
Docker & Web Service API
Intro Workshop

.

14 June 2021

Schedule Day 1

Activity Helsinki Time

Tools and terms intro 11:00-11:45

Docker & API, example 1 11:45-12:15

Break 12:15-13:15

Docker & API, example 2 13:15-13:45

Q&A 13:45-14:00

Schedule Day 2

Activity Helsinki Time

In case we didn’t have time for something
on Day 1

14:00-14:30

Q&A - Bring your problem - We’ll try to help 14:00-16:00

SaaS < PaaS < IaaS

● Google Cloud, Azure, AWS
● And, the European Language Grid (ELG)

○ “Our main objective is to address fragmentation in the European
Language Technology business and research landscape by
establishing the ELG as the primary platform for Language
Technology in Europe and to strengthen European LT business with
regard to the competition from other continents.”

○ “The ELG will be a platform for commercial and non-commercial
Language Technologies, both functional (running services and tools)
and non-functional (data sets, resources, models).”

https://www.computerworld.com/article/3429365/aws-vs-azure-vs-google-whats-the-best-cloud-platform-for-enterprise.html
https://www.european-language-grid.eu/

1. Identify suitable (open source)
NLP tools

2. Dockerise the NLP tools
3. Share information about the

methods and results

Project Objectives

Objective 2: Dockerize NLP Tools

1. Add a web service API to the tool
2. Create a Docker image for the tool
3. Create how-to instructions for new users
4. Store the Docker image in a docker registry
5. Integrate the image with the European Language Grid
6. List the image on ELRC-SHARE repository

https://www.european-language-grid.eu/
https://elrc-share.eu/

Web Service API & Docker
Workshop

Pre-Workshop

● Find an open source tool that you would like to dockerise, ideally one
you are familiar with how it works.

○ In the simplest case, you have access to an installable script/package
which does something with the tool (e.g. decode, annotate, …)

○ The workshop will focus on Python, but it shouldn’t be too difficult for
you to adapt it for e.g. Java

● Docker documentation: https://docs.docker.com/
● Docker getting started: https://docs.docker.com/get-started/
● Installing Docker engine: https://docs.docker.com/engine/install/

○ Please, install (at least) Docker engine before the workshop
○ The workshop examples are made in some Linux version

● This workshop is aimed at getting beginners started. More
advanced people are welcome, especially to assist the organisers with
helping the beginners

https://docs.docker.com/
https://docs.docker.com/get-started/
https://docs.docker.com/engine/install/

Workshop Target

● Introduce some terminology and tools
● Introduce some links to more material
● Get you prepared for trying it yourself

Disclaimer - this workshop does not include - but we’ll mention some hints
for the future

● CPU & memory - you want your image as small as possible
● Details on WebSocket, REST, … - Google it
● Nvidia-docker - if you got GPU tools
● Security aspects - is Docker safe?
● Docker Hub - like gitHub for docker images - needed for ELG
● Kubernetes or Docker compose - container orchestration & scalability

https://www.educba.com/websocket-vs-rest/
https://hub.docker.com/
https://en.wikipedia.org/wiki/Kubernetes

SaaS > Web Service API > REST API

Client = Script to
call the API REST

API

The real tool
Web Server

Client REST API

● Often a sequence of calls with e.g.
○ Curl - commandline linux
○ Python requests

● Call structure: Header(s), Data,
Method, Address

● curl -H "Authorization: Bearer
$TOKEN" -H "Content-Type:
text/plain" --data-binary
"@./path/somefile" -X POST
https://api.xyz.fi/REST/nmt

● HTTP end point
https://api.xyz.fi/REST/nmt

● Defines which HTTP methods the client
can call:

○ POST - send some data, e.g. text
or file, to backend tool

○ GET, PUT, DELETE
● Needs documentation for the client

developer

https://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_web_services
https://docs.python-requests.org/en/master/

Doing Your Own Web Service API

● The Application Programming Interface (API) - i.e. you need some tool behind
the interface too

● The ELG API specs for the REST API for your tool
○ When things go well
○ When things go wrong
○ Standard codes (404 Not Found - sounds familiar?)

● The Python Flask package for implementing a REST API for your tool
● The ELG Python SDK, including a package for creating the docker & web

service with Flask and an example

https://european-language-grid.readthedocs.io/en/stable/all/A3_API/LTInternalAPI.html
https://www.restapitutorial.com/httpstatuscodes.html
https://pythonbasics.org/flask-rest-api/
https://european-language-grid.readthedocs.io/en/stable/all/A1_PythonSDK/PythonSDK.html
https://european-language-grid.readthedocs.io/en/stable/all/A1_PythonSDK/TutoServiceIntegration.html

What is Docker?

