-Inf method is to show that the negation of a conjecture
is unsatisfiable because one of its constants cannot be assigned a type. As in
Resolution, the negated conjecture is put through a series of normal forms,

102 Computer Modelling of Mathematical Reasoning

the last of which assigns a type to each Skolem constant. We finish by
showing that one of these types has a lower bound greater than its upper
bound. The series of normal forms is outlined below.

(a) Let C be a conjecture.

(b) Form its universal closure C ′.

(c) Negate C ′ and bring the ¬ sign inside the universal quantifiers, turning
them into existential quantifiers, by repeatedly replacing formulae of
the form ¬∀XA by ∃X ¬A.

(d) Replace the existentially quantified variables with Skolem constants, i.e.
replace ∃X A(X) by A(x), to form a variable free formula, C ′′.

(e) Put C ′′ in disjunctive normal form, i.e. transform it into a disjunction

D1 ∨ ... ∨Dn

where each disjunct, Di, is a conjunction

Li1 ∧ ... ∧ Lim

of literals.

(f) Eliminate any literal Lij which contains no Skolem constants, by arith-
metic evaluation.

(g) Manipulate each Di into a disjunction of pairs of inequalities of the form

k ≤ x ∧ x ≤ l − ε

say, one pair for each Skolem constant x, where k and l are real num-
bers or ±∞.

To prove the conjecture, C, we must show that each Di is contradictory. We
do this by showing that some Lij is false at step (f) above or that there is
an x such that ¬k < l, i.e. x cannot be assigned a type at step (g).

The first four steps of the above outline are the same as those for Res-
olution described in chapter 5, and disjunctive normal form is a dual of
clausal form, described fully in chapter 15, so we will skip quickly over these
steps with an example and concentrate our attention on the last one, the
manipulation of the Dis to find the types of the Skolem constants.

As an example consider the conjecture (i) above. After universal closure
this becomes:

∀X ∀Y ∀Z (5 · Z ≥ 2 · Y + 3 ∧ Z ≤ X − Y ∧ ¬3.X = 5→
2 · Y + 1 < 3)

8. Decision Procedures for Inequalities 103

Negating this and bringing the negation sign inside the universal quantifiers
gives:

∃X ∃Y ∃Z ¬(5 ·Z ≥ 2 ·Y +3∧Z ≤ X−Y ∧¬3 ·X = 5→ 2 ·Y +1 < 3) (ii)

Replacing the existentially quantified variables with Skolem constants gives:

¬(5 · z ≥ 2 · y + 3 ∧ z ≤ x− y ∧ ¬3 · x = 5→ 2 · y + 1 < 3)

Putting this in disjunctive normal form yields the following sequence of
steps:

¬[¬(5 · z ≥ 2 · y + 3 ∧ z ≤ x− y ∧ ¬3 · x = 5) ∨ 2 · y + 1 < 3]
¬¬(5 · z ≥ 2 · y + 3 ∧ z ≤ x− y ∧ ¬3 · x = 5) ∧ ¬2 · y + 1 < 3
5 · z ≥ 2 · y + 3 ∧ z ≤ x− y ∧ ¬3 · x = 5 ∧ ¬2 · y + 1 < 3

This has only one disjunct, i.e. n = 1, which is very common in practice,
but in general we would have to consider a disjunction of conjunctions like
the above.

Exercise 23 Apply all but the last step of the above procedure to the con-
jecture

5 ·X < 11→ 7 ·X < 16

i.e. close, negate, Skolemize and put it in disjunctive normal form.

8.4.3 Assigning Types to Skolem Constants

We now consider the manipulation of the Dis, e.g.

5 · z ≥ 2 · y + 3 ∧ z ≤ x− y ∧ ¬3 · x = 5 ∧ ¬2 · y + 1 < 3

to extract types for each of the Skolem constants, e.g. x, y and z. The
manipulation is applied separately to each disjunct and is outlined below.

(a) Rewrite the predicates ≥, >, = and < and the connective ¬, so that
the disjunct consists only of propositions of the form S ≤ T . During
this stage the disjunct may split into several disjuncts, each of which
is treated separately.

(b) For each proposition, S ≤ T , ‘solve’ it for each of the Skolem constants it
contains, e.g. if S ≤ T contains the Skolem constant x then manipulate
S ≤ T into the form S′ ≤ x or x ≤ T ′, where S′ and T ′ do not contain
x.

(c) For each Skolem constant, combine together all its ‘solutions’ into one,
written S′ ≤ x ≤ T ′.

(d) For each Skolem constant, manipulate its ‘solution’ to remove all other
Skolem constants, getting a solution k+ ε ≤ x ≤ l, say, in which k and
l are real numbers. (k, l) is the type of x.

(e) Try to find an impossible type in each disjunct.

104 Computer Modelling of Mathematical Reasoning

Normalizing to Less Than or Equal

The first step is to eliminate negation and all predicates except ≤. This can
be done in various ways, but a simple one is as follows:

(a) Eliminate > and ≥ by replacing: all propositions of the form S > T by
the equivalent T < S; and all propositions of the form S ≥ T by the
equivalent T ≤ S.

(b) The only occurrences of ¬ signs are immediately dominating the pred-
icates <, ≤ and =. They can be eliminated by replacing: all literals
of the form ¬S < T by the equivalent T ≤ S; all literals of the form
¬S ≤ T by the equivalent T < S; and all literals of the form ¬S = T
by the equivalent S < T ∨T < S. Note that in the last case a disjunc-
tion has been introduced into the conjunction. Split the conjunction
into two conjunctions, by distributing ∨ over ∧, and deal separately
with each.

(c) Eliminate the remaining occurrences of = by replacing all propositions
of the form S = T by the equivalent S ≤ T ∧ T ≤ S. This will merely
increase the length of the conjunction.

(d) Finally, eliminate < by replacing all propositions of the form S < T
by S + ε ≤ T , where ε is a new constant standing for an infinitesimal
number.

The result will be a conjunction of propositions of the form S ≤ T .
Applying these steps to our running example yields the following steps.
5·z≥2·y + 3 ∧ z≤x−y ∧ ¬3·x=5 ∧ ¬2·y+1<3

2·y+3≤5·z ∧ z≤x−y ∧ ¬3·x=5 ∧ ¬2·y+1<3

2·y+3≤5·z ∧ z≤x−y ∧ (3·x<5 ∨ 5<3·x) ∧ 3≤2·+1

(2·y+3≤5·z ∧ z≤x−y ∧ 3·x<5 ∧ 3≤2·y+1) ∨
(2·y+3≤5·z ∧ z≤x−y ∧ 5<3·x ∧3≤2·y+1)

(2·y+3≤5·z ∧ z≤x−y ∧ 3·x+ε≤5 ∧ 3≤2·y+1) ∨ (iii)
(2·y+3≤5·z ∧ z≤x−y ∧ 5+ε≤3·x ∧ 3≤2·y+1) (iv)

Exercise 24 Eliminate ¬ and < from

5 · x < 11 ∧ ¬7 · x < 16

‘Solving’ Each Inequality

We now ‘solve’ each inequality for each Skolem constant it contains. ‘Solving’
inequalities is much like solving equations, and solving linear inequalities is
particularly simple.

8. Decision Procedures for Inequalities 105

(a) Suppose we are solving S ≤ T for x.

(b) This is equivalent to ‘solving’ S − T ≤ 0.

(c) Put S−T in polynomial normal form with respect to x to yield Ax+B,
where A is a real number.

(d) If A is positive then the ‘solution’ is x ≤ B
A .

(e) If A is negative then the ‘solution’ is B
A ≤ x.

(f) If A is zero then the ‘solution’ is t.

The inequality 2 · y + 3 ≤ 5 · z contains two Skolem constants: y and z.
‘Solving’ it for y yields the following steps:

2 · y + 3 ≤ 5 · z
2 · y + 3− 5 · z ≤ 0
y ≤ 5 · z/2− 3/2

‘Solving’ each of the inequalities in

2 · y + 3 ≤ 5 · z ∧ z ≤ x− y ∧ 3 · x+ ε ≤ 5 ∧ 3 ≤ 2 · y + 1

for the Skolem constants they contain yields the following ‘solutions’:

y≤5·z/2−3/2 ∧ 2·y/5+3/5≤z ∧
z+y≤x ∧ y≤x−z ∧ z≤x−y ∧
x≤5/3−ε ∧
1≤y (v)

Exercise 25 ‘Solve’ each of the inequalities in

5 · x+ ε ≤ 11 ∧ 16 ≤ 7 · x

for x.

Combining ‘Solutions’

The ‘solutions’ for each Skolem constant must now be combined together
into one. For instance, there are three ‘solutions’ for y above.

y ≤ 5 · z/2− 3/2 ∧
y ≤ x− z ∧
1 ≤ y

We can combine them into one by using the maximum lower bound and the
minimum upper bound.

The only lower bound of y is 1, so this is the maximum. y has two upper
bounds, namely: 5·z/2−3/2 and x−z. What is the minimum of 5·z/2−3/2
and x− z? We avoid the question by introducing the function min, on sets
of numbers, and writing the combined ‘solution’ as:

106 Computer Modelling of Mathematical Reasoning

1 ≤ y ≤ min{5 · z/2− 3/2, x− z}

Similar problems with finding the maximum lower bound are solved by using
the dual function max.

In general the procedure to find the new lower bound for a Skolem con-
stant x is:

(a) Collect together the lower bounds from each of the ‘solutions’ for x to
form the set Bnds.

(b) If Bnds is the empty set, {}, then the new lower bound is −∞.

(c) If Bnds is a singleton, {t}, then the new lower bound is t.

(d) If all members of Bnds are numbers then the maximum number, k, is
the bound.

(e) Otherwise, the new lower bound is max(Bnds).

And a dual procedure will find the new upper bound.
Applying these procedures to the solutions (v) above yields the new

upper and lower bounds given in table 8.1 below.

Skolem Constant Lower Bound UpperBound

x z + y 5/3− ε
y 1 min{5 · z/2− 3/2, x− z}
z 2 · y/5 + 3/5 x− y

Table 8.1: New Upper and Lower Bounds for Skolem Constants

Exercise 26 Combine together the ‘solutions’:

x ≤ 11/5− ε ∧ 16/7 ≤ x

to get upper and lower bounds for x. Do these bounds assign a possible type
to x?

Working Out the Types

Some of these bounds are already free of other Skolem constants, e.g. the
upper bound of x is 5/3 − ε and the lower bound of y is 1. The next step
is to eliminate the Skolem constants from all the remaining bounds. This
step is the heart of the Sup-Inf method. The idea is as follows. Suppose the
lower bound of x contains the Skolem constant y (as it does in the running
example) then we replace the occurrences of y with either the lower bound
or upper bound of y. This is justified by the transitive and substitution
laws for ≤. If the new lower bound of x still contains Skolem constants the

8. Decision Procedures for Inequalities 107

procedure is repeated. The main problem is that the procedure may loop,
e.g. suppose the lower bound of y contains x, so that y is replaced by x
and then y by x ad infinitum. We must trap this case and do something
different, in fact ‘solve’ for x.

For instance, to eliminate z and y from the lower bound for x we generate
the following steps:

z + y ≥ (2 · y/5 + 3/5) + 1 (vi)
(by substituting lower bounds of z and y)

≥ (2 · 2/5 + 3/5) + 1
(by substituting lower bound of y)

≥ 12/5 (by arithmetic) (vii)

This assigns the type [12/5, 5/3 − ε] to x, from which we can eliminate
ε and rewrite as [12/5, 5/3). But this is not a possible type, since 5/3 <
12/5, so x cannot have a type. This is enough to establish that (iii) is a
contradiction. If we can also establish that (iv) is a contradiction then we
will have shown that (ii) is a contradiction and, hence, that (i) is a theorem.

In line (vii) above we used arithmetic to evaluate a purely numeric ex-
pression. We can extend this evaluation to expressions involving ε by using
the rewrite rules:

X > 0→ X · ε ≥ ε
0 · ε ≥ 0
X < 0→ X · ε ≥ −ε

‘Awkward’ cases like ε− ε will never arise in the uses we make of ε.

In line (vi) above, we substituted the lower bounds for both parameters
of +. This is justified by the substitution axiom for +, i.e. because + is
monotonically increasing in both parameters. In the case of z− y we would
substitute the lower bound for the first parameter and the upper bound for
the second parameter, e.g.

z − y ≥ (2 · y/5 + 3/5)−min{5 · z − 3/2, x− z}

since − is monotonically increasing in its first parameter, but monotonically
decreasing in its second parameter. Both min and max are monotonically
increasing in each member of their set parameter, so in the case of min{z, y}
we would substitute the lower bounds for both members, e.g.

min{z, y} ≥ min{(2 · y/5 + 3/5), 1}

This procedure would loop if x had the lower bound y and y had the
lower bound x− 6. When trying to eliminate the y from the lower bound of
x it would generate the sequence:

108 Computer Modelling of Mathematical Reasoning

y ≥ (x− 6)
≥ (y − 6)
≥ ((x− 6)− 6)
.........

This sequence must be trapped as soon as an x has appeared in the lower
bound for x. At this stage we have the inequality:

x− 6 ≤ x

‘Solving’ this for x yields ‘solution’ t, i.e. x is unrestricted.
If x had had the lower bound y and the upper bound ∞ and y the lower

bound 6 − x then the procedure does terminate, but with a non-optimal
lower bound, i.e.

y ≥ (6− x)
≥ (6−∞)
≥ −∞

Trapping the procedure at the point

6− x ≤ x

and ‘solving’ this inequality for x, yields the optimal lower bound 3.
The procedure, Sup, for eliminating Skolem constants from upper bounds

is summarized in table 8.2. The procedure, Inf, for eliminating Skolem
constants from lower bounds is the dual of this. Sup takes two inputs, J
and H. J is the term for which a numeric upper bound is sought. It is
initially a Skolem constant, but on recursive calls can become a complex
term. H is a set of Skolem constants, initially empty, but taking non-empty
values on recursive calls. It lists some Skolem constants which are allowed
to appear in the output of Sup. The idea is that an attempt to eliminate
the constants in H, using Sup, might cause a loop, so they are eliminated
by another procedure, Supp, which ‘solves’ inequalities. Upper(J) returns
the upper bound of J . Inf , Inff and Lower are the duals of Sup, Supp
and Upper. Simp is a procedure for putting terms in a normal form. It
distributes · over + and pulls maxs and mins out to the front, e.g. Simp
applied to 4 · (3 +max{2, x}) is max{20, 12 + 4 · x}.

This completes the description of the Sup-Inf decision procedure for
Bledsoe Real Arithmetic.

8.5 Variable Elimination

In this section we consider how the Sup-Inf procedure can be extended to
deal with a wider area of Mathematics than Bledsoe Real Arithmetic. One
crucial limitation of Bledsoe Real Arithmetic was that only universal quan-
tifiers may appear in formulae and only at the topmost level. It is possible

8. Decision Procedures for Inequalities 109

Condition Action Result
If J is a number J

If J is a Skolem const.
J ∈ H J
J 6∈ H Let Q = Upper(J)

Let Supp(J, Simp(Z))
Z=Sup(Q,H∪{J})

If J has form N ·A
where N is a number

N < 0 N ·Inf(A,H)
N ≥ 0 N ·Sup(A,H)

If J has form N ·C+B, Let
where N is a number B′ =Sup(B,H∪{C})
and C a Skolem const.
C occurs in B′ Let Sup(J ′, H)

j=Simp(N ·C+B′)
C does not occur in B′ Sup(N ·C,H)+B′

If J has form min(S) min{Sup(A,H) :
A∈S}

Table 8.2: The Definition of Sup(J,H)

to lift this restriction and still get a decision procedure, i.e. allowing both
universal and existential quantifiers at any level still gives a decidable theory.

The same is true of natural and integer arithmetic. The extension of
Bledsoe Natural Arithmetic to allow unrestricted universal and existential
quantification, is called Presburger Natural Arithmetic, after the mathe-
matician who first showed it decidable. Unfortunately, all known decision
procedures for Presburger Natural Arithmetic are very inefficient. The best
is due to David Cooper, [Cooper 72]. However, even Cooper’s procedure can

take on the order of 22
2n

computer steps to test a formula of size n, whereas
the Sup-Inf procedure never takes more than order 2n.

8.5.1 An Overview of the Extended Procedure

We will extend the Sup-Inf method to allow it to handle formulae of the
form

∃X1...∃Xn A(X1, ..., Xn)

where A is a sentence of Bledsoe Real Arithmetic (i.e. fully closed). After
negation and Skolemization these formulae differ from Bledsoe formulae only
in the fact that they contain variables, so we will call the theory Bledsoe
Real Arithmetic with variables. Note that there are no proper (i.e. non-
constant) Skolem functions, because no universal quantifiers appear above

110 Computer Modelling of Mathematical Reasoning

Condition Result
If Y is a number Y

If X ≡ Y ∞

Y = min(S) min{Supp(X,A) : AεS}

Y = B ·X + C,
where X does not occur in C

B > 1 ∞
B < 1 c/(1−B)
B = 1

C not a number ∞
C < 0 −∞
C ≥ 0 ∞

Table 8.3: The Definition of Supp(X,Y)

any existential quantifiers. [Bledsoe 80, Shostak 79] describe extensions to
handle proper Skolem functions, and hence Presburger Real Arithmetic.
Shostak’s extension is a decision procedure.

The key idea of the decision procedure for Bledsoe Real Arithmetic with
variables, is to eliminate variables from the conjecture, using interpolation,
and reduce its truth to that of a variable free formula, which is then handled
by Sup-Inf. To prepare the conjecture for variable elimination it is put in
clausal form; >, ≥, ¬, = and < are eliminated; and the variable to be
eliminated is ‘solved’ for. The procedure is outlined below:

(a) Put the conjecture C in clausal form, C ′, where each clause has the
form:

L1 ∧ ... ∧ Ln →

where each Li is a literal, i.e. each literal is in the antecedent.

(b) Eliminate >, ≥, ¬, = and < from C ′, using the techniques of section
8.4.3, to form C ′′.

(c) Until C ′′ contains no variables, apply the following steps.

(i) Pick a clause D from C ′.

(ii) Pick a variable, X, which occurs in D.

(iii) ‘Solve’ each inequality in D for X, as described in section 8.4.3
for Skolem constants.

(iv) Eliminate X from D, by the method described below, to form the
clause D′.

(v) If D′ is the empty clause then terminate with success.

8. Decision Procedures for Inequalities 111

(vi) Otherwise, replace D with D′ in C ′′ and repeat.

(d) C ′′ contains no variables. Put it in disjunctive normal form and apply
the later stages of the Sup-Inf method as described from section 8.4.3
onwards.

For instance, consider the conjecture:

a ≤ 2 ∧ 2 ≤ b→ ∃X (0 ≤ X ∧X ≤ 5 ∧ a ≤ X)

Putting this in clausal form, with all the literals in the antecedent, yields:

¬a ≤ 2→
¬2 ≤ b→
0 ≤ X ∧X ≤ 5 ∧ a ≤ X →

The ¬ and resulting < signs are easily eliminated from this to give:

2 + ε ≤ a→
b+ ε ≤ 2→
0 ≤ X ∧X ≤ 5 ∧ a ≤ X →

These clauses only contain one variable, X. This can be eliminated from
the third clause, by the method described below, to give:

2 + ε ≤ a→
b+ ε ≤ 2→
0 ≤ 5 ∧ a ≤ 5→

And applying the Sup-Inf method to these clauses proves the conjecture.

Exercise 27 Check this.

8.5.2 Elimination of Variables using Interpolation

It only remains to explain how a variable can be eliminated from a clause
consisting of a set of ‘solutions’ for it, e.g. how to eliminate X from

0 ≤ X ∧X ≤ 5 ∧ a ≤ X →

This is done by applying the interpolation axiom

U ≤W ∧ V ≤W → ∃Z [U ≤ Z ∧ Z ≤W ∧ V ≤ Z]

which gives:

0 ≤ 5 ∧ a ≤ 5→

with unifier {0/U, a/V, 5/W,X/Z}.
In general an infinite collection of interpolation axioms is required to

justify this step, but the general procedure can be defined without reference
to them. The only literals in the clause D which contain X, the variable to
be eliminated, will be all to the left of the → and one of:

112 Computer Modelling of Mathematical Reasoning

ai ≤ X for i = 1, ...,m or
X ≤ bj for j = 1, ..., n

These literals are removed from D and replaced by the literals

ai ≤ bj for i = 1, ...,m and j = 1, ..., n

8.6 Summary

The Sup-Inf method is an efficient decision procedure for Bledsoe Real Arith-
metic. It can be adapted to Bledsoe Natural and Integer Arithmetic, but
is not a decision procedure for these areas. The Sup-Inf method can be
extended to a decision procedure for Bledsoe Real Arithmetic with variables
by a technique of variable elimination. Bledsoe and Hines, and Shostak
consider further extensions which allow proper Skolem functions, and hence
deal with Presburger Real Arithmetic. Shostak’s extension is a decision
procedure for Presburger Real Arithmetic. Cooper’s method is an ineffi-
cient decision procedure for Presburger Natural Arithmetic.

The Sup-Inf method works by trying to assign types to Skolem con-
stants. It gets a ‘solution’ for each Skolem constant and then eliminates
other Skolem constants from this solution in a recursive process which ap-
peals to their partially assigned type boundaries. The Sup-Inf method works
with the negation of the conjecture in disjunctive normal form and proves
the conjecture if it is unable to assign a type to one Skolem constant in each
disjunct. The method can be extended to formula with free variables by
adding a technique for eliminating such variables.

Bledsoe and Presburger Arithmetics form important subparts of many
mathematical theories. They arise in Number Theory, Algebra and Program
Verification. Having a decision procedure for them means that many sim-
ple lemmas can be quickly handled, freeing resources for tackling the main
theorem.

Further Reading Suggestion

[Shostak 77] is a readily available description of the Sup-Inf method in a
well developed state.

Chapter 9

Rewrite Rules

• This chapter introduces rewrite rules.

• Section 9.1 defines the rewriting rule of inference.

• Section 9.2 gives examples of rewrite rules from the domains of Propo-
sitional Logic, Algebra and Peano Arithmetic.

• Section 9.3 discusses the termination of rewrite rule sets.

• Section 9.4 discusses the Church-Rosser and canonical properties of
rewrite rule sets.

• Section 9.5 discusses strategies for applying rewrite rules.

• Section 9.6 discusses methods for proving a rule set Church-Rosser and
canonical by showing that all its critical pairs are conflatable. This
suggests a technique for making non-confluent rule sets conflatable by
adding non-conflatable critical pairs as new rules (9.6.3).

When we described the standard proof of theorem (i) in section 7.4, we
used the notation

a ◦ b = e ◦ a ◦ b
= b ◦ i(b) ◦ a ◦ b
= b ◦ e ◦ i(b) ◦ a ◦ b
= b ◦ a ◦ i(a) ◦ i(b) ◦ a ◦ b
= b ◦ a ◦ e
= b ◦ a

Such chains of equalities are very common in mathematical proofs, as are
chains of inequalities like the one from section 8.4.

a ≥ b+ c
≥ 2 + c
≥ 2 + 2 · b/5 + 3/5
≥ 2 + 2 · 2/5 + 3/5

113

114 Computer Modelling of Mathematical Reasoning

Also very common is the variant

¬((p ∨ ¬q) ∧ ¬r)↔ ¬(p ∨ ¬q) ∨ ¬¬r
↔ ¬(p ∨ ¬q) ∨ r
↔ (¬p ∧ ¬¬q) ∨ r
↔ (¬p ∧ q) ∨ r

or with ‘↔’ replaced by ‘iff’.

Why is this notation so common? Perhaps because the inference system
being used is to rewrite the expression on the left of the = or↔ sign into the
expression on the right. The notation neatly captures the resulting, gradual
transformation of the initial expression into the final one. It is called the
application of rewrite rules. Not only are rewrite rules a common inference
system in everyday mathematics but they can also be a very efficient com-
putational technique, that is they can involve very little search. We will
devote this chapter to a more detailed study of them, including a discussion
of some interesting theoretical results.

9.1 What are Rewrite Rules?

Rewrite rules then are a set of ordered pairs of expressions. We will write a
typical such pair (or rule) as

lhs ⇒ rhs.

There will usually be some kind of similarity relation between lhs and rhs.
This might be equality, inequality, double implication or sometimes only
implication (i.e. lhs → rhs).

Definition 9.1 If, by ignoring the order of the pairs and allowing rewriting
with rhs ⇒ lhs as well lhs ⇒ rhs, one expression can be rewritten into
another then the two expressions are said to be similar with respect to the
set of rules.

In general, two expressions can be similar, without it being possible to
rewrite one into the other, because a similarity relation may be available
as rule lhs ⇒ rhs but not as rule rhs ⇒ lhs.

To apply these rules to an expression we need the rewriting rule of in-
ference. Let exp[sub] be the expression we are trying to rewrite where sub
is a distinguished subexpression of exp. The rewriting rule is:

exp[sub]
lhs ⇒ rhs

exp[rhs φ] where φ is a most general substitution
such that lhs φ ≡ sub

9. Rewrite Rules 115

That is, lhs is matched against some subexpression of exp and this subex-
pression is replaced with rhs. exp[rhs φ] is called a rewriting of exp[sub].

If the similarity relation between lhs and rhs is = then the rewriting rule
of inference is a simplification of paramodulation. One of the main ways in
which rewriting is a simplification of paramodulation is that the substitution
φ is only applied to lhs and not to sub. We call this restriction of unification,
one way matching . This is not a serious limitation in practice since in most
applications the expression to be rewritten is variable free. Hence variables
will never appear in the expression unless they are introduced by rules like

0⇒ X · 0

which contain variables in the right hand side which are not in the left
hand side. With full unification such rules would cause infinite chains of
rewritings, e.g

0 = X ·0
= (X · 0) · 0
= ((X · 0) · 0) · 0
=

For this reason we exclude them and allow only rewrite rules in which each
variable on the right hand side appears on the left hand side. This is not a
serious limitation in practice, since we seldom want to use such rules.

9.2 Some Sample Rewrite Rule Sets

9.2.1 Literal Normal Form

Many examples of the use of rewrite rules can be found in chapter 15. For
instance, in section 15.4 we use the following rewrite rule set for literal
normal form:

¬¬A ⇒ A
¬(A ∨B)⇒ ¬A ∧ ¬B
¬(A ∧B)⇒ ¬A ∨ ¬B

Suppose these rules are to be applied to the formula,

¬(p ∨ ¬q) ∨ r

There is only one subexpression of this formula which unifies with the left
hand side of any rule. The subexpression is

¬(p ∨ ¬q),

the rule is

¬(A ∨B)⇒ ¬A ∧ ¬B

116 Computer Modelling of Mathematical Reasoning

and the matching substitution

{p/A,¬q/B}

Hence the rewriting obtained by applying the rule is

(¬p ∧ ¬¬q) ∨ r (i)

to which a further rule will apply.

Exercise 28 Apply another rule to (i). Say what exp, sub, lhs, rhs and φ
are.

9.2.2 Algebraic Simplification

A major application of rewrite rules is in the simplification of algebraic
expressions. The problem of simplifying algebraic expressions arises as a
frequent subproblem in the provision of the ‘mathematicians aid’ computer
programs mentioned in the introduction and to be explored in more detail
in chapters 12 and 18. When such a program integrates or differentiates an
expression the result may look something like

a2·0 · 5 + b · 0 (ii)

which could stand considerable simplification.
This simplification is effected by a set of rewrite rules, like

1. X · 0⇒ 0
2. 1 ·X ⇒ X
3. X0 ⇒ 1
4. X + 0⇒ X

Applying these to expression (ii) we can rewrite it as follows.

a2·0 · 5 + b · 0 = a0 · 5 + b · 0 (by 1.)
= 1 · 5 + b · 0 (by 3.)
= 5 + b · 0 (by 2.)
= 5 + 0 (by 1.)
= 5 (by 1.)

This is not the only way to rewrite the expression. We could have started by
rewriting b · 0 to 0, say. In fact, as with the other rules of inference we have
met, resolution and paramodulation, we may have several choices at every
stage. Thus the rewriting rule also defines a search tree. The beginning of
this for the above example is shown in figure 9.1.

We have seen how expressions can be put in normal form by the repeated
application of rewrite rules. The final normal form could be any one of the
rewritings labelling the tips of the complete search tree.

9. Rewrite Rules 117

Figure 9.1: A Rewrite Rule Search Tree

9.2.3 Evaluation

As a final example, numerical calculations can be done using rewrite rules.
We make rewrite rules from the recursive definitions of the arithmetic func-
tions.

1. X + 0⇒ X
2. X + s(Y)⇒ s(X + Y)
3. X · 0⇒ 0
4. X · s(Y)⇒ X · Y +X

and apply these to the arithmetic expression to be evaluated.

s(0) · s(s(0)) = s(0) · s(0) + s(0) (by 4.) (iii)
= [s(0) · 0 + s(0)] + s(0) (by 4.)
= [0 + s(0)] + s(0) (by 3.)
= s(0 + 0) + s(0) (by 2.)
= s(0) + s(0) (by 1.)
= s(s(0) + 0) (by 2.)
= s(s(0)) (by 1.)

If the expressions being manipulated are non-symbolic, i.e. they are terms
made from the constant 0 and the functions s, + and ·, then it is easy to
prove by induction that the application of these rewrite rules will eventually
terminate with a specific number, i.e. a term made only from 0 and s. We
call this process the evaluation of the non-symbolic expression.

If the expression being manipulated is symbolic, i.e. if it contains a
Skolem constant or function, then the application of these rewrite rules will
still terminate, but not necessarily with a specific number. For instance,
applied to s(a) · s(b) the process produces successively,

s(a) · s(b)=s(a) · b+ s(a) (by 4.)
=s(s(a) · b+ a) (by 2.)

and then terminates. When evaluation is applied to symbolic expressions it
is usually called symbolic evaluation.

118 Computer Modelling of Mathematical Reasoning

Evaluation and symbolic evaluation can be used, not just for numeric
calculations, but whenever we have a theory in which functions are defined
by recursive equations. In chapter 11 we will see how it can be applied to a
theory of lists.

9.3 Termination

A nice property of many sets of rewrite rules, including those above, is
that the application of rules to expressions cannot go on forever – it will
eventually terminate.

The termination of the rules for literal normal form (our first example
above) is proved in section 15.4. We define a numerical function on a for-
mula, called its load, which measures the total size of all formulae dominated
by ¬ signs and show that it decreases each time a rule is applied. Since the
load can never be negative there must come a time when no further rewrite
rules can be applied.

Similar arguments can be made for the other two sets above. In the
case of the simplification rules each application of a rule will produce an
expression with a smaller expression tree (i.e. fewer nodes) than the one
before.

Exercise 29 Show that the application of the rule:

X · Y +X · Z ⇒ X · (Y + Z)

will terminate.

Why is termination an important property of a set of rewrite rules?

If a set of rules always terminates and only finitely many rules can be
applied to any expression, then any search tree generated must be finite.
This means that if we want to know whether one expression will rewrite
into another we can search the whole tree without fear that the process will
go on forever (although, it may still go on for a very long time).

To prove termination of a set of rules we proceed as above. We find some
non-negative numeric measure of the expression, that strictly decreases every
time a rule is applied, and then we reason that the rules must stop applying
at some stage.

A set of rules will fail to terminate when they contain rules like commu-
tativity

X ◦ Y ⇒ Y ◦X

which cause the process to loop; or when an equation is used both ways
round, e.g.

9. Rewrite Rules 119

X · (Y + Z) ⇒ X · Y +X · Z
X · Y +X · Z ⇒ X · (Y + Z)

which has the same effect; or when the left hand side of a rule is a subex-
pression of the right hand side, e.g.

X ⇒ X · 1.

9.4 Other Important Properties

Termination is one important property of a set of rewrite rules. Other
important properties are being Church-Rosser and being canonical.

Definition 9.2 A set of rules is Church-Rosser when similar expressions
have a common rewriting.

Where ‘similar’ is used in the technical sense defined in section 9.1. The
property is named after the two mathematicians who first investigated it.

Suppose the rewrite rules were produced from a set of equations. If
they are Church-Rosser then we have not lost anything by making them
into rewrite rules and applying them only left to right. Any two expressions
which could have been shown equal with the aid of the equations can now
be shown equal by developing their respective rewriting search trees, until
a common rewriting is uncovered.

If the set of rules is also terminating and finite then these search trees are
finite and can be completely developed. Hence, this technique constitutes a
decision procedure for deciding whether two terms are equal.

Definition 9.3 A set of rules is canonical when all the normal forms of
each expression are identical.

That is, it does not matter how you go about applying the rules to an
expression, you will get the same result. The common normal form is called
the canonical form of the starting expression at the root.

When a set of rules is canonical it is not necessary to search at all. Any
choices can be made, in the confidence that the result will be the same in
the end.

We will address the question of how rewrite rule sets may be proved to
be canonical and Church-Rosser in section 9.6 below.

9.5 Applying Rewrite Rules

Even when a set of rules is canonical we may still want to exercise our choices
carefully, in order to minimise the amount of computational effort required

120 Computer Modelling of Mathematical Reasoning

to find the canonical form. We may want to explore only the shortest branch.
If the rules are non-terminating we may want to avoid infinite branches.

To help us do this various rewrite rule application procedures are avail-
able. A careful inspection of the rules to be applied may reveal that one of
these is appropriate to use.

9.5.1 Inside Out Application

One of the simplest and most popular application procedures is to proceed
from the inside and work outwards as we did when calculating the value of
s(0) · s(s(0)) in example (iii) above. For instance, the expression

[s(0) · 0 + s(0)] + s(0)

can be rewritten in three ways: rule 3 can be applied to s(0) · 0; rule 2
can be applied to [s(0) · 0 + s(0)] or rule 2 can be applied to the whole
expression. In (iii) we chose the first possibility, that is we chose to rewrite
the leftmost/innermost subexpression which could be rewritten. The same
criterion determined the other choices in (iii).

This procedure is usually called, call by value, by analogy with the pro-
cedure of the same name used by many programming languages to evaluate
computer programs. Under this analogy the ‘call’ is the rewriting process
and the ‘value’ is the canonical form. Call by value can be summarized as
follows.

To rewrite an expression using call by value

1. Search the expression tree of the expression by left-first/depth-first
search.

2. At each node:

If the node is a tip then back up.
If subtrees below the node are completely rewritten

(i.e their values are known)
and a rewrite rule will apply to the subexpres-

sions dominated by this node

then apply this rule and exit the procedure
Otherwise continue searching.

9.5.2 Outside In Application

In some circumstances call by value is hopelessly longwinded. Consider what
happens when it is used to apply the literal normal form rewrite rules to
¬{¬(p ∨ ¬q) ∧ r}.

9. Rewrite Rules 121

¬(p ∨ ¬q) is first rewritten to ¬p ∧ ¬¬q
then ¬¬q is rewritten to q

only then can the outermost ¬ be brought inside, producing
¬(¬p ∧ q) ∨ ¬r
The earlier work on ¬(p ∨ ¬q) must then be undone with
¬(¬p ∧ q) being rewritten as ¬¬p ∨ ¬q and then p ∨ ¬q.

For the literal form rules an application procedure that starts from the
outside and works inwards, sweeping the ¬s before it, is more appropriate.
This would put ¬{¬(p ∨ ¬q) ∧ r} in literal form in two rewritings.

¬{¬(p ∨ ¬q) ∧ r} ↔ ¬¬(p ∨ ¬q) ∨ ¬r
↔ (p ∨ ¬q) ∨ ¬r

This application is called call by name, again by analogy with the evalu-
ation procedures of programming languages. The ‘name’ here is the subex-
pression being rewritten. Call by name can be summarized as follows:

To rewrite an expression using call by name

1. Search the expression tree of the expression by left-first/depth-first
search.

2. For each node encountered

If the node is a tip then back up.
If a rewrite rule will apply to the subexpression dominated

by the node
then apply it and exit the procedure.
Else continue the search.

Call by name is superior to call by value in that it will sometimes avoid
an infinite branch that call by value will plunge down. Consider the rules:

a⇒ a · 1
X · 0⇒ 0

applied to the expression a·0. Call by value will generate the non-terminating
sequence

a · 0 = a · 1 · 0
= a · 1 · 1 · 0
=

whereas call by name will immediately rewrite a · 0 to 0 by applying the
second rule.

The various rewrite rule systems considered in chapter 15 can all be
sensibly applied using either call by value or call by name, with call by name
being superior in each case. In chapter 12 we consider more subtle, selective
applications of rewrite rules, designed to cut down further the amount of
search.

122 Computer Modelling of Mathematical Reasoning

9.6 Proving Rules Canonical and Church-Rosser

We will look at only one technique for proving a set of rules canonical or
Church-Rosser: that is to prove a property which implies both of them: the
property of confluence.

Definition 9.4 A set of rules is confluent if whenever an expression, exp,
can be rewritten in two different ways, say to int1 and to int2, then int1 and
int2 can both be rewritten to some common rewriting, comm.

We will say that exp is unambiguous and that int1 and int2 are conflatable.
This situation is summarized in figure 9.2, where the arrows labelled by *s
indicate any number of rewritings (including 0).

Figure 9.2: Definition of Confluence

The algebraic simplification rewrite rules of section 9.2.2 are confluent.
For instance, a2·0 · 5 + b · 0 can be rewritten to 1 · 5 + b · 0 or to a2·0 · 5, but
both of these can be subsequently rewritten to the common rewriting, 5.

It is easy to see that a confluent set of rules is canonical.

Theorem 9.5 A confluent set of rules is canonical

Proof: We assume the set of rules is confluent and try to show it
canonical. Consider two of the normal forms of some expression, exp. Since
these normal forms are rewritings of exp then they can play the roles of
int1 and int2 above. Hence they conflate to some common rewriting, comm.
But these are normal forms, i.e. they cannot be further rewritten! So they
must already be identical. So all normal forms are identical and the rules
are canonical. QED

Showing that a confluent set is also Church Rosser is only slightly more
complicated.

9. Rewrite Rules 123

Theorem 9.6 A confluent set of rewrite rules is Church-Rosser

Proof: Suppose exp′ and exp′′ are two expressions which can be shown
similar by using the rules in a confluent set either way round. The proof of
this will be a chain of similar expressions consisting of runs of applications
left to right and runs of applications right to left. The chain showing exp′

similar to exp′′ is diagrammed in figure 9.3

Figure 9.3: The Chain Showing exp′ and exp′′ are Equivalent

We must show that exp′ and exp′′ have a common rewriting.

We will construct this common rewriting by developing the chain down-
wards. The construction is shown in figure 9.3 below. It uses induction on
the number of runs in the chain. We assume that the common rewriting can
be constructed when the chain has n− 1 runs and prove it in the case of n
runs.

The case of 0 runs is trivial, since exp′ and exp′′ are then identical and
thus conflatable. The case of 1 run is also trivial, since either exp′ or exp′′

is rewritable into the other and, hence, shares all its normal forms.

For the case of n ≥ 1 consider the triangle formed by exp′, exp1 and
exp2. Let these play the roles of int1, exp and int2, respectively in the
confluence figure. From this we can see that exp′ and exp2 conflate into a
common expression, comm1.

Now comm1 can be shown similar to exp′′ by using rewrite rules either
way round and in a chain of n runs, since the steps from comm1 to exp2 and
exp2 to exp3 merge into one run of right to left applications. Hence by the
induction hypothesis, comm1 and exp′ conflate into a common rewriting
comm. But comm is also a common rewriting of exp′, so exp′ and exp′′

conflate. If the first run from exp′ is left to right instead of right to left then
exp1 can immediately be used in the role of comm1.

comm may not be a common normal form itself, because it may be
possible to rewrite it further, but any normal form of comm will be a common
normal form of exp′ and exp′′. QED

Thus if we can show that a set of rules is confluent, we know it is also
canonical and Church-Rosser. But how can we show a set of rules is conflu-
ent?

124 Computer Modelling of Mathematical Reasoning

Figure 9.4: The Construction of a Common Rewriting

9.6.1 Local Confluence

We would like to be able to test for confluence by applying some simple
procedure to the rules themselves. To show how this can be done we will
gradually restrict the notion of confluence, by making it more and more
local.

We start by defining the notion of local confluence. A set of rules is lo-
cally confluent if whenever an expression, exp, has two immediate rewritings,
int1 and int2, then int1 and int2 conflate to a common rewriting, comm.
This situation is diagrammed in figure 9.5

Figure 9.5: Definition of Local Confluence

The algebraic simplification rules of section 9.2.2 are locally confluent.
For instance, a2·0 ·5+b·0 can be immediately rewritten to both a0 ·5+b·0 and
a2·0 + 0, but these can be subsequently rewritten to the common rewriting,
5.

9. Rewrite Rules 125

Obviously a confluent set of rules is locally confluent, but is a locally
confluent set always confluent?

The answer is yes, if the set is also terminating.

Theorem 9.7 A terminating, locally confluent set of rewrite rules is con-
fluent

Proof: We assume that the set of rules is locally confluent and termi-
nating and try to show it is confluent.

Since the rules are terminating, all branches are finite so we can use
induction on the structure of the search tree. We will show that if any
rewritings of an expression, exp, are unambiguous then exp is unambiguous,
from which we may deduce that all expressions are unambiguous and the
set of rules is confluent. This proof technique is called noetherian induction
in [Huet 77].

Assume that the expressions int1 and int2 are rewritings of exp. We
need to show that int1 and int2 are conflatable. If either int1 or int2 is
identical to exp then they are trivially conflatable, so we assume that at
least one rewrite rule application is involved in each case.

Let exp1 be the first rewriting on the path to int1 and exp2 be the first
rewriting on the path to int2. The situation is summarized in figure 9.6.
Since the rule set is locally confluent, exp1 and exp2 must conflate to some
common rewriting, comm′. But exp1 is a rewriting of exp, so by the induc-
tion hypothesis int1 and comm′ must conflate to some common expression,
comm1. Similarly, by the induction hypothesis int2 and comm′ must con-
flate to some common rewriting comm2. But comm′ is also a rewriting of
exp, so invoking the induction hypothesis once again, comm1 and comm2
must conflate to some common rewriting, comm. Finally, comm is a com-
mon rewriting of int1 and int2, so they conflate, hence exp is unambiguous
and by induction the rule set is confluent. QED

9.6.2 Critical Pairs

When is a set of rules locally confluent?

Let us start by looking to see how choices arise during rewriting. Clearly
this happens when more than one rule applies to the current expression or
one rule applies in more than one way. There are two cases to consider:

1. Either the rule applications are to totally different parts of the expres-
sions, e.g. X ·0⇒ 0 applies to the first part of 2 ·0+3.1 and Y ·1⇒ Y
applies to the second.

2. Or one rewritten subterm is totally enclosed in the other rewritten
subterm, e.g. X · 0 ⇒ 0 applies to the whole of (3 · 1) · 0 whereas
Y · 1⇒ Y applies only to the part in parenthesis,

126 Computer Modelling of Mathematical Reasoning

Figure 9.6: Local Confluence Implies Confluence

Of course, the two parts may be equal, as when the rules X0 ⇒ 1 and
0Y ⇒ 0 are applied to 00. What cannot happen is that the two parts should
intersect without total enclosure by one or the other. This follows from the
fact that expressions are trees.

In the first case local confluence is retained, because the application of
the rules is independent. They can be applied in any order and the result
will be the same.

In the second case the application of one rule may prevent the application
of the other. We must then examine the results of the two rule applications,
the int1 and int2 of figure 9.5, to see whether they are conflatable. Fortu-
nately, it is not necessary to consider all the possible expressions that the
two rules may apply to, i.e. all possible ’exp’s. It is possible to tell whether
two rules will apply to overlapping parts of the same expression, and what
the resulting expressions will look like, by examining the rules themselves.
From the two rules which produce int1 and int2 we can form two expressions
called a critical pair. The pair <int1,int2> is an instantiation of the critical
pair and int1 and int2 will be conflatable if the critical pair is conflatable.

