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Abstract: This article introduces the theory of spacetime impetus (SI). The theory unites

Newtonian theory (NT) and the theory of general relativity (GR). To develop SI, we reformulated

NT in spacetime and replaced the particle primitive in NT with the fragment of energy primitive in

field theory. SI replaces Newton’s second law F¼ma governing the motion of particles, where F,
m, and a are, respectively, interaction force, mass, and acceleration, with the change equation P¼ k
governing the motion of fragments of energy, where P and k are, respectively, action force and the

curvature of a path in spacetime. To verify SI, we conducted three tests: Test 1 predicted the

precession angles of Mercury and Jupiter, test 2 predicted the bending angle of light as it grazes the

surface of the sun, and test 3 predicted the radius of the photon sphere. All three tests were in

agreement with GR, the third corresponding to strong Riemannian curvature in GR. The equations

of motion in SI are in terms of Cartesian coordinates and time and are relatively simple to solve.

Undergraduate students in science and engineering and others with similar mathematical skills can

validate the results for themselves. VC 2021 Physics Essays Publication.

[http://dx.doi.org/10.4006/0836-1398-34.4.548]

R�esum�e: Cet article introduit une th�eorie de l’impetus de l’espace-temps (IET). Cette theorie unifie

la Th�eorie Newtonienne (TN) et la Th�eorie de la Relativit�e G�en�erale (TRG) Pour d�evelopper cette

th�eorie, nous reformulons la TN dans l’espace-temps et remplaçons la particule primitive d�ecrite

par la TN par le fragment d’�energie primitive d�ecrit par la th�eorie des champs. Dans cette th�eorie

de l’IET, on remplace la seconde loi de Newton F¼ma qui r�egit le mouvement des particules, o�u
F, m, et a sont respectivement une force d’interaction, une masse et une acc�el�eration, par l’�equation

du changement P¼ k qui gouverne le mouvement de fragments d’�energie, o�u P et k sont respective-

ment une force d’action et la courbure d’un trajet dans l’espace-temps. Afin de v�erifier cette th�eorie

de l’IET, nous avons effectu�e trois tests: Le Test 1 a permis de pr�edire les angles de pr�ecession de

Mercure et de Jupiter, le test 2 a permis de pr�edire l’angle de courbure de la lumière lorsqu’elle

frôle la surface du Soleil, le test 3 a permis de pr�edire le rayon d’une sphère de photons. Les

r�esultats des trois tests sont en accord avec la TRG, le troisième correspondant �a une forte courbure

Riemannienne. Les �equations du mouvement dans la th�eorie de l’IET sont exprim�ees en fonction

de coordonn�ees Cart�esiennes et du temps, et sont assez simples �a r�esoudre. Un �etudiant de premier

cycle en sciences ou en �ecole d’ing�enieur, ou avec des comp�etences math�ematiques similaires,

pourra effectuer les calculs de validation soi-même.

Key words: Bending of Light; Black Hole; Fragment of Energy; General Relativity; Impetus; Newtonian Theory; Photon

Sphere; Spacetime.

I. INTRODUCTION

Impetus expresses the principle that the change in the

state of a primitive results from other primitives, not from

itself. In Newtonian theory (NT) and in electromagnetism

(EM), the primitives are the particle and the wave. In field

theory (FT), the primitive is the fragment of energy.1 This

article introduces a new theory of spacetime impetus (SI)

that employs the fragment of energy primitive. The develop-

ment proceeds as follows. Sections II–IV lay the foundation.

Section II shows that the radial form of the fragment of

energy leads mathematically to relationships between frag-

ments. The relationships show that impetus is naturally a

field concept, not a particle concept. Section III reviews

spacetime and focuses on limiting conditions that are natural

to spacetime that arise when the speed of a fragment

approaches zero at one extreme and the speed of light at the

other. Section IV applies these ideas to the two-body prob-

lem. Section V develops SI. We show that SI is an axiomati-

cally developed mathematical structure that reformulates NT

as a FT. Section VI applies the before mentioned limiting

conditions to the fragment of energy. Section VII presents

empirical results that validate SI. Specifically, we show, with

the limiting conditions, that SI predicts the same precession

angles of Mercury and Jupiter, the same bending angle of
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light, and the same photon sphere radius that the theory of

general relativity (GR) predicts. Test 3 is of particular note,

because it exposes that one does not need to think of the

black hole as a general relativistic phenomenon—associated

with the bending of spacetime. Section VIII provides some

historical context and conceptual results. Specifically, it

compares the classical formulation of impetus in NT with

the new formulation in spacetime, explaining how SI advan-

ces the classical formulation, and for completeness explains

how it answers conceptual questions that were unanswered

by NT. Section IX summarizes the article.

II. FRAGMENTS OF ENERGY

In FT, physical analysis deals with the interaction

between the different parts of a field and physical synthesis

with the recombining of those parts into a whole. Mathemati-

cally, the parts and the whole are scalar or vector functions

of space and of spacetime. The parts are building blocks for

the whole, also called primitives—applicable at different

scales of interest. They are not to be confused with elements,

which possess a particular structure that applies to a particu-

lar scale. One refers to the primitives and to the whole as

energy fields or as energy.

This section of the article examines primitives that have

a radial form and develops mathematical relationships

between them. For simplicity, we shall use light units, for

which the speed of light is equal to 1, and for which we

denote the nondimensional spatial coordinates of a point by

x1, x2, and x3. We start with primitives a and b. They are con-

centrations of energy, which have a radial form—that is,

fragments of energy.1 The two fragments have source points

located at ðxa1; xa2; xa3Þ and ðxb1; xb2; xb3Þ, respectively.

From their source points, they extend radially outward into

space (see Fig. 1). As shown, the fragments have unit vectors

ðea1ea2 ea3Þ and ðeb1eb2 eb3Þ corresponding to the directions

of their motion in spacetime, and they have path curvature

vectors ðka1ka2; ka3Þ and ðkb1kb2; kb3Þ corresponding to the

change in direction of their motion in spacetime, but we will

not say more about them until Section III; focusing here on

spatial considerations alone. We express the fragments math-

ematically by

Aa¢mau rað Þ; Ab¢mbu rbð Þ: (1)

In Eq. (1), ma is the nondimensional mass of fragment a,

and ra¢
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � xa1ð Þ2 þ x2 � xa2ð Þ2 þ x3 � xa3ð Þ2

q
is the

nondimensional spatial distance between any point in space

and its source point. Likewise, for fragment b, we have mb

and rb¢

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�xb1Þ2þðx2�xb2Þ2þðx3�xb3Þ2

q
. We shall

refer to u rað Þ and u rbð Þ as unit fragments. One regards the

masses ma and mb as the intensities of the fragments. Note

that, throughout the article, we employ lower case symbols

for geometric quantities and their derivatives and upper case

symbols for quantities that depend on mass, too.

At this point, the formulation is general. The unit

fragments are merely radial functions, and their radial

form is unspecified. Despite the generality, one can

already see that interesting relationships arise. For exam-

ple, one sees that maAbja ¼ mbAajb because rajb ¼ rbja.

(The notation ðÞja means evaluated at the source point of

fragment a.) Table I lists more relationships.