● Wikipedia says: “[Docker is] a set of platform as a service (PaaS) products
that use OS-level virtualization to deliver software in packages called
containers.”

● Image (the shareable software package) - Container (the running
software package)

● Makes it easy to install tools with different dependencies/OS on same host
machine

● Makes it easy for others to install & use the tool
○ Previous years machine translation/parsing/whatnot systems for

scientific challenges
○ Previous years software development examples for students
○ …

● Makes it easy to create microservice architecture

https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/OS-level_virtualization

Microservice Software Architecture

3rd Party
Cloud API

(REST) API

(Kubernetes)

Clients
● = NLP component in Docker container

● Easy integration of open source and 3rd party
components

● Easy extension to new languages and
functionality

● Easy replacement of components

Docker Images and Containers

● Docker pull ubuntu:20.04
○ Get your base image from a Docker registry e.g.

https://hub.docker.com/
● Dockerfile

○ Usually starting from a “base” image, e.g. Ubuntu 20.04
○ List of instructions: tools to install, commands to run, ...

● Docker build --help
○ Build a distributable image from the Dockerfile

● Docker run --help
○ Create a running container with whatever you packed in the image,

e.g. a text tagger, a machine translation web-demo, …
● Docker push

○ Publish your updated image on e.g. https://hub.docker.com/
● (That container orchestration thing that is not included in this workshop)

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Some Useful Commands, part 1

Command Comment

docker image/container list Lists images/containers on the machine, and info
on e.g. memory & connected port

docker ps -a lists containers more thoroughly than above
command

docker system df [-v] How much space does the images/containers
take. Good to check. One can easily fill up space
by accident as a beginner.

docker image prune [-a] Deletes unused “dangling” images and frees up
space.

docker stop container_name/ID Stops “pauses” a running container

docker rm container_name/ID Deletes a container

Some Useful Commands, part 2

Command Comment

Docker run --volume local_dir:container_dir
--publish localport:containerport --name
container_name image_name

Usually put in a shell script

Docker exec -it container_name bash In my case, to get a bash prompt. But, you can
use it to run (any?) commands in the container

Docker attach container_name Attach stdin & stdout & stderr. See what’s going
on inside the container.

Ctrl-p ctrl-q Detach (“hop off”) from a running container. Ctrl-D
might also do what you need.

Step-by-step: FinBERT simple

FinBERT Simple Flask & Docker Example

● The sample code was emailed in a zip file. If you did not get it, please
email: sebastian.andersson@lingsoft.fi

● On some systems, you need sudo to use docker commands
● Check on your system with: (sudo) docker image list

○ If you don’t have ubuntu 18.04 as image, then:
○ Docker pull ubuntu:18.04

■ It pulls it from https://hub.docker.com/
○ The example probably works with other ubuntu/python base images

too, but then you need to Edit the first line “From…” in the Dockerfile

mailto:sebastian.andersson@lingsoft.fi
https://hub.docker.com/

FinBERT Simple: Needed files

● In folder docker_example
○ Dockerfile #Instructions for docker build
○ serve.py #REST API definition & run web server
○ templates/index.html #needed by serve.py
○ templates/result.html #needed by serve.py
○ static/finbert.png #needed by serve.py

FinBERT Simple: Dockerfile

● Dockerfile

#Specify the base image

FROM ubuntu:18.04

#Install basic tools

RUN apt-get update -y

RUN apt-get install -y python3-pip python3-dev

RUN pip3 install --upgrade pip

RUN pip3 install happytransformer flask

#Copy files onto the container, and run the serve.py

EXPOSE 8866

COPY ./ ./

CMD ["python3", "serve.py"]

FinBERT Simple: build, run & test

1. Build the container. Needs to be run in the same folder as the Dockerfile:
sudo docker build -t finbert-demo . (NOTE: the dot is needed)

2. Run the container in the background. Can be done in any folder. sudo
docker run -d -p 0.0.0.0:8866:8866 --name localbert-demo
finbert-demo

3. List containers: sudo docker ps -a
4. Test with curl: curl -X POST -d 'sentencein=esimerkiksi SANA on

viimeaikoina ollut esillä .' http://0.0.0.0:8866/predict_json
5. More Finnish example sentences:

○ Tämän viikonloppuna vietetään pääsiäistä, johon kuuluu paljon SANA
ja herkkuja.

○ Se oli silti yli 40 prosenttia korkeampi kuin viime viikon maanantaina,
jolloin todettujen SANA määrä alkoi nousta.

