
Anonymous Opinion Exchange over Untrusted Social
Networks

Mouna Kacimi
Max Planck Institute for

Informatics
Saarbrucken, Germany

mkacimi@mpi-inf.mpg.de

Stefano Ortolani
Vrije Universiteit

Amsterdam, The Netherlands
ortolani@few.vu.nl

Bruno Crispo
University of Trento

Trento, Italy
crispo@disi.unitn.it

ABSTRACT
Social networks are the fastest growing Internet applications.
They offer the possibility to get in touch with current friends,
discover where the old ones are, and make new ones. While
these applications are a great enabler for our social life, they
are also well known to fall short on privacy. The lack of ade-
quate privacy enhancing technology is particularly important
in these applications due to the nature of information they
deal with, and the fact that many users are underage. This
paper provides a contribution in this direction by present-
ing a protocol, tailored for social network applications, that
allows users to ask and/or submit personal opinions while
preserving their anonymity.

1. INTRODUCTION
Online social networks are one of the most successful

stories in the life of Internet. For an increasing num-
ber of people, a big part of their social life is now en-
tirely built and developed online. The most popular
platforms claim tens of millions of users, where a good
portion of them spend several hours a day using such
platforms. Users can publish their personal content
and share it with other people in the network. More-
over, they can create social relations with their friends
(from real life), discover new people with common in-
terests, express opinions and exchange comments about
disparate subjects and topics. Examples of social net-
work platforms include Facebook, MySpace, Flickr and
Orkut.

The impact such networks may have on users’ pri-
vacy raises serious concerns [16, 12]. Most users share
and exchange private information without a clear un-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SNS’09, March 31, 2009, Nuremberg, Germany.
Copyright 2009 ACM ISBN 978-1-60558-463-8 ...$5.00..

derstanding of the possible consequences. The reason
is that users are not in control of where information
will be stored and how it is used by other users and
by the platform. Thus, privacy enhancing technologies
(PETs), specifically tailored for online social networks,
are sorely needed.

This paper presents a protocol that allows anony-
mous opinion exchange among users. Such anonymity
is still needed today to avoid serious consequences of
what people could say. For example, in countries with
oppressive regimes, citizens are not free to express dis-
agreement or criticism about their government. Thus,
anonymity in such environments is an important step
towards freedom of speech. Furthermore, by imple-
menting anonymous opinion exchange, the protocol ad-
dresses the problem of the spiral of silence. 1

Existing solutions [5, 6, 3] providing anonymous in-
formation sharing rely on a global knowledge of the net-
work topology. This knowledge cannot be realistically
assumed in online social network applications. Addi-
tionally, they require the requestor to know the respon-
der in advance . For these reasons, existing solutions
cannot be adopted to solve the problem presented in
this paper. In social networks, users do not know the
connectivity graph. Thus, the proposed protocol re-
lies only on local knowledge for transmitting informa-
tion. Additionally, since the protocol aims to preserve
anonymity, the requestor does not know who the re-
sponder (if any) will be.

This paper proposes a new friends-to-friends deliv-
ery protocol allowing anonymous and private sharing of
opinions between a large number of users. This mecha-
nism is deployed (1) over an untrusted network and (2)
in the presence of a central infrastructure, such as the
servers of the online platform. To achieve anonymity of
both requestors and responders, queries and answers are
forwarded via trusted links (friends). Queries and an-
swers travel hop-by-hop in the friendship graph. Each

1As the spiral of silence theory[11] asserts, a person belong-
ing to the minority is less likely to voice an opinion on a
topic for fear of reprisal or isolation from the majority.

26

intermediary node in the graph changes the requestor’s
address in the query to its own address before forward-
ing it to its friends. The same process is done for the an-
swers. In this way, no user can know where queries and
answers come from. The protocol guarantees respon-
der’s anonymity against any other user of the network
and also against the central platform. By contrast, re-
questor’s anonymity is protected against any other user
of the network, but not against the platform that (po-
tentially) can observe and store all the traffic of the
network. Additionally, the privacy of queries and an-
swers is preserved against users that are not traversed
in the communication paths, and against the central
platform.