The relationships between the fragments of energy in

Table I motivate the naming of quantities in Table II with

the term action and interaction, where we appropriated these

terms from the philosophy of science community.c) Table II

defines the named quantities and shows additional relation-

ships deduced from Table I.

Line 1 in Table II defines Pas and Pbs as action forces

that act on fragments a and b, respectively, and deduces rela-

tionships between them in line 4. In line 5, we refer to Fas

and Fbs as interaction forces and deduce the relationships

between them in line 6. Line 7 defines Qat and Qbt as action

moments, respectively, and deduces relationships between

them in line 8. Line 9 defines Mat and Mbt as interaction

moments and deduces relationships between them in line 10.

As shown, one takes the moments about an arbitrary spatial

point (x01, x02, x03), and the triad (r, s, t) is a right-handed set

of distinct indices.

TABLE I. Relationships between fragments of energy.

Radial functions

rajb ¼ rbja¢rab

@ra

@xs
¼ xs � xas

ra

@ra

@xas
¼ � xs � xas

ra

@ra

@xs
¼ � @ra

@xas

@rb

@xs

����
a

¼ �@ra

@xs

����
b

Unit fragments of energy

u rað Þjb ¼ u rbð Þja du rað Þ
dra

����
b

¼
du rbð Þ

drb

����
a

Fragments of energy

maAbja ¼ mbAajb
@Aa

@xs
¼ ma

du rað Þ
dra

@ra

@xs

@Aa

@xas
¼ ma

du rað Þ
dra

@ra

@xas

@Aa

@xs
¼ � @Aa

@xas

FIG. 1. A two-body system of fragments.

c)Action-based theories of perception (2015) https://plato.stanford.edu/

entries/action-perception/
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From Table II, we see in line 1 that forces act along the

line through the source points of the fragments, in line 6 that

interaction forces are equal in magnitude and opposite in

direction, and in line 10 that interaction moments are equal

in magnitude and opposite in direction, too. One skilled in

the art understands that one can extend these relationships

from the single pair of fragments of energy given in Eq. (1)

to a discrete system of n fragments of energy, and further to

a distributed system of fragments (see Appendix B). More-

over, the existence of these field relationships, which rest

solely on Eq. (1) without specifying the forms of the radial

functions, strongly suggests that impetus is a field concept,

not a particle concept as classically believed, and that one

might be able to reformulate the classical conception of

impetus so that it becomes fully consistent with FT.

III. SPACETIME

In FT and in SI, in particular, the field acts over a space-

time domain, not a spatial domain. For simplicity, we shall

continue to use light units. The coordinates of a point in the

domain are t, x1, x2, and x3, where t is the nondimensional

time and the others, as before, are nondimensional spatial

coordinates. The point is along an arbitrary spacetime path.

In this article, it will correspond to the source point of a frag-

ment. The square of the spacetime metric ds associated with

the spacetime path of the point is

ds2¢dt2 � dx2
1 � dx2

2 � dx2
3: (2)

Appendix A gives the spacetime operations, based on

Eq. (2), for the scalar product and for perpendiculars. In

Eq. (2), dt, dx1, dx2, and dx3 are coordinate increments.

Dividing the metric by the time increment dt and the coordi-

nates by the path increment ds

ds

dt

� �2

¼ 1� dx1

dt

� �2

� dx2

dt

� �2

� dx3

dt

� �2

¼ 1� v2
1 � v2

2 � v2
3 ¼ 1� v2; vr ¼

dxr

dt

er¢
dxr

ds
¼ dt

ds
vr ¼ bvr;

b¢e0¢
dt

ds
¼ 1

1 � v2ð Þ1/2

r ¼ 1; 2; 3ð Þ

(3)

In Eq. (3), er (r¼ 0, 1, 2, and 3) are the components of

the unit tangent to the spacetime path (see Fig. 1). Above,

we expressed them in terms of their velocity components v1,

v2, and v3, and their magnitude v. Next, let us calculate

db
ds
¼ dt

ds

db
dt
¼ 1

1� v2ð Þ1=2

vsas

1� v2ð Þ3=2
¼ vsas

1� v2ð Þ2
;

ar ¼
dvr

dt
;

where ar (r¼ 1, 2, and 3) are acceleration components. (We

sum repeated indices from 1 to 3.) From this expression and

Eq. (3), we define the path curvature components by

kr¢
der

ds
¼ d

ds
bvrð Þ ¼ db

ds
vr þ b

dvr

ds
¼ db

ds
vr þ b2ar

¼ vsas

1� v2ð Þ2
vr þ b2ar

¼ 1

1� v2ð Þ2
vrvsþ

1

1 � v2
drs

" #
as

r ¼ 1; 2; 3ð Þ

(4)

where drs is the Kronecker-delta function.2 The term path

curvature for the components in Eq. (4) comes from the

TABLE II. Action and interaction.

Action forces

1
Pas¢

@Ab

@xs

����
a

¼ Ga xbs � xasð Þ; Pbs¢
@Aa

@xs

����
b

¼ �Gb xbs � xasð Þ

2
Ga¢

du rbð Þ
drb

����
a

mb

rab
Gb¢

du rað Þ
dra

����
b

ma

rab

3 maGa þ mbGb ¼ 0

4 maPas þ mbPbs ¼ 0

Interaction forces

5 Fas¢maPas Fbs¢mbPbs

6 Fas þ Fbs ¼ 0

Action moments

7 Qat¢ðxar � x0rÞPas � ðxas � x0sÞPar ¼ 0 Qbt¢ðxbr � x0rÞPbs � ðxbs � x0sÞPbr ¼ 0

8 maQat þ mbQbt ¼ 0

Interaction moments

9 Mat¢maQat Mbt¢mbQbt

10 Mat þMbt ¼ 0
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mathematics community1 and is not to be confused with the

term Riemannian curvature used in GR. The term path cur-

vature used here is the path derivative of the unit vector tan-

gent to the spacetime path, which is perpendicular to the

spacetime path. It corresponds to the level at which a space-

time path bends, whereas Riemannian curvature corresponds

to the curvature of spacetime itself. When reading further,

you will find that the curvature of a path in spacetime sup-

plants the acceleration of a path in space that one employs in

classical physics. Equation (4) establishes the important con-

nection between spacetime path curvature and spatial

acceleration.