Suppose two rules,

lhs1 ⇒ rhs1 and lhs2 ⇒ rhs2,

apply to the subexpressions, sub1 and sub2, respectively of the expression,
exp, then sub1 is an instantiation of lhs1 and sub2 is an instantiation of
lhs2. The case we are interested in is when one of the subexpressions is
totally contained in the other, say sub2 is totally contained in sub1. In this
case some subexpression, bit1, of lhs1 is unifiable with lhs2 with most general
unifier, say φ, so we can cover all cases of multiple overlapping application by
seeing whether the left hand sides of any rules will unify with subexpressions

9. Rewrite Rules 127

of the left hand sides of other rules and seeing whether the resulting critical
pairs conflate. If lhs1[bit1] indicates the left hand side of the rule, with the
distinguished subexpression bit1, then the critical pair is <rhs1 φ, lhs1[rhs2]
φ >.

For instance, the possibility of overlapping applications of X · 0⇒ 0 and
Y ·1⇒ Y is betrayed by the fact that X unifies with Y ·1 with most general
unifier {Y ·1/X}. The critical pair will then be < 0, Y ·0 >. In our example
the role of the overlapping instantiations, sub1 and sub2, was played by
(3 · 1) · 0 and 3 · 1 respectively, and the role of the different rewritings, int1
and int2, was played by 0 and 3 · 0.

Exercise 30 Find a subexpression of Y · 1 which will unify with X · 0. Use
this unification to construct another term which the rules above will both
apply to.

Similarly, the fact that X0 ⇒ 1 and 0Y ⇒ 0 both apply to 00 is shown
by the fact that X0 and 0Y unify with most general unifier {0/X, 0/Y }.
Here the critical pair is < 1, 0 >.

Note that the same rule may apply to two different overlapping subex-
pressions e.g. X · 0 ⇒ 0 will apply to (3 · 0) · 0 to produce either 0 or 0 · 0.
Thus when seeking all possible multiple overlapping applications we must
also try unifying the left hand side of a rule with subexpressions of itself
(after first standardizing apart the variables in the two copies). In this case
X1 ·0 unifies with X2 with most general unifier {X1 ·0/X2} and the critical
pair is < 0, 0 · 0 >.

These observations can be summarized in a theorem.

Errata Note The proof of theorem 9.8 below is faulty. The assumption
that lhs1φ contains a subexpression bit1φ identical to lhs2φ is not yet
justified. The correct proof requires a case split at this point. See
[Huet 77] for details.

Theorem 9.8 If all the critical pairs of a set of rules are conflatable then
the set of rules is locally confluent.

Proof: Consider a situation when two rules

1. lhs1 ⇒ rhs1 and
2. lhs2 ⇒ rhs2

apply to the subexpressions sub1 and sub2 of exp, producing the rewritings
exp1 and exp2, respectively. As noted above, if sub1 and sub2 do not overlap
then rule 1 can be applied to exp2 and rule2 to exp1 to yield the same result.
Thus exp1 and exp2 conflate in this case and we only need consider the cases
when sub2 is contained in sub1 and vice versa. These are symmetric, so we
consider only the first case, i.e. when exp has the structure, exp[sub1[sub2]].

128 Computer Modelling of Mathematical Reasoning

In this case exp1 and exp2 will be exp with sub1 and sub2 replaced by
some instantiation of rhs1 and rhs2, i.e. some instantiations of exp[rhs1]
and exp[sub1[rhs2]]. In fact, since sub1 and sub2 are instantiations of lhs1φ
and lhs2φ the new expressions will actually be instantiations of exp[rhs1φ]
and exp[sub1[rhs2φ]], see figure 9.7. Since bit1φ and lhs2φ are identical

Figure 9.7: Overlapping Rewritings of an Expression

and sub2 is an instantiation of rhs2 the second of these expressions is also
an instantiation of exp[lhs1[rhs2]φ]. Thus we need only show that the two
expressions rhs1φ and lhs1[rhs2]φ are conflatable. These expressions form
the critical pair <rhs1φ, lhs1[rhs2]φ >. Since every critical pair is conflatable
the theorem is proved. QED

The usual way to show that a critical pair is conflatable is to show the
equivalent result that they have a common normal form. Each element of the
pair should only have one normal form, otherwise we have a counterexample
to the rule set being canonical.

Thus we have a way to show that a set of rules is canonical and Church-
Rosser.

1. Show that the set of rules is terminating, using the method outlined in
section 9.3, and that each expression can only be rewritten in a finite
number of ways. If the rules are non-terminating or infinite branching
then fail.

2. Find all critical pairs of the rules.

3. Derive all normal forms of each element of each pair. (Since the rules
are terminating this will not take forever.)

4. If any element has more than one normal form then fail. (This test
can be interleaved with the previous step for greater efficiency.)

5. If any pair have different canonical forms then fail.

6. Otherwise the critical pairs all conflate. Hence the rules are locally
confluent. Since they are also terminating they are confluent. There-
fore they are both canonical and Church-Rosser.

9. Rewrite Rules 129

9.6.3 Improving Non-Confluent Rule Sets

Even if this test should fail, all is not lost. If the test fails at step 4 or
step 5 then we have two similar expressions, either two normal forms of an
element or the canonical forms of a critical pair, which are not conflatable.
Suppose the two expressions are nf1 and nf2, we can make them conflatable
by adding a new rule,

either nf1 ⇒ nf2 or nf2 ⇒ nf1

to the rule set. nf1 and nf2 have been shown similar, since they are both
normal forms of the same expression, so both the above rules are correct
provided the original rule set was correct.

Naturally, this is not the end of the matter; the resulting set is not
necessarily confluent.

1. There may be other non-conflatable pairs of expressions which must
also be added as new rules.

2. The new rules will give rise to new critical pairs which must now be
tested for conflatability.

3. Worst of all the new rule will have upset the termination proof in step
1, which must now be redone. It is possible that it cannot be redone
– the set may now be non-terminating! If this happens this process of
improving the rule set must come to an end.

However, if all goes according to plan – the set stays terminating and we run
out of non-conflatable pairs – then the resulting rule set will be confluent.

This method of improving rewrite rule sets and possibly turning them
into confluent sets is due to Knuth and Bendix [Knuth 70]. They applied
it, in various ways, to the theory of groups. For instance, starting with a
non-confluent set of rules based on three group axioms: the left identity,
left inverse and associative axioms; their computer program added 17 new
rules until a confluent set was obtained. Several of these new rules were of
interest as theorems of group theory, e.g. the right identity and right inverse
axioms were generated together with

i(i(X)) = X and i(X ◦ Y) = i(Y) ◦ i(X).

Ten of the twenty rules were sufficient to solve the word problem for a free
group with no relations. This word problem is to find a decision procedure
to decide whether any two variable free terms are equal, according to the
axioms of group theory alone. A variable free term for a free group is a term
composed of only circ, i and e. The decision procedure is to see if the two
variable free terms have the same canonical form under this set of ten rules.

130 Computer Modelling of Mathematical Reasoning

9.7 Summary

Rewrite rules can be used to put expressions in normal form and to prove
expressions equal, equivalent or similar in some other way. Their applica-
tion represents a powerful method of mathematical reasoning, because they
can sometimes overcome the combinatorial explosions caused by other uni-
form proof procedures, e.g. resolution. The desirable properties of rewrite
rule sets which reduce the combinatorial explosion are: termination, being
Church-Rosser and being canonical. Sets of rules can be shown to terminate
with the aid of a numerical function of the expression, which decreases each
time the expression is rewritten. Sets of rules can be shown to be Church-
Rosser and canonical by looking at critical pairs formed from pairs of rules.
Sets of rules can be applied using: call by value, call by name or by selective
application.

Further Reading Suggestions

[Huet 77] is a mathematically intense account of several theorems on con-
fluence, including those given above. [Huet 80] is a survey of work on equa-
tional systems, but it is also quite a demanding account.

Chapter 10

Using Semantic Information
to Guide Proofs

• This chapter describes the use of models to guide Horn clause proofs,
illustrated mainly on the domain of Euclidean Geometry.

• Section 10.1 discusses the formalization of Euclidean Geometry as a
set of Horn clauses.

• Section 10.2 describes semantic checking, the use of a diagram to prune
the search tree.

• Section 10.3 describes the use of a diagram to suggest constructions
in geometric proof.

• Section 10.4 shows that a diagram is a model of the axioms and hy-
potheses of a geometry conjecture.

• Section 10.5 generalizes semantic checking and applies it to a conjec-
ture in Arithmetic.

• Section 10.6 explains why semantic checking does not generalize to
non-Horn clauses.

• Section 10.7 proves that semantic checking preserves the completeness
of Horn clause proofs.

When humans try to prove theorems they are not guided solely by the
syntactic properties of the formulae they are manipulating. They have some
idea of what it all means (whatever that means?) and they can bring this
knowledge to bear.

Even in the original formal mathematical theory, Euclidean Geometry,
we have a diagram to guide us. The diagram even has a place in the official
layout of the theorem statement.

131

132 Computer Modelling of Mathematical Reasoning

Note that the conventions for upper and lower case are rather different, in
the official layout of Euclidean geometry theorem statements, than the one
we have been using. We will have to alter the official layout to correspond
to our convention.

Statement The angle bisector is equidistant from
the rays of the angle.

Diagram

Given
1. Seg DB bisects Angle ABC
2. Seg DA ⊥ Seg BA
3. Seg DC ⊥ Seg BC

Required to Prove
4. Seg AD = Seg CD

The observation that humans usually use diagrams when trying to prove
Euclidean Geometry theorems, led Herbert Gelernter, to try to build a
theorem proving program which could use a diagram to guide the proof
[Gelernter 63b, Gelernter 63a]. Gelernter called his program the Geometry
Machine.

In this section we will make a rational reconstruction of the Geometry
Machine. That is, we will explain its main ideas using the terminology
developed in the earlier part of this book rather than the terminology used
by Gelernter. We will sometimes gloss over or ignore aspects of the Geometry
Machine which are incidental to our main theme of how the diagram was
used to guide the search. Defying historical niceties we will sometimes refer
to this rational reconstruction as the Geometry Machine.

10.1 Formalising Geometry

Before we can discuss how a diagram might guide the search for a proof we
must have a search to guide. This means choosing some inference system,
and designing some formalism in which axioms and conjectures may be
expressed.

The following, functions, predicates, axioms, etc. are adapted from
[Gelernter 63b] and from [Gilmore 70]. Some were suggested by the stan-

10. Using Semantic Information to Guide Proofs 133

dard abbreviations of Euclidean Geometry, some, especially the more basic
ones, were invented from scratch.

One of Gelernter’s goals, when designing the Geometry Machine was for
it to produce proofs comparable to the normal human ones. This led him to
reject the standard axiomatizations of Geometry, e.g. the ones due to Tarski,
Hilbert and Forder. Instead he tried to capture, in axioms, the laws assumed
by the school student. This led to, a somewhat ad hoc, highly redundant,
rather large, but psychologically plausible list of axioms. It would be tedious
to list them all here. Instead we give a small sample, including those needed
to illustrate the use of the diagram to guide the proof.

Paul Gilmore, in an analysis of the Geometry Machine
[Gilmore 70] divides the axioms into three classes.

(a) Basic axioms relating points to the higher level concepts of: line seg-
ments, angles, triangles, etc. These include such definitions as:

If A and B are distinct points, and B and C are distinct
points, and A and C are distinct points, and A, B and C
are not collinear, then ABC is a triangle.

We will formalise this as:

distinct(A,B) ∧ distinct(B,C)∧
distinct(A,C) ∧ notcoll(A,B,C)

→ is triangle(A,B,C).

(b) Axioms expressing symmetries of these predicates and functions, e.g.,

If segment AB equals segment DC then segment AB equals
segment CD.

We will formalise this as:

seg(A,B) = seg(D,C)→ seg(A,B) = seg(C,D). (i)

(c) The more familiar axioms expressing equality between angles and line
segments, congruence between triangles, parallelism between line seg-
ments, etc. e.g.

Corresponding sides of congruent triangles are equal,

formalised as:

tri(A,B,C) ≡ tri(D,E, F)→ seg(A,B) = seg(D,E), (ii)

and

Two triangles are congruent if they have two equal angles
and a corresponding equal side,

134 Computer Modelling of Mathematical Reasoning

formalised as:

angle(A,C,B) = angle(D,F,E)∧
angle(C,A,B) = angle(F,D,E)∧
seg(B,C) = seg(E,F)→ tri(A,B,C) ≡ tri(D,E, F).

(iii)

Gilmore also points out that all of these axioms are Horn clauses. This
observation has important consequences for the use of the diagram, as we
will see below.

10.2 Geometric Proofs

Lush Resolution (see section 6.3) produces proofs very like those of the Ge-
ometry Machine. So using Lush Resolution, the above axioms and a formal-
ization of a conjecture, it is possible to produce some automatic geometry
proofs – for instance, a proof of the theorem described above that

The angle bisector is equidistant from the rays of the angle.

The formalization of this conjecture, negated and put in clausal form is:

1. → seg(d, b) bisects angle(a, b, c).
2. → seg(d, a) ⊥ seg(b, a).
3. → seg(d, c) ⊥ seg(b, c).
4. seg(a, d) = seg(c, d)→.

Figure 10.1 contains a fragment of the search tree generated by taking the
goal clause, 4, as top clause and applying the axioms from (b) and (c) above
to it using Lush Resolution.

Figure 10.1: A Fragment of the Search Tree for a Simple Geometry Theorem

Consider the two ‘congruence’ goals, marked $ and + in figure 10.1. NB
Just the goals, i.e. the antecedent of the clause, not the whole clause. What

10. Using Semantic Information to Guide Proofs 135

could be substituted for the variables, X, Y , Z and W so that these goals
were provable? If we restrict the possible substitutions to points occurring
in the diagram the possibilities are extremely limited.

• Substituting b for X and for Y will make $ true in the diagram and
hence quite likely provable by the program.

• No substitutions of points for Z and W will make + true in the dia-
gram; to find suitable points would require making a construction.

The Geometry Machine used such reasoning to guide the search for the
proof in the following ways.

• Variables in goals were instantiated to particular points (i.e. constants)
in such a way that the goal instances were true in the diagram.

• Clauses for which no such instantiation was possible were temporarily
pruned from the tree.

• The nodes where such instantiations or prunings had been made were
remembered as continuation nodes should the diagram ever be ex-
tended by construction and hence new points become candidates for
instantiation.

Thus the diagram was used to guide the search by pruning some nodes
from the tree and delaying the development of others to a second pass. We
will call this technique semantic checking .

10.3 Constructions

If we discount loops then the resulting search tree is finite. This is because
Gelernter’s representation of Geometry does not use functions in any es-
sential way: formulae like seg(A,B) = seg(D,C) can be regarded as fancy
notation for a four parameter predicate. As noted in section 4.3.2, and sec-
tion 16.2 function-free theories are decidable. In fact the Lush Resolution
search trees for such theories are finite, so exploration will eventually cease,
even if no proof has been found. At this stage a continuation node can be
selected and used to suggest a single construction which would allow further
development of the node.

The angle bisector example above can be proved without such a construc-
tion, as can many simple geometry theorems, so to see how the construction
process works we will have to look at another example.

Statement If the segment joining the midpoint
of the diagonals of a trapezoid is extended
to intersect a side, it bisects that side.

136 Computer Modelling of Mathematical Reasoning

Diagram

Given
→ quadrilateral(a, b, c, d)
→ seg(b, c)‖seg(a, d)
→ e midpt seg(a, c)
→ f midpt seg(b, d)
→ precedes(m, e, f)
→ precedes(a,m, b)

Required to Prove
seg(m, b) = seg(m, a)→

The meanings of the new functions and predicates introduced above is ob-
vious except for ‘precedes’. precedes(A,B,C) means that points A, B and
C are collinear in that order.

We will consider a proof of this conjecture which uses the lemma that a
line drawn through the midpoint, D, of the line, AB, to intersect AC at E,
in triangle ABC, is parallel to the base, BC, iff E is the midpoint of AC.
This is illustrated in figure 10.2. A slightly extended version of the if part

Figure 10.2: Key Lemma Illustration

of this lemma is

is triangle(A,B,C) ∧
precedes(A,D,B) ∧ precedes(A,E,C) ∧
seg(D,A) = seg(D,B) ∧ seg(E,A) = seg(E,C) ∧
collinear(B,C, F)
→ seg(D,E)‖seg(B,F)

(iv)

The idea of the proof is to construct a line from c through f to intersect ad
at k. The resulting diagram is shown in figure 10.3 Point f is established
to be the midpoint of ck, because triangles cfb and kfd are congruent. The

10. Using Semantic Information to Guide Proofs 137

Figure 10.3: The Construction of a New Point

lemma is used in the if direction, on triangle cak, to establish that ef is
parallel to ak. Then the lemma is used in the only if direction, on triangle
bad, to establish that m is the midpoint of ab. The hardest part is thinking
of the construction of point k.

To see how the diagram can be used to suggest this construction consider
the fragment of proof in figure 10.4, in which axiom iv is applied. This is
the point of the proof at which ef is shown parallel to ak.

seg(e, f)‖seg(a, d)→

(iv)

is triangle(X, a, Y) ∧
$ precedes(X, e, a) ∧ precedes(X, f, Y) ∧

seg(e,X) = seg(e, a) ∧ seg(f,X) = seg(f, Y) ∧
collinear(a, Y, d)→

Figure 10.4: A Fragment of the Search Tree of the Second Example

During the first stage of the Geometry Machine’s search, the goal clause
marked $ in figure 10.4, was temporarily pruned, because there are no in-
stantiations for X and Y in the current diagram which would make all the
goals in $ simultaneously true. However, after the search tree had been
exhausted it was resurrected as a continuation node.

But the goals of clause $ can be satisfied, and can only be satisfied, by
the substitution {c/X, k/Y }. In fact, ruler and compass style manipulations,
based on these goals, will construct k. Draw a circle, centre e, radius ea,
and find its intersection with ea to bind X. Now extend cf to intersect ad
at k. Check that fc and fk are equal.

The information that k is the intersection of cf and ad, i.e

collinear(c, f, k) and collinear(a, d, k)

138 Computer Modelling of Mathematical Reasoning

can now be added to the theorem hypotheses and the search can proceed
from this continuation node. The proof of this example can now be found
without further construction being necessary.

10.4 What is the Diagram?

What form does the Geometry Machine diagram take and how was it used?
Gelernter did not use a diagram written on a piece of paper and viewed,

by the computer, through some electronic eye (although, if he had had the
technology, this method could have been used instead). Rather, a cartesian
representation was used, with each point mentioned in the theorem being
assigned a pair of x y coordinates. Thus the diagram,

would be represented by some assignment like

a 7→<
√

3,
√

7/6>
b 7→<0, 0>
c 7→<

√
3, 0>

d 7→<
√

3, 1>

chosen in such a way as to make the hypotheses of the theorem (i.e. all but
the goal clause) true. The above assignment makes

→ seg(d, b) bisects angle(a, b, c)
→ seg(d, a) ⊥ seg(b, a) and
→ seg(d, c) ⊥ seg(b, c)

all true. The assignment must be chosen by the human user of the Geometry
Machine, since Gelernter did not provide a program to do it. The user is
well advised to choose an assignment which minimizes the number of things
which are accidently true.

The calculation procedures of real number arithmetic can now be used
to assign real numbers to any variable free term and hence to assign a truth
value to any variable free formula. For instance, tri(a, d, b) ≡ tri(c, d, b)
would be assigned the value t and tri(a, d, b) ≡ tri(d, c, b) would be assigned
the value f .

The diagram and these calculation procedures can be used to temporarily
prune nodes out of the search tree as follows.

• Suppose G1 ∧ ...∧Gn → is a newly derived goal clause containing the
vector of variables, X. Suppose the vector of constants, a, contains

10. Using Semantic Information to Guide Proofs 139

all the constants mentioned in the statement of the theorem. We will
treat these constants as objects in a universe.

• The constants are assigned to the variables in the goal clause in all
possible ways producing a series of instances. Let G′1 ∧ ... ∧G′n → be
one of these instances.

• The calculation procedures and the assignment to a are used to test
G′1 ∧ ... ∧G′n to see whether it is true in the diagram.

• All instances failing the test are pruned.

• All instances passing the test become daughters of the original goal
clause.

• If the original goal clause contains any variables it is remembered as
a possible continuation node. Note that a variable free goal clause
has only one instance – itself. Thus the calculation procedures either
reject or accept it. There is no need to remember it as a continuation
node.

For instance, if the newly derived goal clause is

tri(a, d,X) ≡ tri(c, d, Y)→

then the instances of this are:

tri(a, d, a) ≡ tri(c, d, a)→
tri(a, d, a) ≡ tri(c, d, b)→
............ etc (16 in all)

Only one of these passes the ‘truth’ test, tri(a, d, b) ≡ tri(c, d, b). So only
this instance remains in the search tree.

Exercise 31 What are the instances of seg(d, a) = seg(d,X)→? Which of
them pass the truth test?

The other use of the diagram mentioned above was to help in the con-
struction of new points. This is a little more difficult than the truth testing
use. Given a conjunction of goals like:

tri(X, a, Y) ∧ precedes(X, e, a) ∧ precedes(X, f, Y)∧
seg(e,X) = seg(e, a)∧ seg(f,X) = seg(f, Y)∧ collinear(a, Y, d)

the diagram must suggest how new points may be constructed, which when
substituted for some of the variables in the conjunction will make it true.
In this case it should suggest the construction of point k, as the intersection
of lines ad and cf and suggest the substitution {c/X, k/Y }.

140 Computer Modelling of Mathematical Reasoning

The trick is to associate algebraic formula, e.g. equations, inequalities
etc, with each of the propositions in the conjunction, and to use equation
solving techniques to find an assignment of cartesian coordinates for the
variables which will make the conjunction true. This assignment can then
be used to recover the points corresponding to the coordinates: the points
may already exist (e.g. c in the example) or may need to be defined as the
intersection of two existing lines.

For instance, the formula associated with precedes(X, e, a) is the equa-
tion of a line passing through the coordinates assigned to e and a. The
formula associated with seg(e,X) = seg(e, a) is the equation of a circle with
centre the coordinates of e and radius the length of seg(e, a). Solving these
two equations for their intersection will produce two coordinates for X, cor-
responding to the existing points, a and c. Only the substitution of c for X
will make precedes(X, e, a) true.

The formulae associated with precedes(c, f, Y) and seg(f, c) = seg(f, Y)
may now be used in similar fashion to calculate coordinates for Y . These
correspond to no existing points, but define a point which lies on the non-
parallel lines ad and cf , and so may be introduced as the intersection of
these two lines.

The axiom which allows us to introduce new points

¬seg(A,B)‖seg(C,D)→ ∃E collinear(A,B,E)∧
collinear(C,D,E)

is known implicitly to the Geometry Machine rather than being available
to extend the search tree in the normal way. Including as an explict axiom
might cause problems since putting it into clausal form produces two non-
Horn clauses. It is invoked only during the resurrection of continuation nodes
in order to create new points and to assert the collinearity propositions on
the right hand side of the axiom. In this case having checked that lines ad
and cf are not parallel we can assert two new hypotheses about the new
point, namely

→ collinear(a, d, k) and
→ collinear(c, f, k)

The procedure may be summarized as follows

• Given a continuation node labelled by a goal clause, g1 ∧ ... ∧ gn →
containing the variables, X.

• Associate algebraic formulae with each of the goals, gi and algebraic
variables with each of the variables, X.

• Solve these formulae to assign coordinates to each of the variables, X.
There may be several combinations of coordinates.

10. Using Semantic Information to Guide Proofs 141

• Check that these coordinates satisfy all the gis rejecting any combina-
tions that do not.

• Recover points to associate with the variables by noticing that the
assigned coordinates are already assigned to points or by creating new
points as the intersection of two non-parallel lines.

• Assert collinearity propositions for the new points.

• Substitute the points for the associated variables in the goal clause
creating a new instance for each combination of coordinates.

• Let each of these instances be a daughter of the original goal clause.

10.5 Can the Diagram be Generalized?

Is this use of the diagram just a technique useful in Geometry or can it be
generalized and used in other domains?

It can be generalized. The key observation is to recognise that the job
of the diagram above is to define a model of the hypotheses of the theorem
and the axioms of Geometry – in the sense that we met in chapter 3.

Firstly, note that the diagram was an interpretation of the clauses which
constitute the theorem statement, i.e. the axioms of geometry and the
hypothesis and conclusion of the theorem. The universe of the interpretation
was the set of all pairs of real numbers, e.g. <

√
3, 1 >. Each constant in

the theorem statement was assigned one of these pairs as its value, e.g.
d 7→<

√
3, 1 >. Each function and predicate in the theorem statement was

assigned an arithmetic calculation procedure.
Secondly, note that the assignment of coordinates to points was done so

as to make this interpretation a model of the hypotheses of the theorem and
the calculation procedures were chosen so as to ensure that it was a model
of the axioms of Geometry.

To see how the same technique may be used in a different domain, con-
sider the following example from arithmetic.

Let X |/Y mean that X does not divide Y exactly. We will try to prove
the theorem that

If 5 does not divide a number then 30 does not divide it.

We will take as our axioms,

1. X |/Z → X.Y |/Z
2. Y |/Z → X.Y |/Z
3. → 30 = 2 · (3 · 5)

and the equality axioms, which we will build into the paramodulation rule.
The theorem is formalized as:

142 Computer Modelling of Mathematical Reasoning

hypothesis: → 5 |/a
and

conclusion: 30 |/a→

The search tree for this example, taking the conclusion as top clause, is
given in figure 10.5. This tree, though exhausting the possibilities, is nice

Figure 10.5: Search Tree for Not Divides Example

and small. However, if we had had some additional axioms for |/ , e.g.

4. Z |/X ∧ Z |/Y → X |/Y,

then the goal clauses marked $ and + may have been developed indefinitely
and fruitlessly. It is worth looking at ways in which they could have been
recognised as hopeless and pruned from the tree.

Let us use the calculation procedures of arithmetic to build an interpre-
tation which is a model of the axioms and hypotheses of the theorem, but
in which the goals of $ or + are false. One such interpretation, arith2, can
be defined by letting ·, |/ and = have their normal meaning, but giving ‘a’
the value 2. In arith2, 5 |/a, for instance, will be true, and so will 30 |/a, but
2 |/a will be false. Thus arith2 rejects the goal clause $.

However, arith2 will not reject +, since it makes the goal, 3 |/a, true. To
reject + we will need an interpretation which makes 3 |/a false. Consider, for
instance, the interpretation, arith3, in which ·, |/ and = have their normal
meanings, but ‘a’ has value 3. This has the desired effect. It rejects +.
However, it does not reject $. Thus to reject both $ and + we will need to
use both arith2 and arith3 in concert.

This example has two messages:

• The use of the diagram by the Geometry Machine to prune some goal
clauses from the search tree can be generalized to other domains: the

10. Using Semantic Information to Guide Proofs 143

diagram being generalized to an interpretation of the clauses and a
model of the axioms and hypotheses.

• It can also be generalized in another way, namely several interpreta-
tions can be used in concert, any one having the right of veto.

Exercise 32 Can you find an interpretation which is a model of the axioms
and hypothesis, but which rejects both $ and + ?

Exercise 33 Consider the search tree for the group theory example in figure
7.1, chapter 7. Can you design a model of the axioms and hypothesis of the
theorem which would reject the goal clause a = b→ ?

10.6 The Trouble with Non-Horn Clauses

So far we have argued by example (an unsafe method). Before we proceed to
a theoretical analysis let us look at one more example – a counterexample.

Consider another funny arithmetic example. The proposition,
is prod primes(X), means X is a product of prime numbers, is prime(X)
means X is a prime number and is power 3(X) means X is a power of 3.
As axioms we will have:

1. is prime(X)→ is prod primes(X)
and

2. is power 3(X)→ is prod primes(X)

i.e. a number is a product of primes if it is a prime or a power of 3.

We will now try to prove this as a theorem. Negated, this becomes the
hypothesis,

hypothesis: → is prime(a) ∨ is power 3(a)

and the conclusion,

conclusion: is prod primes(a)→.

Notice that the hypothesis is a non-Horn clause.

If we take the conclusion as the top clause and apply Lush Resolution we
get the complete search tree shown in figure 10.6. Notice also the non-Horn
clause features of this search tree:

• that the clauses labelling some nodes are not goal clauses, even though
the top clause was;

• that it is necessary to use ancestor resolution with the top clause.

144 Computer Modelling of Mathematical Reasoning

Figure 10.6: A non-Horn clause search tree

I am going to present some interpretations which, if allowed right of veto,
would prune all proofs from this search tree – that is, the use of semantic
checking will make the theorem proving process incomplete!

As usual we will let the predicates: is prime, is power 3 and
is prod primes, take their obvious meanings on the natural numbers, 0,
1, 2, 3, ...etc. Thus is prime(2), is power 3(9), is prod primes(2) and
is prod primes(9) will be true and is prime(9) and is power 3(2) will be
false. So any interpretations we consider will be models of the axioms, 1
and 2. The various interpretations will differ only in the meaning assigned
to the constant a. In order that they will be models of the hypothesis, we
must ensure that ‘a’ behaves like a prime or a power of 3.

In the first interpretation, num2, we will give ‘a’ the value 2. Thus,
is power 3(a) will be false so num2 will reject the goal clause +.

In the second interpretation, num9, we will give ‘a’ the value 9. Thus,
is prime(a) will be false, so num9 will reject the goal clause $.

If both num2 and num9 are used in concert with right of veto then the
search tree will be truncated after the first level and both the proofs will be
lost.

The solution might appear to be to drop the right of veto, and insist
that both interpretations agree, or to use only one interpretation. However,
neither of these possible solutions is good enough. We can find a single
interpretation which will prune both branches.

Consider the interpretation, num3, in which ‘a’ is given the value 3. This
will reject both clauses $$ and ++, provided we extend the rejection criteria
in the obvious way to non-goal clauses. Clause ++ is → is prime(a) This
is equivalent to ¬is prime(a) →, i.e it behaves like a goal clause with goal

10. Using Semantic Information to Guide Proofs 145

¬is prime(a). But is prime(a) is true in num3, so ¬is prime(a) is false
and num3 will reject ++. Similarly num3 will reject $$.

What went wrong? Why did our nice semantic based guidance technique
go sour? Could it be something to do with the fact that this example is a
non-Horn clause? To find out we will have to take the theoretical excursion
promised at the beginning of this section.

10.7 The Theoretical Underpinning for Semantic
Checking

Let us start by considering, and tidying up, the grounds on which a clause
can pass the ‘truth test’ set by an interpretation.

On page 138 above we said that an instance of a goal clause

G′1 ∧ ... ∧G′n →,

would pass the truth test if and only if all the G′is were true in the interpre-
tation. This goal clause instance is equivalent to:

¬G′1 ∨ ... ∨ ¬G′n

so if all of the G′is are true then the whole clause is false. Any instance of
the goal clause which is false in the interpretation will be accepted and any
true instance will be rejected.

Let us extend these grounds to any variable free clause and say that

Definition 10.1 An interpretation accepts a variable free clause if and only
if it is false in the interpretation.

One effect of semantic checking is to ensure that any clause, which is true in
a model of the axioms and the hypothesis of the conjecture, is pruned from
the tree. We will show that this cannot lead to incompleteness by proving
the following theorem.

Theorem 10.2 If input ∪ {top} is a minimally unsatisfiable set of Horn
clauses then there is a derivation of the empty clause from them in which
‘top’ is the top clause and no clause in the derivation is true in any model
of ‘input’.

Proof: We know from chapter 16.5 that Lush Resolution is complete
for sets of Horn clauses, so there is a derivation in which top is the top clause
and each clause in the derivation is derived by resolution with a clause from
input. We will show that this derivation has the required property.

Let M be a model of input. Since input ∪ {top} is unsatisfiable, top is
not true in M . Since the empty clause is not true in any model it is not
true in M . We will show that if a resolvant is not true in M then one of

146 Computer Modelling of Mathematical Reasoning

its parents is not true in M , and hence by induction on the structure of the
derivation, all the clauses in it are not true in M .

To simplify matters consider only a binary resolution between:

C ′ ∨ P ′ and C ′′ ∨ ¬P ′′

producing the resolvant

(C ′ ∨ C ′′)φ

where φ is the most general unifier of P ′ and P ′′. Suppose that C ′ ∨P ′ and
C ′′ ∨ ¬P ′′ are truein M and that (C ′ ∨ C ′′)φ is not.

Then there is an instance of the resolvant (C ′ ∨ C ′′)φ which is false in
M . Hence both C ′φ and C ′′φ are false in M . Since the original clauses are
true then all their instances are true, so P ′φ and ¬P ′′φ must both be true.
But P ′φ and P ′′φ are identical, so this is a contradiction. Therefore in order
to produce a resolvant which is not true one of the its parents must itself be
not true. This argument is easily extended to full resolution.

The bottom clause of the derivation is the empty clause, which is not
true in M .

Assume, as an induction hypothesis, that the clause nth from the bottom
in the derivation is not true in M . We will show that the n+ 1st from the
bottom is also not true in M and hence, by induction that none of the
clauses in the derivation are true in M .

The nth clause was derived by resolution from the n+ 1st clause and a
clause from input. By assumption the input clause is true in M and by the
induction hypothesis the nth clause is not true in M . Hence, by the above
argument the n+ 1st clause is not true in M . Therefore, none of the clauses
in the derivation are true in M . QED

This theorem partially justifies the pruning of semantic checking. It
shows that the clauses which were completely pruned, the ones true in some
model of the input clauses, could not have led to any proofs and were rightly
ignored. If we add to Lush Resolution an instantiation rule which instanti-
ates variables with elements from the universe and show that completeness
is preserved if after this rule is applied no resolutions are necessary with the
parent clause then the theorem completely justifies semantic checking.

However, the theorem breaks down for non-Horn clauses at the induction
step. Because ancestor resolution is allowed, the nth clause may have been
derived from the n+1st clause and an ancestor, say the n+mth clause from
the bottom. It could be that the n+1st clause is true, but that the n+mth
clause is not true and that the nth clause inherits its non-truth from that.
Thus truth can be introduced into the derivation only to be eliminated by
ancestor resolution.

Exercise 34 Verify that that is what happens with the non-Horn clause
example of section 10.6.

10. Using Semantic Information to Guide Proofs 147

10.8 Summary

Thus the situation can be summarized as follows. For Horn clauses:

1. a model of the input clauses (axioms plus conjecture hypotheses) can
be used to prune the search space of true clauses without loss of com-
pleteness;

2. several models can be used, with each having the right of veto.

3. in the case of Geometry the model can be thought of as a diagram,
but semantic checking is applicable to any domain;

4. in Geometry, a blocked search tree can be used in conjunction with
the diagram to suggest the construction of new points and lines.

It may be possible to adapt semantic checking to non-Horn clauses. For
instance, by insisting that if a true clause is introduced attempts are made
to ancestor resolve it or its descendants with a non-true ancestor. To the
best of my knowledge no one has attempted this.

Further Reading Suggestions

[Gelernter 63b, Gelernter 63a] are the best introduction to the Geometry
Machine. [Gilmore 70] is an analysis and rational reconstruction of Gelern-
ter’s techniques.

148 Computer Modelling of Mathematical Reasoning

Chapter 11

The Productive Use of
Failure

• This chapter shows how evidence from the failure of one proof method,
namely Symbolic Evaluation, can be used to guide other methods,
namely Induction and Generalization.

• Section 11.1 defines LISP as a Predicate Logic theory.

• Section 11.2 describes the Symbolic Evaluation method of proof.

• Section 11.3 describes the Induction method.

• Section 11.4 describes the Generalization method.

• Section 11.5 explains how the Boyer-Moore technique can be applied
to Peano Arithmetic.

The uniform search strategies we have considered so far, e.g. depth first
search, have involved giving up in one part of the search tree and continuing
in another part, without any effort to investigate why the earlier attempt
failed. This contrasts with the behaviour of human mathematicians, whose
later attempts may be heavily influenced by their earlier failures (cf, for
instance, the accounts of [Waerden 71, Lakatos 76] mentioned in section
1.3.2).

By observing their own proofs and those of others, Bob Boyer and
J. Moore noticed that this was especially true when proving theorems about
recursive functions. Two basic proof methods are available: a simple one in
which rewrite rules derived from the recursive definitions are used to symbol-
ically evaluate the theorem to be proved and a more complex one in which
induction is used to divide the theorem into two simpler theorems. Boyer
and Moore observed that the failure of the first method could often suggest
what induction schema to use and what variable to induct on, in the second
method.

149

150 Computer Modelling of Mathematical Reasoning

They tested these ideas by building a theorem prover for proving the
properties of computer programs, using Symbolic Evaluation and mathemat-
ical induction. The theorem prover, universally known as the Boyer-Moore
Theorem Prover, [Boyer 73], has been under continuous development since
1971. A more recent version of the system is described in [Boyer 79]. This
chapter is a rational reconstruction of the program, paying particular atten-
tion to how the failure of Symbolic Evaluation suggests how to use induction.
It is based mainly on early versions of the program, since these are simpler
to explain, while containing the key ideas.

The domain of the Boyer-Moore theorem prover was a particular pro-
gramming language, LISP, [McCarthy 62]. We can regard it as a mathemat-
ical theory of the properties of lists in which the terms of the theory also have
an an interpretation as computer programs. Their techniques will work on
any theory with recursive definitions and induction, e.g. Peano arithmetic.
However, LISP has a richer collection of induction schemata than arithmetic,
and so provides a better illustration of power of the method.

11.1 The Formal Theory of LISP

As defined in section 4.3.3 a list is an ordered set of objects, represented as
a series separated by commas and delimited by angle brackets, e.g.

〈this, is, a, list〉.

The elements of the list can be constants or other lists, e.g.

〈this, is, 〈a, nested, list〉〉.

The empty list is represented by the constant nil.

The first list manipulation function we will consider is the constructor
function, cons. cons is a binary function, whose second parameter must be
a list. Its effect is to join its first parameter onto the front of this list, e.g.

cons(this, 〈is, a, list〉) = 〈this, is, a, list〉
and
cons(〈first, element〉, 〈of, a, list〉)

= 〈〈first, element〉, of, a, list〉

cons plays a similar role, in LISP, to that played by s (the successor function)
in Peano arithmetic. Just as s was used to generate all the natural numbers
from the single constant 0, so cons can be used to generate all lists from a
small collection of constants, e.g. 〈this, is, a, list〉 can be represented by

cons(this, cons(is, cons(a, cons(list, nil)))).

11. The Productive Use of Failure 151

As with the successor function, this is a theoretically useful representa-
tion, but is rather cumbersome in practice, so we will maintain the fiction
that the angle bracket representation is only an abbreviation for the under-
lying cons representation. This is just like the situation in Peano arithmetic,
where 3 was regarded as an abbreviation of s(s(s(0))).

We will take this process a stage further by limiting the constants we
will allow to one, nil. All other constants will be regarded as an abbre-
viation for some combination of cons and nil. For instance, the natural
numbers, 0,1,2,3,... etc, will be represented by the lists, nil, 〈nil〉, 〈nil, nil〉,
〈nil, nil, nil〉, ... etc. We will find it convenient to have, as terms within the
theory, two symbols which behave rather like truth values. We will also use
the symbols tt and ff to denote these, in order to distinguish them from t
and f . We will adopt the convention that tt and ff are abbreviations for
the lists cons(nil, nil) and nil, respectively.

Exercise 35 Translate the lists, 〈nil〉 and 〈nil, nil, nil〉 into combinations
of cons and nil.

In Peano arithmetic we had an axiom ¬0 = s(X) to ensure that no
amount of applying the successor function brought us back to 0. In LISP
we will want a similar axiom to ensure that no amount of consing can get
us back to the empty list.

1) ¬nil = cons(X,Y)

As duals of the constructor function, cons, we will have the destructor func-
tions, car and cdr. The car of a list is the first element, e.g.

car(〈this, is, a, list〉) = this.

The cdr of a list is the list minus its first element, e.g.

cdr(〈this, is, a, list〉) = 〈is, a, list〉.

The relationship between car, cdr and cons, can be summarized in the
axioms.

2) car(cons(X,Y)) = X and
3) cdr(cons(X,Y)) = Y

In order to define new functions by cases we will need a conditional
function, cond. cond is a ternary function. If the first parameter of cond is
ff then it equals its third parameter, otherwise it equals its second. This
can be expressed by the two axioms.

4) cond(ff, U, V) = V and
5) cond(cons(X,Y), U, V) = U

152 Computer Modelling of Mathematical Reasoning

Since LISP contains an equality predicate, equal, between lists we will
have to represent this in our theory. Following our convention that all LISP
programs are to be represented as terms, we must represent equal as a
function. This distinguishes it from the predicate, =, which we have been
using above. Indeed we have axioms which involve them both, like

6) equal(X,X) = tt

Finally, we are allowed to introduce as many new functions as we like,
provided they are accompanied by new axioms which serve to define them
either explicitly or by recursion. For instance, we may define a function,
append, by recursion, as follows.

append(X,Y) = cond(X,
cons(car(X), append(cdr(X), Y)),
Y)

append is a function which takes two lists and joins them, e.g.

append(〈this, is〉, 〈a, list〉) = 〈this, is, a, list〉)

The idea of the definition is that if the first parameter is the empty list
then we return the second parameter, otherwise we take off its first ele-
ment, recursively append this foreshortened list to the second parameter
and then cons back the first element. Note that the use of cond enables
us to dispense with the need for multiple equations when making recursive
definitions. This will have consequences for the way in which the failure of
Symbolic Evaluation influences the subsequent induction process.

11.2 Symbolic Evaluation

A typical conjecture which we might want to prove in list theory is that
appending a nil onto a list has no effect, i.e.

equal(append(nil,X), X) = tt (i)

Taking the universal closure of this, negating it and putting it in clausal
form gives:

equal(append(nil, x), x) = tt→

The empty clause can be derived from this using Symbolic Evaluation alone,
i.e. by rewriting the expression in bold face into tt, yielding:

tt = tt→

and then, using the reflexive law, into t→ which is equivalent to the empty
clause.

All the theorems we will prove in this chapter will normalize into the
form:

11. The Productive Use of Failure 153

exp = tt→

and their proofs will only differ in the manner in which exp is Symbolically
Evaluated to tt, so this is the only part we will mention. In the case of
conjecture (i) this means considering how

equal(append(nil, x), x)

can be Symbolically Evaluated to tt.
In this particular proof we will rewrite the expression using the rules:

append(X,Y) ⇒ cond(X,
cons(car(X), append(cdr(X), Y)),
Y)

cond(ff, U, V)⇒ V
equal(X,X) ⇒ tt

in that order.
Note that, as in the case of arithmetic evaluation in section 9.2.3, the

first rewrite rule is based on the recursive defining equation of append. The
remaining rules are based on the non-recursive definitions of cond and equal.
In general, we will use only rewrite rules based on the recursive definitions
of new functions like append and those based on the axioms 1) to 6).

Thus the proof is:

equal(append(nil, x), x)

= equal(cond(nil,

cons(car(nil), append(cdr(nil), x)),

x),

x)
= equal(x, x)

= tt

where the subterm being rewritten at each stage has been emphasised by
underlining.