The key innovation of the proposed protocol is that it
relies on an existing real-world social network that cap-
tures real friendship relations. Relying on real friend-
ships to exchange encryption keys and to deliver mes-
sages increases the robustness of the system against at-
tacks. Since users are friends in real-world, they can
exchange cryptographic keys by existing out-of-band
channels, without the need to establish an additional
secure infrastructure for this purpose.

Messages are transmitted via trusted friendship links.
One way of violating the system is to inject an attacker
along the message path. Attackers can easily create
fake accounts, though they cannot create fake relations
since they represent real friendships. It is also impor-
tant to note that, using this protocol, the damage of a
misbehaving friend is confined to a single hop and does
not propagate beyond that.

The rest of the paper is organized as follows. Section
2 introduces the system model used for anonymous ex-
change of opinions in a social network. Section 3 ex-
plains the attack model. Section 4 describes the main
concepts of the protocol. Section 5 presents some se-
curity analysis. Section 6 presents experiments with a
real-world dataset to study the feasibility of the proto-
col. Section 7 presents related work and puts it into
context and Section 8 concludes the paper.

2. THE SYSTEM MODEL
This section outlines the system model used to ex-

change private information in a social network. This
model reflects, as much as possible, how social network
platforms (e.g., Facebook) are used and implemented.
The platform is considered to be logically centralized.
Thus, it can monitor, store, block, inject and modify
any message that goes through it. Users access the
platform by means of a client (i.e., browser) that im-
plements encryption and decryption.

Formally, the network of friends is modeled as a graph
consisting of N nodes. Behind each node i there is a hu-
man user (the node’s owner). The edges of the graph
represent friendship relations between users’ nodes. A

user owning a node i is willing to share her opinions only
with nodes owned by people she trusts - this is denoted
as i’s friend subset - Fi. It is assumed that the friend-
ship relation is commutative; for any two nodes i and j,
if i is in Fj , then j is in Fi. However, friendship is not
transitive (the friend of a friend is not automatically a
friend). Since these friendship relations exist in real life,
it is assumed in this model that friends share pairwise
symmetric keys exchanged via out-of-band mechanisms.
The key is then inserted and stored locally in the client,
and never shared with or exchanged using the platform.

The protocol, proposed in this paper, is envisaged
to be used for exchanging textual queries and answers.
Queries, submitted by users, concern some topics that
are generally not openly discussed. Examples of queries
are: how is the working environment at Pyanair? or
what is the salary of a junior programmer at Groogle?.
Upon receiving these questions, users can anonymously
give answers to avoid bad consequences [18]. Examples
of answers are: As a flight attendant at Pyanair, I have
a very busy schedule and I can be called in anytime.
Moreover, the salary is one of the lowest compared to
other airlines, or I work at Groogle and I get 60K Euro

The maximum length l of queries and answers is fixed
(i.e. 50Kbyte). A query/answer always fits into a log-
ical block of size l before being encrypted. In case
queries/answers are shorter, the block is filled with
padding. This prevents well known attacks relying on
the different lengths messages may have.

3. ATTACK MODEL
A successful attack manages to reveal the identity of

a requestor and/or a responder. We will show that our
protocol can protect the anonymity of both requestors
and responders against any other user of the system.
This includes friends involved in message forwarding
and users who try to violate the system. Additionally,
the protocol guarantees responders’ anonymity against
attacks mounted by the platform. However, it does
not protect requestor’s anonymity against the platform.
Recall that the platform is a very powerful attacker
since it knows all relations between all users, and it can
monitor and store all exchanged messages. Moreover, it
can create fake accounts; however, it cannot create fake
relations since they are based on real friendships. The
platform can mount denial of service attacks(DoS) by
blocking messages to be delivered. Since these attacks
do not break users’ anonymity, protection against them
is outside the scope of this paper.