A. Limiting behaviors

Below, we focus on the limiting behaviors of speed

approaching 0 and 1. We start by rewriting Eq. (4) as

kr ¼ Arsas;Ars¢
1

1� v2ð Þ2
vrvs

þ 1

1� v2
drs r; s ¼ 1; 2; 3ð Þ: (5)

In Eq. (5), Ars governs the transformation from accelera-

tion to path curvature. It also follows that the inverse trans-

formation from path curvature to acceleration and its

solution are

ar ¼ Brsks; Brs¢ 1� v2ð Þ �vrvs þ drsð Þ r; s ¼ 1; 2; 3ð Þ:
(6)

Figure 2 gives a geometric interpretation of Eq. (6). As

shown, the acceleration becomes perpendicular to the veloc-

ity as v approaches 1. To see this more completely, one can

decompose these transformations by inspecting their eigen-

solutions. The transformation Ars is real and symmetric, so

its eigensolution is real. The orthonormal eigensolution of

the associated eigenvalue problem Ars/
ðrÞ
s ¼ ks/

ðrÞ
s ;

ðr ¼ 1; 2; 3Þ, is

k1 ¼
1

1� v2ð Þ2
; / 1ð Þ

s ¼
1

v

v1

v2

v3

0
BBB@

1
CCCA; v2 ¼ v2

1 þ v2
2 þ v2

3;

k2 ¼
1

1� v2
; / 2ð Þ

s ¼
1

v12

�v2

v1

0

0
BBB@

1
CCCA; v2

12 ¼ v2
1 þ v2

2;

k3 ¼
1

1� v2
; / 3ð Þ

s ¼
1

vv12

v1v3

v2v3

�v2
12

0
BBB@

1
CCCA:

(7)

We see that the first eigenvector /ð1Þs aligns with the

velocity components and that the second and third eigenvec-

tors, /ð1Þs and /ð2Þs , which have repeated eigenvalues, are

perpendicular to the velocity components. Next, expand the

acceleration components and the path curvature components

in terms of the eigensolution to get

a¢

a1

a2

a3

0
B@

1
CA ¼ /1l1 þ /2l2 þ /3l3 ¼

1

v

v1

v2

v3

0
B@

1
CAl1

þ 1

v12

�v2

v1

0

0
B@

1
CAl2 þ

1

vv12

v1v3

v2v3

�v2
12

0
B@

1
CAl3;

k¢

k1

k2

k3

0
B@

1
CA ¼ k1/1l1 þ k2/2l2 þ k3/3l3

¼ k1

v

v1

v2

v3

0
B@

1
CAl1 þ

k2

v12

�v2

v1

0

0
B@

1
CAl2

þ k3

vv12

v1v3

v2v3

�v2
12

0
B@

1
CAl3;

(8)
where

l1 ¼ as/
1ð Þ

s ¼
1

v
a1v1 þ a2v2 þ a3v3ð Þ;

l2 ¼ as/
2ð Þ

s ¼
1

v12

�a1v2 þ a2v1ð Þ;

l3 ¼ as/
3ð Þ

s ¼
1

vv12

a1v1v3 þ a2v2v3 � a3v2
12

� �
:

(9)

Let us now examine the limiting behaviors at the two

extremes of v approaching 0 and 1, wherein we assume that

vr and ar are finite. First, when v approaches 0, it follows

from Eqs. (3) and (4) that er converges to vr and

that kr converges to ar. Indeed, spacetime geometry con-

verges to ordinary geometry when v approaches 0, as

expected. Next, consider Eqs. (3) and (4) when v approaches

1. At this extreme, er and kr become unbounded because of

the 1� v2 terms in the denominators. To examine more

closely this limiting behavior, consider Eqs. (8) and (9).

First, notice that the coefficients l1; l2; and l3 in Eq. (9)

must be finite, assuming that the acceleration components

FIG. 2. a vð Þ ¼ k01

ð1� v2Þk02

� �
in the x1-x2 plane, holding constant

k0 ¼
k01

k02

� �
¢ 1� v2ð Þ k1

k2

� �
and ê¢.

e1

e2

� �
.
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are finite. Next, consider the possibility that kr is on the

order of 1=ð1� v2Þ, written as kr � 1=ð1� v2Þ. When this

is the case, it follows from Eq. (8) that l1� 1� v2ð Þ. The

acceleration components become perpendicular to the veloc-

ity components, and the speed v becomes a terminal speed as

v approaches 1. Under this curvature condition, the space-

time path can still bend because the components of accelera-

tion are perpendicular to the components of velocity. We

will impose this curvature condition later, when developing

a specific form of the unit fragment of energy that conforms

to physical behavior at the speed of light.

IV. THE TWO-BODY PROBLEM

Assume that one measures time and spatial quantities in

an inertial frame, and that one does not measure them in any

other frames. When employing the inertial frame, the time

increments of the moving centers of the two previously con-

sidered fragments are the same. Table III shows for the two-

body problem how their treatments differ when employing

ordinary geometry and spacetime geometry. As shown,

Table III indicates the differences in the treatments of

increments, time variables, differentiation, and integration.

Table IV describes the two-body problem when employing

spacetime geometry and Table V when employing ordinary

geometry. For those less familiar with spacetime geometry,

an unusual and telling difference between the treatments

rests in the expressions for the mass center c. For example,

compare the spatial components of the mass center and the

velocity components of the mass center in ordinary geometry

(lines 1 and 2 in Table V) with the corresponding compo-

nents in spacetime geometry (lines 1 and 2 in Table IV)

x0cs¢
1

maþmb
max0asþmbx0bs

� �
;

v0cs¢
1

maþmb
mav0asþmbv0bs

� �
;

e0cs¢
1

maþmb
mae0asþmbe0bs

� �
:

(10)

As shown, the spatial components of the mass center in

ordinary geometry are the same as in spacetime geometry,

but the spatial components of the velocity components of the

mass center and of the unit vector components in spacetime

geometry differ. When employing ordinary geometry, one

differentiates in time the spatial components of the mass cen-

ter to obtain the velocity components. The time increment

for both fragments is the same. However, when employing

TABLE III. The time variable in ordinary geometry and the time variable in spacetime geometry.

Ordinary geometry Spacetime geometry

Increment The time increment dt is the same for a and for b The path increments dsa and dsb are different for a and for b

Time variable Independent variable Geometric coordinate, satisfies metric condition

Differentiation
dxar

dt
;

dxbr

dt

dxar

dsa
¼ dt

dsa

dxar

dt
;

dxbr

dsb
¼ dt

dsb

dxbr

dt

Integration Integrate over time Integrate over spacetime path

TABLE IV. The two-body problem in spacetime geometry.

Spacetime geometry (s¼ 1, 2, and 3)

1
x0cs¢

1

maþmb
max0asþmbx0bsð Þ xabs¢x0bs � x0as

2
e0cs¢

1

maþmb
mae0asþmbe0bsð Þ eabs¢e0bs � e0as

3
k0cs¢

1

maþmb
mak0asþmbk0bsð Þ kabs¢k0bs � k0as

Point a Point b Point c

4 xs¢x0s � x0cs xas ¼ �
mb

maþmb
xabs xbs ¼

ma

maþmb
xabs

xcs ¼ x0cs � x0cs ¼ 0

5 es¢e0s � e0cs eas ¼ �
mb

maþmb
eabs ebs ¼

ma

maþmb
eabs

ecs ¼ e0cs � e0cs ¼ 0

6 ks¢k0s � k0cs kas ¼ �
mb

maþmb
kabs kbs ¼

ma

maþmb
kabs

kcs ¼ k0cs � k0cs ¼ 0
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spacetime geometry, the differentiations are along spacetime

path increments and they differ, even though their time

increments are the same. To see this more clearly in the

expressions above, let us write explicitly the differentiations

dx0cs

dt
¢

1

maþmb
ma

dx0as

dt
þmb

dx0bs

dt

� �
;

dx0cs

dsc
¢

1

maþmb
ma

dx0as

dsa
þmb

dx0bs

dsb

� �
:

(11)

In spacetime, the path differentiation of the mass center

(the left side) and the sum of the path differentiations of the

individual fragments (the right side) are different. The con-

cepts of mass and of mass center lose their meaning as the

speed of a fragment approaches the speed of light. In space-

time geometry, the concept of mass center possesses a mass
center speed limitation.3

We began in lines 1–3 of Tables IV and V with primed

coordinates, upon which we imposed no prior assumptions,

and defined the relative positions of the mass centers of the

fragments and of their first two derivatives. In lines 4–6, we

set up translated coordinates relative to the mass center.