○ Huomenna minä menen SANA .

http://0.0.0.0:8866/predict_json

Step-by-step: Turku Neural Parser
Pipeline

Turku Neural Parser Pipeline

● Complex parser pipeline with several steps running as sub-processes and
requiring a GPU to run fast enough

● Code:
○ https://github.com/TurkuNLP/Turku-neural-parser-pipeline/tree/diapar

ser
○ Note: “diaparser” branch is the correct one
○ This is a new branch which uses the diaparser dependency parser at its

core
○ Not yet fully complete but will do for this tutorial, as it is much easier

to install

https://github.com/TurkuNLP/Turku-neural-parser-pipeline/tree/diaparser
https://github.com/TurkuNLP/Turku-neural-parser-pipeline/tree/diaparser

Turku Neural Parser Pipeline

● Steps to install
○ Clone code from GitHub (possibly install using setup.py)
○ Pip-install required packages
○ Fetch a trained model for your language

● Steps to run
○ Directly in python via import
○ Let us have a look
○ https://github.com/TurkuNLP/Turku-neural-parser-pipeline/blob/diapar

ser/tnpp-parse
○ Simple http API done with flask

● Everything needed to run it is summarized here:
○ https://colab.research.google.com/github/TurkuNLP/Turku-neural-pars

er-pipeline/blob/diaparser/docs/tnpp_diaparse.ipynb

https://github.com/TurkuNLP/Turku-neural-parser-pipeline/blob/diaparser/tnpp-parse
https://github.com/TurkuNLP/Turku-neural-parser-pipeline/blob/diaparser/tnpp-parse
https://colab.research.google.com/github/TurkuNLP/Turku-neural-parser-pipeline/blob/diaparser/docs/tnpp_diaparse.ipynb
https://colab.research.google.com/github/TurkuNLP/Turku-neural-parser-pipeline/blob/diaparser/docs/tnpp_diaparse.ipynb

TNPP - flask

● Minimal flask APP to run the parser
● Let us walk through it:
● https://github.com/TurkuNLP/Turku-neural-parser-pipeline/blob/diaparser/t

npp_serve.py

https://github.com/TurkuNLP/Turku-neural-parser-pipeline/blob/diaparser/tnpp_serve.py
https://github.com/TurkuNLP/Turku-neural-parser-pipeline/blob/diaparser/tnpp_serve.py

TNPP - dockerfile

● A simple Docker file for the parser
● Let us walk through it
● https://github.com/TurkuNLP/Turku-neural-parser-pipeline/blob/diaparser/Dockerfile.server
● docker build -f Dockerfile.server -t tnpp-fi-server .

● This builds based on the .server docker file, tags the image as tnpp-fi-server, the
build is based on the current directory (so this needs to be run in the top
directory of the parser)

https://github.com/TurkuNLP/Turku-neural-parser-pipeline/blob/diaparser/Dockerfile.server

TNPP - run in docker

● docker run -it -p 5000:7689 tnpp-fi-server
● This will run interactive (easy to ctrl-c)
● Map container’s port 7689 onto local machine’s port 5000
● ...and there it should be running
● You can try GET on http://localhost:5000
● You can try POST like this:
● curl -X POST -d 'Minulla on kissa' localhost:5000

http://localhost:5000

TNPP - GPU acceleration

● https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
● https://ngc.nvidia.com/catalog
● You can base your image off one of these
● docker build -f Dockerfile.server.gpu --build-arg MODEL=fi_tdt_dia

-t tnpp-fi-server:latest-gpu2 .
● The only change in the Dockerfile:

FROM nvcr.io/nvidia/pytorch:20.06-py3

● How to run:

nvidia-docker run --rm -it -p 5000:7689 tnpp-fi-server:latest-gpu2

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
https://ngc.nvidia.com/catalog

Q & A from live sessions

Question Answer

Is there a way to reduce build context? Yes.
https://docs.docker.com/engine/reference/builder/#
dockerignore-file

Does the Cuda versions need to match between
host & docker image?

No. But, the host GPU drivers needs to match the
cuda version on the image. See also GPU example
in this presentation.

How do I give a compiled version of my tool with
the image?

In the Dockerfile, but there are many ways: add
compile commands as instructions or copy the
executable onto the image or… Example:
WORKDIR MyThing/build
RUN cmake MyThing && make -j

How does one reduce the image size? There are many ways. Here are some guidelines
for the Dockerfile using multi-stage build

https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/develop/develop-images/multistage-build/

Contact

Sebastian Andersson
Solution Architect
sebastian.andersson@lingsoft.fi

www.lingsoft.fi

Eteläranta 10, FI-00130 Helsinki, Finland

Kauppiaskatu 5A, FI-20100 Turku, Finland

+358 2 2793 300

mailto:sebastian.andersson@lingsoft.fi
http://www.lingsoft.fi