But Symbolic Evaluation does not always work so well. The rewrite rule
set defined by the axioms 1- 6 and recursive definitions is not terminating.
For instance, a non-terminating branch can be obtained by applying the
definition of append, repeatedly, to the term, append(a, b).

append(a, b) = cond(a,

cons(car(a), append(cdr(a), b)),

b)
= cond(a,

154 Computer Modelling of Mathematical Reasoning

cons(car(a),
cond(cdr(a),

cons(car(cdr(a)),
append(cdr(cdr(a)), b)),

b),
b)

= (and so on)

Note that each successive appearance of append has a more deeply nested
first parameter: a, cdr(a), cdr(cdr(a)), etc. This reflects the definition
of append, where the first element of the first parameter was repeatedly
removed until the empty list was revealed. But a Skolem constant like ‘a’
represents an arbitrary list – there is no knowing how long it is. Conse-
quently, the process will never terminate. The loss of termination is due to
our use of cond to define recursive functions in one equation. If we had used
two equations, as in section 9.2.3, e.g.

append(nil, Y) ⇒ Y
append(cons(X1, X), Y) ⇒ cons(X1, append(X,Y))

then Symbolic Evaluation would terminate with a non-specific list.

If the result of rewriting an expression is that car or cdr is applied to
one of its parameters then two cases arise:

• either the dominant function of the parameter is cons, in which case
the car or cdr can be eliminated by axiom 2) or 3)

• or the dominant function is something else, in which case the car or
cdr cannot be eliminated.

This second case is the major cause of non-termination. We will call such
a parameter an ugly expression. Quite often these ugly expressions are
Skolem constants, as the example above illustrates. If a rewriting threatens
to produce an ugly expression then the rewriting is prohibited and Symbolic
Evaluation is terminated. We will see that the ugly expressions not only tell
us when to stop Symbolic Evaluation, but also provide a strong clue about
what to do next.

11.3 The Method of Induction

What to do next is to try the other available method, Induction. But here
we are faced with a choice. There are several induction schemata available,
and each of them can be used to induct on a different parameter.

Here are a selection of some of the induction schemata available in list
theory.

11. The Productive Use of Failure 155

P (nil) ∧ ∀X ∀X1 [P (X)→ P (cons(X1, X))]→ ∀X P (X)
P (nil) ∧ ∀X ∀X1 [P (X1) ∧ P (X)→ P (cons(X1, X)]

→ ∀X P (X)
P (nil) ∧ ∀X P (cons(X,nil)) ∧

∀X ∀X1∀X2 [P (X)→ P (cons(X1, cons(X2, X)))]
→ ∀X P (X)

In the first one induction is on the cdr of the list; in the second it is on
both the car and the cdr; and in the third it is on the cdr of the cdr.

In each of these the role of X may be taken by any Skolem constant in
the formulae being proved, e.g. either a or b above, making 6 possibilities
altogether. And things do not stop there, as other induction schemata may
be used, in which, for instance, the induction hypothesis covers all sublists
of X.

This is where the failed attempt at Symbolic Evaluation comes
in. Remember that in the example above the first rewriting produced
append(cdr(a), b). If we had assumptions about this formula we might have
been able to do something more than get involved in an infinite regress. But
such an assumption is precisely what an induction hypothesis offers us, pro-
vided we choose the right one. In this case since only the Skolem constant
‘a’ is being affected, and since it is its cdr that is involved then the first
induction schema above is strongly suggested with ‘a’ substituted for X.

Let us see how this might work in the case of a real theorem proving
attempt. Consider the conjecture, that append is an associative function,
represented by:

equal(append(A, append(B,C)), append(append(A,B), C))= tt
If we try to prove this by Symbolic Evaluation, i.e. by rewriting

equal(append(a, append(b, c)), append(append(a, b), c))
into tt, then we will generate four branches – one for each occurrence of

append. Each of these will be terminated by the threatened application of
a destructor function, car or cdr, to an ugly expression.

Looking back at our attempt to Symbolically Evaluate append(a, b) we
can see that in each of the four cases the ugly expression will be the pa-
rameter of an occurrence of cdr dominated by the function, append. The
ugly expressions involved will be two occurrences of a, one of b and one of
append(a, b). This is diagrammed in figure 11.1

The cdrs all suggest the first induction schema above, i.e. induction
on the cdr of a list. But what list? The candidates are a and b, and
as we will see below, it is possible that append(a, b) could be generalized
into a constant and become a candidate. Note that both occurrences of a
give rise to candidates, whereas only one occurrence of b does. If b where
chosen as induction variable then the fact that only one of its occurrences

156 Computer Modelling of Mathematical Reasoning

Figure 11.1: Potential Infinite Regresses in Rewriting of append Example

would be unpacked by Symbolic Evaluation would cause trouble during the
induction step. An induction with b as variable is called a flawed induction
and one with a as variable is called an unflawed induction. The Boyer/Moore
theorem prover would choose a as the induction variable.

Thus the induction basis is to prove.

equal(append(nil, append(b, c)),
append(append(nil, b), c)) = tt→

which yields easily to Symbolic Evaluation (Note how similar it is to the
example we did above). The induction step is to assume the hypothesis

→ equal(append(a, append(b, c), append(append(a, b), c)) = tt

and then prove

equal(append(cons(a1, a), append(b, c)),

append(append(cons(a1, a), b), c)) = tt→

The left hand side of this can be rewritten to

equal(cons(a1, append(a, append(b, c))),

cons(a1, append(append(a, b), c)))

Now the induction hypothesis can be applied, as if it were a rewrite rule, to
replace the left hand side double append and get

equal(cons(a1, append(append(a, b), c)),

cons(a1, append(append(a, b), c)))

which is trivially rewritten to tt.
The step where the induction hypothesis was used was not the same

kind of rewriting step as the others because the induction hypothesis had
the form equal(lhs, rhs) = tt, rather than lhs = rhs. Boyer and Moore call
this an application of Fertilization.

In summary then, the Boyer-Moore technique is

1. Try to prove the theorem by Symbolic Evaluation.

11. The Productive Use of Failure 157

2. Trap any infinite branches by looking out for a destructor function
applied to an ugly expression parameter of the subterm about to be
rewritten.

3. If the attempt at Symbolic Evaluation fails try Induction.

4. Use the trapped destructor function(s) to suggest the induction schema
to use and the trapped ugly expression(s) to suggest what should be
substituted for the induction variable, prefering those that lead to
unflawed inductions.

5. Try to prove the induction basis and conclusion. Use Fertilization
during the proof of the induction step.

11.4 Generalizing the Theorem to be Proved

It is often the case in proving theorems by Induction that the induction
hypothesis is not strong enough to support the induction conclusion. When
this happens it may be that we should try a different induction schema or it
may be that the theorem should first be strengthened by generalizing it – a
paradox of proofs by Induction is that it sometimes easier to prove a strong
theorem than a weak one, simply because the induction hypothesis is also
stronger. This is one of the major points made in [Waerden 71].

This is the case with the theorem

equal(append(rev(A), append(B,C)),

append(append(rev(A), B), C)) = tt

where rev is a function which returns a list in the reverse order, e.g.

rev(〈this, is, a, list〉) = 〈list, a, is, this〉

The induction hypothesis is just not strong enough to do its job and the
Boyer-Moore technique above, fails.

However, we have already seen that a stronger version of the theorem can
be easily proved, namely the theorem obtained by replacing rev(A) above
by a variable, say D.

equal(append(D, append(B,C)),
append(append(D,B), C)) = tt

This replacement of a term by a variable is called Generalization. It can
be done before Induction is attempted to improve the chances of the attempt
succeeding. An obvious procedure suggests itself, namely to look for two or
more identical, complex subterms (i.e. not variables or constants) in a for-
mula and replace them with new variable. Thus the subterm, append(b, c),

158 Computer Modelling of Mathematical Reasoning

in the theorem above would not be replaced because it only occurs once and
b would not be replaced because it is a constant.

A further refinement (due to Aubin [Aubin 75]) is to insist that the
term to be replaced should be one of the trapped ugly expressions. The
reasoning behind this is that for Generalization to achieve anything it should
make available an induction variable candidate that was not available before.
Induction variable candidates must all show up as trapped ugly expressions,
but those that are complex terms cannot be used as they stand. Generalizing
them to variables would make them available. This works in the example
above, as rev(A) is trapped twice as an ugly expression. Thus the failure of
Symbolic Evaluation can not only suggest how to apply Induction, but also
how to Generalize the conjecture to be proved.

The danger in Generalization is to over-generalize, i.e. to generalize a
theorem into a non-theorem. An example of this is provided by the theorem,

equal(length(length(X)), length(X)) = tt

where length is a function from lists to numbers, which in our formal theory
are played by lists of nils. Thus

length(length(〈this, is, a, list〉))
equals length(〈nil, nil, nil, nil〉)
equals〈nil, nil, nil, nil〉
equals length(〈this, is, a, list〉)

This theorem contains two occurrences of the complex term, length(X),
one of which will be trapped as an ugly expression during the Symbolic
Evaluation of length(length(X)). If these are replaced by a new variable,
say Y , we get the formula

equal(length(Y), Y) = tt (ii)

which is no longer a theorem! In fact (ii) is only true when Y is a number,
i.e. a list of nils.

Boyer and Moore provided a partial answer to this problem of over-
generalization by having their theorem prover attempt to invent an addi-
tional hypothesis about the newly introduced constant which would retain
the truth of the theorem. In this case the theorem prover would augment ii
with an additional hypothesis to the Generalization:

is number(Y) = tt→ equal(length(Y), Y) = tt

where is number(Y) means Y is a list of nils. This formula is a theorem.

For this additional hypothesis to be meaningful any functions in it would
have to be defined. In this case additional axioms would have to be asserted
to define is number. The theorem prover was able to do this in many cases,

11. The Productive Use of Failure 159

merely by examining the replaced subterm. In this case by examining the
term length(Y) to see what kind of list it might be.

In inventing these axioms the Boyer-Moore Theorem prover was nearly
always successful, but sometimes it would over-generalize and the additional
hypothesis would admit too many lists. This is why the solution was only
partial. However, if the Generalized theorem could be proved, then the
original theorem would follow from it.

Another way to avoid over-generalization (again due to Aubin), is to fur-
ther refine the heuristic for suggesting Generalization candidates. Instead of
just noting complex trapped ugly expressions as Generalization candidates,
we could note which occurrences of the expression are trapped. When Sym-
bolically Evaluating

equal(length(length(X)), length(X)) = tt

the first occurrence of length(X) is trapped, but the second is not. This ob-
servation can be used to block the Generalization of
length(X), since the induction candidate should appear on both sides of
the equality to be effective.

11.5 Applications to Arithmetic

The Boyer/Moore technique is applicable to any theory in which functions
are defined recursively and theorems proved by Induction. In this section
we show how this can be done to the most well known such theory, Peano
arithmetic.

In arithmetic, the role of the recursive data structure, lists, is played by
the natural numbers, 0, s(0), s(s(0)), ... etc. The successor function, s, plays
the part of the constructor function, cons, and the predecessor function, p,
plays the part of the destructors, car and cdr, where

p(s(X)) = X and p(0) = 0

We need to introduce a new function, cases, to play the part of cond, i.e.

cases(0, Y, Z) = Y and
cases(s(X), Y, Z) = Z

which returns its second or third parameter, according to whether its first
parameter is 0 or not. These equations defining p and cases must be used
by Symbolic Evaluation, as left to right rewrite rules.

To use the Boyer/Moore technique as it stands, we must modify the
recursive definitions of the arithmetic functions to be single equations using
the cases function, e.g.

X + Y = cases(Y,X, s(X + p(Y))

160 Computer Modelling of Mathematical Reasoning

Compare this with the definition of + given in section 4.2.3. We can use
this definition as a rewrite rule, left to right, during Symbolic Evaluation.

We are now in a position to consider the proof of the associativity of +.

(X + Y) + Z = X + (Y + Z)

To be proved by the Boyer/Moore technique this conjecture must be repre-
sented as the goal clause.

equal((x+ y) + z, x+ (y + z)) = tt

Symbolic Evaluation of this goal clause, using the definition of +, yields
the four terminated branches diagrammed in figure 11.2. In each of the

Figure 11.2: Potential Infinite Regresses in Rewriting of + Example

four cases the trapped ugly expressions are parameters of the predecessor
function, p, dominated by the + function. The four ugly expressions are:
z, y, y + z and z. The complex term, y + z, would be a candidate for
Generalization, if it appeared more than once, but it is not yet a candidate
for induction variable. Of the remaining candidates, y and z, z wins by
majority vote.

Since the trapped occurrences of z both appear as parameters of p then
the suggested induction scheme is the standard one,

Q(0) ∧ ∀X {Q(X)→ Q(s(X))} → ∀X Q(X)

Applying this to our theorem generates the two subgoals:

Basis
equal((x+ y) + 0, x+ (y + 0)) = tt→

and
Step
→ equal((x+ y) + z, x+ (y + z)) = tt
equal((x+ y) + s(z), x+ (y + s(z))) = tt→

The basis rapidly yields to Symbolic Evaluation. The step can be proved by
Symbolic Evaluation plus Fertilization with the induction hypothesis. The
proof is strongly parallel to that of the associativity of append, given earlier.

11. The Productive Use of Failure 161

Exercise 36 Describe the proof of the step above, as it might be found by
the Boyer-Moore technique.

Exercise 37 Describe how the Boyer-Moore technique would prove the con-
jecture, (X + Y) + Z2 = X + (Y + Z2)

Thus the Boyer-Moore technique can be applied to theories other than LISP.

11.6 Summary

The Boyer-Moore Theorem Prover has available a variety of methods of
proving theorems: Symbolic Evaluation; Induction; Fertilization and Gen-
eralization. It understands something of the relation between these methods.
It knows when to apply each one and when the failure of one method can
help in the application of another. In short, it can reason about the different
methods available. We will take this idea a step further in the next chapter.

Further Reading Suggestions

[Boyer 73] is a short and readable introduction to the Boyer-Moore theorem
prover, although it is a little out of date. [Boyer 79] is a longer and more up
to date account. [Moore 74] gives a detailed account of the implementation
of the original program.

162 Computer Modelling of Mathematical Reasoning

Chapter 12

Formalizing Control
Information

• In this chapter we see how to represent control information as a Pred-
icate Logic theory and use inference in this theory to guide search.

• Section 12.1 introduces some control information that can be used to
guide the search for a solution to an equation.

• Section 12.2 describes various equation solving solution methods: Iso-
lation, Collection and Attraction.

• Section 12.3 defines the Meta-Theory of Algebra and shows how to
represent control information with it and how to use this information
to guide the search for a solution.

When a human mathematician has built up expertise, in a particular
area of mathematics, he has at his disposal a variety of problem solving
methods. He is able to bring these methods to bear on a problem, choosing
an appropriate method for the goal he is trying to achieve and the situation
in which he finds himself.

We saw, in the last chapter, some examples of such methods: symbolic
evaluation, induction, generalization, etc. In this chapter we take this in-
vestigation a stage further and ask how such methods should be organised,
so that they may be brought smoothly into operation when the occasion de-
mands and be combined together to tackle complex problems. The answer
we offer is: that a process of reasoning should take place about the problem
to be solved and the methods available to solve it; and that the techniques
we have met in earlier chapters can be used to represent this reasoning pro-
cess. It is precisely such reasoning processes which are advocated by Polya
in the books mentioned in section 1.3.2.

The richest examples of multiple problem solving methods can be found
in some of the older branches of mathematics, where experience has accumu-

163

164 Computer Modelling of Mathematical Reasoning

lated over several centuries. Consider, for instance, the problem of solving
symbolic, transcendental equations, like

loge(x+ 1) + loge(x− 1) = c

There are a variety of well known methods to deal with subclasses of equa-
tions, e.g. Gaussian elimination for sets of simultaneous linear equations,
completing the square for quadratic equations and some unnamed, but well
known, methods for trigonometric equations.

But what about those equations, like the one above, for which there
are no established methods? Most mathematicians would find the above
example quite easy – they would not indulge in search, but would proceed
directly to a solution. This behaviour cannot be accounted for using the
theorem proving techniques we have considered so far. This equation and
the axioms of algebra, will create a huge search tree. Searching this tree in
an unguided fashion will lead to a combinatorial explosion. So how do they
do it? Could it be that they have available a variety of ‘methods’ which are
not publically available in the textbooks of algebra, but are picked up from
examples – the worked examples from textbooks and the successful personal
solutions of the past?

12.1 Reading Between the Lines

One way to find out is to examine some worked examples or successful
personal solutions and see if there is any pattern there, i.e. to analyse the
solutions. Consider the following solution of the log example above.

loge(x+ 1) + loge(x− 1) = c
...1

loge(x+ 1) · (x− 1) = c
...2

loge x
2 − 1 = c

...3
x2 − 1 = ec

...4
x2 = ec + 1

...5
x = ±

√
ec + 1

In order that we can read between the lines, I have labelled the spaces
between them with numbers.

The most revealing part of this solution is at the bottom, so we will
start our analysis there. Consider the last three steps, labelled 3, 4 and 5.
There is a pattern here. At each step the dominant function on the left
hand side is removed and its inverse becomes the dominant function on the

12. Formalizing Control Information 165

right hand side: thus log is replaced with exponentiation; minus with plus
and square with square root. The effect is to gradually decrease the depth
of the unknown x, until it is totally isolated on the left hand side, with the
solution on the right. This is one of the most common ‘unwritten’ methods
of equation solving. It will work with equations composed of any sort of
functions, provided each function has an inverse. We will call it Isolation.

Isolation will only work with equations containing a single occurrence
of the unknown. If there are several occurrences, as in the first and second
lines of the solution above, then one of the occurrences can be isolated, but
the other occurrences will be moved to the right hand side, polluting the
potential solution with their presence. Armed with this observation we can
now make sense of step 2.

In step 2 the number of occurrences of x is reduced from 2 to 1, using
the ‘difference of two squares’ identity,

(U + V) · (U − V) = U2 − V 2.

This has the effect of making the Isolation method applicable. We will
assume that there is a method available for reducing the number of occur-
rences of an unknown. We will call it Collection, since it collects together
occurrences of unknowns. Collection can often be seen at work in equation
solving. It does not have the same guarantee of success as Isolation, but an
identity can often be found to collect together two occurrences, especially if
they are close together.

This last observation helps us to understand step 1. The number of
occurrences of x is not reduced, but they are brought closer together, thus
making it more likely that they can be collected. Again we will assume that
there is a method for doing this and we will call it Attraction.

Exercise 38 Consider the equation

(2x
2
)x

3
= 2.

Can you solve this using the methods of Isolation, Collection, Attraction and
Arithmetic?

12.2 Equation Solving Methods

How can Isolation, Collection and Attraction be represented as computer
programs?

This becomes clearer when we see what algebraic formulae they will need
to apply in order to achieve their stated purpose.

166 Computer Modelling of Mathematical Reasoning

12.2.1 Isolation

For instance, Isolation applies the following double implications in the solu-
tion above.

logU V = W ↔ V = UW

U − V = W ↔ U = W + V
U2 = V ↔ [U =

√
V ∨ U = −

√
V]

These can be organised as a set of rewrite rules. Isolation will apply them
successively until the unknown is totally isolated, when no more rules will
apply.

Notice that the rules above all have a similar structure:

• the left hand side is an equation between a term and a variable;

• the term consists of a function with variable parameters;

• the right hand side is either an equation between one of these variables
and a term or is a disjunction of such equations;

• this term contains the inverse of the left hand side function.

This structure can be summarized as:

F (U1, ..., Ui, ...Un) = V ↔ Ui = F−1i (U1, ..., V, ...Un) where Ui is
the variable being isolated

It is not surprising that all the rules should have this structure as it is
just what is required to achieve the Isolation effect of stripping away the
dominant function of the left hand side until the unknown is isolated. It
does mean that the Isolation method can be very selective about how it
applies the rules under its care.

• It need only attempt to rewrite complete equations

• and only then if the distinguished variable Ui is matched to a term
containing the unknown it is trying to isolate.

We will call these conditions the selection criteria of Isolation.
The last criterion can be met if the each rule is stored with the parameter

position it isolates and the position of the unknown occurrence is calculated
before Isolation starts. The position of an occurrence of a term in an ex-
pression, can be represented as a list of numbers, which determine which
parameter to take when traversing the expression from the dominant func-
tion (root) to the occurrence. For instance, the position of x in loge(x

2− 1)
is 〈2, 1, 1〉, since it occurs in the 2nd parameter of log, the 1st of – and the 1st
of exponentiation (see figure 12.1). If expr at(List, Exp) is the expression
at position List in Exp then

12. Formalizing Control Information 167

Figure 12.1: The Position of x

expr at(〈2, 1, 1〉, loge(x
2 − 1)) ≡ x

where ≡ expresses identity between algebraic expressions.

Exercise 39 What is the position of the 1 in loge(x
2 − 1)?

Exercise 40 Using the techniques of section 9.3 show that the selective ap-
plication of Isolation rules will always terminate.

12.2.2 Collection

Similarly the Collection method can be programmed as the selective appli-
cation of a set of rewrite rules. The Collection rule we used in our example
was:

(U + V) · (U − V)⇒ U2 − V 2

This has two occurrences of U on the left hand side and one on the right.
Thus if U is matched to a term containing x then the number of occurrences
of x will be reduced when the rule is applied. A similar argument holds for
V . Thus this particular rule collects on both U and V . This is not true of
the distributive law

U · V + U ·W ⇒ U · (V +W)

which collects only on U .
The criterion for identifying a Collection rule is that it should contain

some distinguished variable, U , which appears more often in the left hand
side than the right. Thus if occ(V ar,Exp) is a function whose value is the
number of occurrences of V ar in Exp then a rule lhs ⇒ rhs is useful for
Collection relative to U iff occ(U, lhs) > occ(U, rhs).

Another well known rule with this property is,

2 · sinU · cosU ⇒ sin 2 · U.

168 Computer Modelling of Mathematical Reasoning

This is not in its most generally useful form. For instance, as it stands it
could not be applied to

3 · sinx · cosx.

Thus it is better to use it in the form,

sinU · cosU ⇒ 1/2 · sin 2 · U

where the smallest subterm on the left hand side, which contains all the
occurrences of U , is isolated. We will call such a term, a least dominating
term for U .

If we always arrange the Collection rules so that their left hand sides are
least dominating terms in the variable they are useful for collecting then the
application of the rules can be especially selective:

• Collection need only try to rewrite terms which are least dominating
in the unknown, e.g. it need only rewrite (x+ 1) · (x− 1) in loge(x+
1) · (x− 1) = c (see figure 12.2);

• the distinguished variable, U , must be matched to a term containing
the unknown.

Figure 12.2: A Least Dominating Term in x

12.2.3 Attraction

The Attraction method is very similar to the Collection one. The sort of
rewrite rules used by Attraction are:

logW U + logW V ⇒ logW U · V
W · U +W · V ⇒W · (U + V)
(WU)V ⇒WU ·V

UV ·W ⇒ (UV)W

12. Formalizing Control Information 169

In each of these the distinguished variables U and V are closer together on
the right hand side than they are on the left.

What does it mean for two variables to be closer together in one place
than in another? What is the notion of distance involved?

A simple measure of distance is easily defined by looking at the expression
tree which contains the two occurrences. Consider figure 12.3. The shortest
path between U and V in each of the trees is in heavy type. In the tree of
logW U + logW V this path has length 4. In the tree of logW U · V it has
length 2. If we define the distance between two occurrences of terms as the
length of the shortest path between them then U and V are closer in the
second tree than in the first.

Figure 12.3: The Distance Between Two Terms

Thus a rule, lhs ⇒ rhs, is useful for attracting U and V if both U and
V occur once each in lhs and rhs and if the distance between them in rhs is
smaller than the distance between them in lhs. If we ever find a rule which
attracts a whole bunch of variables at once then the definition of distance
can easily be generalized to measure the smallest path connecting all the
variables. As with Collection we will want lhs to be a least dominating
term in U and V .

The selection criteria for applying these rules are also similar to those
for Collection:

• the term to be rewritten should be a least dominating term in the
unknown, x;

• the distinguished variables U and V should be matched to terms con-
taining x;

• the undistinguished variables should be matched to terms not contain-
ing x (otherwise two occurrences of x may be moved closer together
only to move two others further apart).

Notice that the same formula may be used as a rewrite rule by different
methods, but because of the selection criteria it will be used in different
ways. For instance,

170 Computer Modelling of Mathematical Reasoning

W · U +W · V = W · (U + V)

is used by both Collection and Attraction. But whereas Collection will
match W to a term containing x and reduce the number of occurrences
of x, Attraction will match U and V to terms containing x and move the
occurrences closer together. There is no reason why the same equation
should not be used in different directions by different methods: the strong
selection criteria will maintain termination.

In fact, the same formula can be used in different directions by the same
method without loss of termination. Consider, the formula

UV ·W = (UV)W .

This is used in both directions by Attraction (see above rules), yet will not
cause looping since, when used left to right W must be matched to a term
free of x and when used right to left W must be matched to a term containing
x.

12.3 Reasoning About Problems and Methods

Now we have an informal definition of the methods used in our example
solution we can proceed to formalise the reasoning which was involved there.

12.3.1 Defining the Methods with Axioms

Suppose that the reasoning involved at each stage was something like:

Does the equation contain only a single occurrence of x? If so,
Isolate it, if not then find a term which contains two occurrences
of x and Collect these together. If this fails then try to Attract
the two occurrences together. If any of these steps succeed then
conduct the same reasoning on the resulting equation.

Let us pull out from this a particular piece of knowledge: that if an
equation contains a single occurrence of the unknown then isolating this
unknown will produce a solution to the equation. We have already seen how
to express the information that an equation contains only a single occurrence
of an unknown:

occ(x, loge x
2 − 1 = c) = 1

We will want to express the information that a formula is the result of
applying the Isolation method to an equation to isolate an unknown. It will
be convenient to do this in two bites, using the function, position, to say
where the occurrence of the unknown is, e.g.

expr at(〈1, 2, 1, 1〉, loge x
2 − 1 = c) ≡ x

12. Formalizing Control Information 171

and introduce the new function, isolate, which represents the result of iso-
lating whatever is at a particular position in an equation.

isolate(〈1, 2, 1, 1〉, loge x
2−1=c) ≡

(x=
√
ec + 1 ∨ x=−

√
ec + 1)

Finally, we will want to be able to say that a formula is a solution, for
an unknown, of an equation. Since there may be several solutions we will
use a predicate, solve, and say, e.g.

solve(loge x
2 − 1 = c, x, (x=

√
ec + 1 ∨ x=−

√
ec + 1))

Putting all this together gives us an axiom for reasoning about problems
and methods, namely

1) occ(X,A = B) = 1 ∧ expr at(List, A) ≡ X ∧
isolate(List, A = B) ≡ Ans→ solve(A = B,X,Ans)

To get another axiom consider how the isolate function might be defined
in terms of the applications of individual Isolation rewrite rules.

We will want to express the information that one expression is derived
from another by applying an Isolation rewrite rule. There is only one such
derived expression for each parameter position of the original expression, so
we can introduce a function from parameter positions and expressions to
expressions which we will call, isolate rewrite, e.g.

isolate rewrite(2, loge x
2 − 1 = c) ≡ x2 − 1 = ec.

The Isolation method just consists of applying an Isolation rule to an
equation and then entering the method recursively. This can be captured in
the axiom:

2) isolate rewrite(N,Old) ≡ New ∧
isolate(Rest,New) ≡ Ans
→ isolate(cons(N,Rest), Old) ≡ Ans

since the first parameter position to be isolated will be the number on the
front of the position list of the unknown.

Exercise 41 This axiom only defines isolate when the expression Old is an
equation. Give an axiom which defines isolate when Old is a disjunction of
equations in terms of isolate on the disjuncts.

In a similar way we can design axioms for Collection and Attraction.
The main differences being:

• since expressions can be collected and attracted in a variety of ways
we will need to use predicates where we used functions above;

172 Computer Modelling of Mathematical Reasoning

• neither Collection nor Attraction are applied repeatedly, like isolate,
they are applied once and the resulting equation is solved.

For instance, an analogous axiom for Collection is:

3) occ(X,Old) > 1 ∧
collect(Old,X,New) ∧
solve(New,X,Ans)
→ solve(Old,X,Ans)

where collect(Old,X,New) means that New is one result of collecting X in
Old.

To complete the picture further axioms need to be written defining occ,
position, isolate rewrite, collect, etc, but we have enough to illustrate the
principle of reasoning about problems and methods.

12.3.2 Searching for a Solution

If we add a goal clause defining a particular problem

solve(loge(x+ 1) + loge(x− 1) = c, x,Ans)→

and use this as top clause in a Lush Resolution derivation, then we can begin
to see the shape of the search tree that would be developed. It is given in
figure 12.4

Figure 12.4: Search Tree for Reasoning about Problems and Methods

But how does all this help solve equations?

The answer is contained in the propositions involving isolate rewrite
(and similar predicates for Collection and Attraction) which state that such
and such an expression is the outcome of applying a rewrite rule to an
expression. The axioms which define these propositions define a rewriting
process (see axiom 4 below). When the propositions are resolved away this
rewriting process takes place as a side effect. Thus the reasoning at the level

12. Formalizing Control Information 173

of problems and methods induces some reasoning at the level of manipulating
algebraic expressions.

What is the advantage of organising things this way?

The branching rate of the tree in figure 12.4 is extremely small. Often
there is no branching at all for long stretches of the tree. Useless branches
get terminated quickly (as both the Collection and Isolation branches above
are). The induced search at the level of algebraic manipulation, similarly
involves very little search.

Thus an exhaustive search in which the axioms of algebra are applied
indiscriminately to the equation to be solved is replaced by two well behaved
searches running in close harness.

12.3.3 Meta Level Reasoning

What mathematical theory do the axioms 1, 2 and 3 above, belong to?
It is not algebra, because the predicates solve, collect etc do not express
relationships between numbers as all the algebraic predicates do, e.g. =, >
etc. solve and collect express relationships between algebraic formulae, i.e.
they discuss the representation of algebra.

Whenever we reason about the representation of a mathematical theory
we are said to be operating at the meta-level and the mathematical theory
itself is said to be the object-level. Axioms 1, 2 and 3 above are axioms of the
Meta-Theory of Algebra. The search tree in figure 12.4 represents a meta-
level search and the algebraic search it induces is an object-level search. We
will call this search control technique the technique of meta-level inference.

Notice that object-level predicates, like =, and object-level connectives,
like ∨, are represented as meta-level functions, because they have to form
terms which can be the parameters of meta-level predicates. We met this
situation in the last chapter, when the object-level, LISP, equal predicate
was represented as a meta-level function and the object level truth values,
tt and ff , as meta-level constants. This discussion puts a theoretical gloss
on the informal explanation in that chapter.

In fact there are two versions of =, >, ∨, etc: one in the object-level and
one in the meta-level. We used the same symbol to represent both versions.

Exercise 42 Go back to section 12.3.1. Mark each occurrence of an object-
level = sign with an ◦ and each occurrence of a meta-level = sign with an
m.

Object-level variables must be represented as meta-level constants. Oth-
erwise, unification can change the truth of propositions. Consider, for in-
stance, the true proposition:

occ(x, sinU) = 0

174 Computer Modelling of Mathematical Reasoning

If unification should apply the substitution, {x/U}, then this will instantiate
this true proposition into a false one, namely

occ(x, sinx) = 0

However, if U is represented as a constant then no instantiation can take
place.

As a consequence, the rewrite rules must all be represented as variable
free formulae and matching and instantiating must all be defined as meta-
level functions, e.g. the Isolation rules must be recorded as variable free
assertions,

→ isolate rule(1, u− v = w ⇒ u = w + v)

and the definition of isolate rewrite must involve match and instantiate,

4) isolate rule(N,Lhs⇒ Rhs) ∧
match(Lhs,Old) ≡ Theta ∧
instantiate(Rhs, Theta) ≡ New

→ isolate rewrite(N,Old,New)

12.4 Summary

Bob Welham has embodied the technique of meta-level inference in a pro-
gram, PRESS, for solving symbolic, transcendental equations [Bundy 81c].
PRESS is currently being developed by a team of researchers, led by the
author. This chapter is a rational reconstruction of the PRESS program.
We can summarize the technique as follows.

• The problem to be solved is analysed using meta-level concepts, like
occ and position.

• This analysis is used to access an appropriate method of solution, e.g.
Isolation or Collection.

• The entire process can be thought of as inference at the meta-level
inducing inference at the object-level.

In the case of PRESS the object-level inference consists of the application
of rewrite rules to an expression.

This technique generalizes to other domains. The final formalization of
the group theory example of chapter 7 was a meta-theoretic axiomatization.
We designed axioms like:

→ theorem((i))
→ common technique((i), abelianness)
→ proof((i), a ◦ b = e ◦ a ◦ b = = b ◦ a)

12. Formalizing Control Information 175

These axioms could have played a part in inducing an object-level inference
process, where the object-level was group theory.

In fact, the reasoning of human mathematicians is usually at the meta-
level of the mathematical theory they are working on, so that this technique
is often a good way to model their thought process.

When I wrote, in chapter 7, that the standard axiomatizations of math-
ematical theories, provided by Mathematical Logic, were not the best for
automating mathematical reasoning, it was meta-theoretic axiomatizations
that I had in mind as a non-standard alternative. I hope that this alternative
will receive considerable attention in the future.

Further Reading Suggestions

[Bundy 81c] is the best general introduction to PRESS.
[Borning 81, Bundy 81b, Bundy 81a] describe recent extensions.

176 Computer Modelling of Mathematical Reasoning

Part IV

Mathematical Invention

177

Chapter 13

Concept Formation

• This chapter describes how a computer can form definitions and con-
jectures.

• Section 13.1 gives examples of conceptbeing formed.

• Section 13.2 analyses these examples to identify various concept for-
mation processes.

• Section 13.3 formalizes these processes and the knowledge they operate
on. Concept formation is described as inference.

• Section 13.4 describes how to control this inference using heuristic
search.

• Section 13.5 describes the performance of a program, AM, based on
these ideas.

Up to now this book has concerned itself with only one aspect of mathe-
matical reasoning: the proving of theorems. But this is not the only kind of
mathematical reasoning indulged in by human mathematicians. In the next
two chapters we consider two of these other aspects, namely

• the making of interesting definitions and conjectures

• and the formation of a mathematical model from an informal problem
specification.

This chapter is a rational reconstruction of a program, AM, written by
Doug Lenat [Lenat 82], for making interesting definitions and conjectures, a
process we will call concept formation. That reasoning is involved in these
activities is illustrated by the following two examples of the sort of thing
that AM can do. The first example shows how AM discovered for itself the
concept of prime number and the second example shows how AM went on
to conjecture the Prime Unique Factorization Theorem.

179

180 Computer Modelling of Mathematical Reasoning

13.1 How Definitions and Conjectures Can Be Made

• Given times, a function from bags1 of numbers to numbers:

• Find some examples of times, e.g. times([2, 1, 2]) = 4;

• Create inv times, a function from numbers to sets of bags of numbers,
by forming the inverse of times; (AM is using the trick discussed in
section 4.3.1 for ensuring that inv times is a function by forming a set
of values.)

• Find some examples of inv times, e.g.
inv times(4) = {[2, 1, 2], [1, 4], [4], [2, 2]}; (In order that this set should
not be infinite, AM only allowed one occurrence of the unit element,
1, in each bag.)

• Create divisors, a function from numbers to sets of numbers, by com-
posing inv times and generalized union, i.e. by applying inv times
and then taking the union of all the bags in the resulting set;

• Find some examples of divisors, e.g. divisors(4) = {1, 2, 4};

• Create primes, the set of those numbers whose divisors are doubletons,
e.g. divisors(3) = {1, 3}.

Notice how the reasoning in this example consisted of a succession of
creating new concepts from old and finding examples of the new concepts.
As we will see, the finding of examples, while not strictly necessary to the
progression of definitions, does help AM to decide what definitions are in-
teresting to make.

In order to make interesting conjectures, a third sort of operation is
required: the checking of the examples in an attempt to discover regularities
and patterns. This is illustrated by the next example.

• Given inv times, a function from numbers to sets of bags of numbers:

• Find some examples of inv times, e.g.
inv times(4) = {[2, 1, 2], [1, 4], [4], [2, 2]};

• Check examples of inv times and notice that inv times always con-
tains a bag of primes, e.g. [2, 2] ∈ inv times(4);

• Create prime times, a function from numbers to sets of bags of primes,
by restricting the range of inv times to bags of primes;

• Find some examples of prime times, e.g. prime times(4) = {[2, 2]};
1See section 4.3.3 for a definition of bags.

13. Concept Formation 181

• Check examples of prime times and notice that all examples of
prime times are singletons;

• Conjecture the Unique Factorization Theorem, namely that prime times
will always be a singleton.

13.2 Operations of Concept Formation

The operations that were involved in the above two examples of concept
formation were: creating new concepts (e.g. functions, sets, etc), finding ex-
amples of concepts, checking examples of concepts and making conjectures.
We will consider each of these in more detail.

13.2.1 Creating New Concepts

New concepts were created from old ones above, in a variety of ways.

• inv times was created from times by a process of inversion, that is

inv times(X) = {Y : times(Y) = X}.

As noted in section 4.3.1, this particular way of forming inverses guar-
antees that they are functions: inv times(X) = Y ↔ times(Y) = X
would not be a proper definition unless there was only one such Y for
each X.

• divisors was created from inv times by composition with generalized
union (gen union), that is

divisors(X) = gen union(inv times(X)).

• prime times was created from inv times by restriction, that is

prime times(X) = {Y : Y ∈ inv times(X) ∧
bag of primes(Y)}

• In addition, AM can also form new concepts by coalescing old ones, i.e.
by identifying their parameters. For instance, it forms the function,
square, from binary multiplication by identifying its parameters, i.e.

square(X) = X ·X

• And AM can form new concepts by structural modification of defini-
tions of old ones, e.g. it drops a conjunct from the definition of equal
to form a new definition - of the concept equal-length.

182 Computer Modelling of Mathematical Reasoning

13.2.2 Finding Examples of Concepts

Having defined a concept AM tries to find examples of it. This enables
AM to decide how important the concept is and to suggest new concepts
and conjectures that might be made. It uses a variety of ways of finding
examples. Some of these are listed below.

• Instantiating the definition. For instance, given that AM has an exam-
ple of times, it might insert it in the definition of inv times to generate
an example of that. This is how the examples above were generated.

• Look at the concept’s generalizations. For instance, given that AM
has several examples of numbers, and that it knows that numbers are
a generalization of primes, then each of the example numbers is a
candidate for an example prime.

• Run calculation procedures. If AM has a function whose range is the
concept in question and if there is a calculation procedure associated
with that function and if examples of the domain of the function are
known, then the procedure can be run to generate examples of the
concept. For instance, suppose AM were trying to find examples of
sets. It knows that divisors is a function from numbers to sets of
numbers and it knows some numbers. If it also has a procedure for
calculating divisors then this can be run on the numbers and will
produce some example sets.

13.2.3 Checking Examples of Concepts

AM checks these examples periodically for a variety of reasons. We have
met one of these, namely to look for regularities and patterns among them.

• This may suggest the creation of a new concept, as the noticing that
inv times always contained a bag of primes led to the definition of
prime times,

• or it may suggest the making of a conjecture, as the noticing that
prime times was always a singleton led to the conjecture of the Unique
Factorization Theorem.

Another role of checking is to vet the examples. Some of the methods of
obtaining examples, like the use of examples of generalizations, are liable to
error. Thus some ‘examples’ may need to be rejected or modified.

Lastly, if there are just not enough examples, the checking operation
may suggest finding some more. How it does this we discuss below.

13. Concept Formation 183

13.2.4 Making Conjectures

It is one thing to say ‘look for regularities’ among the examples, but what
does this mean in practice: what sort of regularities should be checked? AM
looks for four kinds of regularities and these are listed below.

• One concept is an example of another, e.g. AM notices that all the
examples of prime times are singletons and hence conjectures that
this is always the case.

• One concept is (almost) a specialization of another, e.g. AM notices
that all the examples of primes were also examples of odd primes,
except the boundary prime 2. It conjectures that all primes except 2
are odd.

• One concept is (almost) the same as another, e.g. AM notices that an
operation it had just defined was the same as times. It merges the two
concepts and boosts its interest in the resulting concept.

• One concept is related to a second by a third, e.g. AM notices that
bag of primes is related to inv times by set membership, ie inv times
always contains a bag of primes. It restricted inv times to the range,
bag of primes, to define the new function prime times. Since new
relations are defined from time to time, the notion of ‘is related’ is
continually being broadened.

13.3 Formalizing the Knowledge

In order to get a computer to perform these operations on concepts it is nec-
essary to formalise the knowledge involved. In the discussion above we have
seen the need for all sorts of knowledge about the concepts of mathematics.

Firstly, since AM’s purpose is to make definitions and conjectures it
needs to be able to record these. This can be done using predicates, ‘definition’
and ‘conjecture’, between a particular definition or conjecture and the name
of the concept, e.g.

definition(primes, {X : divisors(X) ∈ doubletons})
conjecture(primes, prime times(X) ∈ singletons)

You might think that ‘definition’ should be a function, but AM sometimes
records several alternative definitions for a concept, so a predicate is appro-
priate.

As we have seen, AM also finds examples of concepts, so it needs to be
able to record these. We can do this using a predicate, ‘example’, between
the example and the name of the concept, e.g.

184 Computer Modelling of Mathematical Reasoning

example(numbers, 2)
example(sets, numbers)
example(times, times([2, 2]) = 4)

To help AM find examples of concepts, some additional information must
be recorded. For instance, if generalizations of a concept are to suggest can-
didate examples, then the generalizations of the concept must be stored. If
examples are to found by running calculation procedures of functions whose
range is the concept, then that function’s calculation procedure, domain and
range must all be recorded, e.g.

generalization(primes, numbers)
generalization(odd primes, primes)
procedure(times, ‘a computer program′)
type(times, bags of numbers 7→ numbers)

For reasons of efficiency and presentation, AM recorded all the above
information in the form of a table (or frame see appendix C). It also stored
the information redundantly, e.g. the table for numbers records both its
generalizations and its specializations, the table for times and numbers both
record the fact that numbers are the range of times. An example table is
given in figure 13.1.

name numbers times
definition {X : bag of ts(X)} parallel join2(bag, bag, proj2)
conjecture intersect(X,Y) associative

∈ numbers
example 0, 1, 2, 3 times([2, 2]) = 4
isa object operation
generalization sets parallel join2
specialization primes square
procedure – ‘a computer program’
type numbers bags of numbers 7→ numbers
in domain of inv times –
in range of times –

Table 13.1: Record of Information about Concepts

Note that specialization is the inverse of generalization, isa is the inverse
of example and in domain of and in range of are both inverses of type.
The relation between specialization and isa is analogous to that between
set inclusion and set membership, e.g. all primes are numbers and both
primes and numbers are examples of objects. AM employs a representation
language to make this redundant storage efficient. Knowledge is entered by
typing in data structures, such as (13.1), and the representation language
automatically adds or changes the redundant inverse slots.

13. Concept Formation 185

13.3.1 Initial Concepts

In the same way that an automatic theorem prover needs a set of axioms
as a basis before it can derive any theorems; AM needs a set of initial con-
cepts before it can derive new ones and make conjectures. AM’s initial
concepts were chosen without any deep analysis of what would be parsi-
monious or psychologically plausible, but they reflect the sort of knowledge
that a preschool child might be expected to have. They are represented
diagrammatically in figure 13.1.

Figure 13.1: AM’s Initial Concepts

In this diagram specialization relationships are represented by single
links and example relationships by treble links.

AM has a represention, not only of sets, lists and bags, but also of osets,
which are ordered like lists but, like sets, have no multiple elements. These
four kinds of structure form a little quartet.

The operations of inversion, restriction, composition, coalsceing and
structural modification are all represented explicitly as concepts. Thus,

186 Computer Modelling of Mathematical Reasoning

AM can form the inversion of times (inv times) by composing inversion
and times; or the restriction of inv times to primes (prime times) by com-
posing restriction and inv times.