The protocol assumes that the underlying crypto-
graphic algorithm is secure. Encryption and decryption
of messages are executed on the user’s client and not on
the platform. The security of such clients is assumed
and it is beyond the scope of this paper. Recall that
the main goal is to protect the anonymity of requestors

27

and responders and not the confidentiality of the an-
swers. Thus, it is worth mentioning that the protocol
also provides confidentiality of the answers against the
platform and against eavesdroppers (other users that
are not in the path traversed by the query).

4. THE PROTOCOL
This section presents a protocol for anonymous opin-

ion exchange in social networks. The first step toward
ensuring privacy of communication is to encrypt mes-
sages exchanged by users. They can then be safely
propagated via the network, and decrypted by the lo-
cal clients. Each user can establish a cryptographically
secure connection between its node and all the nodes
in its friends’ subset. Since the owners of the nodes
are assumed to be friends in real life, the shared se-
crets needed to establish these secure connections can
be agreed-upon by out-of-band means. Once estab-
lished, the inter-friends secure communication links are
used for exchanging opinions

Users are interested in getting opinions not only from
their friends but also from other people in the network.
Since secure connections can be established only be-
tween friends, all messages, including queries and an-
swers, are propagated hop-by-hop from friend-to-friend.
A node, receiving a message from one of its friends,
changes the sender address in the message to its own
address. In this way, each intermediary node does not
know where queries and answers come from.

When a user submits a query to the network, she gets
back a set of answers. To protect the anonymity of re-
sponders against external observers a message transmis-
sion mechanism based on the concept of k-anonymity
[17], is proposed. For each query, the requestor creates
a message that contains the query and k fake answers.
This message will travel hop-by-hop via friendship links.
Every node in the path that has an answer replaces a
fake answer by a correct one. When the search is ter-
minated the message travels back to the requestor. In
this way, during its life time in the network, a message
always contains k answers. At the beginning of the
transmission all the k answers are fake, and at the end
they can be all correct, all fake, or a mixture of both.
Recall that queries and answers travel within a block of
a fixed size, so an attacker cannot distinguish them or
try to infer something based on their lengths.

As described previously, messages are propagated
from friend-to-friend. The requestor node chooses one
of its friend nodes to send the message to. When the
friend’s node receives the message, it chooses one of
its friend nodes (except the one from which the mes-
sage comes from) and forwards the message to it. The
process is repeated until a given stopping condition is
verified. To protect involved parties, friends to which
messages are forwarded must be randomly chosen. The

reason is that users involved in the transmission pro-
cess do not know, and should not know, which user
(or which path) can provide answers. The randomiza-
tion of friends’ selection calls for adopting the random
walk strategy. The random walk is inherently a sequen-
tial process that visits the nodes of a graph one af-
ter the other in a random order. A nice property that
makes the random walk appealing for this application
is that it eventually visits all nodes of the graph [8].
Thus, from a given node i, any node j can (eventu-
ally) be reached with a lower overhead comparing to
flooding-based protocols [14]. The standard random
walk (with one walker) increases the user-perceived de-
lay of successful searches by an order of magnitude [2].
Therefore, instead of sending just one query message,
the requestor’s node sends r messages, and each mes-
sage takes its own random walk. The walkers are inde-
pendent; they may take the same path multiple times,
which increases the number of duplicated messages in
the network. To solve this problem, a state keeping
mechanism is used. State keeping consists of keeping
track of the friends that has been selected by other ran-
dom walkers of the same query. When a node receives a
message, it selects (if possible) a friend among the ones
which have never been selected by other walkers. The
state keeping mechanism reduces the likelihood that a
random walk traverses the same path twice. Note that
state information is kept by the nodes for a very short
time.

Four main components of the protocol were de-
scribed: encryption, hop-by-hop communication, k -
anonymity and random walks. Based on these concepts,
the protocol for one walker is described in the following
paragraphs. The same process is replicated for r walk-
ers.