These are the coordinates of the inertial frame. Notice that

the translation does not rotate the original frame of reference.

This is important to recognize because, in physical problems,

one obtains different results with frames of reference that are

rotating differently relative to the fixed stars.

Finally, let us define in Table VI the linear momentum

of each fragment and of the two-body system, the angular

rate of each fragment, and the angular momentum of each

fragment and of the two-body system.

The angular rate components hat and hbt in line 3 are the

“rotational” counterparts to the unit vector components ear

and ebr in line 5 of Table IV. One says that the angular rate

components and the angular momentum components are

about the spatial point ðx01; x02; x03Þ.

V. THEORY OF SI

The field concept, as it applies to fragments of energy

described in Section II, the limiting behavior of spacetime

described in Section III, and the two-body problem in

Section IV, provide a mathematical foundation for the devel-

opment of SI. In words, the spacetime concept of impetus

equates the change in the spacetime path that one fragment

of energy undergoes to the change that it experiences from

other fragments of energy. In the two fragments under con-

sideration, dAajb represents mathematically the incremental

change that fragment b “experiences” due to fragment a,

and dAbja represents mathematically the incremental change

that fragment a experiences due to fragment b. Invoking this

principle in each “coordinate direction”

Pas ¼ kas; Pbs ¼ kbs; s ¼ 1; 2; 3ð Þ: (12)

We shall refer to Eq. (12) as the spacetime change equa-
tions. Also, let us now understand better what we mean by

“experiencing” a change and by “coordinate direction”. To

that end, we recognize that each fragment is a function of the

spacetime coordinates of any point in the inertial frame as

well as the spacetime coordinates in the inertial frame of its

source point. From the bottom line in Table I, the incremen-

tal changes of fragments a and b are

dAa ¼
@Aa

@xs
dxs þ

@Aa

@xas
dxas ¼

@Aa

@xs
dxs � dxasð Þ;

dAb ¼
@Ab

@xs
dxs þ

@Ab

@xbs
dxbs ¼

@Ab

@xs
dxs � dxbsð Þ;

(13)

TABLE V. The two-body problem in ordinary geometry.

Ordinary geometry (s¼ 1, 2, and 3)

1
x0cs¢

1

maþmb
max0asþmbx0bsð Þ xabs¢x0bs � x0as

2
v0cs¢

1

maþmb
mav0asþmbv0bsð Þ vabs¢v0bs � v0as

3
a0cs¢

1

maþmb
maa0asþmba0bsð Þ aabs¢a0bs � a0as

Point a Point b Point c

4 xs¢x0s � x0cs xas ¼ �
mb

maþmb
xabs xbs ¼

ma

maþmb
xabs

xcs ¼ x0cs � x0cs ¼ 0

5 vs¢v0s � v0cs vas ¼ �
mb

maþmb
vabs vbs ¼

ma

maþmb
vabs

vcs ¼ v0cs � v0cs ¼ 0

6 as¢a0s � a0cs aas ¼ �
mb

maþmb
aabs abs ¼

ma

maþmb
aabs

acs ¼ a0cs � a0cs ¼ 0

TABLE VI. Linear momentum, angular rate, and angular momentum.

Linear momentum

1 Lar¢maear ; Lbr¢mbebr

2 Lr¢Lar þ Lbr

Angular rate

3 hat¢ðxar � x0rÞeas � ðxas � x0sÞear ; hbt¢ðxbr � x0rÞebs � ðxbs � x0sÞebr

Angular momentum

4 Hat¢mahat; Hbt¢mbhbt

5 Ht¢Hat þ Hbt
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where, again, we sum over s from 1 to 3. From Eq. (13), line

1 in Table II, and Eq. (12)

dAajb ¼ Pbs dxbs � dxasð Þ ¼ kbs dxbs � dxasð Þ;
dAbja ¼ Pas dxas � dxbsð Þ ¼ kas dxas � dxbsð Þ:

(14)

First, consider that we mean for an experience of an

incremental change by one fragment to refer to an evaluation

of an incremental change of another fragment of energy at

the source point of the one fragment of energy. Furthermore,

the incremental change is a sum across spatial coordinates;

we mean for coordinate directions to refer to the terms in the

sum in Eq. (14). Let us now examine Eq. (14) more closely

to appreciate better the implied relationships expressed in

the change equations. First, notice if kbs ¼ 0 then dAajb ¼ 0.

In words, fragment b does not experience an incremental

change dAajb from fragment a when fragment b is moving

along a straight spacetime path, which corresponds to motion

that is constant in speed and direction. Likewise, fragment a
does not experience an incremental change dAbja from

fragment b when fragment a is moving along a straight

spacetime path. Next, consider the possibility

that dxbs � dxas ¼ 0. When this occurs, the incremental

change dAajb is zero, too. In words, fragment b does not

experience a change dAajb when its path increment relative

to fragment a is equal to zero. This occurs when the forces

Pas and Pbs between the fragments prevent a relative change

from occurring. Similarly, fragment a does not experience a

change dAbja when its path increment relative to fragment b
is equal to zero. Finally, consider the converse. When dAajb
is equal to zero, either kbs ¼ 0 or dxbs � dxas ¼ 0. In the first

case, Pbs ¼ 0, and in the second case, a force acts on frag-

ment b to maintain the condition that there is no relative

change in the path increment. When dAbja is equal to zero,

we get the corresponding result. In short, one fragment does

not experience an incremental change from the other frag-

ment when and only when its absolute path curvature is zero

or when its path increment relative to the other is zero.

Pertaining to linear momentum and angular momentum

about a stationary point (e0r ¼ 0; r ¼ 1; 2; 3Þ, we obtain the

following from the change equations, Table II and Table VI:

dLr

ds
¢

dLar

dsa
þ dLbr

dsb
¼makarþmbkbr ¼maParþmbPbr ¼ 0

dHt

ds
¢

dHat

dsa
þ dHbt

dsb

¼ma xar� x0rð Þkas� xas� x0sð Þkar
� �

þmb xbr� x0rð Þkbs� xbs� x0sð Þkbr
� �

¼ma xar� x0rð ÞPas� xas� x0sð ÞPar
� �

þmb xbr� x0rð ÞPbs� xbs� x0sð ÞPbr
� �¼ 0;

that is,

dLr

ds
¼ 0;

dHt

ds
¼ 0:

(15)

In words, Eq. (15) expresses that the linear momentum

of the two-body system and the angular momentum of the

two-body problem about a stationary point are invariants

(see Appendix B for the extension of these results to n-body

systems).