13.3.2 Formalizing Operations

Just as the knowledge about the initial concepts can be represented as ax-
ioms, the operations of finding examples and making definitions and conjec-
tures can be represented as rules of inference.

For instance, the fact that all known examples of one concept are exam-
ples of another can be represented by the formula,

∀Ex example(C1, Ex)→ example(C2, Ex),

where C1 is the first concept and C2 the second. In this case AM can
conjecture that C1 is a specialization of C2, i.e.

conjecture(C1, C1 ⊆ C2).

We can represent this operation as a rule of inference, i.e.

∀Ex example(C1, Ex)→ example(C2, Ex)

conjecture(C1, C1 ⊆ C2)
(i)

AM makes new definitions by inverting, restricting, composing, coalsce-
ing, structurally modifying, etc old definitions. Since all these operations
are represented explicitly as initial concepts AM need only use composition.
Thus the making of new definitions can be represented by the rule,

definition(C1, D1(X))
definition(C2, D2(Y))

∃C3 definition(C3, D2(D1(X)))

If AM knows of a function, F , from D 7→ R and it knows an example
of concept D and it has a calculation procedure associated with F then it
can find an example of R by running the procedure on the example of D.
Let run(Proc,Ex) represent the result of running program, Proc, on input,
Ex, then this operation can be represented by the rule of inference,

type(F,D 7→ R)
procedure(F, Proc)
example(D,Ex)

example(R, run(Proc,Ex))

Exercise 43 AM knows that any example of a concept is an example of a
generalization of the concept. Represent this operation as a rule of inference.

13. Concept Formation 187

13.4 Concept Formation as Heuristic Search

Thus concept formation can be viewed as a forward search process, by ap-
plying the above rules of inference to AM’s initial concepts. Like many of
the search processes we have considered in this book, there are many pos-
sible applications which can be made at every stage: if the search process
is not to become bogged down in a combinatorial explosion there must be
some guidance.

Lenat’s solution to this problem was to use meta-level inference2 (cf
chapter 12). AM reasons about the representation of concepts that it has
derived so far: ‘Which slots in a concept’s table have been filled in?’, ‘Which
slots are empty?’, etc. On the basis of this reasoning AM suggests new
tasks: ‘Fill in this slot on this concept.’, ‘Check the contents of this slot.’.
As these tasks are achieved new tasks are suggested and the representation
of mathematical concepts is gradually expanded.

To conduct this meta-level inference AM uses a systems of meta-level
rules.3 Examples of such rules are:

29. To fill in examples of X, where X is a kind of Y ,
Inspect the examples of Y ; some of them may be examples of X
as well. The further removed Y is from X, the less cost-effective
this rule is.

48. If the totality of examples of concept C
is too large to be interesting,
then consider these three possible reactions:

(i) specialize C;

(ii) forget C completely;

(iii) replace C by one conjecture.

We follow Lenat by writing these meta-rules in English. The meta-rules fall
roughly into two classes: those, like the first example above, which enable
a particular task to be achieved; and those, like the second example, which
suggest new tasks. The meta-level inference process can also be visualised
as a forwards search of a tree, in which the nodes correspond to the ‘check’
or ‘fill in’ tasks and the arcs are labelled by meta-rules.

In order to guide the growth of this task tree (see figure 13.2), AM used
the technique of heuristic search. Each task was assigned a numeric score.
As each new task was suggested its numeric score was calculated and this
determined its position on an agenda. When AM had finished its current

2Although he did not call it this and, indeed, prefers not to distinguish meta-rules from
rules.

3Called ‘heuristic rules’ or ‘heuristics’ by Lenat.

188 Computer Modelling of Mathematical Reasoning

Figure 13.2: AM’s Development Viewed as Growing a Tree of Tasks

task and was ready to start a new one, it would take off the front of the
agenda, the task with the best score.

To calculate the numeric score of a task, AM combines numeric values
from various aspects of the task, namely

• A value, R, is inherited from the meta-rule which originally put the
task on the agenda, or, Ri, from each distinct meta-rule, if several
meta-rules suggested the same task.

• A symbolic ‘reason’ is also inherited from the meta-rule. AM uses these
‘reasons’ to ensure that the meta-rule which is fired several times only
contributes its R value to a task once. (The ‘reasons’ are also printed
to the user to explain AM’s current activity.)

• A value, C, is associated with the concept whose table is being worked
on and

• a value, S, with the sort of slot which is being filled in or checked.

• A different value, A, is given depending upon whether the current task
is to ‘fill in’ or to ‘check’.

These values are combined to give an overall score for the task using the
formula:

|
√∑

iR
2
i | · [0.2 ·A+ 0.3 · S + 0.5 · C]

Lenat found that the performance of AM was unaffected by slight varia-
tions to this arithmetic formula, suggesting that little hangs on its precision.

The R values of this formula are stored with each meta-rule. The values
A and S are global parameters associated with ‘fill in’, ‘check’ and the slot
names. The C value must be associated with each concept and this is most
conveniently done by storing it in that concept’s table as the value of a slot
called the concept’s worth.

13. Concept Formation 189

When a new concept is created it must be assigned a worth value for
use in future calculations of a task’s score. The worth of a new concept
is calculated from the worths of the concepts which define it. Thus, when
inv times is created, its worth is calculated from the worths of inversion and
times. The formula used to make this calculation is local to the particular
concepts involved. Information about how to do the calculation is stored
on yet another slot of each concept’s table, the interest slot. Some of AM’s
meta-rules can also change the worth of a concept and also the score of a
task.

13.5 The Performance of AM

AM started with the 76 concepts in figure 13.1. By running its 242 meta-
rules to suggest and achieve about 256 ‘fill in’ and ‘check’ tasks, it gradually
filled out the representation of these concepts and defined and filled out new
concepts. After about an hour of cpu time AM had about 300 concepts.
Of the new concepts defined about 25 were really interesting and about
100 more were acceptable. The remainder were worthless. The amount of
information stored about the original concepts approximately tripled.

Among the interesting new concepts developed by AM were: numbers,
prime numbers and maximally divisible numbers. This latter kind of num-
ber is the dual of the prime numbers: each maximally divisible number
having more divisors than any smaller number. Lenat originally dismissed
maximally divisible numbers as uninteresting, but later took them more se-
riously and managed to prove some theorems about them. Finally, Lenat
discovered that his theorems had previously been discovered by the famous
Indian mathematician, Ramanujan.

Among the interesting conjectures made by AM were: de Morgan’s Law,
the Prime Unique Factorization Theorem and Goldbach’s Conjecture. The
definition of primes and the proposing of the Unique Factorization Theorem
were given as examples in section 13.1. In [Lenat 82] the trace of AM which
is claimed to be the proposing of Goldbach’s Conjecture is in fact a weaker
conjecture, namely that every even number is the sum of some number of
primes, rather than just two primes. This weaker conjecture is trivial to
prove, e.g. 6 = 2 + 2 + 2, etc. AM did propose Goldbach’s Conjecture on a
previous run and Lenat was misled by the similarity of the printout.

Lenat performed various experiments with AM: changing the way that
the tasks were selected and varying the initial concepts. AM was remarkably
robust under changes of the method of task selection. Slight changes pro-
duced almost no difference in AM’s behaviour; more radical changes slowed
down the development of interesting new concepts by a factor of three, but
did not prevent that development.

AM’s meta-rules were shown to be robust by exchanging the set-theoretic

190 Computer Modelling of Mathematical Reasoning

initial concepts for geometric ones, i.e. the concepts of point, line, angle, tri-
angle, etc. AM was still able to make reasonably interesting new definitions
and conjectures, e.g. the congruence and similarity of triangles. Although
some of the geometric results had a strong arithmetic flavour.

In all the experiments, AM’s concept formation slowed down after about
an hour of cpu time. The problems were twofold.

• As the number of concepts grew and the amount of information stored
about each one increased, the computer’s memory was gradually ex-
hausted.

• The quality of the new information being discovered began to degrade.

Lenat attributes this degradation of quality to the fact that to discover
interesting information about a concept, meta-rules are required especially
geared to that concept. The new concepts discovered by AM are more and
more specialized, but it cannot also discover new meta-rules geared to these
special concepts. It must, instead, rely on very general purpose rules and
this becomes an increasing liability.

13.6 Summary

It is possible to represent the formation of new mathematical concepts and
the making of conjectures as a process of inference. This inference process
is extremely explosive, but can be guided by meta-level inference, which in
turn can be guided by heuristic search. The proof that this is a practical
proposition is embodied in a computer program, AM.

Starting from a base of very general concepts, AM was able to discover
many interesting arithmetical concepts and make several interesting conjec-
tures. AM is guided by a simple numeric model of ‘interestingness’, in which
the ‘worth’ of a concept is inherited from the concepts from which it was
defined. AM did not use any notion of proof to confirm its conjectures or to
determine interestingness, but this would be an interesting extension of the
AM ideas.

Further Reading Suggestions

[Lenat 77a] is a short introduction to AM. [Lenat 82] is longer and more
detailed account. [Lenat 77b] is a more general discussion of the issues.

Chapter 14

Forming Mathematical
Models

• This chapter describes how mathematical problems, stated in English,
can be solved by translating them into equations.

• Section 14.1 describes and criticises the simple technique of keyword
replacement used in the STUDENT program.

• Section 14.2 describes the intermediate representation used, in the
MECHO program, as a staging post between the English and algebraic
representations of a problem.

• Section 14.3 describes the role of inference in bridging the gap between
the information in the intermediate representation and that required
to form the equations.

• Section 14.4 describes the formalization of physical laws.

• Section 14.5 describes the process, used by MECHO, to form equations
from the intermediate representation.

• Section 14.6 summarises the use of meta-level inference in MECHO.

In this chapter we consider another ‘non-theorem proving’ aspect of
mathematical reasoning: the formation of mathematical models from an
informal specification. In particular, we will consider how the description
of a problem in English can be translated into a system of mathematical
formulae, e.g. equations.

14.1 Keyword Replacement

One class of problems, sometimes called Algebra Word Problems, (Not to
be confused with the word problems of group theory, ring theory, etc de-

191

192 Computer Modelling of Mathematical Reasoning

fined in section 9.6.3.) admit of a particularly simple solution. Various key
words in the English statement of the problems can be translated directly
into mathematical symbols. Phrases which described objects, called noun
phrases, can then be translated into variables, so that each clause gives rise
to an equation.

The translation rules are as follows:

• the keyword ‘is’ is replaced by ‘=’;

• noun phrases in which a number is followed by a unit, e.g. ‘5 inches’,
are replaced by the multiplication of the number and the unit, e.g.
‘5.inches’;

• some special phrases, e.g. ‘X percent less than’, have special transla-
tions, e.g. ‘(100−X)/100.’;

• questions and commands, e.g. find X, what is X, have the special
effect of marking X as a variable to be solved for;

• any remaining noun phrases are replaced by variable names: identical
or similar noun phrases being replaced with the same variable.

Consider, for example, the problem,

The price of a radio is 69.70 pounds. If this price is 15 percent
less than the marked price, find the marked price.

We will translate this problem statement clause by clause.
The first clause is,

The price of a radio is 69.70 pounds.

‘is’ translates to ‘=’ and ‘69.70 pounds’ to ‘69.70 · pounds’. This leaves the
noun phrase ‘The price of a radio’ which we will replace by a new variable,
price. Thus the whole clause translates to,

price = 69.70 · pounds

The second clause is,

this price is 15 percent less than the marked price

Again ‘is’ translates to ‘=’ and the special phrase ‘15 percent less than’
to ‘.85·′. This leaves the noun phrases ‘this price’ and ‘the marked price’.
A procedure is needed which can recognise that the first of these refers to
‘the price of a radio’ while the second is a new variable, ‘marked-price’.
The problem this procedure has to solve is called the noun phrase reference
problem. We will be meeting it again. Assuming that this procedure is
provided, the translation of the second clause is,

14. Forming Mathematical Models 193

price = .85 ·marked price

The final clause is,

Find the marked price.

This is a command, and so has the effect of marking ‘marked price’, as a
variable to be solved for.

The equations can now be solved for ‘marked price’. Since they are lin-
ear simultaneous equations a procedure to solve them can be easily provided.
This will yield the answer,

marked price = 82 · pounds

To finish off the process this equation should be translated back into English
by applying the rules above in reverse. Thus ‘=’ should be replaced by ‘is’;
‘82 ·pounds′ by ‘82 pounds’ and ‘marked price’ by ‘The marked price’. This
will give the clause,

The marked price is 82 pounds.

Exercise 44 Translate into an equation the clause: ‘The distance between
London and Edinburgh is 400 miles’.

A program based on these techniques, called STUDENT, has been built
by Danny Bobrow [Bobrow 64]. It can solve a wide range of simple algebra
word problems, like that above. It does, however, have its limitations, for
instance,

• it can only deal with a limited subset of English: verbs like ‘is’, ‘find’,
etc connecting a small range of noun phrases;

• its procedure for solving the noun phrase reference problem is suc-
cessful only in simple cases, where the similar phrases shared some
common string of words;

• it can only solve sets of linear simultaneous equations.

These problems could have been solved by a process of gradual improve-
ments and extensions, however, STUDENT had a more fundamental limi-
tation, and this is illustrated by the following example.

Two particles of mass m1 and m2 lbs are connected by a light
string passing over a smooth pulley. Find the acceleration of the
particle of weight m2 and the tension of the string supporting it.

Figure 14.1 is a diagram of the situation being described here.
There are noun phrases in this problem specification which cannot be

translated into equations, or any other kind of algebraic formula, e.g.

194 Computer Modelling of Mathematical Reasoning

Figure 14.1: A Pulley System

Two particles connected by a light string passing over a
smooth pulley.

But this is not an optional part of the specification which can be ignored:
it sets the scene for the algebraic information. STUDENT has no way of
representing such information.

Furthermore, the problem cannot be solved without a piece of ’scene
setting’ information, which is not provided in the problem statement, but
is expected to be assumed by the problem solver, namely that the string
is hanging vertically on either side of the pulley. The problem solver is
expected to deduce this from his knowledge of gravity and freely hanging
objects or to assume it from his familiarity with pulley systems in Mechanics
problems.

Thus in order to solve problems like the pulley one above an automatic
problem solver must be able to represent ’scene setting’ information provided
in the English statement and common-sense information about gravity, etc.
A representation of the problem is needed which is intermediate between the
English statement and the sets of equations. The English statement must
be translated first into this intermediate representation, where the common-
sense knowledge can act on it and fill out the problem statement; and then
this intermediate representation must be translated into sets of equations.
This strategy is diagrammed in figure 14.2.

Figure 14.2: Strategy for Problem Solving

14. Forming Mathematical Models 195

A Mechanics problem solving program, called MECHO, has been built
by the author and others [Bundy 79b]. It can solve the pulley problem above
and a variety of problems from other areas of Mechanics. This chapter is a
rational reconstruction of the MECHO program.

We will deal mainly with the formalization of the intermediate repre-
sentation and of the common-sense knowledge, and with the procedure for
extracting equations from the intermediate representation. The problem of
translating from English into an intermediate representation is called Natu-
ral Language Understanding . The study of this problem is a separate area
of Artificial Intelligence. It has come a long way from the simple keyword
replacement techniques described earlier and requires a book all of its own.
The interested reader is refered to [Winograd 72, Mellish 81].

14.2 Formalising the Intermediate Representation

The scene described in the pulley problem above consists of a configura-
tion of four objects. The intermediate representation must represent this
configuration and associate various physical quantities with them. There
is an element of arbitrariness about any representation of such configura-
tions, that is there are many choices of predicates, functions and constants
to be made and most of the alternatives are equally acceptable. Where a
particular choice is important we will point this out below.

The four objects – the two particles, the string and the pulley – can be
represented by the constants, part1, part2, str and pull, respectively. We
will want to record what sort of object each one of these constants represents,
and we can do this with a predicate, isa, e.g.

isa(part1, particle)
isa(part2, particle)
isa(str, string) and
isa(pull, pulley)

Every object has exactly one type, so we could have made isa a function.
In fact none of the relationships in the intermediate representation will be
represented by functions. There are several reasons for this design choice,
one of which was first described in section 4.3.2: that using no functions
causes the arguments to be essentially boolean. We will meet further reasons
in section 14.6, where we will also see how the missing functional information
can be reintroduced into the problem solving process.

Now we must represent the relationships between these objects. These
can be represented at various levels. At the highest level the four objects
form a very common configuration in Mechanics problems – a pulley system.
Thus the relationship might be represented by a single predicate, pulley sys,
e.g.

196 Computer Modelling of Mathematical Reasoning

pulley sys(pull, str, part1, part2).

At a lower level the configuration can be represented as a series of contact
relations between the point objects and parts of the string. In problems of
this kind the particles and the pulley can be idealised as 0 dimensional
objects and the string as a 1 dimensional object. We need to specify three
points on the string: the two ends and the point of contact with the pulley.
This can be done with the predicates end and contact pt, i.e.

end(str, end1, left)
end(str, end2, right)
contact pt(str, cpt)

Contact relations can then be asserted using the predicate contact, i.e.

contact(end1, part1)
contact(end2, part2)
contact(cpt, pull)

To complete this low level picture the shape of the string needs to be
described. It is divided into two parts. The part supporting part1 we will
call bit1 and the part supporting part2 we will call bit2. The relationship
between these bits and the whole string can be captured with the predicate,
partition,

partition(str, 〈bit1, bit2〉)

where the second parameter is a disjoint list of subparts of the first, and the
order of this list indicates the left-right order of the subparts.

Finally, bit1 and bit2 must be asserted to be straight with vertical incli-
nation. This can be done with the predicates incline and concavity. Both of
these were developed to express the shape of curved 1 dimensional objects:
hence incline gives the angle between the tangent at a point and the x-axis;
and concavity would normally say on which side a curve was concave, but
here takes the special value of stline.

incline(bit1, end1, 90)
incline(bit2, cpt, 270)
concavity(bit1, stline)
concavity(bit2, stline)

Here the inclination of bit1 is directed from end1 to cpt and the inclination
of bit2 is directed from cpt to end2 (see figure 14.3). This asymmetry is in-
troduced to simplify the task of representing the asymmetry of the direction
of travel of the two particles, i.e. if one goes up then the other goes down.

In practice both high and low level relationships are required. Some of
the lower level relations can be recovered by translating the English state-
ment of the problem, e.g. the contact and isa relations. These relationships

14. Forming Mathematical Models 197

Figure 14.3: The Inclination of the String Parts

can be used as cues for the higher level, pulley sys, relationship and the
remaining low level relationships, e.g. the string shape relations can be in-
ferred from this. The high level, pulley sys, proposition is an example of
a schema. This word was chosen following Bartlett [Bartlett 67] who first
used it to describe the behaviour he observed when people recognised an ob-
ject: a few properties of the object are perceived and these are used to cue
an object schema, whose remaining properties are then verified by further
perception.

In the case of Mechanics problems the schemata correspond to standard
configurations (pulley systems) or situations (motion in a straight line).
Schema cueing allows the unstated assumptions of the problem (called ‘house
rules’ in [Marples 74]) to be brought in. In addition to the shape of the string
these will also include assumptions about physical quantities, e.g. that the
string is inextensible unless otherwise stated. The schema cueing mechanism
has to allow all these default assumptions to be overruled by contradictory
information in the problem statement. For instance, if a non-zero coefficient
of extensibility for the string were given then the default assumption that
the string is inextensible would be overruled.

This completes the description of the configuration, so we go on to con-
sider how physical quantities, masses, accelerations, etc, can be associated
with the various objects. For instance, a mass of m1 lbs must be associated
with part1 and m2 lbs with part2. A particle has only one mass, but this
may be expressed in various units, lbs, stones, grams etc. Translation be-
tween units may be necessary during the solution of the equations, so the
mass of a particle is expressed in two bites: one asserting a unique mass and
the other expressing this in terms of a number of units, i.e.

mass(part1,mass1)
measure(m1, lbs,mass1)
mass(part2,mass2)
measure(m2, lbs,mass2)

(i)

198 Computer Modelling of Mathematical Reasoning

A similar technique can be used to represent the tension of the string.

tension(bit2, tsn)
measure(t, lbs.ft/sec2, tsn)

(ii)

and the acceleration of the particles

accel(part2, acc, 90)
measure(a, ft/sec2, acc)

(iii)

but since the coefficients of friction and extensibility are dimensionless quan-
tities no measure proposition is required.

friction(pull, 0)
extensibility(str, 0)

Exercise 45 Represent the information that the mass of a stone is 5 oz and
its acceleration is 32 ft/sec2 downwards.

Finally, the status of the various physical quantities has to be represented
so that MECHO knows what it is supposed to solve for in terms of what.
This is done using two meta predicates, sought and given, which specify
which quantities are to be solved for and which may appear in the answer,
respectively. Thus the pulley problem above yields the propositions,

sought(acc)
sought(tsn)
given(mass1)
given(mass2)

14.3 Bridging the Gaps

The propositions above constitute the intermediate representation of the
problem. This is extracted from the English problem statement by natural
language understanding programs. But in order to solve the problem we
have seen that additional information is required: we need to bridge the
gap between the information provided in the problem statement and that
needed to solve the problem.

We have already seen one ‘bridging’ technique – the cueing of schemata.
But this technique does not solve all the problems. For instance, to solve
the problem it is necessary to resolve forces about both particles. To do this
MECHO needs to know the acceleration and mass of both particles and the
tensions in the bits of string which they are connected to. This information
is recorded above for part2 (equations (iii), (i) and (ii)), but vital parts of
it are missing for part1, because they were not mentioned in the English
statement of the problem.

14. Forming Mathematical Models 199

However, the missing information about part1 can easily be recovered
by inferring it from the information about part2. All that is required are
inference rules of the form:

tension(Bit2, T sn) ∧
partition(Str, 〈Bit1, Bit2〉) ∧
extensibility(Str, 0) ∧
pulley sys(Pull, Str, P1, P2) ∧
friction(Pull, 0)

→ tension(Bit1, T sn)

which says that the tension in one bit of the string of a pulley system is the
same as the tension in the other bit, provided that the string is inextensible
and the pulley is frictionless.

accel(Part2, Acc,Dir2) ∧
pulley sys(Pull, Str, Part1, Part2) ∧
extensibility(Str, 0) ∧
end(Str,End1, left) ∧
incline(Str,End1, Dir1) ∧
end(Str,End2, right) ∧
incline(Str,End2, Dir2)

→ accel(Part1, Acc,Dir1)

which says that the acceleration of one particle in a pulley system has the
same magnitude as the other, provided that the string is inextensible.

The schema cueing mechanism can also be implemented as an inference
process in two stages, namely:

• the cueing of the schema;

• and the use of this to infer default information.

The cueing stage consists of the application of axioms like:

isa(Part1, particle) ∧ isa(Part2, particle) ∧
isa(Pull, pulley) ∧ isa(Str, string) ∧
end(Str,End1, left) ∧ end(Str,End2, right) ∧
contact pt(Str, Cpt) ∧
contact(End1, Part1) ∧ contact(End2, Part2) ∧
contact(Cpt, Pull)

→ pulley sys(Pull, Str, Part1, Part2)

Thus when sufficient evidence has accumulated about the existence of a pul-
ley system the high level proposition asserting the existence of one can be
deduced. There may be alternative sets of sufficient evidence which would

200 Computer Modelling of Mathematical Reasoning

confirm the existence of a pulley system. This is reflected by having addi-
tional axioms which differ from the one above by having different conditions
on the left hand side of the implication arrow.

When axioms of the above sort have been used to assert the existence
of a schema it can be used to infer default information. This is done with
axioms like:

pulley sys(Pull, Str, Part1, Part2)→ extensibility(Str, 0)
and

pulley sys(Pull, Str, Part1, Part2)→
∃Bit1 ∃Bit2 partition(Str, 〈Bit1, Bit2〉)

The fact that this is default information means that these axioms must be
treated in a special way by the inference system: they must not be used if
contradictory information is already known. The MECHO inference system
has such axioms specially marked. Before it uses them it tries to see if a
contradictory conclusion is already known. In the first example above it sets
up the subgoal

extensibility(Str,X)

if this succeeds then the default axiom is never used.

Exercise 46 Draw the Lush Resolution search tree for the following clauses,
using (vii) as top clause.

(i) accel(Part2, Acc,Dir2) ∧
pulley sys(Pull, Str, Part1, Part2) ∧
extensibility(Str, 0) ∧
end(Str,End1, left) ∧ incline(Str,End1, Dir1) ∧
end(Str,End2, right) ∧ incline(Str,End2, Dir2) ∧

→ accel(Part1, Acc,Dir1)

(ii) pulley sys(Pull, Str, Part1, Part2)
→ extensibility(Str, 0)

(iii) → pulley − sys(peg, rope,man, bucket)

(iv) → accel(bucket, quickly, up)

(v) → end(rope, knot, left)

(vi) → incline(rope, knot, down)

(vii) accel(man, quickly, down)→

14. Forming Mathematical Models 201

14.4 Extracting Equations from the Intermediate
Representation

We have seen how all the information in the problem statement can be
represented as propositions and how gaps in this information can be bridged
by inference rules and schema cueing, but how can a mathematical model
in the form of equations be formed from this intermediate represention?

Physical formulae, like the ‘resolution of forces’ formula, F = MA, must
clearly be brought to bear. But what is the relation between the F , M and
A of the formula and the propositions of the intermediate representation?
M is the mass of whatever object we are resolving about, e.g. if MECHO
decides to resolve about Object then

mass(Object,M)

The situation for A is more complicated: A depends both on the acceleration
of Object and on the direction, Dir, in which MECHO decides to resolve,
i.e.

A = Acc · cos(Dir −Dir1)
where accel(Object, Acc,Dir1)

And the situation for F is most complicated of all since F is the sum of all
forces acting on Object.
MECHO represents this situation using a meta-predicate, is formula,

is formula(resolve,
situation(Object,Dir),
F = M ·A,
mass(Object,M)∧
accel compt(Object, A,Dir)∧
sum forces(Object, F,Dir)

The first parameter is the name of the physical formula. The second pa-
rameter is the situation in which the formula is being used, in this case the
object being resolved about and the direction of resolution. The third pa-
rameter is the formula itself and the fourth parameter relates the second to
the third by a series of propositions. When it has decided what formula to
use and in what situation, MECHO can fill in the blanks in the formula – the
F , M and A – by setting up the propositions in the fourth parameter place
as subgoals, i.e. by trying to satisfy mass(Object,M), where the variable
Object is already matched to some particular constant, say part1. There is
already a proposition in the intermediate representation which will match
mass(part1,M), but this is not so for accel compt(part1, A, 270). There is
a gap between the information provided in the problem statement and the
information needed to solve the problem.

202 Computer Modelling of Mathematical Reasoning

As already discussed, inference is used to bridge this gap. The first axiom
MECHO will need is

accel(Object, Acc,Dir1)∧
A = Acc · cos(Dir −Dir1)

→ accel compt(Object, A,Dir)

and then the axiom relating the accelerations of the two particles in a pulley
system discussed earlier.

To satisfy sum forces(part1, F, 270) a series of inferences are made, in
which the various kinds of forces which might be involved, e.g gravitational,
reactions, friction, etc are considered in turn. The assumption is made that
only those forces are acting which we can deduce are acting – that we have
complete information about the situation.

14.5 Choosing Equations

We have seen how MECHO can form an equation from the intermediate
representation, provided it knows what formula to use and what situation
to use it in, but how can it make this choice?

The guiding principle is to choose equations which will help it to solve
for the sought quantities in terms of the given ones. Suppose, for instance,
it decides to form an equation which solves for the acceleration, acc. This
quantity provides a lot of clues as to what formula and situation might
be used. For instance, not all the formulae relate accelerations to other
quantities. Those that do not can be ignored. acc is the acceleration of a
particular object, part2, and this particle is moving in direction 90. This
suggests the situation, situation(part2, 90). The equation chosen should
be independent of any which have already been chosen to solve for other
quantities. If any choices remain we would prefer an equation which does
not introduce any new unknowns.

MECHO uses all this information when choosing an equation. Its pro-
cedure can be summarized as follows.

• Analyse the quantity currently being solved for. Find out what sort of
quantity it is and what situation it is defined in, e.g. the acceleration
in direction 90 of part2.

• On this basis select a particular formula and situation.

• Fill in the blanks in the formula using inference if necessary.

• If any of these inference steps would require the introduction of some
new quantity, e.g. the velocity of part1, then remember this node
as a continuation node, but go back and try another formula and/or
situation.

14. Forming Mathematical Models 203

• If an equation cannot be formed without introducing new quantities
then introduce some by resurrecting a continuation node. Mark the
new quantities as sought unknowns and solve for them later.

• Check that the new equation is independent from any that were formed
earlier.

• Repeat the process on any remaining sought quantities.

• Use the measure propositions to translate all the quantities into num-
bers in compatible units.

The result of this procedure is a list of equations, e.g.

m1 · g − t = m1 · a
t−m2 · g = m2 · a

together with a record of which equations solve for which unknowns. ME-
CHO feeds these to PRESS (see chapter 12) for solution.

14.6 Meta-Level Knowledge

In the last three sections we have seen how MECHO cues schemata, makes
inferences and chooses equations. All these processes involve choices: choices
which could cause combinatorial explosions unless they are controlled. To
control them MECHO uses the technique of meta-level inference described
in chapter 12. Using this technique necessitates the representation of meta-
level knowledge about the expressions of the intermediate representation,
physical formulae, etc.

We have already met one such piece of meta-level knowledge. The is-
formula predicate is used to represent knowledge about the way that the
variables of physical formulae are related to objects in the intermediate
representation. Further examples are the predicate kind which relates a
physical quantity to its type and its original defining proposition, e.g.

kind(acc, acceleration, accel(part2, acc, 90))

This information is used to analyse the quantity being solved for. The
quantity type is used, in conjunction with the meta-predicate, relates, to
draw up a short list of physical formulae which involve quantities of this
type. That is,

relates(acceleration, 〈resolve, const−accel1, const−accel2, ...〉)

says that the formulae in the list, 〈resolve, ...〉 all involve accelerations. The
defining proposition is further analysed by a complex process of meta-level
inference to help suggest what situation to focus on when forming equations,

204 Computer Modelling of Mathematical Reasoning

e.g. the proposition accel(part2, acc, 90) will be broken apart to get part2
and 90. In an application of resolve, these might suggest resolving about
part2 in direction 90 degrees, but the analysis will also range wider and
suggest resolving about objects in contact with part2 etc.

To control the making of inferences, various kinds of meta-knowledge
are used. One of the most powerful techniques uses the functionality of
some of the predicates, i.e. the fact that some parameters of a predicate are
functionally dependant on others. For instance, in mass(part1,m1), m1 is
functionally dependant on part1, and hence m1 has the function properties
of uniqueness and existence, i.e. every particle has exactly one mass (see
section 4.3.1). MECHO uses this knowledge in three ways.

• Uniqueness test: before attempting to prove that mass(part1,m2),
say, MECHO looks to see that it does not already know
mass(part1,m1), where m1 6= m2. If it does then the original goal is
abandoned as unsatisfiable.

• Back-up Prevention: if the goal mass(part1,M) is satisfied by
{m1/M} then further choice points are deleted, since part1 can have
no other mass.

• Controlled Creation: if the goal mass(part1,M) should fail then ME-
CHO can choose to force satisfaction by creating a Skolem constant,
say m, defined to be the mass of part1. The decision as to whether
to do this depends on the state of the problem solving process, e.g.
whether an attempt has already been made to form an equation not
containing intermediate unknowns.

This incorporation of the uniqueness and existence properties of functions
into the inference control mechanism, more than compensates for the loss of
functional information implied by MECHO’s use of predicates to represent
functional relationships like the mass and acceleration of a particle. The
extra power comes from MECHO’s ability to use the functional knowledge
to control what inferences are made and what terms are introduced into the
Herbrand Universe.

14.7 Summary

We have seen that it is possible to model aspects of mathematical reason-
ing other than the proving of theorems, in particular, the formation of a
mathematical model from an informal specification of a problem.

When this informal specification is in a natural language like English, a
natural language understanding program is required. This translates from
English to some more formal representation of the problem. In the case of
very simple algebra word problems this formal representation can be sets

14. Forming Mathematical Models 205

of equations. But when the problem specification includes ’scene setting’
information an intermediate representation is needed.

To bridge the gap between this intermediate representation and the
knowledge required to form equations it is necessary to cue schemata and to
make inferences. These inferential processes involve choices, so some control
mechanism is required. The technique of meta-level inference, described in
chapter 12, can be adapted to this task.

Further Reading Suggestions

[Bobrow 64] is a good introduction to STUDENT. [Bundy 79b] is a good
introductory account of MECHO. [Bundy 79a] is a more detailed account.

206 Computer Modelling of Mathematical Reasoning

Part V

Technical Issues

207

Chapter 15

Clausal Form

• In this chapter we investigate clausal form.

• Section 15.1 defines prenex normal form.

• Section 15.2 defines Skolem normal form.

• Section 15.3 defines a technique for Skolemizing non-prenex formulae.

• Section 15.4 defines conjunctive normal form.

• Section 15.5 completes the definition of clausal form and the descrip-
tion of a procedure for putting formulae into clausal form.

• Section 15.6 proves that a formula is weakly equivalent to its clausal
form.

• Section 15.7 gives a neat test for the truth of a formula in clausal form.
This test proves useful in the next chapter.

Clausal form it is a concatenation of several of the traditional logic nor-
mal forms, namely prenex normal form, Skolem normal form and conjunc-
tive normal form, applied in that order. We will consider each of these in
turn, but before doing so we must perform some trivial preprocessing on the
formulae.

The theorem proving processes, we will describe, work only on sentences,
so we must ensure that both the axioms, Ax, and the conjecture, Thm, are
fully closed with universal quantifiers applied to their free variables before
proceeding further. This is particularly important for the conjecture, which
is to be negated, because the operations of negation and closure are not
commutative, e.g. ∀X ¬X = 0 does not mean the same as ¬∀X X = 0, in
fact the first is false in arith whereas the second is true.

The second piece of preprocessing is to use the equivalences of section
2.2.2 to eliminate the connectives → and ↔. We could also get rid of ∧ (or

209

210 Computer Modelling of Mathematical Reasoning

alternatively ∨) at this stage, but we will find it useful in the sequel to have
both ∨ and ∧ .

We now have a sentence containing only the connectives ¬ , ∨ and ∧.
Notice that the processes of forming the closure of the original formula and
eliminating the connectives → and ↔, both preserved the meaning of the
formula, i.e. the resulting formulae were equivalent to the original one.

15.1 Prenex Normal Form

The idea of prenex normal form is to move all the quantifiers to the top of
the sentence, from whence they will be removed in the ‘Skolemization’ step
of the next section.

We will define the normal form by giving a set of rewrite rules, that is
a set of rules for converting any sentence into a sentence in normal form by
stages. Each rule deals with a sentence which is not in normal form, because
it contains a quantifier not at the top and shows how to move the quantifier
to the top. A quantifier which is not at the top must have another symbol
immediately above it: in this case the symbol will be one of the connectives,
¬, ∧ or ∨. Since the quantifier can be in either parameter position of ∧ or
∨, and there are two quantifiers, there are 10 cases to consider. The rules
for each of these cases is given in table 15.1.

Before After

¬∀X A ⇒ ∃X ¬A
¬∃X A ⇒ ∀X ¬A
∀X (A) ∧B ⇒ ∀X (A ∧B)1

∃X (A) ∧B ⇒ ∃X (A ∧B)
A ∧ ∀X (B) ⇒ ∀X (A ∧B)
A ∧ ∃X (B) ⇒ ∃X (A ∧B)
∀X (A) ∨B ⇒ ∀X (A ∨B)
∃X (A) ∨B ⇒ ∃X (A ∨B)
A ∨ ∀X (B) ⇒ ∀X (A ∨B)
A ∨ ∃X (B) ⇒ ∃X (A ∨B)

Table 15.1: Rewrite Rules for Prenex Normal Form

Exercise 47 If we had not eliminated the → connective in terms of ¬ and
∨ before we started we would also have had to give the 4 rewrite rules for →
in table 15.1. (This illustrates the time saving benefits of a normal form.)
Work out what these rules would have been by using the rules for ¬ and ∨.

1In case B already contains X, it is necessary first to substitute a new variable for X
in ∀X (A) to prevent any confusion. Similar remarks hold for the remaining rules.

15. Clausal Form 211

Are you surprised at the result? Can you give 4 similar rules for ↔? If not,
why not?

To put a sentence in normal form apply the following procedure.

(a) If the sentence is already in normal form then stop with success.

(b) Otherwise it contains a subformula consisting of a connective immedi-
ately above a quantifier.

(c) Pick such a subformula and find which of the expressions in the left hand
side of table 15.1 matches it.

(d) Replace the subformula by the expression on the right hand side of the
table.

Lemma 15.1 The prenex normal form process, applied to any sentence,
terminates producing an equivalent sentence in prenex normal form.

To see that this is so consider first the termination. Let dpth be the total
depth of all the quantifiers, i.e. the sum of all the distances from the root
of the sentence tree to a quantifier. Each time a rule is applied dpth will
be reduced by 1. dpth can never be negative so the process must terminate
with the sentence in normal form.

The sentence output by this process is equivalent to the one input be-
cause each application of a rule preserves equivalence. Consider, for instance,
the first rule. Now

¬∀X A(X) is true in an interpretation I
iff

∀X A(X) is false in I
iff

for some c in the universe of I, A(c) is false in I
iff

¬A(c) is true in I
iff

∃X ¬A(X) is true in I.

We can establish the same truth preserving properties for each of the rules
in table 15.1

Exercise 48 Establish the equivalence properties of two more of the rules
from table 15.1.

212 Computer Modelling of Mathematical Reasoning

15.2 Skolem Normal Form

In Skolem normal form we remove all the quantifiers, both universal and
existential, leaving a formula with only free variables. This process is made
easier by having the original formula in prenex normal form, and we assume
this in this section. In the next section we show how to Skolemize any
formula.

Removing the universal quantifiers while preserving meaning is easy since
a formula and its closure mean the same thing. We need only omit the
quantifiers. Doing the same for the existential quantifiers is harder. The
key idea is to introduce a new function to replace the bound variable. These
are called Skolem functions. When the function are nullary they are called
Skolem constants.

Consider the sentence

∃X X2 + 2 ·X + 1 = 0 (i)

This asserts the existence of a number satisfying a quadratic equation. The
same effect could be achieved by asserting the equation with a particular
number substituted for X. But since nothing more is asserted by (i) than
that the number satisfys the equation, it would not do to substitute a pre-
viously known number for X, e.g. 3 or -1. We will have to invent a new
number, the Skolem constant x, just for the purpose.

x2 + 2 · x+ 1 = 0

We might then use our knowledge of algebra to prove that

x = −1

but this is beyond the scope of our present concerns.
If the existential quantifier in question is dominated by universal quan-

tifiers, for instance,

∀A ∀B ∀C ∃X A ·X2 +B ·X + C = 0 (ii)

then we will have to use a Skolem function rather than a constant. The
parameters to the function will be universally quantified variables, thus al-
lowing a different value for each different combination of universal variables.

A · x′(A,B,C)2 +B.x′(A,B,C) + C = 0

Again we could use our knowledge of algebra to prove that

x′(A,B,C) = (−B ±
√
B2 − 4 ·A · C)/2 ·A

but such proofs will not always be available to us.

Exercise 49 Skolemize the sentence

15. Clausal Form 213

∀M ∃∆ ∀X |X| ≤ ∆→ 1/X > M

Note that ∀M dominates ∃∆, but that ∀X does not.

When putting a formula into Skolem normal form it is necessary to
keep a record of the universally quantified variables which dominate each
existentially quantified one. Thus the rewrite rule table requires an extra
‘action’ column to say what must be done to use and update this record
each time a rewrite occurs.

Before After Action

∀X A(X) ⇒ A(X) Add X to the set of free variables.
∃X A(X) ⇒ A(x(V)) Where V is the vector of

free variables and x is
a new Skolem function.

Table 15.2: Rewrite Rules for Skolem Normal Form

These rules are always applied to the whole sentence and thus peel off
the quantifiers, topmost first, until they are all eliminated.

Lemma 15.2 The Skolemization process, applied to a sentence in prenex
normal form, terminates with a weakly equivalent formula in Skolem normal
form.

To see that it terminates is easy, since the number of quantifiers is re-
duced on each application. The rules continue to apply while a quantifier
remains at the top of the formula, and all formulae are in prenex form, with
their quantifiers at the top, so the final formula will have no quantifiers, i.e.
it will be in Skolem normal form.

The input and output sentences are not necessarily equivalent, but their
meanings are closely related, and we have captured this relationship with
the term weakly equivalent, which we will now explain.

It is easy to see that the application of the first rule, which eliminates
universal quantifiers, also preserves equivalence. The difficulties arise with
the application of the second rule: the conversion from

∃X A(X) to A(x(V))

Now

A(x(V)) is true in I.
implies

for all substitutions of variable free terms v for V
A(x(v)) is true in I.

implies
for all substitutions of variable free terms v for V

214 Computer Modelling of Mathematical Reasoning

there is a substitution of a variable free term for X such that
A(X) is true in I.

implies
∃X A(X) is true in I.

So the original formula is a logical consequence of the final one, but the
argument does not reverse, because the variable free term, t, which, when
substituted for X, makes A(X) true, may not be x(v). However, since
x is a newly created Skolem function it will not appear in A(X), nor in
any existing mathematical theories, so it will not be assigned a value or
calculation procedure in any interpretation of A(X). Thus any model of
∃X A(X) can be extended to be a model of A(x(V)) by assigning a value
or calculation procedure to x such that

x(v) = t

This is what we mean by weakly equivalent, and we will see that it is suffi-
cient for our purposes.

15.3 Skolemizing Non-Prenex Formulae

Although Skolemization is easy to explain and justify on sentences in prenex
normal form, it can actually be applied directly to any formula. The process
involved is not easily explained using rewrite rules. Instead we will use a set
of equations defining a function skolem with two parameters: the formula
to be Skolemized and the set of free variables it contains, and whose result
is the Skolemized formula, e.g.,

skolem(∀X p(X), {}) = skolem(p(X), {X}) = p(X)

When the topmost connective is ∨ or ∧ the situation is simple: skolem
is merely called recursively on each of the arguments of the connective. To
see this, consider, for instance,

skolem(P ∨ ∀xQ(x), {})

If we first put the formula in prenex form

skolem(∀x (P ∨Q(x), {})

then Skolemize it

P ∨Q(x)

the effect is the same as if we had Skolemized the arguments

skolem(P, {}) ∨ skolem(∀xQ(x), {})
= P ∨Q(x)

15. Clausal Form 215

When the topmost connective is ¬ the situation is a little more compli-
cated. Consider

skolem(¬∃xP (x), {})

If this formula is put in prenex form

skolem(∀x ¬P (x), {})

the quantifier changes its type, from existential to universal. The effect

¬P (x)

is as if a dual Skolemization were applied to the argument of ¬ in which
quantifiers were treated as if their types were reversed.

skolem(¬∃xP (x), {})
= ¬dual skolem(∃xP (x), {})
= ¬P (x)

With dual skolem acting on an existential quantifier as if it were a universal
one. Of course, if dual skolem goes inside another ¬ then it turns back into
skolem again.