• The user starts by initiating a query. Then, the user’s
node constructs a message containing the query and a
set of k fake answers of the same size.

• When the node generates the message it starts a
friend discovery phase during which, it discovers on-
line friends. From the set of online friends, the node
randomly chooses one friend to which it forwards the
message after having encrypted it with the key it shares
with that friend. When the message arrives at a par-
ticular node, it is first decrypted and then the following
cases are distinguished:

1. If the node has an answer to the query and there is
at least one fake answer in the received message, it
adds its correct answer by replacing a fake answer.
Then, it forwards the message to one of its friends.
A node which adds a correct answer in the message
needs to forward it to protect its anonymity.

28

2. If the node has an answer to the query and there is
no fake answer in the received message, this means
that the maximum capacity of the message has
been reached. Therefore, the node sends back the
message to the requestor.

3. If the node has no answer and there is no correct
answer in the received message, it always forwards
it. To avoid infinite walking, in case no answers
can be found in the path, a TTL is taken into ac-
count only in this case. If the message does not
have a correct answer and its TTL is 0, each node
that receives it decides either to drop the message
or forward it to the next friend with the same prob-
ability. To avoid some possible attacks there is no
fixed or globally agreed TTL, but rather the TTL
is randomly chosen by the requestor.

4. If the node has no answer and there is at least
one correct answer in the received message, it can
either send back the message to the requestor, or
forward it to the next friend with the same prob-
ability.

• Each node maintains a query table with queries it has
forwarded but for which the query answer process has
not yet completed. Each query table entry maintains
information about the node which has forwarded the
query message to the current node. This information is
used to return the message to the requestor. Note that
in order to be able to recognize correct answers, fake
answers have an agreed format (e.g., a sequence of all
1’s).

Figure 1 shows an example of a user A sending a
message with 4 fake answers. The user A sends the
message to his friend B. User B adds a correct answer
in the message and forwards it to C. User C also adds
a correct answer in the message and forwards it to D.
User D does not have an answer and decides to forward
the message to E. User E does not have an answer and
decides to send the message back to user A using the
hop-by-hop mechanism. User A gets back the message
with 4 answers: 2 correct ones and 2 fake ones.

5. SECURITY ANALYSIS

5.1 Protecting from friends
Attacks from friends are actually the most serious at-

tacks for the proposed application scenario, since users
will be very reluctant to use the protocol if it fails to
protect their anonymity against their close friends. To
protect requestor anonymity, the TTL is randomly cho-
sen in the protocol. Thus, when the requestor sends a
message to the node of its first hop friend, the node can-
not distinguish if (1) it received the message from the
requestor or (2) it received an already exiting message

Figure 1: Asking anonymous opinions in a social
network)

with no correct answers and with TTL different from
zero. To protect the responder anonymity, a node that
inserts a correct answer does not directly send back the
message. In this way, the attack where a friend can de-
duce that the next node is actually a responder is pre-
vented. This attack consists of forwarding a message
containing n correct answers and receiving back from
the node to which the message has been forwarded a
message with n + 1 correct answers. In this case, the
friend can deduce that this node is actually a responder.
This attack is prevented when the responder always for-
wards the message to the next hop after it inserted a
correct answer. Since the next hop node will choose,
with probability of 50% , to send back or forward the
message further, the attacker, in the best case, has no
more than 50% chance of guessing the right responder.
Thus, the protocol offers plausible deniability.