Per these developments, SI sets up a mathematical struc-

ture for the interaction between fragments of energy in

spacetime. It began with Eq. (1), from which we deduced the

field results given in Table I and Table II. Next, it employed

the spacetime framework set up in Eq. (2), from which we

obtained mathematical expressions for er and kr in Eqs. (3)

and (4), and the spacetime geometry in Table IV. Then, Eq.

(12) expressed mathematically a new interpretation of impe-

tus as spacetime change equations. From this mathematical

structure, we defined action forces and moments, interaction

force and moments, linear momentum, angular momentum,

and showed in Eq. (15) that the linear momentum and angu-

lar momentum defined in Table VI are invariants. Finally,

again, we point out amazingly that the mathematical struc-

ture on which SI rests, leaves the radial dependence of the

unit fragments unspecified.

VI. LIMITING CONDITION AT THE SPEED OF LIGHT

Next, we will develop a specific expression for a frag-

ment of energy that conforms to physical behavior at the

speed of light. A simple version of that expression was first

introduced in Ref. 1, where it was shown to result in predict-

ing the same precession of Mercury as GR predicts, and in

predicting the same bending of light as it grazes the sun as

GR predicts. That work considered both ordinary geometry

and spacetime geometry and showed, when employing that

fragment in spacetime, that the corresponding predictions

agree with GR (see Tables IV and VI in Ref. 1). In that

work, we applied the fragment to one-body problems. We

had not yet examined two-body spacetime effects, and we

had not thoroughly justified the use of the fragment. Indeed,

in Ref. 1, we left open the question whether there was a logi-

cal basis for the fragment that is independent of GR. In this

section, we answer that question in the affirmative by devel-

oping the fragment without invoking GR. Then, in Section

VII, we will test the resulting behavior on benchmark two-

body problems.

The reasoning in SI that leads to a specific fragment that

conforms with light behavior begins with the rationale

behind unit fragments of energy of the form

u rað Þ¢�
1

ra
; u rbð Þ¢�

1

rb
: (16)

As proven in Appendix D of Ref. 1, the form given in

Eq. (16) is unique up to a multiplicative constant because the

radial power of minus one is the only power for which the

stationary fragment satisfies vector continuity (colloquially,

it flowsd)). When employing this specific form, one obtains

precisely the gravitational potential of a stationary body in

NT modeled as a point mass and its corresponding

d)R. Puyana (2021), “Our Flowing Universe,” (video) https://www.youtube.

com/watch?v=0cBqtaGdUnI
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gravitational force. Next, we consider the case of a moving

fragment with a particular interest in motion that approaches

the speed of light. From the mathematics of spacetime, we

now understand that the interest lies in satisfying the curvature

condition, that is, in path curvature converging to the order of

the reciprocal of 1 – v2 (kr � 1=ð1� v2Þ) when v approaches

1. Therefore, we seek fragments of energy of the form

u rað Þ¢�
1

ra
f rað Þ; u rbð Þ¢�

1

rb
f rbð Þ; (17)

in which f rð Þ is a function that has the limiting

properties

f rð Þ ¼ 1 as v approaches 0;

f rð Þ� 1

1� v2
as v approaches 1:

(18)

Note that v in Eq. (18) can correspond to va, vb, or to the

speed v in the one-body problem. In Eq. (18), the intent is

for the gravitational form in NT to continue to satisfy vector

continuity when v ¼ 0, and for the correct limiting proper-

ties to be satisfied as v approaches 1.

The immediate goal here is to find a fragment that is a

radial function without it containing an explicit function of

the speed v. Of course, if such a radial form exists, it follows

that there must be some relationship between the distance r
and the speed v that one can use to eliminate the speed v in

Eq. (18). Such invariants as linear momentum, angular

momentum, and energy are obvious candidates. Further-

more, we sought a reference case that would expose that

radially dependent relationship and found it when examining

angular momentum under circular motion. Under circular

motion, the total angular momentum is H ¼ Ha3 þ Hb3

¼ ramaeah þ rbmbebh ¼ rableh, in which eh ¼ vffiffiffiffiffiffiffiffi
1�v2
p

and l ¼ mamb

maþmb
. The radially dependent dimensionless rela-

tionship is

1

1� v2
¼ 1þ H

l

�

�2 1

r2
ab

:

From Eq. (17), the specified radial forms of the unit frag-

ments of energy that satisfy the desired limiting conditions

are the fields

u rað Þ¢�
1

ra
1þ H

l

� �2
1

r2
a

!
;

u rbð Þ¢�
1

rb
1þ H

l

� �2 1

r2
b

!
:

(19)

Equation (19) expresses the sought after specific forms

of the two fragments.

As one would expect, the specific fragment developed

above does not predict the behavior that would result from

an anisotropic source, such as from a spinning source. That

behavior would require a different fragment—one that is

determined by imposing different limiting conditions. How-

ever, regardless of the type of source, the process that one

follows to determine the form of a fragment of energy should

be the same as the one followed above. One first expresses a

limiting condition in terms of a speed v, then one identifies a

reference case that matches the desired behavior, and finally

one determines the desired form of the fragment. Finally, note

that the process that one follows in SI of determining a frag-

ment of energy for a particular type of source is analogous to

the process that one follows in GR of determining the elements

grs of a metric tensor for a particular type of source. In both

approaches, one imposes limiting conditions that correspond to

a reference case(s) that produces a desired behavior. The major

difference is that the goal in SI is to correctly bend light

whereas the goal in GR is to correctly bend spacetime itself.

Tables VII gives the governing equations of motion for

the two-body problems. Notice in Table VII that we

expressed the acceleration components in nonexpanded and

expanded forms. The expanded form distinguishes between

powers of 1� v2 to highlight which terms are present when

v¼ 0, when v¼ 1, and in between. As shown, we expressed

the acceleration components in the expanded form as the

sum of three terms surrounded by braces {}. The direction of

the first term is along the line between the two fragments.

The directions of the second and third terms are perpendicu-

lar to the motion of the fragment. When v¼ 0, the first term

TABLE VII. Governing equations for the two-body problems in light

units.

Acceleration components of fragment a

aa1

aa2

� �
¼ 1� v2

a

� � 1� v2
a1 �va1va2

�va1va2 1� v2
a2

� 	
ka1

ka2

� �

ka1

ka2

� �
¼ Pa1

Pa2

� �
¼ Gmb 1 þ 3

H

l

 !2 1

r2

0
@

1
A 1

r3

xb1 � xa1

xb2 � xa2

� �

ab1

ab2

� �
¼ 1� v2

b

� � 1� v2
b1 �vb1vb2

�vb1vb2 1� v2
b2

� 	
kb1

kb2

� �

kb1

kb2

� �
¼ Pb1

Pb2

� �
¼ �Gma 1 þ 3

H

l

 !2 1

r2

0
@

1
A 1

r3

xb1 � xa1

xb2 � xa2

� �

Acceleration components of fragment a and fragment b—expanded forms

¼
(

1� v2
a

� �2
1þð 3

H

l

 !2 1

r2
ab

Þmb

r3
ab

xb1 � xa1

xb2 � xa2

� �)

� 1� v2
a

� �
xb1 � xa1ð Þva2 � xb2 � xa2ð Þva1ð Þ

mb

r3
ab

�va2

va1

� �)8<
:

� xb1 � xa1ð Þva2 � xb2 � xa2ð Þva1ð Þ33
ma

l

 !(
2

mb

r5
ab

�va2

va1

� �)

ab1

ab2

� �
¼ � 1� v2

b

� �2
1þ 3

H

l

 !2 1

r2
ab

0
@

1
Ama

r3
ab

xb1 � xa1

xb2 � xa2

� �)8<
:

þ 1� v2
a

� �
xb1 � xa1ð Þvb2 � xb2 � xa2ð Þvb1ð Þ

ma

r3
ab

�vb2

vb1

� �)8<
:

þ xb1 � xa1ð Þvb2 � xb2 � xa2ð Þvb1ð Þ33
mb

l

 !2 ma

r5
ab

�vb2

vb1

� �)8<
:

H ¼ ma xa1va2 � xa2va1ð Þba þmb xb1vb2 � xb2vb1ð Þbb
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dominates over the second two, and when v approaches 1,

the first and second terms approach zero leaving the third

term to dominate.