The simplest way to handle this is to define a new version of skolem,
called new skolem with an extra parity argument, either ‘regular’ or ‘dual’.
If the argument is regular then new skolem behaves like skolem. If the
argument is dual then new skolem behaves like dual skolem. opposite will
be a new function which returns dual given regular and vice versa.

skolem(A, V) = new skolem(A, V, regular)
dual skolem(A, V) = new skolem(A, V, dual)

opposite(regular) = dual
opposite(dual) = regular

The equations for new skolem are then

new skolem(∀x A(x), V ars, Par)
= new skolem(∃xA(x), V ars, opposite(Par))

new skolem(∃xA(x), {y1, ..., yn}, regular)
= new skolem(A(f(y1, ..., yn)), {y1, ..., yn}, regular)

where f is a new Skolem function

new skolem(∃xA(x), V ars, dual)
= new skolem(A(x), {x} ∪ V ars, dual)

new skolem(¬A, V ars, Par)
= ¬new skolem(A, V ars, opposite(Par))

new skolem(A ∨B, V ars, Par)

216 Computer Modelling of Mathematical Reasoning

= new skolem(A, V ars, Par) ∨
new skolem(B, V ars, Par)

new skolem(A ∧B, V ars, Par)
= new skolem(A, V ars, Par) ∧

new skolem(B, V ars, Par)

With the aid of the equations for ¬ and ∨ we can define the effect of
Skolemization on A→ B.

new skolem(A→ B, V ars, Par)
= new skolem(¬A ∨B, V ars, Par)
= new skolem(¬A, V ars, Par) ∨

new skolem(B, V ars, Par)
= ¬new skolem(A, V ars, opposite(Par)) ∨

new skolem(B, V ars, Par)
= new skolem(A, V ars, opposite(Par))→

new skolem(B, V ars, Par)

Exercise 50 Try this same technique on A↔ B. What happens?

15.4 Conjunctive Normal Form

The idea of conjunctive normal form is that each type of connective appears
at a distinct height in the formula. The negation signs, ¬ , are lowest, with
only propositions as their parameters. The disjunction signs, ∨, are in the
middle, with only propositions or negated propositions as their parameters.
And the conjunction signs, ∧, are at the top, taking the disjunctions as their
parameters. For instance,

{p ∨ ¬q ∨ ¬r} ∧ {¬p ∨ ¬q} ∧ {¬p ∨ r}

The negated or unnegated propositions are called literals. The disjunctions
of literal are called clauses.

We will transform formulae into conjunctive normal form in two stages.
The first of these will move the negation signs down, until they are next to
the propositions. Let us call the resulting intermediate normal form literal
normal form, since negation signs will only appear in literals. We need
only consider the cases where a ¬ appears at the top most level, dominating
another connective and show how it is to be removed or sent to a lower level.
There are three of these cases to consider: where a ¬ dominates another ¬,
another ∨ or another ∧. The transformations for these cases are given in
table 15.3.

These rules are to be applied in a similar way to the rules for prenex
normal form, taking any subformula where a ¬ dominates an ∧ or ∨ and
applying a rule to it until no further rules apply.

15. Clausal Form 217

Before After

¬¬A ⇒ A
¬(A ∨B) ⇒ ¬A ∧ ¬B
¬(A ∧B) ⇒ ¬A ∨ ¬B

Table 15.3: Rewrite Rules for Literal Normal Form

Lemma 15.3 The literal normal form process, applied to a formula in
Skolem normal form, terminates producing an equivalent formula in literal
normal form.
Proof: To see that the process terminates consider the following numeric
function on formulae. Let the weight of a ¬ sign be the size of the formula it
dominates. (Consider the formula as a tree: the weight of ¬ is the number of
arcs below it.) Let the load of a formula be the sum of the weights of all the
¬ signs in it. The load of a formula will reduce each time a rule is applied.
Since it cannot reduce to less than 0 then there must come a time when no
further rule applies. To see that the load reduces on each rule application,
consider each rule in turn.

• If the first rule is applied then the load is reduced by the weights of
two ¬ signs.

• If the second or third rule is applied then the load is reduced by the
weight of one ¬ sign, but increased by the weights of two new ones.
However, the combined weights of the new ¬ signs is 2 less than the
weight of the old one. Hence there is a net reduction of 2.

By the usual argument the process cannot terminate unless the formula
is in literal normal form; and the input and output formula are equivalent
because each rule preserves equivalence. To see this in the case of the second
rule, consider the semantic trees for the two formulae involved. These are
given in figure 15.1.

Similar arguments hold for the other two rules. QED

Exercise 51 Establish the equivalence property of the third rule for literal
normal form.

We now have a formula like

{(¬p ∧ q) ∨ ¬r} ∧ p

in which ¬s only appear at height 1, if at all. It only remains to shift the ∧s
to the top and ∨s below them. This can be done with only two rules (and
these are essentially variants of a single rule).

This is because the only cases to consider are where a ∨ dominates an
∧ symbol. Applied whenever a ∨ appears immediately above an ∧ , these

218 Computer Modelling of Mathematical Reasoning

Figure 15.1: The Equivalence of Two Literal Normal Form Rules

Before After

A ∨ (B ∧ C) ⇒ (A ∨B) ∧ (A ∨ C)
(B ∧ C) ∨A ⇒ (B ∨A) ∧ (C ∨A)

Table 15.4: Rewrite Rules for Conjunctive Normal Form

rules will gradually decrease the maximum depth of the ∧s and decrease the
maximum height of the ∨s, until all the ∧s are above all the ∨s, e.g.

{(¬p ∧ q) ∨ ¬r} ∧ p↔ (¬p ∨ ¬r) ∧ (q ∨ ¬r) ∧ p

By the usual arguments

Lemma 15.4 The conjunctive normal form process, applied to a formula
in literal normal form, terminates producing an equivalent formula in con-
junctive normal form.

Exercise 52 Put the formula

{(¬p ∨ q) ∧ ¬r} ∨ p

in conjunctive normal form.

Exercise 53 Check that the first pair of entries in table 15.4 are equivalent
formulae

Exercise 54 Using the rewrite rules

A ∧ (B ∨ C)⇒ (A ∧B) ∨ (A ∧ C)
(B ∨ C) ∧A⇒ (B ∧A) ∨ (C ∧A)

which are the duals of those in table 15.4, put the formula in exercise 52 in
disjunctive normal form, in which the formula is a disjunction of a conjunc-
tion of literals.

15. Clausal Form 219

15.5 Clausal Form

Our last transformation will be to break up the conjunction of clauses into
the set of individual clauses and to standardize the variables apart by en-
suring that no variable appears in more than one clause. In our running
example we will break up

{p(X,Y) ∨ ¬q(X) ∨ r(Z)}∧
{¬p(X,Y) ∨ ¬q(X)}∧
{¬p(X,Y) ∨ r(Z)}

into the set
p(X,Y) ∨ ¬q(X) ∨ r(Z)
¬p(X,Y) ∨ ¬q(X) and
¬p(X,Y) ∨ r(Z)

and then standardize apart to get
p(X1, Y 1) ∨ ¬q(X1) ∨ ¬r(Z1)
¬p(X2, Y 2) ∨ ¬q(X2) and
¬p(X3, Y 3) ∨ r(Z3)

where each clause has different variables.

The first part of this transformation relies on the rewrite rules

A ∧B ⇒ A
A ∧B ⇒ B

applied repeatedly to split the conjunction into its individual clauses.
The second part uses the substitution rule

A(X)

A(T)

to replace the variables in each clause with new variables in such a way that
no two clauses share a common variable.

Our formulae are now in clausal form, and this is the normal form re-
quired by the resolution rule. It is clear that

Lemma 15.5 The clausal form process, applied to a formula in conjunctive
normal form, terminates producing a formula in clausal form.

Clausal form might seem a highly constrained and unnatural representa-
tion for mathematical knowledge, and it has been criticised on those grounds,
but we will see that it is in fact surprisingly natural in many cases. In fact
most of the axioms given in section 4.2 and many of those to be given in
the future are expressed in clausal form, provided we extend that notion to
include Kowalski form.

To put a clause into Kowlaski form gather all the negation signs in each
clause into one sign, using the rule

220 Computer Modelling of Mathematical Reasoning

¬A ∨ ¬B ⇒ ¬(A ∧B)

repeatedly. Now eliminate this one negation sign completely with a single
application of

¬A ∨B ⇒ A→ B

Thus p ∨ ¬q ∨ ¬r will be transformed first to p ∨ ¬(q ∧ r) and then to
q ∧ r → p.

15.6 Weak Equivalence

If A is a sentence then let nf(A) denote the formula obtained by the repeated
application of: prenex normal form; skolem normal form; literal normal
form; conjunctive normal form and clausal form. From lemmas 15.1, 15.2,
15.3, 15.4 and 15.5 it is clear that nf(A) is weakly equivalent to A. From
this we can deduce the theorem.

Theorem 15.6 A is unsatisfiable iff nf(A) is unsatisfiable.
Proof: Only If
Suppose that A is unsatisfiable, but that nf(A) has a model, M . Since
A is a logical consequence of nf(A), M is a model of A, contradicting the
unsatisfiability of A. Hence nf(A) is also unsatisfiable.

If
Suppose that nf(A) is unsatisfiable, but that A has a model, M . M can
be extended to a model M ′ of nf(A) by associating suitable calculation
procedures with the Skolem functions of nf(A). This contradicts the unsat-
isfiability of nf(A). Hence A is also unsatisfiable. QED

15.7 The Meaning of Formulae in Conjunctive
Normal Form

There is a particularly neat characterization of the meaning of formulae in
conjunctive normal form.

Lemma 15.7 A formula in conjunctive form is unsatisfiable iff for each
interpretation, I, there is an instance of the formula such that the negations
of all the literals in one of the clauses are true in I.
Proof: If the formula is unsatisfiable then it is not true in every inter-
pretation, i.e. for each interpretation there is an instance which is false.

Let

C1 ∧ ... ∧ Cn where Ci is a variable free clause

be the false, instance for the interpretation I. From the semantic tree for
∧ we can deduce that one of the Ci must be false in I. Suppose this false
clause is

15. Clausal Form 221

L1 ∨ ... ∨ Lm where each Lj is a variable free literal

then by the semantic tree for ∨ all of the Lj are false in I, and by the
semantic tree for ¬ all of the Lj are true in I.

This argument is reversible.

This lemma will be invaluable in the proofs of Herbrand’s theorem and
the completeness of resolution.

15.8 Summary

We have seen that any predicate calculus formula can be converted into a
weakly equivalent formula in either conjunctive normal form, clausal form
or Kowalski form. The first of these normal forms is useful for proving theo-
retical results about resolution. The second is useful for defining resolution
and paramodulation. The third is useful for making natural looking formal
proofs.

We have introduced the notion of weak equivalence between two formu-
lae; that one has a model iff the other does. This will be just the concept of
equivalence used in the theoretical results on resolution of the next chapter.

222 Computer Modelling of Mathematical Reasoning

Chapter 16

Herbrand Proof Procedures

• This chapter gives the proof of Herbrand’s theorem and the soundness
and completeness of resolution.

• Section 16.1 outlines the use of Herbrand’s theorem to justify the
Gilmore procedure.

• Section 16.2 defines Herbrand Interpretations and shows that a formula
has a model iff it has a Herbrand model.

• Section 16.3 illustrates the Gilmore procedure on a simple example.

• Section 16.4 proves Herbrand’s theorem.

• Section 16.5 explains how resolution overcomes inherent inefficiencies
in the Gilmore procedure.

• Section 16.6 proves the soundness and completeness of resolution.

In this chapter we will prove Herbrand’s theorem and the soundness and
completeness of resolution. These proofs provide the theoretical justification
for two proof procedures: the Gilmore procedure and the Resolution proce-
dure. The Gilmore procedure is introduced because it is a direct application
of Herbrand’s theorem, and serves as a useful introduction to the Resolution
procedure. Our principle concern is to show that by restricting ourselves: to
a refutation system; with a single rule of inference, resolution; applied only
to formulae in clausal form, we can still prove all correct argument forms.

16.1 The Significance of Herbrand’s Theorem

In order to explain the Gilmore procedure we will prove Herbrand’s Theorem
[Herbrand 30] and discuss how it can be used as the basis of a computer
program for showing that a formula is a logical consequence of a set of
axioms. The theorem is:

223

224 Computer Modelling of Mathematical Reasoning

A formula, A, in conjunctive normal form is unsatisfiable iff there
exists a contradiction consisting of a finite conjunction, A′, of
instances of clauses of A.

but before we prove it let us investigate its significance.

Suppose we have some axioms, Ax, and we want to see if some conjecture,
Thm, is a logical consequence of Ax. The key idea is to add the negation
of Thm to Ax and show that the resulting set of axioms is unsatisfiable, by
putting it into clausal form and finding a contradictory, finite conjunction
of clause instances. The theorems we shall prove in this chapter will enable
us to show that

Thm is a logical consequence of Ax
iff

Thm′ is a logical consequence of Ax′, where Thm′ and
Ax′ are the closures of Thm and Ax, respectively

iff
Ax′ ∧ ¬Thm′ is unsatisfiable

iff
S, the clausal form of Ax′ ∧ ¬Thm′ is unsatisfiable

iff
There exists a contradiction consisting of a finite conjunction of

instances of clauses of S.

This suggests a way of testing to see if Thm is a logical consequence of
Ax, namely

• Put Ax ∧ ¬Thm into clausal form. Let S be the result.

• Generate instances of clauses of S.

• Test conjunctions of these clauses for contradiction using semantic
trees as described in section 3.

As mentioned in section 1.3.3 this is essentially the process suggested
by Gilmore in 1960 and implemented by him in a computer program
[Gilmore 60].

As it stands the Gilmore procedure is not a very practical test, because
there are too many ways to form instances. We must consider the universe
of every possible interpretation and use the objects of each universe in all
possible ways. We will see in the next section that we can improve on
this considerably because there is a class of interpretations, called Herbrand
Interpretations, which can stand for all the others. The Herbrand Interpre-
tations share the same universe, called the Herbrand Universe. Hence we
need only consider instances made by substituting elements of the Herbrand
Universe for variables.

16. Herbrand Proof Procedures 225

With a little care we can make sure that none of the possible conjunctions
of instances of clauses is omitted from our testing. Then we can be sure that
if Thm is a logical consequence, we will find out eventually. However, the
search through possible instances could go on forever. In fact, the following
cases can arise.

1. Thm is a logical consequence of Ax. In this case our search will even-
tually terminate with success, i.e. we will find a contradiction.

2. Thm is not a logical consequence. There are two possible sub-cases.

(a) We run out of instances to generate, without having found a con-
tradiction. In this case we can be sure that Thm is not a logical
consequence of Ax.

(b) We go on generating instances for ever and never find a contra-
diction. In this case we are never sure whether Thm is logical
consequence of Ax or not. We could be in either case 1 or 2.

16.2 Herbrand Interpretations

In this section we define the Herbrand Interpretations of a formula, and we
prove that these are the only interpretations that we need to consider when
testing the unsatisfiability of a formula. We start by defining the Herbrand
Universe of a formula. What must this universe contain? For each n-ary
function, f , in the formula (including constants) and n objects, t1, ...tn, in
the universe it must contain the result of applying f to the tis. This can be
achieved by a simple syntactic device; we put all the variable free terms in
the universe and let each term denote the result of applying its function to
its parameters. We will call this syntactic device, self denotation.

Definition 16.1 The Herbrand Universe of a formula consists of all the
variable free terms that we can make from the constants and functions in
the formula.

From now on it will be useful to distinguish the constants from the other
functions, so by ‘function’ we mean non-nullary function.

This definition applied to formula

∀X ∃Y X = Y ∨X = Y + 1

for instance, yields the function + and the constant 1. If we were consid-
ering this formula in the context of the axioms of some theory then these
axioms would provide additional functions and constants, but we ignore this
possibility for the sake of simplicity. The constants thus obtained are our
first batch of variable free terms. But these are not enough. We must con-
sider all possible ways in which new terms may be built up by combining
old terms with functions, e.g.

226 Computer Modelling of Mathematical Reasoning

{1, 1 + 1, (1 + 1) + 1, 1 + (1 + 1), (1 + 1) + (1 + 1),, }

Three cases may arise

1. If the axioms contain both constants and functions then the Herbrand
Universe will always be countably infinite.

2. If the axioms contain only constants then the Herbrand Universe will
be the finite set of these.

3. If the axioms contain no constants then to prevent having an empty
Universe we will add one, say a. This puts us back in either case 1 or
2 above.

The only way in which Herbrand Interpretations differ is over assignment
of predicate meanings. A convenient way of assigning these meanings is to
consider the truth value of each instance of each proposition in the formula.
These instances can be obtained by forming the set of propositions in the
formula, and then substituting terms from its Herbrand Universe for its
variables in all possible ways. We call this set the Herbrand Base of the
formula. For instance, the Herbrand Base of

∀X ∃Y X = Y ∨X = Y + 1

is formed by taking its set of propositions {X = Y,X = Y + 1} and substi-
tuting the terms,

{1, 1 + 1, (1 + 1) + 1, 1 + (1 + 1), (1 + 1) + (1 + 1),, }

for X and Y , in all possible ways, to form

{1 = 1, 1 = 1 + 1, 1 + 1 = 1, 1 + 1 = 1 + 1,}

Note that the Herbrand Base can always be enumerated by a finite or infinite
list. In particular, if a formula contains no functions then its Herbrand
Universe will be finite and, hence, its Herbrand Base will be finite

It is not necessarily the case that every proposition formed by applying
predicates from the formula to terms from its Herbrand Universe is in the
Herbrand Base. For instance, the proposition 1 = 1 is not in the Herbrand
Base of ∀X ∃Y X = Y + 1, because it is not an instance of X = Y +
1. However the truth of the formula does not depend on these missing
propositions.

Since the missing propositions do not contribute to the truth of a for-
mula, each of its Herbrand Interpretations is effectively determined by a
mapping from the Herbrand Base to the set of truth values, {t, f}. For

16. Herbrand Proof Procedures 227

instance, the mapping

1 = 1 7→ t
1 = 1 + 1 7→ f
1 + 1 = 1 7→ f
1 + 1 = 1 + 1 7→ t
1 = (1 + 1) + 1 7→ t
1 + 1 = (1 + 1) + 1 7→ f
........etc 7→

defines a Herbrand Interpretation which we will call boole2.

The truth of a formula can now be determined from the meaning rules
for the quantifiers and the semantic trees for the connectives, as in section
3.3.2. However, it is not necessary to appeal to calculation procedures for
the functions and predicates. Once the problem has been reduced to the
meaning of variable free propositions then the Herbrand Base can be used
to find their truth values, e.g.

∀X ∃Y X = Y ∨X = Y + 1 is true in boole2
iff (by meaning of ∀)

∃Y 1 = Y ∨ 1 = Y + 1 is true in boole2 and
∃Y 1 + 1 = Y ∨ 1 + 1 = Y + 1 is true in boole2 and
........... etc

iff (by meaning of ∃)
either 1 = 1 ∨ 1 = 1 + 1 or 1 = 1 + 1 ∨ 1 = (1 + 1) + 1 or ...

is true in boole2 and
either 1 + 1 = 1 ∨ 1 + 1 = 1 + 1or1 + 1 = 1 + 1∨ ... is true in

boole2 and
........... etc

iff (by semantic tree for ∨)
either 1 = 1, 1 = 1 + 1, 1 = 1 + 1, 1 = (1 + 1) + 1, ... is true in

boole2 and
either 1 + 1 = 1, 1 + 1 = 1 + 1, 1 + 1 = 1 + 1, 1 + 1 = (1 + 1) + 1,

... is true in boole2 and
........... etc

iff (by Herbrand Base)
either t, f, f, t, ... is true in boole2 and
either f, t, t, f, ... is true in boole2 and
........... etc

iff (by meaning of English)
t

Since each Herbrand Interpretation of a formula is determined by a map-
ping of the Herbrand Base, we can encapsulate the set of all Herbrand In-
terpretations by extending our notion of semantic tree. If p1, ..., pn, ... is an

228 Computer Modelling of Mathematical Reasoning

enumeration of the Herbrand Base of the formula, then each branch of the
tree in figure 16.1 defines a mapping from the Herbrand Base to {t, f}, i.e.
an interpretation. Of course, if the Herbrand Base is infinite the tree will
be infinitely deep.

Figure 16.1: All Herbrand Interpretations of a Formula

To see that we can limit our attention to Herbrand Interpretations we
must prove the lemma:

Lemma 16.2 A formula has a model iff it has a Herbrand Model.

Proof: The if part of this is demonstrated by showing that a Herbrand
Model of a formula, A, really is a model of A. Since the Herbrand Model
defines a universe and assigns a meaning in this universe to the functions
using self denotation, it only remains to show that the mapping of the Her-
brand Base assigns a meaning to the predicates, and that A is true under
this assignment.

For each n-ary predicate, p, in A and each set of n terms, t1, ..., tn in
its Herbrand Universe, we must assign a truth value to p(t1, .., tn). If this
proposition is in the Herbrand Base then we assign it the same truth value
as is assigned by the Herbrand Interpretation. If it is not in the Herbrand
Base then it does not matter what value we assign it, so let it be t. We must
show that A is true in this interpretation, but this is trivial since, in either
this interpretation or the Herbrand Model, A is true iff all its instances are
true, and this is determined solely by those variable free propositions which
are in the Herbrand Base.

To prove the only if part of the lemma we must show that if a formula,
A, is true in an interpretation, I, then there is an Herbrand Interpretation
HI in which A is true. Clearly HI will be constructed from I.

16. Herbrand Proof Procedures 229

Let I have universe, U . If f is an n-ary function or constant in
A, p is an n-ary predicate in A, and a1, ..., an are n objects in U , let
u[f(a1, ..., an)] denote the member of U obtained by applying f to the ais,
and let b[p(a1, ..., an)] denote the truth value obtained by applying p to the
ais.

Let HU be the Herbrand Universe of A and HB be its Herbrand Base.
To define HI we must say which of the members of HB are true and which
false.

Consider first the case when A contains some constants. Note that all
these constants are members of U . We can define a function, huu, from
objects in HU to objects in U , recursively as follows.

huu(c) = c
where c is a constant (and hence in U)

huu[f(t1, ..., tn)] = u[f(huu(t1), ..., huu(tn))]
where f is an n-ary function
and the ti are variable free terms.

If A contains no constants then HU consists of all variable free terms built
from the new constant, a, and the functions (if any) of A. U is non-empty,
so let b be a member of U . We can define huu for this case recursively as
follows:

huu(a) = b
huu[f(t1, ..., tn)] = u[f(huu(t1), ..., huu(tn))]

where f is an n-ary function
and the ti are variable free terms.

huu can be used to define, hb, a function of propositions from HB to
{t, f} as follows

hb[p(t1, ..., tn)] = b[p(huu(t1, ..., huu(tn))]
where p is n-ary predicate
and the ti are variable free terms.

Let the function hb define HI. We must now show that HI is a model of A.

• Let φ be a substitution of objects of HU for variables in A.

• Let φ′ be the corresponding substitution of objects of U for variables
in A obtained by replacing each pair t/X by huu(t)/X.

• A is true in I

• Therefore, each Aφ′ is true in I.

• Therefore, each clause of Aφ′ contains a literal, Lφ′ which is true in I.

230 Computer Modelling of Mathematical Reasoning

• But, by the definition of hb, Lφ′ is true in I iff Lφ is true in HI.

• Hence each clause of Aφ contains a literal, Lφ, which is true in I.

• Hence, each Aφ is true in HI.

• Hence, A is true in HI.

QED

From now on, whenever we say interpretation we will mean Herbrand
Interpretation. Similarly, the terms satisfiable, unsatisfiable, logically valid,
etc will refer to Herbrand Interpretations.

Note that if a formula contains no functions then it has a finite Herbrand
Universe, a finite Herbrand Base and only a finite number of Herbrand
Interpretations. To test the logical validity of such a formula we test for truth
in each interpretation. To test that a formula is true in an interpretation
we need only test the truth of a finite number of variable free, quantifier
free formulae and each of these can be tested using the tautology testing
technique of section 2.2.4. Thus we have a decision procedure for theories
without functions. This observation redeems a pledge made in section 4.3.2.

16.3 A Worked Example

Consider how the Gilmore procedure might work in a very simple example.
Let Ax be the single axiom ∀X X = X and Thm be the sentence ∀Y Y = Y .
To show that Thm is a logical consequence of Ax we put Ax ∧ ¬Thm into
clausal form as follows:

∀X X = X ∧ ¬∀Y Y = Y
Skolemization replaces Y with Skolem constant y to get X =

X ∧ ¬y = y
which gives the two clauses
X = X and ¬y = y

We then generate instances of these clauses using the Herbrand Universe,
{y} (since y is the only constant and there are no proper functions). There
are only two instances,

y = y and ¬y = y.

The conjunction of these is a contradiction, because no matter whether y = y
is mapped to t or f , y = y ∧ ¬y = y is f (see semantic tree for ∧).

The Gilmore procedure could prove that simple theorems were logical
consequences of their axioms, i.e. theorems just a little harder than the
trivial example above, but on non-trivial theorems it rapidly became en-
grossed in the endless possibilities for generating new instances. It could
not see the wood for the trees!

16. Herbrand Proof Procedures 231

However, Herbrand’s Theorem and the Gilmore procedure served as the
basis for the more able artificial mathematicians which followed. Herbrand’s
theorem is proved in the next section.

16.4 The Proof of Herbrand’s Theorem

The idea behind the proof is that if a formula is unsatisfiable then for every
Herbrand Interpretation there is a instance that is false in that interpreta-
tion. We would like to conjoin all these false instances to get a contradiction,
but since there might be infinitely many models this conjunction might be
infinite. The proof shows how a finite conjunction can be made by having
sets of Herbrand Interpretations share a single false instance. This is pos-
sible because the false instance for each interpretation is already false in a
finite sub-interpretation and this sub-interpretation is a proper subset of a
number of different interpretations.

We can represent all these sub-interpretations as a sub-tree of the com-
plete semantic tree for a formula, called a failure tree.

Definition 16.3 The failure tree of a formula, A, in conjunctive normal
form is a minimal finite sub-tree of its semantic tree such that for each
branch, B, there is a clause of A which is not true in the sub-interpretation
defined by B

The technique described above can now be caught in the following lemma,
which will be used in the heart of the proofs of both Herbrand’s Theorem
and the Resolution Completeness Theorem.

Lemma 16.4 If a formula, A, in conjunctive normal form is unsatisfiable
then it has a failure tree

Proof: Let I be the interpretation defined by a typical branch, B, of the
semantic tree for A.

Assume A is unsatisfiable then by lemma 15.7 there is an instance, Aφ,
such that the negations of all the literals, Lφ, in one of the clauses Cφ, are
mapped to true by I.

But since there are only finitely many literals, Lφ in Cφ, there exists
a smallest sub-branch, B′ of B, such that the falseness of Cφ is already
determined by the sub-interpretation I ′ defined by B′, see figure 16.2 for
example: the truth values assigned to p1 and p3 on any branch passing
through N are sufficient to ensure that p1∨¬p3 is false. Hence C is not true
in I ′.

The tip N is called a failure node for C and Cφ.

The branches B′ define a sub-tree T ′ of T . Since each B′ is finite then
T ′ is finite. If necessary, prune any nodes from T ′ which are ancestors of
failure nodes to form T ′′ (a minimal tree). T ′′ is a failure tree for A. QED

232 Computer Modelling of Mathematical Reasoning

Figure 16.2: Cφ ≡ p1 ∨ ¬p3 fails at N

Herbrand’s Theorem is now a simple consequence of this lemma.

Theorem 16.5 Herbrand’s Theorem
A formula, A, in conjunctive normal form is unsatisfiable iff there exists a
contradiction consisting of a finite conjunction, A′, of instances of clauses
of A.

Proof: If (the easy direction)
Let I be an interpretation defined by a typical branch of the semantic tree
for A.

Assume A′ is contradictory then A′ is false in I. So some clause Cφ of
A′ is false in I (by semantic tree for ∧), where Cφ is an instance of a clause
C in A.

So C is not true in I and hence A is not true in I. But I was a typical
interpretation, so A is unsatisfiable.

Only If (the hard direction)
Assume A is unsatisfiable then by lemma 16.4 it has a failure tree, T ′′. Let
B′′ be typical branch of T ′′ and I ′′ the sub-interpretation it defines. From
the definition of a failure tree there is an instance, Cφ, of a clause, C, of A
which is false in I ′′.

Let A′ be the conjunction of all such Cφ. By the semantic tree for ∧, A′

is false in I ′′. T ′′ is finite and hence has only finitely many tips. There is
one such Cφ for each tip of T ′′, so A′ is finite.

T ′′ is a semantic tree for A′. (Well not quite, but clearly we could
massage T ′ into a semantic tree for A′, removing propositions not in A′ and
extending all branches to the same depth. All the essential properties would
be inherited by the new tree.)

A′ is false at every tip of T ′′, so A′ is a contradiction. QED

16. Herbrand Proof Procedures 233

16.5 The Resolution Procedure

How can the Gilmore procedure be improved? What are its inherent ineffi-
ciencies?

• Many of the possible conjunctions of instances of clauses from nf(Ax∧
¬Thm) are isomorphic. Thus work in testing for contradiction is essen-
tially duplicated. The failure to find a contradiction in one conjunction
is not used to suggest what conjunction to try next.

The Resolution procedure [Robinson 65] avoids these inefficiencies by not
going straight to clauses instances. Instead the search for a contradiction is
carried out on the original clauses with substitutions being made when they
will allow the continuation of the search. Thus

• Contradiction tests are carried out on several variable free conjunc-
tions, in parallel.

• Conjunctions which could not play a part in the contradiction are
implicitly eliminated by making substitutions which exclude them.

The Resolution contradiction test consists of using the resolution rule
of inference to derive new clauses from the original ones, in an attempt
to derive the empty clause (which is equivalent to f , see section 5.2). A
conjunction which contains f is unsatisfiable, since it will be false whatever
assignments are made to the other clauses.

For this to imply the unsatisfiability of the original clauses we must
show that the resolution rule cannot derive a clause which would make a
satisfiable conjunction into an unsatisfiable one: that is, any new clause must
be a logical consequence of the old ones. This is the Soundness Theorem,
so called, because it shows that resolution is not a faulty rule.

In addition we will want to know that if the original clauses are unsatisfi-
able then the contradiction test will eventually succeed, i.e. that the empty
clause will eventually be derived. This is the Completeness Theorem, so
called, because it shows that resolution is all you need. We prove both these
theorems in section 16.6 below.

16.6 The Soundness and Completeness of Resolu-
tion

The Resolution process of deriving new clauses from old will eventually
derive the empty clause if and only if the original clauses were unsatisfiable.
The ‘only if’ part of this is the Soundness Theorem: that we cannot produce
an unsatisfiable conjunction of clauses, and in particular, one containing the
empty clause, from a satisfiable one.

234 Computer Modelling of Mathematical Reasoning

Theorem 16.6 Soundness
If a formula, A, in conjunctive normal form, is satisfiable and if C is derived
from two clauses in A by resolution then A ∧ C is satisfiable.

Proof: Suppose A is satisfiable then it has a model, I.

Let C be derived from the clauses

1. C ′ ∨ P ′1 ∨ ... ∨ P ′m and
2. C ′′ ∨ ¬P ′′1 ∨ ... ∨ ¬P ′′n

such that C ≡ (C ′ ∨C ′′)φ where φ is the most general unifier of the P ′s and
P ′′s. 1. and 2. are true in I, so all instances of them are true in I.

Let θ be a typical substitution making (C ′ ∨ C ′′)φθ an instance. There
may be variables in the P ′s and P ′′s which are not in C ′ or C ′′, but φθ can
be extended to a substitution φθψ which makes both 1. and 2. an instance.
These instances are true in I, since I is a model of A.

From the semantic tree for ∨ applied to 1. the following two cases arise.

1. C ′φθψ is true in I, in which case (C ′ ∨ C ′′)φθ is true in I

2. Some P ′iφθψ is true in I. But P ′jφ ≡ P ′kφ for all j and k, so all P ′jφθψ
are true and all ¬P ′kφθψ are false in I. Hence C ′′φθψ must be true in
I, so (C ′ ∨ C ′′)φθ is true in I.

Either way (C ′ ∨C ′′)φθ is true in I so (C ′ ∨C ′′)φ is true in I and I is a
model of C. QED

Exercise 55 f is false or, equivalently, the empty clause. unsats(S) means
that S is an unsatisfiable set of clauses. El ∈ S means that El is a member
of set S. Resolvants(N,S) is the set of clauses that can be derived from S
in 0 to N resolutions.

(a) Express the following axioms in clausal form (Kowalski form).

∀S ∀N [unsats(resolvants(N,S))→ unsats(S)]
∀S [f ∈ S → unsats(S)]

(b) Negate the following conjecture and express it in clausal form

∀S ∀N [f ∈ resolvants(N,S)→ unsats(S)]

(c) Using the goal clause of (b) as top clause draw a Lush Resolution search
tree for the clauses from (a) and (b).

The ‘if’ part is the Completeness Theorem: that is, if we start with
an unsatisfiable set and go on deriving new clauses by resolution, we will
eventually derive the empty clause.

16. Herbrand Proof Procedures 235

The idea of the proof is that each time we conjoin a newly derived batch
of clauses to the unsatisfiable conjunction its failure tree gets smaller. Even-
tually its failure tree will be the trivial tree consisting of just the root node.
Since only the empty clause, f , can have the trivial failure tree, f must be
one of the conjuncts, i.e. at some stage f was derived.

Why does the failure tree keep getting smaller? Because we can always
find two failure nodes (i.e. tips of the tree) with the same parent node. If we
take the clauses which fail at these nodes and resolve them we get a clause
which fails at the parent (or above) and so the failure tree can be pruned of
these two tips (at least) to form a smaller failure tree for the new conjunct.
The parent node, under these circumstances, is called an inference node.

We will want to make precise the idea of a ‘newly derived batch of
clauses’. These will be all possible resolvants of all clauses from A, the
original formula. When these are conjoined to A the result is denoted <(A).
<(<(<(...(A)...))) n times is denoted <n(A). We will now prove:

Theorem 16.7 Completeness
If A is an unsatisfiable formula in conjunctive normal form then there is an
n such that f is a clause of <n(A)

Proof: Suppose A is unsatisfiable then by lemma 16.4 it has a finite
failure tree T .

Either T is the trivial tree, in which case f is a clause of A and n = 0.

Or T is not the trivial tree. Pick a failure node (i.e. a tip), N ′ of
maximum depth in T . Let N be the parent of N ′ (It has one, since T is not
trivial). Since T is minimal, N is not a failure node. Let N ′′ be its other
daughter. Since N ′ is of maximum depth then N ′′ must also be a failure
node. Hence N is an inference node.

Without loss of generality let the arc from N to N ′ assign f to P and
the arc from N to N ′ assign t to P (see figure 16.3).

Figure 16.3: Part of Failure Tree for A

N ′ and N ′′ are failure nodes of clauses from A, i.e. there are instances of
two clauses from A made false by the interpretations defined by the branches
terminating at N ′ and N ′′. Since both these clauses are true at N (N is
not a failure node) these instances must contain the literals P and ¬P ,
respectively, i.e. they can be put in the form:

236 Computer Modelling of Mathematical Reasoning

1. (C ′ ∨ P ′1 ∨ ... ∨ P ′m)φ′ and
2. (C ′′ ∨ ¬P ′′1 ∨ ... ∨ ¬P ′′n)φ′

where C ′ ∨ P ′1 ∨ ... ∨ P ′m and C ′′ ∨ ¬P ′′1 ∨ ... ∨ ¬P ′′n are clauses of A, P ′iφ
′ ≡

P ′′j φ
′′ ≡ P and P is not contained in C ′φ′ nor ¬P in C ′′φ′′.

Since the P ′s and P ′′s have a common instance, they must have a most
general unifier φ and hence (C ′∨C ′′)φ must be derivable by resolution from
1. and 2., i.e.

(C ′ ∨ C ′′)φ ∈ <(A)

Now (C ′ ∨ C ′′)φ′φ′′ is a variable free instance of (C ′ ∨ C ′′)φ and all the
literals in it are assigned f at some arc above N (because 1 and 2 fail at N ′

and N ′′, respectively). Therefore, N is either a failure node for (C ′ ∨ C ′′)φ
or its failure node is higher in the tree. In either case the failure tree for
<(A) can be formed from T by pruning at least N ′ and N ′′ and is therefore
smaller than T .

Since A is unsatisfiable and is a sub-conjunct of <(A) then <(A) is un-
satisfiable. The process can be repeated, with the failure tree for <i(A)
becoming smaller and smaller, until for some n the failure tree for <n(A) is
the trivial tree. QED

Exercise 56 Using the notation of exercise 55, express the Soundness and
Completeness theorems for sets of clauses.

16.7 Summary

In this chapter we have proved three theorems of Mathematical Logic: Her-
brand’s theorem and the Soundness and Completeness of Resolution. These
have suggested a procedure for showing that a conjecture, Thm, is a logical
consequence of a set of axioms, Ax. The correctness of this procedure relies
on the following chain of reasoning.

Thm is a logical consequence of Ax
iff (consider rule for universal quantifier)

Thm′ is a logical consequence of Ax′,
where Thm′ and Ax′ are the closures of Thm and Ax respec-

tively.
iff (consider semantic trees for ∧ and ¬)

Ax′ ∧ ¬Thm′ is unsatisfiable
iff (by theorem 15.6)

nf(Ax′ ∧ ¬Thm′) is unsatisfiable
iff (by lemma 16.2

nf(Ax′ ∧ ¬Thm′) has no Herbrand Models

16. Herbrand Proof Procedures 237

iff (by theorems 16.6 and 16.7)
The empty clause can be derived from nf(Ax′ ∧ ¬Thm′) using

the resolution rule of inference.

Further Reading Suggestions

The description of several refinements of Resolution, and proofs of their
soundness and completeness, can be found in [Chang 73, Loveland 78]. [Loveland 78]
is a mathematically demanding book.

238 Computer Modelling of Mathematical Reasoning

Chapter 17

Pattern Matching

• This chapter defines various pattern matching and unification proce-
dures.

• Section 17.1 gives a procedure for one way matching.

• Section 17.2 gives a procedure for combining two substitutions.

• Section 17.3 gives a procedure for two way matching, or unification.

• Section 17.4 gives a procedure for unification with the associative law
built in.

• Section 17.5 gives a procedure for unification with the lambda calculus
laws built in.

Most computational reasoning processes involve pattern matching , e.g.
to recognise that an axiom is applicable to the current problem. In resolution
this role is played by unification. Unification finds a substitution which will
make two or more propositions identical. For instance, the recognition that
the axiom

U = V ∧W = V → U = W

can be applied to (i.e. resolved with) the goal clause

b = a→

consists mainly of finding the substitution

{b/U, a/W}

which will make U = W and b = a identical.

239

240 Computer Modelling of Mathematical Reasoning

17.1 One Way Matching

Finding the above substitution is a particularly simple example of unifica-
tion, called one way matching, because the substitution need only be applied
to one of the expressions, U = W . We will call this expression the pattern
and the one to which no substitutions are to be applied, the target. One
way matching is all that is required for many mathematical reasoning pro-
cesses, e.g. the application of rewrite rules (see chapter 9) and the check
for subsumption. Note that, in subsumption, it is vital that the target be
allowed to contain variables even though it is not possible to substitute for
them.

It is easy to write a computer program to do one way matching. We will
call it the match procedure.

(a) The first step of the match procedure will be to compare the two expres-
sions and find a pair of subexpressions which disagree. For instance,
if the pattern were X = X and the target 1 + 2 = 1 then 〈X, 1 + 2〉 is
a suitable pair and so is 〈X, 1〉. We will call such pairs disagreement
pairs. They can be found by searching the expression trees of the two
expressions, simultaneously, by say depth first search, until two nodes
with different labels are reached. The disagreement pair is then the
pair of subtrees dominated by these nodes (see figure 17.1).

(b) If the disagreement pair is 〈Var, term〉, where Var is a variable, then the
disagreement can be resolved with the substitution {term/Var}. This
substitution should be remembered as part of the eventual output of
the procedure. It should also be applied to the pattern to prevent the
variable Var subsequently being matched to some different term.

(c) The search for disagreement pairs should now continue. If a pair is found
then the above process of forming a substitution should be repeated.
If no pair is found, then the pattern and target must be identical; the
procedure may be exited and the substitution found so far output as
the result of the procedure.

(d) If a disagreement pair is ever found in which the first member is not
a variable then the match cannot succeed and should be abandoned
forthwith.

Suppose that the first disagreement pair found in our example were
〈X, 1 + 2〉. The substitution {1 + 2/X} would be formed and the pattern
instantiated to 1+2 = 1+2. Continuing the search for another disagreement
pair would uncover 〈1 + 2, 1〉. Since 1 + 2 is not a variable the matching
process would now fail.

The match procedure can be summarized by the following instructions

17. Pattern Matching 241

Figure 17.1: Finding Disagreement Pairs

To match pattern and target given substitution, φ

1. If pattern and target are identical then succeed with output
φ.

2. Otherwise, let 〈t1, t2〉 be the first disagreement pair.
3. If t1 is a variable then call match on pattern {t2/t1} and

target given φ{t2/t1}.
4. Else fail.

When it is first called match is, of course, given the empty set as the
substitution φ.

17.2 Combining Substitutions

The match procedure above calls for the substitution φ to be combined with
the substitution {t2/t1}. In this section we describe how this combination
is to effected. We will want the method of combining substitutions to have
the property that applying two substitutions to an expression in succession
produces the same result as applying the combination to the expression, i.e.

(Exprφ)θ ≡ Expr(φθ) (i)

Unfortunately, the combination method which has this effect is a little
messy.

The obvious first approximation is to take the union of the two sets
which constitute the substitutions. And this is the correct thing to do when
there is no overlap between the substitutions, as with {a/X, g(a)/Y } and
{a/Z}, since

(f(X,Y, Z) {a/X, g(a)/Y }) {a/Z}
≡ f(a, g(a), Z) {a/Z}
≡ f(a, g(a), a)

and

f(X,Y, Z) ({a/X, g(a)/Y } ∪ {a/Z})
≡ f(X,Y, Z) {a/X, g(a)/Y, a/Z}
≡ f(a, g(a), a)

242 Computer Modelling of Mathematical Reasoning

However, the substitutions may overlap in two ways: the second substi-
tution may contain a pair t1/X, where X appears in the first substitution,
either as a variable being replaced or in a term being substituted, e.g.

1. combine {a/X} and {b/X} or

2. combine {g(Y)/X} and {b/Y }

Consider case 2. first. Note that

(f(X) {g(Y)/X}) {b/Y }
≡ f(g(Y)) {b/Y }
≡ f(g(b))

whereas

f(X) ({g(Y)/X} ∪ {b/Y })
≡ f(X) {g(Y)/X, b/Y }
≡ f(g(Y))

and f(g(b)) is not identical to f(g(Y))
The answer is to apply the second substitution to the terms of the first

before taking the union of the substitutions, e.g.

f(X) ({g(Y)/X} {b/Y })
≡ f(X) ({g(Y){b/Y }/X} ∪ {b/Y })
≡ f(X) {g(b)/X, b/Y }
≡ f(g(b))

Now consider case 1. Note that taking the union of {a/X} and {b/X} will
produce an ambiguous substitution {a/X, b/X}. Since the first substitution
is applied first, the pair b/X will not get a look in and can be ignored, i.e.

(f(X) {a/X}) {b/X}
≡ f(a) {b/X}
≡ f(a)

Hence {a/X}{b/X} should be {a/X}.

The only way that {b/X} might get a look-in would be if the first substitu-
tion reintroduced X, but this is an example of case 2. and is already handled
correctly, e.g.