5.2 Protecting from the platform
Suppose the social platform wants to identify at least

one of the users who answered a query. Recall that the
query is sent through the network using a message, for
each walker, containing the query and k answers of the
same length. At the beginning of the query life the an-
swers are fake. Then, they can be replaced by correct
ones when the message travels. As the platform is a
global observer, it can gather all messages and subse-
quently try to identify which user answered the query
by means of comparing them all. As the protocol en-
crypts each message in a hop-by-hop manner, the plat-
form cannot read them. The platform could also apply
some traffic analysis based on messages lengths. How-
ever, because messages with queries and answers (fake
or correct) have all the same fixed length, the platform
cannot identify which message is which. Therefore no

29

Table 1: Key statistics of the Flickr social net-
work used for the evaluation

metric value
#nodes 2841

total #edges 23153
avg. node degree 16.2991

std. dev 22.9511
max degree 340

median degree 7.0

user can be accused by the platform of being a respon-
der.

Another possible attack, carried out by the platform,
would be to monitor encrypted messages since they are
the suspicious ones. The platform considers, as a re-
sponder, each node that starts sending back a message
toward the requestor. The protocol protects against
this type of attack (1) by not using any fixed TTLs
and (2) by using a termination algorithm that intro-
duces uncertainty on how far is the responder from the
node that starts sending back answers (hop-by-hop) to
the requestor. The protocol does not protect requestor
anonymity from the platform. The platform can mon-
itor all messages and perform traffic analysis. Thus,
it can identify the requestor by observing which node
starts a new encrypted thread.

5.3 Protecting from other users
Protection of the anonymity of responders against

other users that are not traversed is guaranteed by
the same arguments used for protecting against the
platform. As described in the previous section, the
anonymity of requestors can be broken only by perform-
ing traffic analysis. Since normal users cannot monitor
messages exchanged by other users they cannot break,
requestors’ anonymity.

5.4 Confidentiality of queries and answers
The confidentiality of each message (queries and an-

swers) against possible attacks from the platform and
from eavesdroppers (users that are not traversed by the
query) is preserved by means of encryption. Each mes-
sage is encrypte, on the local client with different keys
at each hop. As it is assumed that a friend-to-friend
relation is symmetric, each pair of friends F1 and F2

can trivially share a secret key KF1,F2 . The two primi-
tives EncryptKF1,F2

and DecryptKF1,F2
are then imple-

mented by any sufficiently robust symmetric cipher.

6. EVALUATION
One of the main assumptions of this approach is that

for sufficiently large social communities, friendship re-
lationships form a connected graph. We evaluated the
performance of the proposed approach on a dataset

Figure 2: Distribution of node degrees

crawled using snowball sampling from the Flickr so-
cial network website (http://flickr.com/). The crawled
network has a total of 2,841 users and 23,153 symmet-
ric friendship connections. The resulting graph is con-
nected where any node i can be reached from any other
node j. As shown in Figure 2, the node degrees of the
Flickr graph follow roughly a power-law distribution.
Additional statistics about this graph are shown in ta-
ble 1.

A user submits questions to people via her friendship
relations. Answers to those questions are anonymous.
They represent personal opinions about the query sub-
ject. Consider S as the set of subjects for which users
ask questions. For each subject Si, there are U users in
the network that know the subject and α% of them are
willing to give opinions. Considering that these subjects
are private, the group of related users are not explicitly
defined. Note that users belonging to the same group
are not necessarily friends.

Since the proposed protocol deals with private infor-
mation, it is very hard to make assumptions on the
distribution of user groups, subjects, and opinions. For
this reason, the focus in this evaluation is on a case
where realistic assumptions can be made. To this end,
consider the type of questions that ask opinions about
people in the network. The group of users that may
give opinions about a given person A are naturally her
friends. This can also be extended to acquaintances
(friends of friends) by assuming that opinions can also
be given by people who are two hops far from A. Note
that other users who are neither friends nor acquain-
tances of person A can also have opinions built from
previous searches or experiences.

In this evaluation, 100 questions about people in the
social graph and random requestors have been gener-
ated. The queries were run with different configurations
of the protocol to measure its performance. Particu-
larly, its cost and the rate of successful queries. This
two measures have been computed while varying (1) the
number of walkers r initiated by the requestor (2) the
percentage α of users who are willing to give opinions.