VII. THREE EMPIRICAL TESTS

SI is logically true under the assumptions of Eq. (1), the

mathematical structure of spacetime, and the spacetime

change equation, Eq. (12). One does not need to verify this.

However, the question that requires empirical testing is the

degree to which SI, together with the specific form of the

fragment of energy given in Eq. (19), is capable of agreeing

with reality. To validate SI, we challenged it with three

empirical tests. The tests corresponded to different physical

environments that one might loosely characterize as mechan-

ical and light and as low-curvature and high-curvature. The

low-curvature mechanical environment is the one to which

NT already applies, and SI converges to NT in that environ-

ment, so one does not need to test that environment. This

leaves us with the three before mentioned empirical tests.

The first test is of the high-curvature mechanical environ-

ment. For this test, we sought to predict the anomalous pre-

cessions of Mercury and of Jupiter. Originally, scientists

verified GR, in part, by predicting the precession of Mercury,

too. Therefore, the goal in this test was to match our predic-

tions with those of GR. The second and third tests are of the

low-curvature and high-curvature light environments,

respectively. For the second test, we sought to predict the

bending of light when it grazes the sun. Again, the original

verification of GR employed this test. Therefore, again, the

goal was to match our predictions with those of GR. For the

third test, we sought to determine the radius of the photon

sphere—the critical radius outside of which a photon escapes

the pull of a fragment of energy and inside which the frag-

ment captures the photon. NT and the theory of special rela-

tivity do not predict the existence of photon spheres, only

GR did. Furthermore, unlike in test 1 and in test 2, in GR

one refers to the gravitational field in test 3 as “strong,” cor-

responding to high Riemannian curvature. Also, it was natu-

ral to think of the black hole as a general relativistic

phenomenon. Therefore, one would regard whether SI pre-

dicts the existence of a photon sphere to be particularly

important, because it challenges that assumption. Further-

more, GR predicts that the radius of the photon sphere is

equal to three-halves times the Schwarzschild radius.4 There-

fore, it was also of interest to determine whether our predic-

tions agree with that result. Finally, note the three tests

assess the physical behavior of bodies, but not some aberra-

tions that result from observing them from afar. Furthermore,

there is the possibility that one could find that some of SI’s

predictions differ from those obtained in GR. Additional

tests, not considered in this article, will shed additional

insight into SI’s predictive capabilities. We leave tests such

as those and others for the future.

Tables VIII and IX give the conversion constants

between light units and conventional units. Beginning in this

section, we switch the expressions of many of the quantities

from light units to conventional units. Tables VIII and IX

underline the quantities that are in conventional units. After

that, we forgo distinguishing between light units and conven-

tional units by underlining quantities. Table X repeats Table

VII but now gives the governing equations in conventional

units. Table XI lists the physical constants used in both prob-

lems. The constants are the same as those used in Ref. 1.

In the tests of the two-body models, the systems are pla-

nar, a body orbits the sun, and the sun orbits the body in the

absence of external effects. We modeled the orbiting sun as

fragment a and the other orbiting body as fragment b. In the

bending of light tests, fragment b is massless (a photon). We

determined all of the trajectories by numerical integration

following the numerical approach adopted in Ref. 1. Toward

matching the two-body problem results obtained here with

the one-body results in Ref. 1, we started with the initial

position rp and the initial velocity vp from the one-body

problem and determined the corresponding initial conditions

in the two-body problem. The state variables in the two-body

problems are

x1 ¼ xa1; x2 ¼ xa2; x3 ¼ va1; x4 ¼ va2; x5 ¼ xb1;

x6 ¼ xb2; x7 ¼ vb1; and x8 ¼ vb2:

The initial conditions were set at the perihelion of the

orbits

x10 ¼ rap; x20 ¼ 0; x30 ¼ 0; x40 ¼ vap; x50 ¼ rbp;

x60 ¼ 0; x70 ¼ 0; and x80 ¼ vbp;

where

rap ¼ �
l

ma
rp; rpb ¼

l
mb

rp

vap ¼ �
lvpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a 1�

v2
p

c2

� �
þ

l2v2
p

c2

s ;

vbp ¼
lvpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
b 1�

v2
p

c2

� �
þ

l2v2
p

c2

s
: (20)

TABLE VIII. Conversions of selected quantities between light units and conventional units.

Multiply from light unit to get conventional unit. Divide from conventional unit to get light unit. L is characteristic length.

m Lc2=G a c2=L u G=Lc4 Q 1

x L e 1 A 1 M Lc2=G

t L=c k 1=L P 1=L L Lc3=G

v c h Lc F c4=G H L2c3=G

556 Physics Essays 34, 4 (2021)



Table XII contains the results from test 1, test 2, and

test 3.

A. Test 1: Mechanical, high-curvature

The analytically determined precession from GR is

d/ ¼ 6pGðmaþmbÞ
c2Að1�e2Þ ¼ 5:047� 10�7rad=orbit ¼ 43:2 arc sec/

century for Mercury1 and 3:607� 10�8 rad=orbit ¼ 0:063

arc sec/century for Jupiter.e) To verify these results, we

numerically integrated the two-body accelerations to obtain

the pair of trajectories for a little more than one orbit. As

shown in Fig. 3, the origin of the coordinates of the

Mercury-sun system is located at its mass center. Initially,

both Mercury and the sun were in their perihelion positions.

We determined the precise locations of the next perihelion

by looking for a sign change in dra=dt and drb=dt and then

numerically calculated d/a ¼ xa=rap and d/b ¼ xb=rbp.

Figure 4 shows the calculation of the precession angle of

Mercury for the Mercury-sun system. The same steps were

performed for the Jupiter-sun system, not shown.