(f(X) {g(X)/X}) {b/X}
≡ f(g(X)) {b/X}
≡ f(g(b))

and

f(X) ({g(X)/X} {b/X})
≡ f(X) {g(X){b/X}/X}
≡ f(X) {g(b)/X}
≡ f(g(b))

17. Pattern Matching 243

We will call the method of combining substitutions outlined above com-
bine. The application of combine to two substitutions will be denoted, as
above, by juxtaposing them, i.e. by writing them one after the other. The
full definition of combine is given by the following procedure.

To combine substitutions θ and φ

1. Replace each pair s/X in θ by sφ/X to form θ′.
2. Delete from φ each pair t1/Y , such that θ′ contains a pair

s/Y , to form φ′.
3. Output the union of θ′ and φ′.

combine has the property (i) and is also associative, but we omit the proofs
of these facts.

Exercise 57 Apply the combine procedure to the substitutions

(a) {1 + 2/X,U + 2/Y } and {V/Z, 3 + 2/W}

(b) {1 + 2/X,U + 2/Y } and {V/Y, 3 + 2/W}

(c) {1 + 2/X,U + Y/Y } and {V/Y, 3 + 2/W}

Exercise 58 Apply one way matching to the following pairs of expressions.
Determine whether the process fails or succeeds in each case. In the case of
success determine the resulting substitution.

pattern target

a) X = X 2 = 2
b) X = X 2 + 2 = 4
c) p(f(X,Y), Y) p(f(a, g(b)), g(b))
d) X = b a = Y

17.3 Unification

In the last example in exercise 58 we perceive the need for a two way match-
ing process that could produce a substitution for application to both expres-
sions, e.g. {a/X, b/Y } whether applied to X = b or a = Y would produce
the common instantiation, a = b. With only one way matching the two
propositions are unmatchable. A suitable two way process is provided by
unification.

At first sight it appears simple to amend the one way match procedure
to do two way matching. We need only add the additional line:

3′. If t2 is a variable then call match on pattern and target
{t1/t2} given φ{t1/t2}.

and substitute ‘unify’ for ‘match’ throughout the procedure. But it is not
quite as simple as that.

244 Computer Modelling of Mathematical Reasoning

17.3.1 Symmetric Application of Substitutions

Firstly, despite having standardized variables apart initially, the substitution
process may pollute the pattern with variables from the target and vice
versa. Consider, for instance,

unify X = a and Y = Y given {}.

The first disagreement pair produces the substitution {Y/X} and calls

unify Y = a and Y = Y given {Y/X}.

Variable Y is now in both expressions. The second disagreement pair pro-
duces the substitution, {a/Y }. If this is only applied to the target, as in
line 3′ above then

unify Y = a and a = a given {a/X, a/Y }.

will be called and a redundant round of matching will be needed to complete
the job.

Hence newly discovered substitution pairs must be applied to both ex-
pressions and lines 3 and 3′ must be amended to:

3. If t1 is a variable then call
unify exp1{t2/t1} and exp2{t2/t1} given φ{t2/t1}

3a. If t2 is a variable then call
unify exp1{t1/t2} and exp2{t1/t2} given φ{t1/t2}

We have also replaced ‘pattern’ and ‘target’ with the more symmetric ‘exp1’
and ‘exp2’.

17.3.2 Occurs Check

The second wrinkle is more subtle. Now that the same variable can occur
in both expressions there is a danger of creating a looping substitution, in
which a variable is bound to a term it occurs in, e.g. {Y + 1/Y }. This will
happen, for instance, if the current procedure is applied to

X = X and Y = Y + 1 given {}.

Clearly these expressions have no common instantiation, but as defined
above unify will not fail on them. It will loop forever, i.e.

unify Y = Y and Y = Y + 1 given {Y/X}
unify Y +1 = Y +1 and Y +1 = (Y +1)+1 given {Y +1/X, Y +

1/Y }
unify (Y +1)+1 = (Y +1)+1 and (Y +1)+1 = ((Y +1)+1)+1

given {(Y + 1) + 1/X, (Y + 1) + 1/Y }
..............................

17. Pattern Matching 245

In such cases we would like unify to terminate with failure. It can be
amended to do so by inserting an occurs check in lines 3 and 3′, i.e.

3. If t1 is a variable and t1 does not occur in t2 then call
unify on exp1{t2/t1} and exp2{t2/t1} given φ{t2/t1}

The complete unification procedure is now:

To unify exp1 and exp2 given φ

1. If exp1 and exp2 are identical then succeed and output φ.
2. Otherwise, let 〈t1, t2〉 be the first disagreement pair.
3. If t1 is a variable and t1 does not occur in t2 then call

unify on exp1{t2/t1} and exp2{t2/t1} given φ{t2/t1}.
3′. If t2 is a variable and t2 does not occur in t1 then call

unify on exp1{t1/t2} and exp2{t1/t2} given φ{t1/t2}.
4. Else fail.

Exercise 59 Apply unify to the following pairs of expressions. Determine
whether the procedure fails or succeeds in each case. In the case of success
determine the resulting substitution.

exp1 exp2

a) X = b a = Y
b) X = b Y = a
c) p(X, a) p(f(Y), Y)
d) p(X, g(X)) p(f(Y), Y)
e) (a+X) + b a+ Y

17.3.3 General Unification

The unify procedure unifies two propositions. Full resolution and the factor-
ing rule both require the simultaneous unification of a set of propositions.
Fortunately, pairwise unification can be easily extended to unification of a
set of expressions. The following modifications are required.

• exp1 and exp2 must be replaced with a set of expressions, expset.

• As substitutions are applied to this set it will be reduced in size. If it
ever becomes a singleton the process terminates with success.

• The disagreement pair, 〈t1, t2〉, must be replaced by a disagreement
set, disagset, of corresponding subexpressions from each member of
expset.

• The procedure can continue, with a new substitution pair, at step 3 if
one of the elements of disagset is a variable and another is a term not
containing that variable.

246 Computer Modelling of Mathematical Reasoning

Thus the general unification procedure is:

To gen-unify expset given φ

1. If expset is a singleton then succeed and output φ.
2. Otherwise, let disagset be the first disagreement set of expset.
3. If disagset contains a variable V and a term t1 and V does

not occur in t1 then call gen-unify on expset{t1/V } given
φ{t1/V }

4. Else fail.

17.3.4 Theoretical Properties of gen-unify

The resolution rule puts the following demands on the unification procedure.

• Unification must succeed in unifying expset precisely when there is a
substitution φ such that expsetφ is a singleton, i.e. precisely when
expset is unifiable.

• Unification should return the most general unifier, φ, of expset. That
is, there must be no θ such that expsetθ is a singleton and expsetφ is
an instantiation of expsetθ, unless expsetθ is also an instantiation of
expsetφ, i.e. unless φ and θ are alphabetic variants.

We are happy to report, without proof, that gen-unify has both these
desirable properties. A proof can be found in [Chang 73] pp. 79-80.

Another nice property of unification, is that up to alphabetic variance,
a unifiable set of expressions has only one most general unifier. So we can
talk about the most general unifier.

17.4 Building-In Axioms

You may have been surprised at which of the pairs of expressions in exercise
59 did not unify. Did you think that 〈X = b, Y = a〉 and 〈(a+X)+b, a+Y 〉
would unify? Why was it that the unify procedure did not suggest the
substitutions {b/Y, a/X} and {X + b/Y }, respectively?

The answer is that in each of these cases special properties of the symbols
involved must be exploited if they are to match, namely the symmetry of
= and the associativity of +. After all you would not expect the neutral
versions of these examples, 〈p(X, b), p(Y, a)〉 and 〈f(f(a,X), b), f(a, Y)〉, to
match! Unify has no access to special properties of predicates and functions.
This section is about how it can be given such access.

But why would we want to modify the unify procedure? True, clauses
like

(a+X) + b > c→ and → a+ Y > c

17. Pattern Matching 247

cannot be resolved directly, but the first can be transformed by an applica-
tion of the associativity axiom and its descendant resolved with the second
(see figure 17.2).

Figure 17.2: Indirect Resolution of Non-Unifiable Propositions

However, just as with the indirect proofs using the equality axioms that
we encountered in section 5.3, this sort of longwindedness detracts from the
naturalness of the proofs as well as making them longer. We will see how to
cure this by giving the unification procedure access to special properties of
symbols, like associativity of +.

17.4.1 Associative Unification

As an example we will consider how to build the associativity of + into the
binary unification procedure, unify.

What do we mean by building-in? How will we know when we have
succeeded? We can adopt the same criterion here as we did with paramod-
ulation, that is: we want to modify the unification procedure in such a way
that the associativity axiom for + can be deleted and yet precisely those
formulae which were provable before will be provable still. We will call the
modified procedure, assoc-unify.

How can we start? It would be nice if the procedure for finding disagree-
ment pairs ignored disagreements like 〈(a + X) + b, a + Y 〉 and went on to
find 〈X + b, Y 〉 instead. This effect can be achieved by keeping all expres-
sions in an associative normal form, e.g. right bracketed. We will denote
the right bracketed normal form of an expression, exp1, by rbnf(exp1). So
(a + X) + b should be normalized to a + (X + b). If this is done then the
regular disagreement finding procedure can be retained.

Substitutions tend to de-normalize expressions, e.g. although a+(X+b)
is in normal form, applying the substitution {c + d/X} to it transforms it
to a+((c+d)+ b), which is not in normal form. So expressions must always
be re-normalized after instantiation.

For comparing variable free expressions it suffices to put them in nor-
mal form and unify them, but for expressions containing variables further
wrinkles are required. This is because of the possibility of expressions with
variables being de-normalized. For instance, X + Z and a + (Y + b) are

248 Computer Modelling of Mathematical Reasoning

both in normal form. The regular unification procedure would output
{a/X, Y + b/Z}, but this is not sufficient. We will show that the substi-
tutions {a + Y/X, b/Z} and {a + U/X,U + V/Y, V + b/Z} must also be
output, if the associativity axiom is to be made totally redundant.

Consider these terms in the context

→ q(X + Z,Z) and

q(a+ (Y + b), b)→

These clauses are not regularly unifiable, but the empty clause can be de-
duced from them with the aid of associativity, resolution and paramodula-
tion (see figure 17.3). If associativity is to be deleted and yet the empty

Figure 17.3: The Need for Non-Standard Unifiers

clause still be deducible from the rump, we will want assoc unify to unify
X + Z and a+ (Y + b) with unifier {a+ Y/X, b/Z}.

Now consider the same terms in a different context.

→ r(X + Z,X,Z) and
r(a+ (Y + b), a+ U, V + b)→

Again the clauses are not regularly unifiable, but the empty clause is de-
ducible from them with the aid of associativity, paramodulation and resolu-
tion.

Exercise 60 Check this.

So we will also want assoc unify to unify X+Z and a+(Y +b) with unifier
{a+ U/X,U + V/Y, V + b/Z}.

We can already see that assoc unify should not produce a single most
general unifier, but several unifiers, none of which is a special case of the
others. In fact we will see that an infinite number of most general unifiers
is required in general.

The unification procedure can be modified to produce multiple unifiers
by allowing it a choice when resolving disagreements. If 〈V ar, term〉 is a
disagreement pair we must allow either the substitution {term/V ar} or the
substitution {term+U/V ar} to resolve the disagreement, where U is a new
variable. By a judicious choice of substitution during unification of X + Z

17. Pattern Matching 249

and a+ (Y + b) the modified procedure can be made to produce each of the
three desired unifiers.

Consider, for instance, how the third unifier might be produced from a
call of

assoc unify X + Z and a+ (Y + b) given {}

If left first/ depth first search is used to find a disagreement pair it will
return 〈X, a〉. X is a variable and a is not so we have two ways of resolving
the disagreement: to form substitution {a/X} or {a+ U/X}. If we choose
the latter possibility we generate the call

assoc unify a+ (U + Z) and a+ (Y + b) given {a+ U/X}

(a + U) + Z having been normalized. The disagreement pair of these ex-
pressions is 〈U, Y 〉. Since both of these are variables there are three ways
of resolving the disagreement: to form substitution {Y/U}, {Y +W/U} or
{U + V/Y }. The fourth possibility, {U/Y } is redundant. Again we will
choose the last possibility and generate the call

assoc unify a+ (U + Z) and a+ (U + (V + b))
given {a+ U/X,U + V/Y }

after normalizing a+ ((U + V) + b). The disagreement pair of these expres-
sions is 〈Z, V +b〉. Z is a variable and V +b is not so we have two ways of re-
solving the disagreement: to form substitution {V +b/Z} or {(V +b)+Z ′/Z}.
This time we will choose the first possibility and generate the call

assoc unify a+ (U + (V + b)) and a+ (U + (V + b))
given {a+ U/X,U + V/Y, V + b/Z}

which will succeed, since the two expressions are identical, and output the
unifier

{a+ U/X,U + V/Y, V + b/Z}

as desired.

Exercise 61 Show that by making different choices during this process the
other two substitutions can also be generated.

So the associative unification procedure can be summarized as:

To assoc unify exp1 and exp2 given φ

1. If exp1 and exp2 are identical then succeed and output φ.
2. Otherwise, let t1 and t2 be the disagreement pair.
3′′. If t1 and t2 are both variables then let θ be either {t2/t1} or
{t2+V/t1} or {t1+V/t2} and call assoc unify on rbnf(exp1θ)
and rbnf(exp2θ) given φθ.

250 Computer Modelling of Mathematical Reasoning

3. If t1 is a variable and t2 is not and if t1 does not occur
in t2 then let θ be either {t2/t1} or {t2 + V/t1} and call
assoc unify on rbnf(exp1θ) and rbnf(exp2θ) given φθ.

3′. If t2 is a variable and t1 is not and if t2 does not occur
in t1 then let θ be either {t1/t2} or {t1 + V/t2} and call
assoc unify on rbnf(exp1θ) and rbnf(exp2θ) given φθ.

4. Else fail.

where V is a newly created variable.

17.4.2 Theoretical Properties of assoc-unify

This procedure does the job it was intended to: that is, a set of clauses,
S, containing the associativity axiom, is unsatisfiable iff the empty clause
can be derived from S minus the associativity axiom by resolution using
assoc unify. A proof of this result can be found in [Plotkin 72].

We have already seen that assoc unify is capable of outputting more
than one most general unifier. In consequence, propositions are assoc unifiable
in more than way and this adds to the number of ways in which two clauses
can be resolved.

There are occasions on which two propositions may have an infinite
number of unifiers and thus two clauses may have an infinite number of
resolvants. This will cause breadth first search to be an incomplete search
strategy, since there will be an infinite number of nodes all at the same depth
in the search tree. In such circumstances it is best to regard unification as
a part of the search process. For instance, we may incorporate unification
into a depth first search by exercising one of the choices at steps 3, 3′ or 3′′,
and then being prepared to back up later and remake it.

Here are two expressions with an infinite number of unifiers: g(X,X+a)
and g(Y, a + Y). If we denote a + (a + + a)...)) (ntimes) by n · a then
the substitutions {n · a/X, n · a/Y } for n = 1, 2, 3, ... are all most general
unifiers.

We can see this should be so by noting that the empty clause can be
derived from

→ p(g(X,X + a), X) and
p(g(Y, a+ Y), n · a)→

using associativity, paramodulation and resolution.

Exercise 62 Check this in the case n = 2

The following sequence shows how the assoc unify procedure generates
a variant of the n+ 1st of these unifiers.

17. Pattern Matching 251

assoc unify g(X,X + a) and g(Y, a+ Y) given {}
assoc unify g(Y, Y + a) and g(Y, a+ Y) given {Y/X}
assoc unify g(a+ Z1, a+ Z1 + a) and g(a+ Z1, a+ a+ Z1)

given {a+ Z1/X, a+ Z1/Y } 1

.............

assoc unify g(n · a+ Zn, n · a+ Zn+ a) and
g(n · a+ Zn, (n+ 1) · a+ Zn)
given {n · a+ Zn/X, n · a+ Zn/Y }

assoc unify g((n+ 1) ·a, (n+ 2) ·a) and g((n+ 1) ·a, (n+ 2) ·a)
given {(n+ 1) · a/X, (n+ 1) · a/Y }

assoc unify is not a decision procedure for associative unification, be-
cause it may not terminate. We have seen that it may continue for ever turn-
ing out most general unifiers of associatively unifiable expressions. There
are also expressions which are not associatively unifiable, but where the
assoc unify procedure never stops, e.g. g(X,X + a) and g(Y, b+ Y).

However, the question of whether two expressions are associatively unifi-
able is decidable, that is there is a procedure, assoc-unifiable, which given
two expressions does terminate and outputs ‘yes’ or ‘no’ according to whether
or not they are associatively unifiable. This procedure could be coupled to
assoc unify, so that assoc unify was only called in the case that assoc-
unifiable returned ‘yes’. But even this combined procedure would not ter-
minate when there were an infinite collection of most general unifiers to be
found.

This distinction between knowing when two expressions are unifiable and
knowing what their unifiers actually are is an important one. We will meet
it again in lambda calculus unification.

Unification procedures are known which build-in the axioms of commu-
tativity, idempotency, distributivity, homomorphism, and several combina-
tions of these axioms. A survey of the theoretical results known about these
procedures can be found in [Raulefs 78].

17.5 Lambda Calculus Unification

At the beginning of chapter 5 we said that the resolution and paramodula-
tion rules of inference were only applicable to First Order Theories. The only
obstacle to dealing with higher order theories is in designing a unification
procedure which can treat variable functions, functionals etc correctly.

1Since all expressions are in normal form the brackets are redundant and have been
omitted

252 Computer Modelling of Mathematical Reasoning

17.5.1 F-Matching

The regular unification procedure, unify, can be easily adapted to higher
order expressions, e.g. so that it will unify F (0) and sin(X) producing
most general unifier {sin/F, 0/X}. We will need to adjust the procedure for
finding disagreement pairs so that if the root node of one subexpression is
a variable then only the two root nodes are returned (see figure 17.4). This

Figure 17.4: Modified Disagreement Pair Finding

adapted procedure is sometimes called F-Matching.

17.5.2 Building-in the Laws of Lambda Calculus

F-Matching is not generally considered adequate for higher order theorem
proving because it cannot match expressions like

F (Y)
and sin(X) · eX (ii)

where the function that F is to be matched to is not explicitly named, but
must be formed by lambda abstraction. There are two different substitu-
tions, which applied to F (Y) and sin(X)·eX , will produce equal expressions.
These are

{λZ sin(Z) · eZ/F,X/Y }
and

{λZ Z/F, sin(X) · eX/Y }

The first substitution is an example of imitation, so called because F is
instantiated in order to behave like (or imitate) a lambda abstracted ver-
sion of (ii). The second substitution is an example of projection, so called
because F is defined as an identity (or projection) function whose value is
its parameter, i.e. F (Z) = Z. The matching problem is shifted to this
parameter.

To see that these substitutions do the job consider the result of applying
them to F (Y). The first produces

(λZ sin(Z) · eZ)(X) (iii)

17. Pattern Matching 253

and the second

(λZ Z)(sin(X) · eX) (iv)

both of which rewrite to

sin(X) · eX (v)

17.5.3 The Laws of Lambda Calculus

In asserting that (iii) and (iv) rewrite to (v) we have appealed to the intuitive
meaning of lambda abstraction. These rewritings cannot be proved correct
by the laws of logic introduced so far: we first need to introduce a new rule of
inference, called the Beta Rule, which allows us to substitute the parameter
of a lambda abstraction for its bound variable and drop the lambda. We
embed the lambda abstraction in some arbitrary expression, a.

Beta Rule:

a[(λX e(X))(t)]

a[e(t)]

provided no confusion of bound variables is created
by the replacement of X by t in e(X).

Similarly, in order to see that

λX sin(X) · eX and λY sin(Y) · eY

are essentially equal we will need the Alpha Rule of inference.

Alpha Rule:

a[λX e(X)]

a[λY e(Y)]

provided that: Y is not already a free variable of e(X);
and X and Y have the same type;
and no confusion of bound variables occurs.

Lastly, in order to see that

(λX sin)(X) and sin

are essentially equal, we must introduce the Eta Rule

(λX e)(X) = e
provided e does not contain X, since such an X would
get caught up in the scope of the λ.

254 Computer Modelling of Mathematical Reasoning

17.5.4 The Lambda Unifiability Procedure

We will now give a unifiability procedure, lambda unifiable, for Typed Lambda
Calculus, due to Gerard Huet [Huet 74], which builds in the Alpha, Beta
and Eta Rules. Since these laws of Lambda Calculus are built into the unifi-
cation procedure it can be used, with resolution, to form a complete theorem
proving system for Typed Lambda Calculus, whereas if F-Matching alone
were used then the laws of Lambda Calculus would need to be used to
supplement resolution.

Just as in assoc unify, the expressions to be unified must be kept in
a normal form. The normal form required is that all applications must be
eliminated, i.e. no expression must contain a subexpression of the form
(λX e)(t). Such subexpressions can always be eliminated with the Beta
Rule, with the Alpha Rule being used, where necessary, to make the Beta
Rule legal. lambda unifiable preserves this normal form, so it is only nec-
essary to normalize expressions once, before unification. An expression in
normal form can always be written in the form

λX1...λXnf(e1, ..., ep) (vi)

where f is a variable or constant, called the head.

lambda unifiable will work on a set of pairs of expressions: trying to
show each pair unifiable. We will call this set, expr pairs. With previous
unification procedures a pair of expressions were unifiable when one of them
was a variable. In lambda unifiable we will need a slightly different notion.
A pair of expressions are unifiable when one of the them is flexible, i.e. when
its head is a variable which is different from all the Xi, i ∈ {1, .., n}. An
expression which is not flexible, i.e. whose head is either constant or one of
the Xi, is called rigid.

Rigid/flexible pairs will either fail or be unified with either imitation
or projection. Rigid/rigid pairs will either fail or their parameters will be
paired off and added to expr pairs. Flexible/flexible pairs can always be
matched and in lots of ways. To avoid a potentially infinite explosion at this
point we will merely record that the match succeeds without saying exactly
which substitution will unify the expressions. Thus lambda-unifiable tests
for unifiability rather than producing substitutions.

To test whether the pairs in expr pairs are lambda unifiable

1. Check that the expressions in each rigid/rigid pair in expr pairs have
the same head (modulo changes of bound variable), i.e. For each
rigid/rigid pair, 〈e, e′〉, where

e = λX1...λXn f(e1, ..., ep)
e′ = λX ′1...λX

′
n′ f ′(e′1, ..., e

′
p′)

17. Pattern Matching 255

If n 6= n′ then fail
If f 6= λX ′1...λX

′
n′ f ′(X1, ..., Xn) then fail

Otherwise p = p′. Replace 〈e, e′〉 in expr pairs with

〈ei, e′i〉 for all i ∈ {1, ..., p}
where ei = λX1...λXn ei

e′i = λX ′1...λX
′
n e
′
i

2. If all pairs in expr pairs are flexible/flexible then succeed.

3. Reverse all flexible/rigid pairs into rigid/flexible pairs.

4. Find substitutions for all rigid/flexible pairs, 〈e, e′〉, before continuing.

Let
e = λX1...λXn f(e1, ..., ep) and
e′ = λX ′1...λX

′
n F

′(e′1, ..., e
′
p′

where F ′ is a variable not equal to any X ′i.

There are two ways to do this: by imitation or projection.

4a. Imitation:
Let φ be the substitution:

{λY1...λYp′ f(g1, ..., gp)/F
′}

where gi = Gi(Y1, ..., Yp′)
and each Gi is a new variable.

4b. Projection:
Let φ be the substitution:

{λY1...λYp′Yi(g1, ..., gm)/F ′}
where gi = Gi(Y1, ..., Yp′)
and each Gi is a new variable

provided the type of Yi is appropriate.

In each case apply φ to each expression in expr pairs and go back to
step 1.

To decide whether a pair of expressions, expr and expr′, are unifiable,
lambda unifiable is applied to the singleton, {〈expr, expr′〉}.

17.5.5 Theoretical Properties of lambda-unifiable

As noted above, lambda unifiable builds in the laws of the Lambda Cal-
culus: the Alpha, Beta and Eta Rules. A pair of expressions are unifiable,
modulo these laws, iff lambda unifiable would succeed on them.

256 Computer Modelling of Mathematical Reasoning

Note that lambda unifiable searches a tree of ways of unifying expres-
sions. The choice point comes in step 4, when either imitation or projection
can be used. This reflects the fact that a pair of expressions may be lambda
unifiable in several different ways, yielding a different substitution each time.
Some pairs of expressions have an infinite number of lambda unifiers. This
infinite collection of lambda unifiers may be redundant: that is it may con-
tain some unifiers which are not most general. It is known that there is no
way to design a lambda unification procedure which produces non-redundant
sets of unifiers. In contrast lambda unifiable is non-redundant, and this is
only possible because it eshews the search for sets of unifiers and just tests
for unifiability.

lambda unifiable is a semi-decision procedure: that is if a pair of ex-
pressions is unifiable then lambda unifiable will terminate, but if they are
not unifiable then lambda unifiable may continue for ever. It is not possible
to do better than this: the problem is basically a semi-decidable one. This
is similar to the situation for Resolution theorem provers.

17.6 Summary

Pattern matching is a vital part of most computational reasoning processes,
including Resolution theorem proving. There are a wide variety of pat-
tern matching procedures: one way matchers, two way matchers (unifiers)
and matchers which build in various axioms. These latter include matchers
which build in associativity and matchers which build in the laws of the
Typed Lambda Calculus. Better behaved matchers can sometimes be ob-
tained by only testing for unifiability rather than outputting the unifying
substitutions.

Further Reading Suggestions

[Raulefs 78] is a survey of unification procedures with an extensive bibliog-
raphy.

Chapter 18

Applications of Artificial
Mathematicians

In this book we have discussed how to build computational models of various
aspects of mathematical reasoning. We now consider whether these models
have any practical significance: whether we can find applications for our
artificial mathematicians.

The applications we will consider fall under three headings.

• Technological: the provision of aids for people who make professional
use of mathematical reasoning, e.g. mathematicians themselves, sci-
entists and engineers. We consider these applications in sections 18.1
and 18.2.

• Educational: the provision of models to help in teaching Mathematics.
This includes expert models as part of a tuition system and faulty
models to help the teacher diagnose student errors. We consider these
applications in sections 18.3 and 18.4.

• Scientific: the provision of tools for the scientist interested in modelling
or studying reasoning. This includes workers in Artificial Intelligence
who are modelling inference in some other area of cognitive activity
and psychologists interested in explaining human problem solving be-
haviour. We consider these applications in sections 18.4 and 18.5.

The rest of this chapter gives examples of each of these kinds of appli-
cations, starting with the technological ones.

18.1 Algebraic Manipulation Systems

The classic application of Mathematics is to Physics and Engineering. Phys-
ical systems are modelled with algebraic expressions: equations and inequal-
ities; differential and non-differential; numeric and matrix. Some of the al-

257

258 Computer Modelling of Mathematical Reasoning

gebraic expressions which need to be solved are very large. They may need
several pages of paper just to write down. Manipulating such expressions
by hand, not only takes a long time, but usually introduces errors into the
computation making the result worthless.

Computers have come to the rescue by offerring a range of Algebraic
Manipulation Programs. The best known of these programs are MACSYMA
and REDUCE. Below we outline the MACSYMA program.

MACSYMA grew out of the work on theorem proving. Its predeces-
sors were two programs to do symbolic integration called SAINT [Slagle 63]
and SIN [Moses 67]. SAINT used the techniques of heuristic search. The
root of the search tree was the integral to be solved. Arcs were built from
this for each applicable integration method, leading to nodes for the sub-
problems each of these methods introduced. SIN was developed to overcome
the inefficiences of SAINT. It had more of the flavour of the Boyer/Moore
program or of PRESS, in that it first conducted an analysis of the integra-
tion problem before bringing to bear an appropriate method. Finally the
MACSYMA program grew from the addition to SIN of a variety of other
algebraic manipulation abilities.

The current abilities of MACSYMA include:

• the symbolic integration and differentiation of expressions;

• the reduction of expressions to various normal forms;

• the solving of equations;

• the manipulation of matrices and

• the summing of infinite series.

A typical session with MACSYMA is displayed in figure 18.1. Lines

C1 (X ∗ ∗2− Y ∗ ∗2) ∗ (Z ∗ ∗2 + 2 ∗ Z)/((X + Y) ∗W)@

D1 (X2 − Y 2)(Z2 + 2Z)

W (Y +X)

C2 RATSIMP (D1)@

D2 (X − Y)Z2 + (2X − 2Y)Z

W

C3

Figure 18.1: A Typical MACSYMA Session

18. Applications of Artificial Mathematicians 259

beginning with a C were typed by the user and those beginning with a D by
MACSYMA. The double asterisk indicates exponentiation and the @ sign
is a sort of ‘Roger and out’. When an algebraic expression is typed in (e.g.
line C1), it is simplified slightly, echoed in pretty printed format and given
a label (e.g. D1). This label can then be used to refer to the expression, as
it is in line C2. Here a request is made to put the expression in a canonical
form called, Rational Function Form, and abbreviated as RATSIMP . This
canonical form is then labelled D2 and may be further manipulated.

The mathematical reasoning techniques embedded in MACSYMA in-
clude the use of sets of rewrite rules to define user specific normal forms
and the use of pattern matching procedures. Although search techniques
played a large role in MACSYMA’s predecessors, they have now been ex-
punged from MACSYMA itself. Its current integration method is based on
a decision procedure due to Risch and Norman.

18.2 Automatic Theorem Proving

Despite the criticisms levelled at uniform proof procedures in chapter 7 they
can still be used to prove interesting theorems in certain areas of Mathe-
matics. This has been demonstrated in recent years by the work of Ross
Overbeek and Ewing Lusk at Northern Illinois University [Lusk]. They
have developed a very efficiently coded, Resolution theorem proving pro-
gram and had mathematician colleagues use it to prove open conjectures in
various branches of Mathematics.

A clue as to how this was possible can be gleaned by considering the
areas from which the open conjectures were drawn. The Overbeek/Lusk
theorem prover has established new theorems in: Ternary Boolean Algebra;
Semigroups; Robbins Algebra; Equivantial Calculus; Finite Basis Problems;
Knot Theory and Circuit Design. Note that you have never heard of some
of these areas. They are mostly pretty new areas of Mathematics. Humans
have not yet had centuries of involvement with them in which to develop
methods, heuristics, intuitions, proof plans, etc. In such a case humans
are reduced to the sort of exhaustive search, and faced with the sort of
combinatorial explosions we discussed in chapter 7. Now the computer can
compete on its own terms. When it comes to exhaustive search, computers
have the bookkeeping skills, memory capacity and patience required, to
dwarf human ability.

The Overbeek/Lusk theorem prover is one example of several com-
puter programs designed as an aid for humans. The latest version of the
Boyer/Moore theorem prover is another example. Most of the other systems
are man/machine systems, i.e. they need and encourage the interaction of
the human user in solving the problem, especially in making choices. The
Overbeek/Lusk program is rare in that it provides minimal opportunity for

260 Computer Modelling of Mathematical Reasoning

human interaction and thus, apart from the initial setting of a few program
parameters, its solutions are found unaided. It is also rare in that it solves
open problems. Most of its rival programs have only been used, in an ex-
perimental mode, to reproduce solutions already known to the user, at least
in outline.

The success of this program suggests that we might look forward to a
range of powerful mathematician’s aids; both man/machine and stand alone.

18.3 Computer Assisted Instruction

Another application of theorem-provers is to give automatic expert assis-
tance to students who are learning to prove theorems. A good example
of such an application is a program by Adele Goldberg [Goldberg 73] for
teaching Group Theory.

The Goldberg tuition program work as follows.

1. The student is presented with a theorem of group theory and asked to
prove it.

2. The student then types steps of the proof into the computer. A the-
orem proving component of the Goldberg program attempts to prove
each step from the previous ones. If it cannot do this it complains to
the student.

3. If the student asks for help the theorem prover is used to give hints.

4. If the student completes the proof the theorem prover is used to suggest
alternative proofs.

There are several advantages to using a theorem prover to check the
student’s proof, at step 2, rather than, say, just comparing the student’s
proof with some prestored list of steps.

• The student is not restricted to a few ‘approved’ proofs, but may
produce any correct one.

• The student need not give the proof in detail, but may omit trivial
steps: the theorem prover will fill in the missing steps, provided the
jumps are not too big.

The theorem prover is used to advantage at step 2, but it is indispensable
at step 3. To give a hint relevant to the current state of the student’s proof
it is necessary to be able to perform inferences dynamically. The theorem
prover finds all ways of extending the student’s existing steps into a proof
of the theorem. If this can be done in one step then hints are given on this
step, otherwise a proof is chosen which makes maximum use of the student’s
partial proof and hints are given on the first step of this.

18. Applications of Artificial Mathematicians 261

The Goldberg tuition program is an example of what is called Intelligent
Computer Aided Instruction. It is based on the tenet that, a teacher must
understand something if (s)he is to teach it successfully, even if the teacher
is a computer program. This may seem obvious, but it is a tenet which
is violated by the more conventional ‘drill and practice’ Computer Aided
Instruction programs.

18.4 Understanding Student’s Subtraction Errors

All the examples of applications considered so far have involved the mod-
elling of expert performance. But we can also build models of novice perfor-
mance and include in them the making of errors. If these errors explain how
student errors can arise then they can also find educational application:
by training teachers to diagnose a student’s misconceptions. The classic
example of such work is the BUGGY program [Brown 78]. BUGGY is a
tuition program for trainee teachers. It includes within it a program for
doing subtraction. (And addition, but we will confine our attention to sub-
traction.) There is nothing very hard about writing a subtraction program:
such programs have been standard since the earliest computers. But this is
a subtraction program with a difference. The techniques of mathematical
reasoning have been used to build a modular program. Bits of this program
can be unplugged and other bits inserted to produce ‘buggy’ programs, i.e.
programs which do some subtractions wrong. The Computer Science term
for a fault in a program is a bug . Furthermore, there is large measure of
agreement between those errors, which can be produced by simple modi-
fications to the subtraction program, and those typically produced by real
primary school children. BUGGY is based on the theory that a large number
of student’s subtraction errors, are not due to carelessness, but to carefully
following a subtraction procedure containing bugs.

18.4.1 What BUGGY Does

The BUGGY program works as follows.

1. The teacher is given an example of an incorrect subtraction sum and
invited to guess the underlying bug in the procedure which produced
the sum.

2. (S)he can then either claim to have found the bug or experiment by
proposing sums to BUGGY, which will run its buggy subtraction pro-
cedure on them.

3. When the teacher claims to know the bug (s)he is first invited to de-
scribe it in English and then to prove his/her knowledge by predicting
the BUGGY solution to five sums posed by the program.

262 Computer Modelling of Mathematical Reasoning

4. If the teacher gets these sums ‘right’ then (s)he passes on to another
buggy procedure or terminates the session. If (s)he gets any wrong
then (s)he goes back to step 2.

A sample session is given in figure 18.2. The bits typed by the teacher

Here is an example of the bug.
4 8

− 1 9
3 9

Now you give me problems to determine.
2 7 1 3
− 1 8 − 7

1 9 1 6
got the bug!
Please describe the bug.
student adds ten to answer.
Here are some problems to test your hypothesis.

2 5
− 1 2
2 3

That is not the bug I have etc

Figure 18.2: A Typical BUGGY Session

are marked by a # sign at the start of the line. BUGGY is unable to
analyse the English description of the teacher’s hypothesis, and judges its
correctness solely on the basis of the 5 test problems. Note that the teacher’s
first guess is wrong. This is usually the case and demonstrates the value of
the experience of hypothesis making and testing, before the teacher is let
loose on real students.

18.4.2 A Model for Subtraction

How can the techniques of mathematical reasoning be used to build a model
of a student’s subtraction procedure?

The model we will build is based, not on the BUGGY model, which is
rather messy, but on the conceptually cleaner model of [OShea 78]. We will
define a two parameter predicate, subtract. Both parameters of subtract
are terms representing subtraction sums. The first parameter will be a sum
with an empty answer slot, and the second parameter will be the same sum,
but with the answer filled in, e.g.

18. Applications of Artificial Mathematicians 263

subtract asserts that its second parameter is the ‘answer’ to the sum posed
by its first. The scare quotes indicate that the ‘answer’ may be incorrect.

subtract is defined by the clauses given in figure 18.3. The meanings of

1) finished(Sum)→ subtract(Sum,Sum)

2) ¬finished(Sum1) ∧
process column(Sum1, Sum2) ∧
shift left(Sum2, Sum3) ∧
subtract(Sum3, Sum4)
→ subtract(Sum1, Sum4)

3) subtrahend(Sum1) = minuend(Sum1) ∧
result(0, Sum1, Sum2)
→ process column(Sum1, Sum2)

4) subtrahend(Sum1) > minuend(Sum1) ∧
add ten to minuend(Sum1, Sum2) ∧
decrement(Sum2, Sum3) ∧
take difference(Sum3, Sum4)
→ process column(Sum1, Sum4)

5) subtrahend(Sum1) < minuend(Sum1) ∧
take difference(Sum1, Sum2)
→ process column(Sum1, Sum2)

Figure 18.3: Clauses Defining subtract and process-column

the other predicates and functions in figure 18.3 are as follows:

• In a sum term, the column which must be worked on next, is marked.
shift left(Sum1, Sum2) asserts that Sum1 and Sum2 are identical,
except that the mark is one column further left in Sum2.

• finished(Sum) asserts that the mark in Sum is beyond the leftmost
column of numbers, i.e. the sum is complete.

• process column(Sum1, Sum2) asserts that Sum1 and Sum2 are iden-
tical, except that the marked answer slot of Sum1 is blank and that
of Sum2 is ‘correctly’ filled in.

• subtrahend(Sum) is the bottom digit in the marked column of Sum.

264 Computer Modelling of Mathematical Reasoning

• minuend(Sum) is the top digit in the marked column of Sum.

• result(Num,Sum1, Sum2) asserts that Sum1 and Sum2 are identical
except that the marked answer slot of Sum1 is blank and that of Sum2
contains Num.

• add ten to minuend(Sum1, Sum2) asserts that Sum1 and Sum2 are
identical except that the marked minuend of Sum2 is 10 bigger than
the marked minuend of Sum1.

• decrement(Sum1, Sum2) asserts that Sum1 and Sum2 are identical
except that the minuend to the left of the marked one is 1 less in
Sum2.

• take difference(Sum1, Sum2) asserts that Sum1 and Sum2 are iden-
tical except that the marked answer of Sum1 is blank and that of
Sum2 contains the positive difference between the minuend and the
subtrahend.

Only subtract and process column are defined in figure 18.3. Further clauses
are needed to define the remaining predicates and functions.

Subtraction sums can be calculated by creating new goal clauses, e.g.

and resolving these with the above clauses. When the empty clause has
been derived, Answer will be found to have had a term substituted for it
representing the finished sum. A sample proof is outlined in figure 18.4. For
the sake of conciseness, the sum terms in it have been written in a simpler
format.

Consider what will happen if the ‘decrement’ literal of clause 4) is deleted
and replaced by the literal Sum2 ≡ Sum3, i.e. Sum2 and Sum3 are iden-
tical. Suppose the modified subtract were used to calculate the sum:

4 8
− 1 9

2 3

Since the minuend 4 would not be decremented during the resolving of the
body of clause 4) the answer generated would be 39. This is a typical
error produced by students. Another typical error is given in the following
exercise.

Exercise 63 How could the clauses of figure 18.3 be modified to produce the
following behaviour?

18. Applications of Artificial Mathematicians 265

Figure 18.4: An Outline of a subtract Proof

3 7 6 5 2 7
− 1 9 − 2 3 − 6 4

2 2 4 2 4 3

You may delete or replace any clause or proposition.

18.4.3 Psychological Validity

The BUGGY program is successful because the subtraction procedure it
is based on appears to do subtraction problems in much the same way as
human students do. When a computer program does something in the same
way as a human, we say it is psychologically valid.

But we do not know what goes on in a person’s head when he solves a
problem, so how can we tell when a program is psychologically valid?

We can never be sure, but we can accumulate evidence. The sort of evi-
dence which counts, is well illustrated by the subtraction program outlined
in figure 18.3.

• The program should do the task in the same way as the human it is
modelling. Since different humans will do the task in different ways
we will usually have to content ourselves with a different program for
each human.

• However, a program will earn more credit if it can be easily modified
to account for the behaviour of different humans; or the same human

266 Computer Modelling of Mathematical Reasoning

on different days. Our subtraction program can be easily modified, by
the deletion or replacement of a few literals and clauses, to account for
correct subtraction behaviour and a wide range of commonly occurring
erroneous behaviour.

• A program gains even more credit if it can be modified in steps to
account for different stages in the development of the human’s ability.
Our subtraction program also has this property. See [OShea 78] for
details.

Psychologically validity is only established with respect to certain aspects
of behaviour. We are not concerned to model the child staring out the
window or poking his nose. But all scientific models have this character.
Newton’s laws of motion do not account for the colours of the objects in
motion, or why they were thrown in the first place.

18.5 Determining the Meaning of English Text

For our final application of mathematical reasoning techniques we turn to
the area of natural language understanding programs. We will describe a
technique developed by Terry Winograd [Winograd 72] for deciding which
of several meanings to assign to an ambiguous sentence.

Winograd’s program, SHRDLU, was able to hold a conversation about
the world of toy blocks illustrated in figure 18.5. It was able to obey com-

Figure 18.5: The Winograd Blocks World

mands like

‘Put the blue pyramid on the block in the box.’

18. Applications of Artificial Mathematicians 267

Unfortunately, this sentence is ambiguous: is the blue pyramid on the block
or is the block in the box?

SHRDLU discovered the ambiguity by using rules of grammar to break
the sentence into parts. This can be done in two ways.

‘Put (the blue pyramid on the block) in (the box).’
or

‘Put (the blue pyramid) on (the block in the box).’

Each of the bits in parentheses is a noun phrase. SHRDLU worked on
the principle that each definite noun phrase (roughly, one starting ‘the ...’)
should refer to something in the blocks world. Of the four definite noun
phrases above, three were found to have such referents, but one did not. The
offending phrase was ‘the blue pyramid on the block’, so the first reading
above was rejected and the second accepted.

To choose a referent for a phrase SHRDLU used an inference technique
identical, in spirit, to that we have developed in this book. Each noun phrase
was first translated into clauses, the object described by the noun phrase be-
ing represented by a variable. (Compare the ‘Intermediate Representation’
of chapter 14.) This clause was then resolved against similar clauses repre-
senting the blocks world. During the process of producing the empty clause
a term was substituted for the noun phrase variable. This term represents
the referent of the phrase. Thus this technique offers a partial solution to
the noun phrase reference problem described in chapter 14.

In the example above the phrase ‘the blue pyramid on the block’ would
be translated into the clause:

on(Thingy, block1) ∧ colour(Thingy, blue)∧
type(Thingy, pyramid)→ (i)

and the phrase ‘the block in the box’ into the clause:

in(Whatsit, block) ∧ type(Whatsit, block)→ (ii)

The blocks world would be represented by a series of clauses.

→ type(pyr1, pyramid) → type(block1, block) → type(box1, box)
→ colour(pyr1, blue) → in(block1, box1)
...........

The empty clause can be derived from clause ii and those representing the
blocks world. The variable, Whatsit, being assigned the constant, ‘block1’.
However, the empty clause cannot be derived from ii. Thus the first phrase
has no referent.

Computer programs, like SHRDLU, which attempt to ‘understand’ writ-
ten English, make heavy use of inference techniques. So too do programs for

268 Computer Modelling of Mathematical Reasoning

visual perception and speech perception. All cognitive tasks seem to involve
processes of inference. Mathematics is an excellent domain for understand-
ing such processes. The initial knowledge base is small and clear, as opposed
to vision or speech where masses of messy data must first be extracted with
a television camera or microphone. In Mathematics we can concentrate on
the issues of representing knowledge and controlling search.