30

Figure 3: Success rate

A query is classified as successful if the requestor gets
at least m answers for that query. The parameter m
depends on the user’s needs. In this evaluation, m is
set to 5 answers. Note that, for a given query, m is set
to the total number of existing answers in the network
in case it is less than 5.

The results in table 2 show the protocol cost and the
rate of successful queries depending on the number of
walkers. They show that with only 5% of people giving
opinions there is a high rate of successful queries when
the number of walkers r ≥ 16. Note also that this rate
increases with the number of walkers. At the same time,
a high number of walkers increases the network over-
head in terms of number of messages and hops. Figure
3-a shows the rate of successful searches for different
values of α. The results indicate that with 16 walkers
and only 5% of people who are willing to give opinions,
56% of queries can be answered successfully.

In social networks people are not always online. This
behavior can have an impact on the effectiveness of the
protocol. We have evaluated the protocol in a dynamic
environment where we have measured the rate of suc-
cessful queries in the presence of churn. Figure 3-b
shows that when using 32 walkers there is a reason-
able rate of successful queries of 48% when only 5%
of people are willing to give opinions and 50% random
users (including those who might give opinions) are of-
fline. These results show that the protocol is feasible in
dynamic social networks.

7. RELATED WORK
Gross et al. [7] studied privacy in social networks.

They showed how users often underestimate the disclo-
sure of privacy by using such platforms. Several works
tried to assess the privacy disclosure of different activi-
ties performed on platforms like Facebook. As messag-
ing is one of the most common activities [4], Lucas et al.
[9] proposed a system to mitigate the privacy risks of
sending messages among a group of users. They propose
an application tailored for Facebook where, by means
of an external platform, encrypted messages could be
delivered between users. However, they do not address
the problem of preserving the anonymity of users within
social network platforms. To tackle this problem, the
protocol, presented in this paper, applies the concept
of responder k-anonymity where an adversary can only
narrow the list of suspects down to a set of k users.
Moreover, external resources that users have to trust
are not involved.

Manna et al. [10] use friendship relations to define
access lists on published data. Popescu et al. [13] pro-
pose Turtle where they exploit friend-to-friend relations
to share private data on a peer-to-peer network. Tur-
tle ensures requestor and responder anonymity w.r.t. a
local eavesdropper. It relies on trusted friendship rela-
tions to exchange symmetric keys for message encryp-
tion. The approach takes the main idea of friend-to-
friend relation and extend the query protocol by means
of random walks. As Turtle uses flooding to spread the
query across the graph, the solution proposed in this
paper significantly improves the efficiency of the pro-
tocol; moreover responder’s anonymity w.r.t. a global
eavesdropper is provided.

The concept of requestor’s anonymity was first intro-
duced in Crowds [15] where groups of users collectively
issue requests on behalf of its members. The origina-
tor of the message is then disguised. Later on, Ahn
et al. [1] introduced the concept of requestor and re-
sponder k-anononymity2 to provide protection against
a global eavesdropper. Dingledine et al. [3] propose
Tor, a circuit-based low-latency anonymous communi-
cation service. The protocol requires users to establish
end-to-end circuit where the requestor knows the re-
sponder in advance. This mechanism cannot be used in
the setting of this paper since the requestor should not
know who the responder is.

8. CONCLUSION
This paper introduces a protocol to provide anony-

mous exchange of opinions over untrusted social net-
works. The protocol is based on a friend-to-friend de-
livery mechanism allowing private and secure sharing of

2The concept of k-anonymity was originally formulated by
Sweeney in [17]

31

Table 2: Protocol Performances (α = 5%)
metric r = 2 r = 4 r = 8 r = 16 r = 32 r = 64 r = 128 r = 256
msgs 96.81 211.18 458.63 951.99 2215.64 5268.35 12227.83 27185.54

avg # msgs/node 1.03 1.10 1.23 1.46 2.02 3.23 5.73 10.65
% visited nodes 3.19% 6.45% 12.42% 21.67% 36.83% 55.80% 74.37% 89.58%
avg # answers 1.17 2.1 4.01 7.29 12.35 17.58 20.77 22.09

% successful queries 8% 10% 59% 87% 94% 99% 100% 100%

sensitive information between a large number of users.
The main adversary of this protocol can be the so-

cial network platform itself since it has global knowl-
edge about the network traffic. This paper has focused
on how to protect responders’ anonymity against the
platform. In future work the problem of protecting re-
questors’ anonymity from the platform as well will be
addressed.