Table XII presents the numerical results of test 1. Line 1

gives the precession angles for the Mercury-sun system and

for the Jupiter-sun system predicted by NT when modeled as

two-body systems and, from Ref. 1, in line 2 when modeled

as one-body systems. As shown, NT predicts no precession

in all of the cases. Line 3 gives the precession angles pre-

dicted by SI when modeled as two-body systems, and line 4

gives the precession angles predicted by GR, which is the

standard against which the test assesses SI. As shown, GR

models the Mercury-sun system and the Jupiter-sun system

as one-body systems. One also sees that the precession angle

of Mercury predicted by two-body SI agrees with the GR

prediction to three decimal places. The precession angle of

Jupiter predicted by two-body SI is 3.592� 10�8 rad/orbit

and by GR is 3.607� 10�8 rad/orbit, so they differ in the

second decimal. Although the error is very small, we

expected to see some error due to the mass center speed limi-

tation mentioned in Section IV, which accounts for tiny dif-

ferences between the results of a two-body model and a one-

body model, recalling that the GR result employs a one-body

model. Lines 5–8 address this difference. Line 5 shows the

precession angles for the two-body SI model without the lim-

iting condition, and line 6 takes the difference between lines

5 and 6. Line 7 shows the precession angles for the one-body

SI with the spacetime limiting condition.1 As shown, the differ-

ences between the two-body results and the one-body SI results

in line 6 and the one-body SI results in line 7 are in agreement

with GR to three decimal places, essentially in full agreement

with GR. Finally, as mentioned previously, the mass center

speed limitation accounts for tiny differences between the

results of a two-body model and a one-body model. When

employing one-body models, the precession angles of the sun

were equal to the precession angles of the other bodies. On the

other hand, when employing two-body models, the precession

angles of the sun differ slightly from the precession angles of

the other bodies, as shown in lines 3 and 5.

B. Test 2: Light, low-curvature

The analytically determined sun grazing bend angle of

light from GR is dN¼ 4GM
c2rp
¼8:534�10�6 rad ¼1:760 arc sec,1

where rp is the distance of closest approach. To verify this

result, we set the distance of closest approach to the radius Rs

TABLE IX. Conversions of selected equations between light units and conventional units.

Light units Conventional units

A ¼ mu A ¼ m�c2u

P ¼ @A

@x
P ¼ @A

@x

F ¼ mP ¼ dL

ds
F ¼ mc2P ¼ c

dL

ds

Q ¼ ðxr � x0rÞPs � ðxas � x0sÞPr Q ¼ ðxr � x0rÞPs� ðxs � x0sÞPr

Lr¢mer Lr¢merc

M ¼ mQ ¼ dH

ds
M ¼ mQ ¼ c

dH

ds

Ht¢mht ¼ m xr � x0rð Þes � xas � x0sð Þer
� �

Ht¢mht ¼ m ðxr � x0rÞes � ðxs � x0sÞer

� �
c

ds2¢dt2 � dx2
1 � dx2

2 � dx2
3

er¢vr b; b¢ 1 � v2ð Þ�2

ar ¼ BrsPs Brs ¼ 1� v2ð Þ �vrvs þ drsð Þ ar ¼ BrsPs

P ¼ k P ¼ k

e)David R. Williams (2020), “Jupiter Fact Sheet,” NASA Goddard Space

Flight Center https://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html
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of the sun. We then simulated the two-body (photon-sun)

responses two different ways. The first way, we set the mass of

the photon to be very close to zero (mb¼1�10�12) and the

speed of the photon to be a very small amount less than the

speed of light (vp¼0:9999c). We then calculated the initial

conditions from Eq. (20) and finally simulated the response of

the two-body system. The second way, we set the mass of the

photon equal to zero and the speed of the photon equal to

the speed of light. This reduced the acceleration components of

the sun to zero meaning it remained stationary. When doing

this, one would obtain a divide by zero error if numerically

integrating the equations governing the motion of the photon

without any modification of the equations. To overcome this,

one can use L’Hopital’s rule or, in this case, simply cancel

terms that go to zero, and obtain

ab1

ab2

 !
¼�3Gma

r5
xb1

vb2

c
� xb2

vb1

c

� �2

�
1� vb1

c

� �2

� vb1

c

� �
vb2

c

� �

� vb1

c

� �
vb2

c

� �
1� vb2

c

� �2

2
66664

3
77775

xb1

xb2

 !
:

(21)

We then calculated the initial conditions from Eq. (20), set-

ting the initial positions and initial velocities of the photon and

the sun to ra ¼ 0; rb ¼ rp ¼ Rs; va ¼ 0; and vb ¼ c. Fig-

ure 5 shows the trajectory of the photon released from the peri-

helion position on the x1 axis. Both ways of calculating the

numerical results produced the same photon trajectory and

bend angle, in agreement with GR; see line 9 of Table XII.

C. Test 3: Light, high-curvature

For the third test, we examined the full path trajectory of

a photon as it approaches a point gravitational source. Again,

we used the mass of the sun for the source. We solved the

problem two ways, first releasing the photon in the neighbor-

hood of the photon sphere (locally) and next releasing the

photon from a distance that is large compared with the radius

of the photon sphere (distant location). For a photon released

in the neighborhood of 1.5 times the Schwarzschild radius rs,

which is the photon sphere radius r ¼ 1:5rs, the light transi-

tions from sun capture to photon escape. In this problem, we

let: ma ¼ M;mb ¼ 0; rp ¼ 1:5rs; and vp ¼ c;where the

Schwarzschild radius is rs ¼ 2GM
c2 . The initial conditions

are ra ¼ 0; rb ¼ 1:5rs; va ¼ 0; and vb ¼ c. These initial

conditions are for a stationary observer in inertial space; they

correspond to the local observer in GR. For the photon

released from a large distance away from the photon sphere,

we set up initial conditions that are equivalent to the set up

in GR, employing the impact parameter b.4 In GR, one

numerically solves the differential equation
d2u
d/2 þ u ¼ 3GM

c2 u2, where u¼ 1/r and where r and / are

spherical coordinates in the equatorial plane. For the initial

conditions, we set u ¼ 1
100rs

and du
d/ ¼ u � cot/

at / ¼ sin�1bu, where b is the impact parameter shown in

Fig. 6(a). We then plotted the trajectory of the photon using

the coordinates x1 ¼ rcos/ and x2 ¼ rsin/ [see Fig. 6(b)].

In SI, one numerically integrates in time using the accelera-

tions given in Eq. (21). The initial conditions for the photon

released at a distance are xb1 ¼ 100rs; xb2 ¼ b ðvariableÞ;
vb1 ¼ �c; and vb2 ¼ 0. Note that the numerical results

described below, wherein we released the photon from a dis-

tance equal to 100rs yields practically identical results to

those obtained by releasing the photon at infinity.

Figure 6(b) shows the full path trajectories of photons

predicted by SI and GR, where b was taken

as ð1:001Þ3
ffiffiffi
3
p

rs

2
, 3

ffiffiffi
3
p

rs

2
; and ð0:999Þ3

ffiffiffi
3
p

rs

2
. For the

intermediate value of b ¼ 3
ffiffiffi
3
p

rs

2
, the predicted orbit as the

photon approaches the source is circular at r ¼ 1:5rs;in
agreement with the well-known GR result. As shown, we get

TABLE X. Governing equations for the two-body problems in conven-

tional units.

Acceleration components of fragment a and fragment b

aa1

aa2

� �
¼ c2 1� va

c

� �2
! 1� va1

c

 !2

� va1

c

 !
va2

c

 !