18.6 Logic Programming

The techniques of automatic inference, pattern matching, relational repre-
sentation, etc are useful for building a wide variety of different kinds of
computer program. A good way of making them more widely available is
to provide them as primitives in a programming language. The resolution
theorem provers, described in chapters 5 and 6, provide a basis for building
programming languages with such primitives.

The idea that resolution theorem provers could be used as programming
languages is called Logic Programming . It is due to Bob Kowalski, Alain
Colmerauer, Pat Hayes and Cordell Green. The practical realization of it is
a programming language called PROLOG, originally build by Colmerauer’s
group at Marseille, and developed at the universities of Edinburgh and Wa-
terloo, Imperial College and several other places [Clocksin 81]. PROLOG is
a Lush Resolution theorem prover, with a depth first search strategy, and
with the addition that some predicates are not satisfied by resolution, but
are specially evaluated by the computer and then deleted. An example is
the ’write’ predicate, which causes its parameter to be printed on the users
terminal and is then deleted from the clause. PROLOG programs are sets of
Horn clauses defining a set of predicates. To run a program, the calculation
to be made is defined as a goal clause, and ’proved’ by Lush Resolution plus
evaluation of the special predicates.

The BUGGY-type subtraction procedure defined in figure 18.3 is an
example of a logic program. With slight syntactic changes this could be
input to a computer running PROLOG, and used to calculate subtraction
sums. Here is another example; for appending two lists.

1. → append(nil, List, List)
2. append(Cdr, List, Ans)→

append(cons(Car,Cdr), List, cons(Car,Ans))

Compare this with the definition of append given in section 11.2. We have
replaced the two parameter function append with a three parameter predi-
cate append. The effect of the explicit cond is obtained by using two clauses
and the pattern of the first parameter.

To append the lists 〈one, thing〉, 〈and, another〉 we first create the goal
clause:

18. Applications of Artificial Mathematicians 269

3. append(〈one, thing〉, 〈and, another〉, Result)→

We then use this goal clause as the top clause of a Lush Resolution proof
with axioms 1 and 2. During the proof the variable ‘Result’ will be bound
to a term, and this term is the result of appending the two lists. The search
tree is given in figure 18.6. There is, in fact, no search, i.e. the calculation
is deterministic. During this proof the output parameter, Result, is bound

Figure 18.6: The Appending of Two Lists

to the term, 〈one, thing, and, another〉 , as required.
A characteristic of logic programs is that a procedure written to calculate

one function, can often be used to calculate its inverse. For instance, the
append procedure above can be used to split a list into a front and back
sublists, by merely reversing the roles of input and output parameters, i.e.
if PROLOG is given the goal

append(Front,Back, 〈one, thing, and, another〉)→

then it will find five distinct proofs with output substitutions,

{nil/Front, 〈one, thing, and, another〉/Back}
{〈one〉/Front, 〈thing, and, another〉/Back}
{〈one, thing〉/Front, 〈and, another〉/Back}
{〈one, thing, and〉/Front, 〈another〉/Back}
{〈one, thing, and, another〉/Front, nil/Back}

The search tree is given in figure 18.7.

Exercise 64 Draw the search tree generated by axioms 1 and 2 applied to
the goal clause

append(〈one, thing〉, Back, 〈one, thing, and, another〉)→.

270 Computer Modelling of Mathematical Reasoning

Figure 18.7: The Splitting of a List into Front and Back

PROLOG is quite widely used as a programming language in Artificial
Intelligence, particularly in modelling problem solving and natural language
understanding. It has also been successful used as a first programming
language for school children, and as a language for building database infor-
mation systems. Its simple syntax and high level primitives make it an easy
language for novices to learn and to use to build powerful programs quickly.
Experienced programmers take a little longer, because they have first to
overcome their prejudices about what a programming language should be
like.

PROLOG is particularly good for building mathematical reasoning pro-
grams. Since Lush Resolution plus depth first search constitutes a very weak
theorem prover, so it is best not to use it as it stands, but to build a more
powerful theorem prover on top of it. This is relatively easy to do, as the
built-in unification and relational representation provide just the primitives
that are required. Some examples can be found in appendix A.

18.7 Summary

In this book we have seen how it is possible to build computer programs
which model aspects of mathematical reasoning. We have addressed some
of the problems involved, e.g. how can the search for a proof be guided
so that a combinatorial explosion is avoided. We have discussed various
techniques that can provide this guidance.

The techniques developed for modelling mathematical reasoning are find-
ing increasing applications: providing mathematical aids and programming

18. Applications of Artificial Mathematicians 271

languages, helping to teach Mathematics and giving us a better understand-
ing of cognitive processes. These applications are impinging on all our lives.
To make best use of them and avoid abuse of them, we should all understand
better how they work.

Further Reading Suggestions

Introductory accounts of:

• MACSYMA can be found in [Group 77];

• the Overbeek/Lusk theorem prover can be found in [Wos 82];

• several tuition programs, built by Goldberg, can be found in
[Goldberg 74];

• BUGGY can be found in [Brown 78];

• SHRDLU can be found in [Winograd 72]; and

• PROLOG can be found in [Clocksin 81].

272 Computer Modelling of Mathematical Reasoning

Appendix A

Some Artificial
Mathematicians Written in
PROLOG

In this appendix we turn some of the descriptions of artificial mathemati-
cians, given in this book, into working computer programs. The program-
ming language we have chosen for this task is the PROLOG language, men-
tioned in section 18.6. This is a natural choice since PROLOG is itself based
on the early work on theorem proving, so this appendix serves two illustra-
tory roles at once – an implementation of artificial mathematicians and an
application of them to programming. A further advantage is that much of
the groundwork, required for you to understand PROLOG programs, has
already been laid in chapters 5 and 6 and section 18.6.

A Bluffer’s Guide to PROLOG

A PROLOG program is a set of Horn clauses, but the notation differs slightly
from the traditional notation, that we have used so far. In classical logic a
Horn clause may be written,

P1 ∧ ... ∧ Pn → Q
or

P1 ∧ ... ∧ Pn →
where n ≥ 0

In PROLOG these will be written:

Q :– P1, ..., Pn.
or

:– P1, ..., Pn.

that is: the antecedent is written to the right of the implication arrow;
the consequent to the left of the arrow; the arrow itself is reversed and

273

274 Computer Modelling of Mathematical Reasoning

written as :– and the ∧ signs are replaced by commas, with a full stop at
the end. The idea of putting the consequent (Q) of the clause to the left of
the antecedent (the Pis) is to emphasise that the antecedent constitutes the
body of a procedure for calculating Q. In the case n = 0, the clause ‘Q :– .’
may be optionally written as ‘Q.’. For the PROLOG clauses to be accepted
by the computer, these conventions have to be strictly observed.

PROLOG permits a special syntax for lists. Lists are written as a
sequence of terms separated by commas enclosed in square brackets, e.g.
[this,is,a,list]. the empty list, nil, can be written [] and cons(a, b) can be
written [a | b]. 1

Thus in standard PROLOG format the procedure for appending two
lists, given in section 18.6, is written as follows:

append([], List, List).
append([Car | Cdr], List, [Car | Ans]) :–

append(Cdr, List, Ans).

A Straightforward Implementation

The most straightforward way to build artificial mathematicians in PRO-
LOG is to use it as a theorem prover, representing the axioms of a theory
and the conjectures directly as PROLOG clauses. For instance, the reflexive
and twisted transitivity axioms of chapter 6 can be represented as:

equal(X,X). (i)

equal(U,W) :− equal(U, V), equal(W,V). (ii)

and the conjectured symmetry axiom can be represented by the assertion

equal(x, y). (iii)

and goal clause

:− equal(y, x). (iv)

To prove the conjecture, clauses (iii), (i) and (ii) are input to PROLOG,
in that order, and the goal clause (iv) is called. PROLOG will then apply
Lush Resolution with a depth first search strategy; clauses are selected in
the order in which they were input and literals are selected left to right.
This search strategy generates the following proof without deviation:

:– equal(y, x).
(ii)

:– equal(y, V), equal(x, V).

1This is at variance with the notation used in the rest of this book, where angle brackets
were used for lists and square brackets for bags.

Appendix A 275

(i)
:– equal(x, y).

(iii)
:–

However, the PROLOG search strategy is very simple minded and is not
always so lucky in finding proofs. In particular it is very sensitive to the
order in which clauses were input. If we had input clause (iii) after clause
(ii) above then the search would not have terminated.

Exercise 65 Check this by drawing the new search tree to depth 5.

To improve upon this we must stop using PROLOG as a theorem prover and
instead use it as an implementation language for building theorem provers!

A Heuristic Search Theorem Prover

Suppose that we wanted to build a heuristic search theorem prover. Instead
of representing each axiom directly as a PROLOG clause, we will need to
step up to the meta-level (cf chapter 12); each axiom will be represented
as a term occuring as the parameter of some predicate. 2 For instance, we
may use the ternary predicate is clause, which relates a clause’s name, its
consequent and its antecedent e.g.

is clause(hypothesis, [equal(x, y)], []).

represents the clause → equal(x, y), and names it ‘hypothesis’. The an-
tecedent and consequent are represented as lists of propositions. The re-
maining clauses 3 in our example may be represented as:

is clause(reflexive, [equal(X,X)], []).
is clause(twisted, [equal(U,W)], [equal(U, V), equal(W,V)]).
is clause(hypothesis, [equal(x, y)], []).
is clause(goal, [], [equal(y, x)]).

Our heuristic search theorem prover can be built by defining a proposition,

heuristic(Agenda)

2We will have axioms like (ii), represented as clauses at the object-level, and theorem
proving code, represented as clauses at the meta-level. This may be a source of notational
confusion, so we will say ‘PROLOG clause’ when referring to the meta-level.

3Strictly speaking these are clause schemata rather than just clauses. This is because we
have used PROLOG variables to represent object-level variables, rather than the PROLOG
constants prescribed in chapter 12. We have done this so that we can use the built-in
PROLOG unification procedure when resolving clauses rather than build our own. This
trick can be legitimized by regarding U, V, X, etc as meta-variables ranging over object-
level terms, and → equal(X,X), etc as clause schemata.

276 Computer Modelling of Mathematical Reasoning

which is true iff Agenda can form the agenda of a successful heuristic search
tree. An agenda is a list of elements of the form pair(Score,Name), where
Name is the name of a clause and Score is the number which it is assigned
by the evaluation function. Agendas are ordered with the best scores first.
We will use the length of the clause as the evaluation function, so that lowest
scores are best. heuristic can be defined recursively.

It is true if Agenda contains the empty clause.

heuristic(Agenda) :–
member(pair(0, Empty), Agenda).

member(E,L) is true iff E is a member of the list L. When called this
clause checks to see whether the Agenda of the heuristic search tree contains
a clause whose score is 0.

It is also true if Agenda can be extended, by the rules of heuristic search,
into the Agenda of a successful heuristic search tree.

heuristic([pair(Score, Current) | Rest]) :–
setof1(Clause, successor(Current, Clause), NewClauses),
add to agenda(NewClauses,Rest,NewAgenda),
heuristic(NewAgenda).

setof1(X,P (X), Set) is our version of the set formation operation,
Set = {X : P (X)}. Thus NewClauses is the set of all objects,
Clause, which bear the relation successor(Current, Clause) to Current.
successor(Current, Clause) means that Clause is a resolvant, one of whose
parents is Current.

add to agenda(NewClauses,Rest,NewAgenda) is true iff NewAgenda
is the agenda formed from Rest by inserting each of the clauses in
NewClauses together with their scores.

When called, this PROLOG clause picks one of the undeveloped clauses
with the best score (Current), finds all it successors (NewClauses), replaces
Current by NewClauses and then calls heuristic recursively.

member is easily defined using append.

member(E,L) :– append(L1, [E | L2], L).

setof1 is very similar to the PROLOG evaluable predicate, setof ; the
only difference being that setof(X,P (X), Set) fails if ¬∃X P (X), instead
of instantiating Set to []. setof1 can be defined as follows:

setof1(X,P, Set) :– setof(X,P, Set), !.
setof1(X,P, []).

The !, in the first clause, is a special evaluable ‘predicate’ in PROLOG
whose side-effect is to prune the PROLOG search tree of any remaining

Appendix A 277

choice points for this call of setof1. It prevents later failures from causing
back up to the second clause.

It only remains to define successor and add to agenda to complete our
theorem prover.

We start with successor.

successor(Current, Clause) :–
factor(Current, Clause).

successor(Current, Clause) :–
is clause(Parent, ,),
(resolve(Current, Parent, Clause);
resolve(Parent, Current, Clause)).

factor(C,F) is true iff F is a factor of clause C. resolve(P1, P2, R) is true
iff R is a resolvant whose parents are P1 and P2, and where the proposition
resolved on occurs in the consequent of P1 and the antecedent of P2. Semi-
colon is the built-in PROLOG version of disjunction, so the definition of
successor above is not in clausal form, but packs two clauses together. Each
successive call of this definition picks a potential second parent (Parent)
and tries resolving it with Current in each of the two possible ways, to form
a new resolvant (Clause).

Exercise 66 Modify the theorem prover so that it obeys the input restriction
– one parent of each resolvant is always an input clause. [Hint: Why is this
exercise just here?]

A successful call of resolve will return the name of a new clause. This
name is not much use unless it is also the first parameter of an is clause
assertion, e.g. a call of

resolve(goal, twisted, Clause).

may succeed with substitution {resolvant1/Clause} (say), but it must also
input a new PROLOG clause of the form:

is clause(resolvant1, [], [equal(y, V ′), equal(x, V ′)]). (v)

resolve can be defined by the clause:

resolve(Parent1, Parent2, Resolvant) :–
is clause(Parent1, Consequent1, Antecedent1),
is clause(Parent2, Consequent2, Antecedent2),
select(Proposition,Consequent1, RestConse1),
select(Proposition,Antecedent2, RestAnte2),
append(RestConse1, Consequent2, Consequent),
append(Antecedent1, RestAnte2, Antecedent),
gensym(resolvant,Resolvant),
assert(is clause(Resolvant, Consequent,Antecedent)).

278 Computer Modelling of Mathematical Reasoning

where select(E,L,R) is true iff L is the list formed by inserting E into the
list R. The two calls of select have the effect of selecting and unifying two
propositions, one from the the consequent of the first parent and one from
the antecedent of the second parent. Note how the two propositions are
unified – and the unifier applied to the remaining propositions – by built-in,
PROLOG unification. 4 The two calls of append have the effect of making
new lists for the consequent and antecedent of the resolvant by appending
together the remnants of the consequents and antecedents of the parents.

select is easily defined using append.

select(E,L,R) :− append(L1, [E | L2], L), append(L1, L2, R).

Both gensym and assert take us outside of Predicate Logic. Neither
can be sensibly interpreted as bona fide, first order predicates. assert is
an evaluable ‘predicate’ of PROLOG. When called it always succeeds with
the side effect of inputing its parameter as a new PROLOG clause, e.g.
(v) above. The opposite of assert is retract, it succeeds iff it can delete a
PROLOG clause matching its parameter.

factor can be defined by the clause:

factor(Clause, Factor) :–
is clause(Clause, Consequent,Antecedent),
select(Proposition, Consequent,OneGone),
select(Proposition,OneGone, TwoGone),
gensym(factor, Factor),
assert(is clause(Factor,OneGone,Antecedent)).

factor(Clause, Factor) :–
is clause(Clause, Consequent,Antecedent),
select(Proposition,Antecedent,OneGone),
select(Proposition,OneGone, TwoGone),
gensym(factor, Factor),
assert(is clause(Factor, Consequent,OneGone)).

The first PROLOG clause tries to find two occurrences of the same proposi-
tion in the consequent and the second PROLOG clause does the same thing
in the antecedent. select is used to find the two occurrences, just one of the
being omitted in the definition of the new factor.

gensymmust be defined by us. Its role is to invent names for new clauses,
e.g. resolvant1. It is always called with its first parameter a constant and its
second parameter a variable; the call instantiates the second parameter to a
constant composed of the first parameter and a number. Each time gensym
is called the number is incremented, giving a new constant for the second

4In fact, this use of PROLOG unification makes our theorem prover unsound! The
PROLOG unifier omits the occurs check (see chapter 17). Thus it will unify equal(X,X)
and equal(Y,Y+1).

Appendix A 279

parameter. When ‘resolvant’ is the first parameter, as it is in resolve,
gensym will generate the sequence of constants: resolvant1, resolvant2,
resolvant3, ... as the second parameter.

The definition of gensym is:

gensym(Prefix, Var) :–
var(Var), atomic(Prefix),
get(Prefix,N),
N1isN + 1,
assert(latest(Prefix,N1)),
concat(Prefix,N1, Var).

get(Prefix,N) :− retract(latest(Prefix,N)), !.
get(Prefix, 0).

concat(N1, N2, N) :–
name(N1, Ls1),
name(N2, Ls2),
append(Ls1, Ls2, Ls),
name(N,Ls).

var(Var) is true iff Var is a PROLOG variable. atomic(Prefix) is true iff
Prefix is a PROLOG constant. N1 is N + 1 is true iff N and N1 are both
numbers and N1 is the sum of N and 1. concat(Prefix,N1, Var) is true iff
Prefix, N1 and Var are all character strings and Var is the concatenation
of Prefix and N1. name(N,L) is true iff N is a character string and L
is a list of the ASCII code numbers of the characters in N . get cannot be
assigned a meaning as a bone fide, first order predicate.

gensym works by asserting and retracting PROLOG clauses of the form
‘latest(Prefix,N)’ where N is the suffix of the last constant, with prefix
Prefix, that it invented. It first checks that its parameters are of the
appropriate types by calling atomic(Prefix), which checks that Prefix
is a constant, and var(Var), which checks that Var is a variable. Then
get(Prefix,N) recovers the last suffix number, N , used for Prefix, if there
was one, or 0 otherwise. The role of the ! in the first clause of get is to
prevent later failures from remaking the instantiation of N . Having found
the value of N , 1 is added to it to form N1, a new ‘latest’ clause is asserted,
and Prefix and N1 are concatenated together to form the new constant,
Var. concat(Prefix,N1, Var) works by breaking Prefix and N1 into a list
of character numbers using name, appending these lists together and then
using name in the other direction to make a constant out of this new list of
character numbers. atomic, var, is,+ and name are all evaluable predicates
or functions of PROLOG.

We now define

add to agenda(NewClauses,OldAgenda,NewAgenda).

280 Computer Modelling of Mathematical Reasoning

It is defined recursively on the list structure of its first parameter.

add to agenda([], Agenda,Agenda).

add to agenda([Name | Rest], Agenda,NewAgenda) :–
\+ in(Name,Agenda),
evaluate(Name, Score),
insert into agenda(Agenda, Score,Name,MidAgenda),
add to agenda(Rest,MidAgenda,NewAgenda).

add to agenda([Name | Rest], Agenda,NewAgenda) :–
in(Name,Agenda),
add to agenda(Rest,Agenda,Newagenda).

in(Name,Agenda) is true iff the clauseName is already inAgenda. evaluate(Name, Score)
is true iff Score is the length of the clause called Name.

insert into agenda(Agenda, Score,Name,MidAgenda) is true iff
MidAgenda is the agenda formed by inserting pair(Score,Name) into the
appropriate place in Agenda.

If NewClauses is the empty list then the agenda is not changed. Oth-
erwise, the score of the first clause is worked out, the name and score are
entered in the agenda and the rest of NewClauses are recursively inserted.

evaluate(Name, Score) is easily defined as:

evaluate(Name, Score) :–
is clause(Name,Consequence,Antecedent),
length(Consequence, C),
length(Antecedent,A),
Score is C +A.

length(L,N) is true iff N is the length of the list L. The consequence
and antecedent of the clause called Name are recovered, their lengths are
found and added together. length is a primitive provided by PROLOG, so
evaluate is now completely defined.

insert into agenda(OldAgenda, Score,Name,NewAgenda) is
also defined recursively on its first parameter.

insert into agenda([], Score,Name, [pair(Score,Name)]).

insert into agenda([pair(Score1, Name1) |Rest], Score,
Name, [pair(Score,Name), pair(Score1, Name1) |Rest]) :–
Score =< Score1,
!.

insert into agenda([X |Rest], Score,Name, [X |NewRest]) :–
insert into agenda(Rest, Score,Name,NewRest).

Score =< Score1 is true iff the number Score is less than or equal to the
number Score1.

Appendix A 281

If OldAgenda is the empty list then the new agenda is a singleton con-
sisting of pair(Score,Name). Otherwise, there are two cases:

1. If Score is smaller than the score of the first element on
OldAgenda (Score1) then we put the new pair on the front ofOldAgenda
to form NewAgenda.

2. Otherwise, we insert the new pair recursively into the rest ofOldAgenda
(Rest).

The use of !, in the clause defining the first case, prevents PROLOG from
incorrectly backing up onto the second case. =< is a PROLOG evaluable
predicate, so insert into agenda is completely defined, and this complete
the definition of heuristic

To run the heuristic search theorem prover it only remains to select a goal
clause, e.g. goal above, and to make an agenda item as the first parameter
of heuristic, e.g. [pair(1, goal)]. We now type

:– heuristic([pair(1, goal)]).

to PROLOG.

Exercise 67 Type this program into a computer file and run it on the ex-
ample clauses given above.

Exercise 68 Insert print messages into the program so it outputs a suitable
commentary on its progress.

Building-in Semantic Checking

In this section we will consider giving our theorem prover the ability to use
models to prune the search tree à la Gelernter (see chapter 10). We call this
semantic checking. This requires a new predicate vet, such that vet(C1, C, I)
is true iff C is an instance of clause C1, and C is false in the interpretation
I. We must modify successor so that successor(Current, Clause) is true
iff Clause is derived from Current by resolution or factoring followed by
vetting. This can be done by making the previous definition of successor be
a definition of successor1, and defining successor as:

successor(Current, Clause) :–
successor1(Current, Clause1),
vet(Clause1, Clause,model1).

where model1 is the name of a model of the axioms and hypothesis of the
conjecture. vet can be defined as follows:

282 Computer Modelling of Mathematical Reasoning

vet(Clause1, Clause, Interp) :–
is clause(Clause1, Conse,Ante),
constants(Consts),
checklist(instantiate(Consts), Conse),
checklist(instantiate(Consts), Ante),
false clause(Conse,Ante, Interp),
gensym(instance, Clause),
assert(is clause(Clause, Conse,Ante)).

constants(Consts) is true iff Consts is a list of constants.
checklist(P (X), Y List) is the PROLOG version of bounded universal quan-
tification ∀Y ∈ Y List P (X,Y). instantiate(Consts, Prop) is true iff Prop
is a variable free proposition whose constants are all members of Consts.
false clause(Conse,Ante, Interp) is true iff Conse is a list of variable free
propositions which are false in interpretation Interp and Ante is a list of
variable free propositions which are true in Interp.

To vet a clause named Clause1 in an interpretation Interp the following
steps are taken.

1. Its consequent, Conse, and antecedent, Ante, are looked up with
is clause and the constants are looked up with constants.

2. Any variables in Conse and Ante are instantiated with constants from
Consts.

3. The instantiated Conse and Ante are tested in Interp to see if they
would form a false clause.

4. If so, then a new clause name, Clause, is invented by gensym and an
appropriate is clause is input to PROLOG.

constants is defined by a single clause, e.g.

constants([x, y, z]).

This definition will vary according to the conjecture whose proof is
sought. We have included all constants which appear in the clauses given in
our equality example plus one more to appear in an axiom below.

instantiate can be defined as follows.

instantiate(Consts, Constant) :–
atomic(Constant).

instantiate(Consts, V ariable) :–
var(V ariable),member(V ariable, Consts).

instantiate(Consts, Complex) :–
\+ atomic(Complex),

Appendix A 283

\+ var(Complex),
Complex = ..[Sym | Paras],
checklist(instantiate(Consts), Paras).

Both not and = .. are PROLOG evaluable predicates which take us
outside Predicate Logic. \ + P is the PROLOG version of negation, it is
true iff PROLOG cannot prove P 5. Complex = ..[Sym | Paras] is true
iff Complex is a complex term or formula, Sym is its function or predicate
symbol and Paras is a list of its parameters.

instantiate(Consts, Expr) is defined by recursion on its second param-
eter, Expr. The first clause deals with the case where Expr is a constant,
in which case there is nothing to do. The second clause deals with the key
case where Expr is a variable. In this case the variable is instantiated to be
a member of Consts. Otherwise, if Expr is complex, it is broken apart by
= .. and instantiate is recursively applied to its parameters.

checklist(P, Y List) can be defined recursively on its second parameter
YList.

checklist(P, []) :– !.

checklist(P, [Y | Y List]) :– !,
P = ..[Sym | XList],
append(XList, [Y], Paras),
Q = ..[Sym | Paras],
Q,
checklist(P, Y List).

When Y List is the empty list the call succeeds. Otherwise, P is applied to
the first member of the list, Y , and checklist recurses on the rest of the list.
To apply P to Y it is first unpacked by = .. to reveal its predicate symbol,
Sym, and any partially applied parameters, XList. Y is appended to the
end of XList and the result repacked with Sym using = .. to form Q. Q is
then called as a PROLOG procedure.

false clause is defined as follows.

false clause(Consequent,Antecedent, Interp) :–
checklist(meaning(Interp, false), Consequent),
checklist(meaning(Interp, true), Antecedent).

meaning(Interp, V alue,Expr) is true iff V alue is the meaning in interpre-
tation, Interp, of expression, Expr. false clause uses checklist to check
that each member of the consequent is false in Interp and each member of
the antecedent is true in Interp.

meaning(Interp, V alue,Expr) can be defined recursively on the expres-
sion tree structure of its third parameter, Expr.

5In some implementations \+ is available as not or thnot.

284 Computer Modelling of Mathematical Reasoning

meaning(Interp, V alue, Constant) :–
atomic(Constant), !,
interpret(Interp, V alue, Constant).

meaning(Interp, V alue, Complex) :–
Complex = ..[Sym | Paras], !,
maplist(meaning(Interp), V als, Paras),
Complex1 = ..[Sym | V als],
interpret(Interp, V alue, Complex1).

interpret(Interp, V alue,Expr) is similar to meaning(Interp, V alue,Expr)
except that Expr is either an element of the universe of Interp or a function
or predicate whose parameters are elements of the universe of Interp.

The PROLOG clauses defining meaning deal with the following two
cases:

1. If Expr is a constant then interpret is used to find the assigned mem-
ber of the universe of Interp.

2. If Expr is a complex expression then: it is broken apart with = ..;
the meanings of each of its parameters is recursively calculated using
maplist; these are applied to its dominant symbol by = ..; and its
value is calculated with interpret.

maplist(P, Y List, ZList) can be defined recursively on its second pa-
rameter YList in an analogous way to checklist.

maplist(P, [], []) :– !.

maplist(P, [Y | Y List], [Z | ZList]) :– !,
P = ..[Sym | XList],
append(XList, [Y,Z], Paras),
Q = ..[Sym | Paras],
Q,
maplist(P, Y List, ZList).

The definition of interpret depends on the interpretation we wish to
define. The clauses below define the interpretation, model1, which is suitable
for use with the equality example from the last section. We must assign
meanings to the constants x, y and z and the predicate equal.

interpret(model1, 2, x).
interpret(model1, 2, y).
interpret(model1, 3, z).
interpret(model1, true, equal(X,Y)) :–

X == Y.
interpret(model1, false, equal(X,Y)) :–

X/ == Y.

Appendix A 285

The assignment to the constants is straightforward, but the assignment to
equal deserves comment. It uses the PROLOG evaluable predicates X ==
Y and X/ == Y which are true iff X and Y are strictly identical or strictly
non-identical, respectively, i.e. two numbers are equal iff they are the same
number. These are used to define a calculation procedure for equal.

This completes the definition of vet, and the heuristic search theorem
prover with semantic checking can now be run. However, it will not do any
interesting pruning on our current equality example since this is too trivial
to generate any prunable clauses. To see the benefit we will need to add
some more axioms for instance the ‘funny’ axiom:

is clause(funny, [equal(X,Y)], [equal(X, z), equal(z, Y)]).

When resolved with clause ‘goal’ this will generate

is clause(instance1, [], [equal(x, z), equal(z, y)]).

But equal(x, z) has meaning false in model1, so the clause is true and fails
the vetting, as required.

Exercise 69 Type in the above clauses and run the theorem prover on the
equality example.

Exercise 70 Insert a loop check to insure that the same clause does not get
added to the agenda twice.

Exercise 71 Represent, using is clause, the clauses from the ‘not divides’
example of section 10.5 and an extra equality axiom of the form

equal(X,Y) ∧ not div(Y,Z)→ not div(X,Z)

Represent, using interpret, the models arith2 and arith3. Run the theorem
prover on this example.

The Complete Program

The entire program is repeated below, including the answers to some of the
exercises. Text between /* and */ and after % is comment.

/* HEURISTIC SEARCH THEOREM PROVER */

go :– heuristic([pair(1, goal)]).

/* Top Level Stuff */
heuristic(Agenda) :–

member(pair(0, Empty), Agenda).

heuristic([pair(Score, Current) | Rest]) :–
setof1(Clause, successor(Current, Clause), NewClauses),

286 Computer Modelling of Mathematical Reasoning

add to agenda(NewClauses,Rest,NewAgenda),
heuristic(NewAgenda).

successor(Current, Clause) :–
successor1(Current, Clause1),
vet(Clause1, Clause,model1),
message(Clause). %new

successor1(Current, Clause) :–
factor(Current, Clause).

successor1(Current, Clause) :–
is clause(Parent, ,),
(resolve(Current, Parent, Clause);
resolve(Parent, Current, Clause)).

/* Rules of Inference */
resolve(Parent1, Parent2, Resolvant) :–

is clause(Parent1, Consequent1, Antecedent1),
is clause(Parent2, Consequent2, Antecedent2),
select(Proposition,Consequent1, RestConse1),
select(Proposition,Antecedent2, RestAnte2),
append(RestConse1, Consequent2, Consequent),
append(Antecedent1, RestAnte2, Antecedent),
gensym(resolvant,Resolvant),
assert(is clause(Resolvant, Consequent,Antecedent)).

factor(Clause, Factor) :–
is clause(Clause, Consequent,Antecedent),
select(Proposition,Consequent,OneGone),
select(Proposition,OneGone, TwoGone),
gensym(factor, Factor),
assert(is clause(Factor,OneGone,Antecedent)).

factor(Clause, Factor) :–
is clause(Clause, Consequent,Antecedent),
select(Proposition,Antecedent,OneGone),
select(Proposition,OneGone, TwoGone),
gensym(factor, Factor),
assert(is clause(Factor, Consequent,OneGone)).

/* Print Message */ %new
message(Clause) :–

is clause(Clause, Conse,Ante),
write(‘NewClause,′),
write(Clause),
write(‘, is′),
write(Ante),
write(‘→′),

Appendix A 287

write(Conse),
write(‘ ’).

/* Evaluation Function */
add to agenda([], Agenda,Agenda).

add to agenda([Name | Rest], Agenda,NewAgenda) :–
\+ in(Name,Agenda), %new
evaluate(Name, Score),
insert into agenda(Agenda, Score,Name,MidAgenda),%new
add to agenda(Rest,MidAgenda,NewAgenda).

add to agenda([Name | Rest], Agenda,NewAgenda) :–
in(Name,Agenda),
add to agenda(Rest,Agenda,Newagenda).

evaluate(Name, Score) :–
is clause(Name,Consequence,Antecedent),
length(Consequence, C),
length(Antecedent,A),
ScoreisC +A.

insert into agenda([], Score,Name, [pair(Score,Name)]).

insert into agenda([pair(Score1, Name1) |Rest], Score,
Name, [pair(Score,Name), pair(Score1, Name1) | Rest])

:–
Score =< Score1,
!.

insert into agenda([X |Rest], Score,Name, [X |NewRest]) :–
insert into agenda(Rest, Score,Name,NewRest).

/* Loop Check */ %new
on(Clause,Agenda) :–

is clause(Clause, Conse,Ante),
member(pair(Score,Another), Agenda),
is clause(Another, Conse,Ante).

/* SEMANTIC CHECKING */

vet(Clause1, Clause, Interp) :–
is clause(Clause1, Conse,Ante),
constants(Consts),
checklist(instantiate(Consts), Conse),
checklist(instantiate(Consts), Ante),
false clause(Conse,Ante, Interp),
gensym(instance, Clause),
assert(is clause(Clause, Conse,Ante)).

instantiate(Consts, Constant) :–

288 Computer Modelling of Mathematical Reasoning

atomic(Constant).

instantiate(Consts, V ariable) :–
var(V ariable),member(V ariable, Consts).

instantiate(Consts, Complex) :–
\+ atomic(Complex),
\+ var(Complex),
Complex = ..[Sym | Paras],
checklist(instantiate(Consts), Paras).

false clause(Consequent,Antecedent, Interp) :–
checklist(meaning(Interp, false), Consequent),
checklist(meaning(Interp, true), Antecedent).

meaning(Interp, V alue, Constant) :–
atomic(Constant), !, interpret(Interp, V alue, Constant).

meaning(Interp, V alue, Complex) :–
Complex = ..[Sym | Paras], !,
maplist(meaning(Interp), V als, Paras),
Complex1 = ..[Sym | V als],
interpret(Interp, V alue, Complex1).

/* GENERAL UTILITIES */

/* List Processing */
append([], List, List).

append([Car | Cdr], List, [Car | Ans]) :–
append(Cdr, List, Ans).

member(E,L) :–
append(L1, [E | L2], L).

select(E,L,R) :–
append(L1, [E | L2], L), append(L1, L2, R).

/* Logical */
setof1(X,P, Set):–
setof(X,P, Set), !.

setof1(X,P, []).

setof(X,P, Set):–
bagf(X,P,Xl),
sort(Xl, Set).

bagof(X,P,):–
asserta(bg(marker)),
P,
asserta(bg(X)),
fail.

Appendix A 289

bagof(, , Bag):–
collectbg([], Bag),
nonempty(Bag), !.

collectbg(Xsofar,Bag) :–
retract(bg(X)),
X\ == marker, !,
collectbg([X | Xsofar], Bag).

collectbg(X,X).

nonempty([|]).

setof1(X,P, Set) :– setof(X,P, Set), !.

setof1(X,P, []).

checklist(P, []) :– !.

checklist(P, [Y | Y List]) :– !,
P = ..[Sym | XList],
append(XList, [Y], Paras),
Q = ..[Sym | Paras],
Q,
checklist(P, Y List).

maplist(P, [], []) :– !.
maplist(P, [Y | Y List], [Z | ZList]) :– !,

P = ..[Sym | XList],
append(XList, [Y, Z], Paras),
Q = ..[Sym | Paras],
Q,
maplist(P, Y List, ZList).

/* Generate New Name */
gensym(Prefix, V ar) :–

var(V ar), atomic(Prefix),
get(Prefix,N),
N1isN + 1,
assert(latest(Prefix,N1)),
concat(Prefix,N1, V ar).

get(Prefix,N) :– retract(latest(Prefix,N)), !.
get(Prefix, 0).

concat(N1, N2, N) :–
name(N1, Ls1),
name(N2, Ls2),
append(Ls1, Ls2, Ls),
name(N,Ls).

/* EXAMPLE SPECIFIC STUFF */

290 Computer Modelling of Mathematical Reasoning

/* Axioms and Negated Conjecture */
is clause(reflexive, [equal(X,X)], []).

is clause(funny, [equal(X,Y)], [equal(X, z), equal(z, Y)]).

is clause(twisted, [equal(U,W)], [equal(U, V), equal(W,V)]).

is clause(hypothesis, [equal(x, y)], []).

is clause(goal, [], [equal(y, x)]).

/* Constants */
constants([x, y, z]).

/* Interpretation Model1 */
interpret(model1, 2, x).

interpret(model1, 2, y).

interpret(model1, 3, z).

interpret(model1, true, equal(X,Y)) :–
X == Y.

interpret(model1, false, equal(X,Y)) :–
X\ == Y.

Further Reading Suggestions

More example of PROLOG programs can be found in [Coelho 80].

Appendix B

The Language of Trees

In developing computational models of mathematical reasoning we will have
frequent recourse to trees as a descriptive device. We will use them to:
describe expressions; the meaning of expressions and the search for a proof.
It will help us in the the future if we define now what we mean by a tree
and develop some notation for discussing them.

Figure B.1: A Tree

Figure B.1 is drawing of a tree. It consists of some nodes (the ◦s) and
some arcs (the lines between them). The node at the top is called the
root (our trees are Australian!). All nodes, except the root, have a unique
parent 1 node. These are the ones immediately above them. Some nodes
have daughter nodes, immediately below them. Those which do not are
called tips. The set of all daughters, daughters of daughters etc of a node
are called its descendants. The subtree consisting of all descendants of a
node and the arcs between them is said to be dominated by the node. The
subtree dominated by the node labelled N in figure B.1 is printed in heavy

1There is a conscious analogy with family trees

291

292 Computer Modelling of Mathematical Reasoning

type. Removing some nodes and arcs from a tree to form a subtree is called
pruning .

A sequence of consecutive arcs and nodes is called a path and a path
running from the root to a tip without repetition is called a branch. The
length of a path is the number of arcs it contains. The length of the path
from the root to a node is called its depth and the length of the path from
a node to the farthest tip it dominates is called its height. The depth of the
node N in figure B.1 is 1 and its height is 3.

Having introduced this notation once we will use it freely to describe:
expression trees; semantic trees and search trees.

Appendix C

Alternative Notation

Predicate logic is a mathematical theory which remains essentially the same
when expressed in a wide variety of notations, just as the theory of Arith-
metic is unaltered by being expressed in Arabic or Roman numerals. How-
ever, just as arithmetic operations are easier to do in some numeral systems,
so logical operations are easier to do in some notational systems. In this
appendix we show how to express the same formulae in a wide variety of
notations. As running examples we will use the binary predicate p and the
ternary predicate q.

In the notation of this book, which is called Functional Form, the appli-
cations of p to the parameters a and b, and q to the parameters c, d and e,
are represented by,

p(a, b) and q(c, d, e)

Note that the opening bracket comes after the predicate symbol.

A common variant: as used, for instance, in the programming language
LISP; is to put the bracket in front of the predicate symbol.

(p, a, b) and (q, c, d, e)

This is called Cambridge Polish. It is an especially convenient notation if
you want your pattern matcher not to distinguish between predicates and
their parameters, e.g. a second order matcher.

Another variant on this theme is Reverse Polish. here there are no
brackets at all and parameters appear before the predicate, e.g.

a, b, p and c, d, e, q

The notations encountered so far form a natural family, which I shall call
the Polish family. We will next consider a radically different family: the Se-
mantic Nets. These are graphs (or networks) of nodes and arcs, representing
a conjunction of assertions.

293

294 Computer Modelling of Mathematical Reasoning

The simplest form is when each arc represents a predicate and each node
a constant, e.g.

which in Functional Form would be expressed as p(a, b) ∧ p(b, c). To rep-
resent a ternary (or greater arity) predicate there are various devices. The
simplest format is

but this is fairly rare.

An alternative is to use a Case Frame formalism. In this notation nodes
are used to represent, not only parameters, but also predicates and proposi-
tions. The arcs point from propositions to both parameters and predicates,
and indicate which role these parameters and predicate play in the proposi-
tion, e.g.

p1 and q1 stand for the propositions p(a, b) and q(c, d, e), respectively. The
labels on the arcs are usually more mnemonic than 1st parameter, predi-
cate, etc: they tend to indicate the type or role played by the parameter,
e.g. agent, instrument, time, homeport, etc.

Many kinds of expression are difficult to represent in Semantic Net sys-
tems, for instance, negation, disjunction, quantification and the distinction
between functions and predicates. Nevertheless, it can be done. The inter-
ested reader is referred to [Schubert 76].

The final family of notational systems we will consider are the Frame
systems (also called schema). These are similar, in content, to the Semantic

Appendix C 295

Net systems, but different in layout. One of the nodes is taken as the title
of a table, the arcs leading from this node are listed in a column marked
slots and the nodes they lead to are listed in a column marked fillers. We
may chose to group arcs with the same label in a single row.

a slots fillers

p b, c
r d

This Frame represents the formula

p(a, b) ∧ p(a, c) ∧ r(a, d)

This notation is essentially the tabular form used by AM to represent the
properties of a concept in chapter 13.

If we model our Frame on the Case Frame version of Semantic Nets then
the title of the table is a particular proposition, the slots are the role names,
1st parameter, etc, and the fillers are the actual first parameter, predicate
etc, e.g.

q1 slots fillers

predicate q
1st parameter c
2nd parameter d
3rd parameter e

Again the role names are usually more mnemonic.
The various alternative notational systems are summarized in figure C.1.

Figure C.1: Type Tree of Notations

Each of these notations present different advantages.

• The Polish notations are more concise, especially when quantifiers,
disjunction, etc are to be represented.

296 Computer Modelling of Mathematical Reasoning

• The Semantic Net notations suggest indexing the database of formulae
on the parameters rather than the predicates. 1

• The notations with role names allow extra information to be stored
with them, e.g. type information or axioms.

Many computational inference systems use one of the above notations to
represent theories which are not Predicate Logic. For instance, the system
may include ‘complete information’ assumptions which violate the semantics
of Predicate Logic, or they may include non-deductive processes like ‘random
associative walks’ around the network. In section 4.3.5 we investigated the
dangers of an inference system with no clear semantics.

1Most modern databases do both.

Appendix D

Solutions to the Exercises

N.B. The figures in this chapter use a slightly different notation for logical
connectives: ∼ instead of ¬, and & for ∧.

Chapter 2

Exercise 1

Semantic Tree for Exclusive Or

297

298 Computer Modelling of Mathematical Reasoning

Exercise 2

Semantic Tree for ¬p ∨ q

Note that ¬p∨ q and p→ q have the same truth value for every assignment
to p and q.

Exercise 3

¬¬p↔ p is a Tautology

Appendix D 299

(p→ q)↔ (¬p ∨ q) is a Tautology

Exercise 4

p ∧ ¬p is a Contradiction

Exercise 5

The argument can be formalized as:

{(P → Q) ∧ P} → Q

The semantic tree of this formula is:

which shows that it is a tautology, and hence that the argument form is cor-
rect.

Chapter 3

Exercise 6

Continuous
∀X∀ε∃D∀Y ε > 0 ∧ |Y −X| < D → |eY − eX | < ε

Uniformly Continuous
∀ε∃D∀X∀Y ε > 0 ∧ |Y −X| < D → |eY − eX | < ε

300 Computer Modelling of Mathematical Reasoning

Note that the only difference between them is the order of the quantifiers,
in particular, whether D is allowed to depend on X or to be uniform for all
X.

Exercise 7

The Darii syllogism can be formalized as:

{∀Y p(Y)→ q(Y)} ∧ p(x)

q(x)

Let M be a typical model of the hypothesis. Hence, by the semantic tree
for ∧, both ∀Y p(Y) → q(Y) and p(x) are true in M . p(x) → q(x) is an
instance of p(Y)→ q(Y) so, by the rule for ∀, it is true in M . Therefore, by
the semantic tree for →, q(x) is true in M . Therefore, every model of the
hypothesis is a model of the conclusion, and the argument form is correct.

Exercise 8

LetM be a typical model of ¬∀X A(X). ∀X A(X) is false inM . Therefore,
by the rule of ∀, some instance of A(X) is false in M . Therefore, some
instance of ¬A(X) is true in M . Therefore, by the rule for ∃, ∃X ¬A(X)
is true in M .

Chapter 4

Exercise 9

lim(f, l)

Exercise 10

∀F lim(F,L) =∞↔
∀M ∃∆ ∀X |X − L| ≤ ∆→ F (X) > M

Exercise 11

See section 8.1.