9. REFERENCES
[1] L. Ahn, A. Bortz, and N. Hopper. k-anonymous

message transmission. CCS ’03: Proceedings of
the 10th ACM conference on Computer and
communications security, Oct 2003.

[2] E. Cohen and S. Shenker. Replication strategies
in unstructured peer-to-peer networks. The ACM
SIGCOMM02 Conference, pages 177–190, August
2002.

[3] R. Dingledine and P. S. N. Mathewson. Tor: The
second-generation onion router. In Proceedings of
the 13th USENIX Security Symposium, pages
303–320, 2004.

[4] A. Felt and D. Evans. Privacy protection for
social networking apis. W2SP 2008: Web 2.0
Security and Privacy 2008, Jan 2008.

[5] M. J. Freedman and R. Morris. Tarzan: A
peer-to-peer anonymizing network layer. In
Proceedings of the 9th ACM Conference on
Computer and Communications Security ,
year=2000.

[6] N. M. G. Danezis, R. Dingledine. Mixminion:
Design of a type iii anonymous remailer protocol.
In Proceedings of the IEEE Symposium on
Security and Privacy, 2003.

[7] R. Gross and A. Acquisti. Information revelation
and privacy in online social networks (the
facebook case). Proceedings of the 2005 ACM
workshop on Privacy in the electronic society,
pages 71–80, 2005.

[8] L. Lov and O. P. Erdos. Random walks on
graphs: A survey. In Eighty, Vol. 2, 1993.

[9] M. Lucas and N. Borisov. Flybynight: mitigating
the privacy risks of social networking. Proceedings
of the 7th ACM workshop on Privacy in the
electronic society table of contents., Jan 2008.

[10] M. Mannan and P. Oorschot. Privacy-enhanced

sharing of personal content on the web. WWW
’08: Proceeding of the 17th international
conference on World Wide Web, Apr 2008.

[11] Noelle-Neumann. The spiral of silence: a theory
of public opinion. Journal of Communication. 24,
43-51, 1974.

[12] G. P. of Jaiku Raises New Privacy Issues.
http://www.nytimes.com/2007/10/22/technology/
22wireless.html, 2007.

[13] B. Popescu, B. Crispo, and A. Tanenbaum. Safe
and private data sharing with turtle: Friends
team-up and beat the system. Proc. of the 12th
Cambridge Intl. Workshop on Security Protocols,
2004.

[14] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker.
Search and replication in unstructured
peer-to-peer networks. In Proceedings of the 2002
ACM SIGMETRICS international conference on
Measurement and modeling of computer systems,
2002.

[15] M. Reiter and A. Rubin. Crowds: anonymity for
web transactions. ACM Transactions on
Information and System Security, 1(1):66–92,
1998.

[16] N.Y.T. One Friend Facebook Hasnt Made Yet:
Privacy Rights.
http://www.nytimes.com/2008/02/18/
opinion/18mon4.html, 2008.

[17] L. Sweeney. Achieving k-anonymity privacy
protection using generalization and suppression.
Internation Journal of Uncertainty Fuzziness and
Knowledge Based Systems, 10(5):571–588, 2002.

[18] Telegraph.co.uk. Office worker sacked for
branding work boring on facebook
http://www.telegraph.co.uk/scienceandtechnology/
technology/facebook/4838076/
office-worker-sacked-for-branding-work-boring-on-
facebook.html,
2009.

32