Exercise 12

See section 9.2.3.

Exercise 13

X0=s(0)
Xs(Y)=X ·XY

Appendix D 301

Chapter 5

Exercise 14

Let M be a model of C ′∨P and C ′′∨¬P . Suppose that C ′∨C ′′ is false in M .
By the semantic tree for ∨, both C ′ and C ′′ are false in M . Hence, by the
semantic tree for ∨, both P and ¬P are true in M - contradiction! Therefore,
C ′ ∨ C must be true in M . Therefore, C ′ ∨ C is a logical consequence of
C ′ ∨ P and C ′ ∨ ¬P .

Exercise 15

1. q ∨ ¬r ∨ s

2. q(f(f(Y)) ∨ ¬r(Y)

3. p(f(a), Y) ∨ q(f(a), Y) ∨ r(a)
p(X, a) ∨ q(X, a) ∨ r(a)
q(f(a), a) ∨ r(a)

Exercise 16

All but ¬0 = s(X), which can easily be written as 0 = s(X) →, and the
induction axiom, which is second order and not in clausal form.

Exercise 17

Same as last exercise – but both these counterexamples can be rewritten as
Horn clauses. For a genuine non-Horn clause see the axioms for inequality
in section 8.1.

Chapter 6

Exercise 18

302 Computer Modelling of Mathematical Reasoning

Exercise 19

Exercise 20

The complete tree is big and repetitious. I don’t want to have to draw it. If
you don’t either then do exercises 68, 66 and 67 below, and get a computer
to draw it for you.

Exercise 21

The node in the bottom right hand corner, with score 9, should be developed
next.

Chapter 7

Exercise 22

We need the axioms:

13. X ∈ G ∧ exponent(G, 2)→ i(X) = X
14. → el(G) ∈ G
15. → el′(G) ∈ G
16. X ∈ G ∧ Y ∈ G→ X ◦ Y ∈ G
17. X ∈ G ∧ exponent(G, 2)→ X ◦X=e(G)

The proof continues as follows:

12. [i(el(g)) ◦ i(el′(g))] ◦ [el(g) ◦ el′(g)] = e(g)
paramodulate with 13.

18. [el(g) ◦ i(el′(g))] ◦ [el(g) ◦ el′(g)] = e(g)

Appendix D 303

∧el(g) ∈ g ∧ exponent(g, 2)→
paramodulate with 13.

19. [el(g) ◦ el′(g)] ◦ [el(g) ◦ el′(g)] = e(g)
∧el(g) ∈ g ∧ exponent(g, 2)
∧el′(g) ∈ g ∧ exponent(g, 2)→
resolution with 17.

20. el(g) ◦ el′(g) ∈ g ∧ exponent(g, 2)
∧el(g) ∈ g ∧ exponent(g, 2)
∧el′(g) ∈ g ∧ exponent(g, 2)→
resolve with 6.

21. el(g) ◦ el′(g) ∈ g
∧el(g) ∈ g
∧el′(g) ∈ g →
resolve with 16.

22. el(g) ∈ g ∧ el′(g) ∈ g
∧el(g) ∈ g
∧el′(g) ∈ g →
resolve with 14.

23. el′(g) ∈ g ∧ el′(g) ∈ g →
resolve with 15.

24 →

Chapter 8

Exercise 23

5 ·X < 11→ 7 ·X < 16
close

∀X 5 ·X < 11→ 7 ·X < 16
negate

¬∀X 5 ·X < 11→ 7 ·X < 16
Skolemize

5 · x < 11 ∧ ¬7 · x < 16
This is in disjunctive normal form

Exercise 24

5 · x+ε < 11 ∧ 16 ≤ ¬7 · x

Exercise 25

x < 11/5− ε ∧ 16/7 ≤ x

304 Computer Modelling of Mathematical Reasoning

Exercise 26

16/7 ≤ x ≤ 11/5− ε

However, 16/7 is greater than 11/5, (since 16 · 5 = 80 > 77 = 11 · 7) so
(16/7, 11/5) is not a possible type for x.

Exercise 27

Putting the clauses in disjunctive normal gives:

[¬2+ε ≤ a ∧ ¬b+ε ≤ 2 ∧ ¬0 ≤ 5]
∨

[¬2+ε ≤ a ∧ ¬b+ε ≤ 2 ∧ ¬a ≤ 5]

Eliminating ¬ and the resulting < signs gives:

[a ≤ 2 ∧ 2 ≤ b ∧ 5−ε ≤ 0]
∨

[a ≤ 2 ∧ 2 ≤ b ∧ 5−ε ≤ a]

The first of these disjuncts is contradictory, since 5+ε ≤ 0 evaluates to f.
‘Solving’ for a in the second disjunct gives ‘solution’

5+ε ≤ a ≤ 2

which assigns the impossible ‘type’ (5, 2] to a.

Chapter 9

Exercise 28

¬¬A⇒ A applies to (¬p ∧ ¬¬q) ∨ r and gives (¬p ∧ q) ∨ r

The values of:

exp is (¬p ∧ ¬¬q) ∨ r,
sub is ¬¬q,
lhs is ¬¬A,
rhs is A,
φ is {q/A}

Exercise 29

Here are 3 arguments:

(a) Each time the rule is applied the size of the expression tree is reduced
by 2 plus the size of the expression substituted for X.

Appendix D 305

(b) Each time the rule is applied the number of occurrences of . decreases
by 1.

(c) Each time the rule is applied a + is moved below a ..

Each of these define a numerical measure, which is reduced by each appli-
cation, and cannot be negative.

Exercise 30

Y will unify with X · 0. Hence, both rules will apply to any instance of
(X · 0) · 1, e.g. (3 · 0) · 1.

Chapter 10

Exercise 31

The instances of seg(d, a) = seg(d,X)→ are:

1. seg(d, a) = seg(d, a)→
2. seg(d, a) = seg(d, b)→
3. seg(d, a) = seg(d, c)→
4. seg(d, a) = seg(d, d)→

Only 1. and 3. pass the truth test.

Exercise 32

The interpretation, arith6, in which . and 6| have their normal meanings
but a is assigned the value 6, has the desired effect.

Exercise 33

Any interpretation of the group axioms and hypotheses of the theorem in
which a and b are assigned two unequal values, e.g. boole (see section 3.3.2)
where ◦ is +, e 7→ 0 , a 7→ 0 , b 7→ 1 , i(0) 7→ 1 and i(1) 7→ 0. a= b is false
in this model so a=b → fails the truth test.

Exercise 34

Consider the interpretation num3.
→ is power 3(a) is true in (and rejected by) num3, and this truth is inher-
ited by → is prod primes(a). But a false clause (the empty clause) is then
derived from it by ancestor resolution with a false ancestor, is prod primes(a)→.
Similar remarks hold for the other branch and for the other two interpreta-
tions, num2 and num9.

306 Computer Modelling of Mathematical Reasoning

Chapter 11

Exercise 35

〈nil〉 is cons(nil, nil)
〈nil, nil, nil〉 is cons(nil, cons(nil, cons(nil, nil)))

Exercise 36

equal((x+y)+s(z), x+(y+s(z)))= tt→
This is rewritten by Symbolic Evaluation as follows:
equal(s((x+y)+z), x+(y+s(z)))= tt→
equal(s((x+y)+z), x+s(y+z))= tt→
equal(s((x+y)+z), s(x+(y+z)))= tt→
by repeated use of the rewrite ruleX+Y ⇒cases(Y,X, s(X+p(Y))
This is then Fertilized with the induction hypothesis to give:
equal(s(x+(y+z)), s(x+(y+z)))= tt→
which evaluates to:
tt= tt→

Exercise 37

(X+Y)+Z2=X+(Y +Z2)

would be put in Boyer/Moore notation, negated and Skolemized to the goal
clause:

equal((x+y)+z2, x+(y+z2))= tt→

Symbolic Evaluation would fail on this, but would find the unflawed, Gen-
eralization candidate, 32. Generalization would convert the problem to:

equal((x+y)+w, x+(y+w))= tt→

which would be solved as before.

Exercise 38

(2x
2
)x

3
=2.

Attracting the two occurrences of x with (UV)W ⇒ UV.W gives:

2x
2.x3

=2.

Collecting the two occurrences with UV · UW ⇒ UV+W gives:

2x
2+3

=2.

And Isolating plus arithmetic evaluation gives:

x5=1.
x=1.

Appendix D 307

Exercise 39

〈2, 2〉

Exercise 40

In the selective context there will a single occurrence of the unknown on
the left hand side. Let the depth of this occurrence be d. Each application
of Isolation produces a disjunction of equations in which d is reduced by 1.
Since d can never be negative Isolation must terminate.

Exercise 41

isolate(Posn,Old1) ≡ Ans1 ∧ isolate(Posn,Old2) ≡ Ans2
⇒ isolate(Posn,Old1 ∨Old2) ≡ Ans1 ∨Ans2

Exercise 42

All occurrences of = are object-level except those between an occ function
and a number, e.g.

occ(X,A=oB)=m 1∧
expr at(List, A) ≡ X∧
isolate(List, A=oB) ≡ Ans

⇒ solve(A=oB,X,Ans)

Chapter 13

Exercise 43

generalization(C,GC)
example(C,Ex)

example(GC,Ex)

Chapter 14

Exercise 44

distance=400.miles

Exercise 45

mass(stone,mass0)
measure(5, oz,mass0)
accel(stone, acc0, 270)
measure(32, ft/sec2, acc0)

308 Computer Modelling of Mathematical Reasoning

Exercise 46

• accel(man, quickly, down) →
(i)

• accel(Part2, quickly, Dir2) ∧
pulley-sys(Pull, Str, man, Part2) ∧
extensibility(Str, 0) ∧
end(Str, End1, left) ∧
incline(Str, End1, down) →
(ii)

• accel(Part2, quickly, Dir2) ∧
pulley-sys(Pull, Str, man, Part2) ∧
pulley-sys(Pull, Str, man, Part2) ∧
end(Str, End1, left) ∧
incline(Str, End1, down) →
(iii)

• accel(bucket, quickly, Dir2) ∧
end(rope, End1, left) ∧
incline(rope, End1, down) →
(iv)

• end(rope, End1, left) ∧
incline(rope, End1, down) →
(v)

• incline(rope, knot, down) →
(vi)

• →

Chapter 15

Exercise 47

∀X (A)→ B ⇒ ∃X (A→ B)
∃X (A)→ B ⇒ ∀X (A→ B)
A→ ∀X (B) ⇒ ∀X (A→ B)
A→ ∃X (B) ⇒ ∃X (A→ B)

It is a little strange that quantifiers in front of the A change type, but those
in front of B do not. This also prevents us from formulating rules for ↔
solely in terms of ↔.

Appendix D 309

Exercise 48

Consider, for instance, the rule

∀X (A) ∧B ⇒ ∀X (A ∧B)

Assume that B does not contain X (otherwise substitute a new variable for
X in ∀X A). Now

∀X (A) ∧B is true in an interpretation I
iff

Both ∀X A and B are true in I.
iff

For all c in the universe of I, A(c) is true in I and B is true in
I.

iff
For all c in the universe of I, A(c) ∧B is true in I.

iff
∀X (A ∧B) is true in I.

The other examples are very similar.

Exercise 49

|X| ≤ δ(M)→ 1/X > M

Exercise 50

new skolem(A↔ B, V ars, Par)
= new skolem(A→ B ∧B → A, V ars, Par)
= new skolem(A→ B, V ars, Par)∧

new skolem(B → A, V ars, Par)
= [new skolem(A, V ars, opposite(Par))

→ new skolem(B, V ars, Par)]∧
[new skolem(B, V ars, opposite(Par))

→ new skolem(A, V ars, Par)]

However the difference in the parities now prevents us reconstructing this
as an application of new-skolem to A↔ B.

310 Computer Modelling of Mathematical Reasoning

Exercise 51

Exercise 52

(¬p ∨ q ∨ p) ∧ (¬r ∨ p)

Exercise 53

Exercise 54

(¬p ∧ ¬r) ∨ (q ∧ ¬r) ∨ p

Appendix D 311

Chapter 16

Exercise 55

1. unsats(resolvant(N < S))→ unsats(S)

2. f ∈ S′ → unsats(S′)

3. → f ∈ resolvants(n, s)

4. unsats(s)→

Exercise 56

Soundness: ¬unsats(S)→ ¬unsats(resolvants(1, S))
Completeness: unsats(S)→ ∃N f ∈ resolvants(N,S)

From which we can derive:

unsats(S)↔ ∃N f ∈ resolvants(N,S)

Chapter 17

Exercise 57

(a) {1+2/X,U+2/Y, V/Z, 3+2/W}

(b) {1+2/X,U+2/Y, 3+2/W}

(c) {1+2/X,U+V/Y, 3+2/W}

312 Computer Modelling of Mathematical Reasoning

Exercise 58

(a) succeeds {2/X}

(b(fails

(c) succeeds {a/X, g(b)/Y }

(d) fails

Exercise 59

(a) succeeds {a/X, b/Y }

(b) fails

(c) succeeds {f(a)/X, a/Y }

(d) fails

(e) fails

Exercise 60

r(a+(Y +b), a+U, V +b)→
paramodulate (U ′+V ′)+W ′=U ′+(V ′+W ′) into Y +b

r(a+(U ′+(V ′+b)), a+U, V +b)→
paramodulate (U ′′+V ′′)+W ′′=U ′′+(V ′′+W ′′)
into a+(U ′+(V ′+b))

r((a+U ′)+(V ′+b), a+U, V +b)→
resolve with r(X+Z,X,Z)

→

Exercise 61

assoc unify X+Z and a+(Y +b) given {}
choose {a/X}

assoc unify a+Z and a+(Y +b) given {a/X}
choose {Y +b/Z}

assoc unify a+(Y +b) and a+(Y +b) given {a/X, Y +b/Z}
assoc unify X+Z and a+(Y +b) given {}

choose {a+U/X} and normalize
assoc unify a+(U+Z) and a+(Y +b) given {a+U/X}

choose {Y/U}
assoc unify a+(Y +Z) and a+(Y +b) given {a+Y/X, Y/U}

choose {b/Z}
assoc unify a+(Y+b) and a+(Y+b) given {a+Y/X, Y/U, b/Z}

Appendix D 313

Exercise 62

p(g(Y, a+Y), a+a)→
paramodulate (U+V)+W =U+(V +W) into a+Y

p(g(V +W, (a+V)+W), a+a)→
resolve with → p(g(X,X+a), X)

→

Chapter 18

Exercise 63

The student is taking the positive difference between numbers in the same
column without regard for the order of subtraction. This behaviour can
be produced from the clauses of figure 18.3 by deleting clause 4) and the
proposition subtrahend(Sum1) < minuend(Sum1) from clause 5).

Exercise 64

append(〈one, thing〉, Back, 〈one, thing, and, another〉)→
2 {one/Car, 〈thing〉/Cdr,Back/List, 〈thing, and, another〉/Ans}
append(〈thing〉, Back, 〈thing, and, another〉)→
2 {thing/Car, 〈〉/Cdr,Back/List, 〈and, another〉/Ans}
append(〈〉, Back, 〈and, another〉)→
1 {Back/List, 〈and, another〉/Back}

Appendix A

Exercise 65

:– equal(y, x).
(ii)

:– equal(y, V), equal(x, V).
(i)

:– equal(x, y).
(ii)

:– equal(x, V ′), equal(y, V ′).
(i)

:– equal(y, x).
(ii)

:– equal(y, V ′′), equal(x, V ′).

314 Computer Modelling of Mathematical Reasoning

Exercise 66

Add the new procedure input(C), which is true iff C is an input clause, and
modify successor as below.

input(reflexive).
input(twisted).
input(hypothesis).
successor(Current, Clause) : −

factor(Current, Clause).
successor(Current, Clause) : −

input(Parent)
is clause(Parent, ,),
(resolve(Current, Parent, Clause);
resolve(Parent, Current, Clause)).

Exercise 67

Well it worked when I did it. Are you sure you typed it in correctly? Does
your version of PROLOG provide slightly different syntax or evaluable pred-
icates? No? Well it must be software rot!

Exercise 68

See the definition of message and its insertion into successor in ‘The Com-
plete Program’ below.

Exercise 69

See the solution for exercise 69 above.

Exercise 70

See the definition of in and its insertion into add to agenda in ‘The Complete
Program’ below. Note that in(Clause,Agenda) assumes that Clause and
all clauses on Agenda are variable free. Otherwise, the loop check would
prevent two unifiable clauses being on the same agenda.

Exercise 71

Clauses

is clause(right, [not div(X ∗ Z, Y)], [not div(X,Y)]).
is clause(left, [not div(Z ∗X,Y)], [not div(X,Y)]).
is clause(thirty, [equal(30, 2 ∗ 3 ∗ 5)], []).
is clause(hypothesis, [not div(5, a)], []).
is clause(reflexivity, [equal(X,X], []).

Appendix D 315

is clause(symmetry, [equal(X,Y)], [equal(Y,X)]).
is clause(transitivity, [equal(X,Y), equal(Y,Z)],

[equal(X,Z)]).
is clause(goal, [], [not div(30, a)]).
is clause(substitution, [not div(X,Z)], [equal(X,Y),

not div(Y, Z)])
constants([2, 3, 5, 30, a]).

Models

arith2

interpret(arith2, 2, a).
interpret(arith2, N,N) :– integer(N).
interpret(arith2, false, not div(X,Y)) :–

0 is Y mod X, !.
interpret(arith2, true, not div(X,Y)).
interpret(arith2, true, equal(X,Y)) :– X==Y.
interpret(arith2, false, equal(X,Y)) :– X\==Y.
interpret(arith2, Z,X ∗ Y) :– Z is X ∗ Y.
arith3

interpret(arith3, 3, a).
interpret(arith3, N,N) :– integer(N).
interpret(arith3, false, not div(X,Y)) :–

0 is Y mod X, !.
interpret(arith3, true, not div(X,Y)).
interpret(arith3, true, equal(X,Y)) :– X==Y.
interpret(arith3, false, equal(X,Y)) :– X\==Y.
interpret(arith3, Z,X ∗ Y) :– Z is X ∗ Y.

316 Computer Modelling of Mathematical Reasoning

Bibliography

[Aubin 75] R. Aubin. Some generalization heuristics in proofs by
induction. In Actes du Colloque Construction: Ameliora-
tion et verification de Programmes, Institut de recherche
d’informatique et d’automatique, 1975.

[Bartlett 67] Bartlett. Remembering. Cambridge University Press,
1967.

[Bledsoe 74] W.W. Bledsoe. The Sup-Inf method in Presberger Arith-
metic. Memo ATP-18, Math. Dept., U. of Texas, Dec
1974.

[Bledsoe 77] W.W. Bledsoe. Non-resolution theorem-proving. Artifi-
cial Intelligence, 9(1):1–35, August 1977.

[Bledsoe 80] W.W. Bledsoe and L.M. Hines. Variable elimination
and chaining in a resolution-based prover for inequalities.
Memo ATP-56a, Math. Dept., U. of Texas, April 1980.

[Bobrow 64] D. Bobrow. Natural language input for a computer prob-
lem solving system. In M. Minsky, editor, Semantic in-
formation processing, pages 146–226, MIT Press, 1964.

[Borning 81] A Borning and A. Bundy. Using matching in algebraic
equation solving. In R. Schank, editor, Proceedings of
IJCAI-81, pages 466–471, International Joint Conference
on Artificial Intelligence, 1981. Also available from Edin-
burgh as DAI Research Paper No. 158.

[Boyer 73] R.S. Boyer and Moore J.S. Proving theorems about lisp
functions. In N. Nilsson, editor, Proceedings of the third
IJCAI, pages 486–493, International Joint Conference on
Artificial Intelligence, August 1973. Also available from
Edinburgh as DCL memo No. 60.

[Boyer 79] R.S. Boyer and Moore J.S. A Computational Logic. Aca-
demic Press, 1979. ACM monograph series.

317

318 Computer Modelling of Mathematical Reasoning

[Brown 78] J.S. Brown and R. Burton. Buggy. Cognitive Science,
2:155–192, 1978.

[Bundy 79a] A. Bundy, L. Byrd, G. Luger, C. Mellish, R. Milne, and
M. Palmer. Mecho: A program to solve Mechanics prob-
lems. Working Paper 50, Dept. of Artificial Intelligence,
Edinburgh, 1979.

[Bundy 79b] A. Bundy, L. Byrd, G. Luger, C. Mellish, R. Milne, and
M. Palmer. Solving mechanics problems using meta-
level inference. In B.G. Buchanan, editor, Proceedings of
IJCAI-79, pages 1017–1027, International Joint Confer-
ence on Artificial Intelligence, 1979. Reprinted in ‘Expert
Systems in the microelectronic age’ ed. Michie, D., Edin-
burgh University Press, 1979. Also available from Edin-
burgh as DAI Research Paper No. 112.

[Bundy 81a] A. Bundy and Sterling L.S. Meta-level Inference in Alge-
bra. Research Paper 164, Dept. of Artificial Intelligence,
Edinburgh, September 1981. Presented at the workshop
on logic programming for intelligent systems, Los Ange-
les, 1981. A revised version is available from Edinburgh
as DAI Research Paper No. 273.

[Bundy 81b] A. Bundy and B. Silver. Homogenization: preparing equa-
tions for change of unknown. In R. Schank, editor, Pro-
ceedings of IJCAI-81, International Joint Conference on
Artificial Intelligence, 1981. Longer version available from
Edinburgh as DAI Research Paper No. 159.

[Bundy 81c] A. Bundy and B. Welham. Using meta-level inference for
selective application of multiple rewrite rules in algebraic
manipulation. Artificial Intelligence, 16(2):189–212, 1981.
Also available as DAI Research Paper 121.

[Chang 73] C-L. Chang and R. C-T. Lee. Symbolic logic and mechan-
ical theorem proving. Academic Press, 1973.

[Church 40] A. Church. A formulation of the simple theory of types.
Symbolic Logic, 5(1):56–68, 1940.

[Clocksin 81] W.F. Clocksin and C.S. Mellish. Programming in Prolog.
Springer Verlag, 1981.

[Coelho 80] H. Coelho, J.C. Cotta, and L.M. Pereira. How to solve it
with PROLOG. Technical Report, Laboratorio Nacional
de Engenharia Civil, 1980.

Appendix D 319

[Cooper 72] D.C. Cooper. Theorem proving in arithmetic without
multiplication. In Mach. Intell. 7, pages 91–99, Elsevier,
New York, 1972.

[Cunningham 78] J. Cunningham. An implementation of MERLIN, an ana-
logical reasoning system. Master’s thesis, University of
Essex, 1978.

[Funt 73] B. V. Funt. A procedural approach to constructions in
Euclidean geometry. Master’s thesis, University of British
Columbia, October 1973.

[Gelernter 63a] H. Gelernter. Empirical explorations of the geometry
theorem-proving machine. In Computers and Thought,
pages 153–63, McGraw Hill, 1963.

[Gelernter 63b] H. Gelernter. Realization of a geometry theorem-proving
machine. In Computers and Thought, pages 134–52, Mc-
Graw Hill, 1963.

[Gilmore 60] P.C. Gilmore. A proof method for quantificational theory.
IBM J Res. Dev., 4:28–35, 1960.

[Gilmore 70] P.C. Gilmore. An examination of the geometry theorem-
proving machine. Artificial Intelligence, 1:171–87, 1970.

[Goldberg 73] A Goldberg. Computer assisted instruction: The appli-
cation of theorem proving to adaptive response analysis.
PhD thesis, Stanford, May 1973. Also published as IMSSS
Stanford Technical Report 203.

[Goldberg 74] A. Goldberg and P. Suppes. Computer-assisted instruc-
tion in elementary logic at the university level. Technical
Report 239, Institute of mathematical studies in the social
sciences, Stanford University, 1974.

[Group 77] Mathlab Group. MACSYMA Reference Manual. Techni-
cal Report, MIT, 1977.

[Herbrand 30] J. Herbrand. Researches in the theory of demonstration.
In J van Heijenoort, editor, From Frege to Goedel: a
source book in Mathematical Logic, 1879-1931, pages 525–
81, Harvard University Press, Cambridge, Mass, 1930.

[Hill 74] R. Hill. Lush-Resolution and its completeness. DCL
Memo 78, Dept. of Artificial Intelligence, Edinburgh, Au-
gust 1974.

320 Computer Modelling of Mathematical Reasoning

[Huet 74] G.P. Huet. A unification algorithm for typed lambda-
calculus. note de travail A 055, Institut de Recherche
d’Informatique et d’Automatique, March 1974.

[Huet 77] G Huet. Confluent reductions: Abstract properties and
applications to term rewriting systems. Rapport de
Recherche 250, Laboratoire de Recherche en Informatique
et Automatique, IRIA, France, August 1977.

[Huet 80] G. Huet and D.C. Oppen. Equations and rewrite rules: a
survey. In R. Book, editor, Formal languages: perspectives
and open problems, Academic Press, 1980. Presented at
the conference on formal language theory, Santa Barbara,
1979. Available from SRI International as technical report
CSL-111.

[Knuth 70] D.E. Knuth and P.B. Bendix. Simple word problems in
universal algebra. In J. Leech, editor, Computational
problems in abstract algebra, pages 263–297, Pergamon
Press, 1970.

[Kowalski 71] R.A. Kowalski and D. Kuehner. Linear resolution with
selection function. Artificial Intelligence, 2:227–60, 1971.

[Lakatos 76] I. Lakatos. Proofs and refutations: The logic of Mathe-
matical discovery. Cambridge University Press, 1976.

[Lenat 77a] D.B. Lenat. Automated theory formation in mathematics.
In R. Reddy, editor, Proceedings of IJCAI-77, pages 833–
842, International Joint Conference on Artificial Intelli-
gence, August 1977.

[Lenat 77b] D.B. Lenat. The ubiquity of discovery. In R. Reddy, ed-
itor, Proceedings of IJCAI-77, pages 1093–1105, Interna-
tional Joint Conference on Artificial Intelligence, August
1977.

[Lenat 82] D.B. Lenat. Am: an artificial intelligence approach to dis-
covery in mathematics as heuristic search. In Knowledge-
based systems in artificial intelligence, McGraw Hill, 1982.
Also available from Stanford as TechReport AIM 286.

[Loveland 78] D.W. Loveland. Automated theorem proving: A logical
basis. Volume 6 of Fundamental studies in Computer Sci-
ence, North Holland, 1978.

Appendix D 321

[Lusk] E. Lusk and R. Overbeek. Experiments with resolution-
based theorem-proving algorithms. Comp. Math. with Ap-
pls. to appear.

[Marples 74] D. Marples. Argument and technique in the solution
of problems in Mechanics and Electricity. CUED/C-
Educ/TRI, Dept. of Engineering, Cambridge, England,
1974.

[McCarthy 62] J. McCarthy, P.W. Abrahams, J.E. Edwards, T.P. Hart,
and M.J. Levin. LISP 1.5 Programmers Manual. The
MIT Press, 1962.

[Mellish 81] C.S. Mellish. Coping with uncertainty: Noun phrase inter-
pretation and early semantic analysis. PhD thesis, Dept
of Artificial Intelligence, University of Edinburgh, 1981.
Published by Ellis Horwood under the title: ’Computer
Interpretation of Natural Language Descriptions’.

[Mendelson 64] E. Mendelson. Introduction to Mathematical Logic. van
Nostrand Reinhold Co., 1964.

[Moore 73] J. Moore and A. Newell. How can merlin understand. In
L. Gregg, editor, Knowledge and Cognition, pages 201–
252, Lawrence Erlbaum Associates, 1973.

[Moore 74] J. Moore. Computational Logic: Structure sharing and
proof of program properties, part II. PhD thesis, Univer-
sity of Edinburgh, 1974. Available from Edinburgh as
DCL memo no. 68 and from Xerox PARC, Palo Alto as
CSL 75-2.

[Moses 67] J Moses. Symbolic integration. PhD thesis, MIT, Decem-
ber 1967. available as MAC-TR-47.

[Nilsson 80] N.J. Nilsson. Principles of Artificial Intelligence. Tioga
Pub. Co., Palo Alto, California, 1980.

[OShea 78] T. O’Shea and R Young. A production rule account of
errors in children’s subtraction. Working Paper 42, Dept.
of Artificial Intelligence, Edinburgh, October 1978.

[Plotkin 72] G. Plotkin. Building-in equational theories. In Machine
Intelligence 7, pages 73–90, Edinburgh University Press,
1972.

[Polya 45] G. Polya. How to solve it. Princeton University Press,
1945.

322 Computer Modelling of Mathematical Reasoning

[Polya 65] G. Polya. Mathematical discovery. John Wiley & Sons,
Inc, 1965. Two volumes.

[Raulefs 78] P. Raulefs, J. Siekmann, P. Szabo, and E. Unvericht. A
short survey on the state of the art in matching and uni-
fication problems. AISB Quarterly, issue 32:17–21, De-
cember 1978.

[Richter 74] M. Richter. A note on paramodulation and the functional
reflexive axioms. Technical Report, University of Texas
at Austin, 1974.

[Robinson 65] J.A. Robinson. A machine oriented logic based on the
resolution principle. J Assoc. Comput. Mach., 12:23–41,
1965.

[Robinson 69] G. Robinson and L. Wos. Paramodulation and theorem-
proving in first-order theories with equality. In D. Michie,
editor, Machine Intelligence 4, pages 103–33, Edinburgh
University Press, 1969.

[Schubert 76] L.K. Schubert. Extending the expressive power of seman-
tic networks. Artificial Intelligence, 7:89–124, 1976.

[Shostak 77] R.E. Shostak. On the sup-inf method for proving pres-
burger formulae. JACM, 24(4):529–543, October 1977.

[Shostak 79] R.E. Shostak. A practical decision procedure for arith-
metic with function symbols. JACM, 26(2):351–360, April
1979.

[Slagle 63] J.R. Slagle. A heuristic program that solves symbolic
integration problems in freshman calculus. In Computers
and Thought, pages 191–203, McGraw Hill, 1963.

[Waerden 71] Van der Waerden. How the proof of baudet’s conjec-
ture was found. In L. Mirsky, editor, Papers presented
to Richard Rado on the occasion of his sixty-fifth birth-
day, pages 252–260, Academic Press, London-New York,
1971.

[Winograd 72] T Winograd. Understanding Natural Language. Edin-
burgh University Press, 1972.

[Wos 65] L. Wos, G. Robinson, and D.F. Carson. The automatic
generation of proofs in the language of mathematics. In
IFIP Congress 65, page , IFIP, 1965.

Appendix D 323

[Wos 82] L. Wos. Solving open questions with an automated
theorem-proving program. In D. Loveland, editor, pro-
ceedings of CADE6, 1982.

Index

accepts, 145

agenda, 79, 187, 276

Algebra Word Problems, 191

Algebraic Manipulation Programs, 258

Alpha Rule, 253

ancestor resolution, 68, 143

AND, 70

antecedent, 61, 273

arc, 14, 67, 235, 291

arity, 26

Assertion Clause, 62

associative normal form, 247

Associative Unification, 247

associativity, 44, 248

Attraction, 165

axiom schemata, 43

back-up, 76

Back-up Prevention, 204

backwards proof, 73

backwards search, 73

bag, 49, 180

Beta Rule, 253

binary, 26

binary resolution rule, 58

Bledsoe Real Arithmetic, 101

Bledsoe Real Arithmetic with vari-
ables, 109

boolean, 23

bound, 31

Boyer-Moore Theorem Prover, 150

branch, 292

branching rate, 83

breadth first search, 77

bug, 261

building-in, 247

calculation procedure, 32, 285

call by name, 121

call by value, 120

Cambridge Polish, 293

canonical, 119

canonical form, 119, 259

case analysis, 74

Case Frame, 294

Church-Rosser, 119

clausal form, 57, 66, 209, 224

clause, 57, 216

closure, 30, 66, 224

coalescing, 181

Collection, 165

combinatorial explosion, 84, 164, 259

commutator subgroups, 87

commutators, 87

complementary literals, 57

complete, 56

Completeness Theorem, 233

completeness theorem, 56

composition, 181

concept formation, 179

conclusion, 3, 36

conflatable, 122

confluence, 122

conjunction, 15

connective, 4, 14

consequent, 61, 273

constant, 26

Continuous, 29

contradiction, 22, 56, 224

Controlled Creation, 204

critical pair, 126

Darii, 4, 37

324

Appendix D 325

daughter, 291

decidable, 24, 101

decision procedure, 24, 101, 110, 119,
259

dense order, 98

depth, 292

depth first search, 76, 274

depth of function nesting, 80

descendants, 291

disagreement pairs, 240

discrete, 98

disjunction, 16

disjunctive normal form, 102, 218

dominant, 19, 164

dominated, 291

double implication, 17

empty clause, 58, 66, 145, 233, 276

equivalent, 20

Eta Rule, 253

evaluation, 117

evaluation function, 79

exclusive or, 16

existence, 43, 204

existential quantifier, 29, 66

explicit definitions, 44

factoring, 60

failure node, 231

failure tree, 231

Fertilization, 156

Fifth Order, 41

fillers, 295

First Order Logic, 35, 39

flawed induction, 156

flexible, 254

Formulae, 19

forwards proof, 73

forwards search, 73

Fourth Order, 41

Frame, 294

frame, 184

free variables, 30

full resolution rule, 59

functional, 40
Functional Form, 27, 293
functional reflexive axioms, 64
functions, 26

Generalization, 157
Geometry Machine, 132
Gilmore procedure, 9, 223
Goal Clause, 62

head, 254
height, 292
Herbrand Base, 226
Herbrand Interpretations, 224
Herbrand Model, 228
Herbrand Universe, 225
heuristic, 73
heuristic search, 78, 187, 275
Horn clauses, 62, 134, 273
hypothesis, 3, 36

identity, 28
imitation, 252
implication, 17, 66
Implication Clause, 62
implicit definition, 45
inclusive or, 16
Induction, 154
induction, 46, 149
inference node, 235
infinitesimal, 98
infixed, 27
instance, 31, 224
interest, 189
interpolation, 98
interpretation, 32, 141, 224
inverse, 88
inversion, 181
Isolation, 165

Kowalski form, 60, 219

lambda abstraction, 41, 252
Lambda Calculus, 41, 252
Lambda Calculus Unification, 251

326 Computer Modelling of Mathematical Reasoning

least dominating term, 168

length, 292

Length of clause, 79

Linear, Input Resolution, 68

list, 49, 150, 185

literal, 57, 216

literal normal form, 216

load, 118, 217

local confluence, 124

Logic Programming, 268

logical consequence, 36, 224

logically equivalent, 20, 36

logically invalid, 35

logically valid, 34, 230

Lush Resolution, 70, 134, 268, 274

material implication, 17

meta-level, 91, 173, 275

meta-level inference, 173

Meta-Theory of Algebra, 173

minimally unsatisfiable set, 72

model, 34, 228

most general unifier, 58, 246

n-ary, 26

Natural Deduction, 10

Natural Language Understanding, 195

natural language understanding, 266

natural numbers, 44

negation, 14, 66

node, 19, 67, 291

non-symbolic, 117

normal form, 259

noun phrase, 192, 267

noun phrase reference problem, 192,
267

Nullary, 26

object-level, 91, 173, 275

occurs check, 245, 278

Omega Order Logic, 41

one way matching, 115, 240

OR, 70

oset, 185

parameters, 26

paramodulation, 63, 248

Paramodulation conjecture, 64

parent, 19, 57, 291

path, 67, 169, 292

pattern, 240

pattern matching, 239

Peano axioms, 44

Polish, 293

predicate, 26

Predicate Logic, 35, 39

Presburger Natural Arithmetic, 109

primitive recursive, 46

procedure, 55, 268, 274

projection, 252

PROLOG, 268, 273

properties, 26

proposition, 14, 226

Propositional Logic, 23

propositions, 4

pruning, 92, 292

psychologically valid, 265

quantifier, 29, 210, 212

rational reconstruction, i, 179

real, 41, 45, 98

recursive, 19, 149

recursive definition, 45, 149

refinement, 68

reflexivity, 42, 64, 65

refutation system, 56, 223

relations, 26

Resolution, 259

resolution, 57, 223, 248

Resolution procedure, 223

resolvant, 57, 276

restriction, 181

Reverse Polish, 293

rewrite, 114

rewrite rules, 114, 149, 166, 259

rewriting, 115

rewriting rule of inference, 114

rigid, 254

Appendix D 327

root, 14, 72, 291

satisfiable, 35, 230

schema, 197, 294

score, 78, 276

search graph, 72

search strategy, 76

search tree, 68, 164, 234, 275

Second Order, 39

selection criteria, 166

self denotation, 225

semantic checking, 135, 281

Semantic Nets, 293

semantic tree, 14, 31, 224

semi-decision procedure, 37, 256

sentence, 30, 209, 230

set of support, 73

similar, 114

similarity relation, 114

Skolem constants, 57, 67, 212

Skolem functions, 57, 212

SL Resolution, 70

slots, 184, 295

Soundness Theorem, 233

standardized apart, 59

standarized apart, 219

structural modification, 181

substitution, 31, 64, 239

substitution axiom, 43

subsumed, 71

subsumption checking, 71

successor, 44

Sup-Inf Method, 101

syllogisms, 3

symbolic, 117

Symbolic Evaluation, 152

symbolic evaluation, 117

symmetry, 42, 64, 65

target, 240

tautology, 22

terminate, 118

terms, 26

ternary, 26

Third Order Logic, 40
tip, 14, 19, 232, 291
top clause, 72
totally ordered, 98
transitivity, 43, 64, 65
tree, 14, 19, 68, 291
truth, 41
truth functional, 14
type, 99, 184, 195

ugly expression, 154
unambiguous, 122
unary, 26
undecidable, 24, 37, 101
unflawed induction, 156
unifiable, 246
unification, 58, 239
uniform, 86
Uniformly Continuous, 29
uniqueness, 43, 204
Uniqueness test, 204
universal quantifier, 29, 66
universe, 32, 141, 224
unsatisfiable, 35, 220, 224
upper bound, 99

value, 33
variable, 26
variadic, 48

weakly equivalent, 213
weight, 217
worth, 188

	Introduction
	Why read this book?
	What good is Automatic Mathematical Reasoning
	The Historical Perspective
	Mathematical Logic
	Psychological Studies
	Automatic Theorem Proving

	Summary

	I Formal Notation
	Arguments about Propositions
	Truth Functional Connectives
	Negation
	Conjunction
	Disjunction
	Implication
	Double Implication

	Propositional Formulae
	Semantic Trees
	Equivalences
	Tautologies and Contradictions
	Identifying Correct Arguments - Part 1

	Summary

	The Internal Structure of Propositions
	Functions and Predicates: Variables and Constants
	The Status of Variables
	The Meaning of Formulae
	Interpretations
	Interpreting Formulae
	Some Definitions

	Identifying Correct Arguments - Part 2
	Summary

	Miscellaneous Topics
	Higher Order Logics
	Variable Functions and Predicates
	Functionals
	Lambda Abstraction
	Omega Order Logic

	Mathematical Theories
	Equality
	Group Theory
	Natural Number Arithmetic

	Some Practical Hints
	Function or Predicate?
	An Advantage of Avoiding Functions
	Variadic Functions and Predicates
	Representing Negation
	The Importance of a Semantics

	Summary

	II Uniform Proof Procedures
	Formalizing the Notion of Proof
	The Resolution Rule
	Stage 1 – Variable Free Resolution
	Stage 2 – Binary Resolution
	Stage 3 – Full Resolution
	Factoring

	Kowalski Form
	The Paramodulation Rule
	Summary

	Searching for a Refutation
	Following Your Nose
	Representing Choice
	AND choices and OR choices
	Preventing Looping
	Choosing Where to Start
	Non-Horn Clauses, Case Analysis and Ancestor Resolution
	How to Make OR Choices
	Depth First Search
	Breadth First Search
	Heuristic Search

	Summary

	Criticisms of Uniform Proof Procedures
	The Contribution of Logic
	A Resolution Proof and the Combinatorial Explosion
	Attempts to Guide Search
	Paramodulation
	Cheating Techniques

	Analysing Human Proofs
	Alternative Axiomatization
	A New Methodology
	Summary

	III Guiding Search
	Decision Procedures for Inequalities
	Axioms for Inequalities
	Some Human Proofs
	Types
	The Sup-Inf Method
	Bledsoe Real Arithmetic
	An Overview of the Method
	Assigning Types to Skolem Constants

	Variable Elimination
	An Overview of the Extended Procedure
	Elimination of Variables using Interpolation

	Summary

	Rewrite Rules
	What are Rewrite Rules?
	Some Sample Rewrite Rule Sets
	Literal Normal Form
	Algebraic Simplification
	Evaluation

	Termination
	Other Important Properties
	Applying Rewrite Rules
	Inside Out Application
	Outside In Application

	Proving Rules Canonical and Church-Rosser
	Local Confluence
	Critical Pairs
	Improving Non-Confluent Rule Sets

	Summary

	Using Semantic Information to Guide Proofs
	Formalising Geometry
	Geometric Proofs
	Constructions
	What is the Diagram?
	Can the Diagram be Generalized?
	The Trouble with Non-Horn Clauses
	The Theoretical Underpinning for Semantic Checking
	Summary

	The Productive Use of Failure
	The Formal Theory of LISP
	Symbolic Evaluation
	The Method of Induction
	Generalizing the Theorem to be Proved
	Applications to Arithmetic
	Summary

	Formalizing Control Information
	Reading Between the Lines
	Equation Solving Methods
	Isolation
	Collection
	Attraction

	Reasoning About Problems and Methods
	Defining the Methods with Axioms
	Searching for a Solution
	Meta Level Reasoning

	Summary

	IV Mathematical Invention
	Concept Formation
	How Definitions and Conjectures Can Be Made
	Operations of Concept Formation
	Creating New Concepts
	Finding Examples of Concepts
	Checking Examples of Concepts
	Making Conjectures

	Formalizing the Knowledge
	Initial Concepts
	Formalizing Operations

	Concept Formation as Heuristic Search
	The Performance of AM
	Summary

	Forming Mathematical Models
	Keyword Replacement
	Formalising the Intermediate Representation
	Bridging the Gaps
	Extracting Equations from the Intermediate Representation
	Choosing Equations
	Meta-Level Knowledge
	Summary

	V Technical Issues
	Clausal Form
	Prenex Normal Form
	Skolem Normal Form
	Skolemizing Non-Prenex Formulae
	Conjunctive Normal Form
	Clausal Form
	Weak Equivalence
	The Meaning of Formulae in Conjunctive Normal Form
	Summary

	Herbrand Proof Procedures
	The Significance of Herbrand's Theorem
	Herbrand Interpretations
	A Worked Example
	The Proof of Herbrand's Theorem
	The Resolution Procedure
	The Soundness and Completeness of Resolution
	Summary

	Pattern Matching
	One Way Matching
	Combining Substitutions
	Unification
	Symmetric Application of Substitutions
	Occurs Check
	General Unification
	Theoretical Properties of gen-unify

	Building-In Axioms
	Associative Unification
	Theoretical Properties of assoc-unify

	Lambda Calculus Unification
	F-Matching
	Building-in the Laws of Lambda Calculus
	The Laws of Lambda Calculus
	The Lambda Unifiability Procedure
	Theoretical Properties of lambda-unifiable

	Summary

	Applications of Artificial Mathematicians
	Algebraic Manipulation Systems
	Automatic Theorem Proving
	Computer Assisted Instruction
	Understanding Student's Subtraction Errors
	What BUGGY Does
	A Model for Subtraction
	Psychological Validity

	Determining the Meaning of English Text
	Logic Programming
	Summary

	Some Artificial Mathematicians Written in PROLOG
	The Language of Trees
	Alternative Notation
	Solutions to the Exercises