� va1

c

 !
va2

c

 !
1� va2

c

 !2

2
666664

3
777775

ka1

ka2

� �

ka1

ka2

� �
¼ Pa1

Pa2

� �
¼ G

mb

c2
1 þ 3

H

lc

� �2 1

r2

!
1

r3

xb1 � xa1

xb2 � xa2

� �

ab1

ab2

� �
¼ c2 1 � vb

c

� �2
! 1� vb1

c

 !2

� vb1

c

 !
vb2

c

 !

� vb1

c

 !
vb2

c

 !
1� vb2

c

 !2

2
666664

3
777775

kb1

kb2

� �

kb1

kb2

� �
¼ Pb1

Pb2

� �
¼ �G

ma

c2
1 þ 3

H

lc

� �2 1

r2

!
1

r3

xb1 � xa1

xb2 � xa2

� �

Acceleration components of fragment a and fragment b—expanded form

aa1

aa2

� �
¼ 1� ðva=cÞ2


 �2

1þ 3
H

lc

� �2 1

r2
ab

!
Gmb

r3
ab

xb1 � xa1

xb2 � xa2

� �)8<
:

� 1� ðva=cÞ2

 �

xb1 � xa1ð Þva2 � xb2 � xa2ð Þva1ð Þ
Gmb

c2r3
ab

�va2

va1

� �)8<
:

� xb1 � xa1ð Þva2 � xb2 � xa2ð Þva1ð Þ33
ma

lc

� �2 Gmb

c2r5
ab

�va2

va1

� �)8<
:

ab1

ab2

� �
¼ 1� ðvb=cÞ2


 �2

1þ 3
H

lc

� �2 1

r2
ab

!
Gma

c2r3
ab

xb1 � xa1

xb2 � xa2

� �)8<
:

þ 1� ðvb=cÞ2

 �

xb1 � xa1ð Þvb2 � xb2 � xa2ð Þvb1ð Þ
Gma

c2r3
ab

�vb2

vb1

� �)8<
:

þ xb1 � xa1ð Þvb2 � xb2 � xa2ð Þvb1ð Þ33
mb

lc

� �2 Gma

c2r5
ab

�vb2

vb1

� �)8<
:

H ¼ ma xa1va2 � xa2va1ð Þba þ mb xb1vb2 � xb2vb1ð Þbb
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a stable orbit when slightly decreasing the impact parameter

from 3
ffiffiffi
3
p

rs

2
, during which the source captures the photon,

and we get an unstable orbit when slightly increasing the

impact parameter from 3
ffiffiffi
3
p

rs

2
. In this instance, after orbiting

the source once, the photon trajectory approaches asymptoti-

cally a straight path, never to return to the source.

This test confirms that SI predicts the existence of the

photon sphere. Also, the photon sphere’s radius is in agree-

ment with GR for the static isotropic case, which corre-

sponds to the Schwarzschild metric. Additionally, as shown

in Fig. 6(b), the spatial paths predicted by SI and the spatial

paths predicted by GR are the same (overlap). Indeed,

although not shown, the spatial paths in SI and in GR were

the same for the precession of Mercury problem in Fig. 4

and the bending of light problem in Fig. 5, too. For com-

pleteness, line 10 of Table XII records the agreement of this

photon sphere result with GR.

One can also derive analytically from SI the radius of

the photon sphere. From Table X, the GR result is

r ¼ 1:5rs¼ 3GM=c2: From Table VII, imposing a circular

motion of constant radius r and of constant speed c,

ab1

ab2

� �
¼ �3 GM

r3

xb1

xb2

� �
: We also know for circular motion

that the components of acceleration are

ab1

ab2

� �
¼ � c2

r2

xb1

xb2

� �
. Equating the components of acceler-

ation, we get r ¼ 3GM=c2; in agreement with the SI numeri-
cal results and with GR.

VIII. HISTORICAL CONTEXT AND CONCEPTUAL 
IMPLICATIONS

The purpose of the empirical results was to validate that 
SI is in agreement with the well-known results for the case 
of a static isotropic source. This section places the develop-

ment of SI in historical context and briefly discusses concep-

tual implications.

The principle of impetus dates back to antiquity. Histori-

ans believe that ancient impetus began with Aristotle 
(384–322 BC) and continued with such figures as Philoponus 
(490–570), Avicenna (980–1037), Abu’l-Barakat (c.1080 
–c.1164), Nur ad-Din al-Bitruji (died c. 1204), Jean Buridan 
(c.1301–s.1359), and Galileo (1564–1642). Classical impetus 
arose in 1687 in Mathematical Principles of Natural Philos-
ophy by Sir Isaac Newton (1643–1727). The concept of 
impetus that we adopted here, consistent with FT, expressed 
it in terms of fragments of energy, fields, and spacetime.

TABLE XII. Numerical results of test 1, test 2, and test 3.

Precession angles of Mercury and Jupiter (rad/orbit)

Test 1 Mercury Sun Jupiter Sun

1 Two-body NT <10–13 <10–13 <10–13 <10–13

2 One-body NT (Ref. 1) <10–13 <10–13 <10–13 <10–13

3 Two-body SI with adjustment 5.047� 10–7 1.200� 10–7 3.593� 10–8 1.742� 10–7

4 GR 5.047� 10–7 — 3.607� 10–8 —

5 Two-body SI no limiting condition <10–13 6.967� 10–7 �1.320� 10–10 1.382� 10–7

6 Two-body SI difference 5.047� 10–7 5.033� 10–7 3.606� 10–8 3.600� 10–8

7 One-body SI with limiting condition (Ref. 1) 5.047� 10–7 — 3.606� 10–8 —

8 Error 0.000% -0.028%

Test 2 Light grazing bend angle (rad)

9 SI 8.534� 10–6 GR 8.534� 10–6 Error 0%

Test 3 Photon sphere radius (rs ¼ 2GM/c2)

10 SI 1.500 rs GR 1.500 rs Error 0%

TABLE XI. Physical constants in conventional units (Ref. 1).e)

Mercury Jupiter

m Mass 3.3022� 1023 kg 1.898� 1027 kg

rp Perihelion radius 4.60012� 1010 m 74.05� 1010 m

A Semimajor axis 57.91� 109 m 778.57� 109 m

e Eccentricity of the orbit 0.20566 0.04890

vp Perihelion velocity 58.98� 103 m/s 13.72� 103 m/s

T Orbital period 87.969 Earth days¼ 7 600 530 s 4333 Earth days¼ 374 371 200 s

Sun

M Mass 1.989� 1030 kg

Rs Radius 696 000 000 m

rs Schwarzschild radius 2970 m

Other

G Gravitational constant 6.674� 10-11 m3/kg s2

c Speed of light 2.99� 108 m/s
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Conceptually, this article gives perhaps two principal results.

The first is that SI extends NT, previously applicable to parti-

cle problems, to problems involving both mechanical par-

ticles and light waves, and it does so in a single formulation

that stands on its own. Of course, GR was the first theory to

accomplish this, but this theory did it differently. Instead of

replacing mass and force with curved spacetime, SI

“modernized” the concept of impetus, uniting NT and GR.

The second contribution pertains to the resolution that SI

brings to conceptual questions that were paradoxical in

(unanswered by) NT, which has importance in that it contrib-

utes to our understanding of the unification of the continuum

theories (NT, EM, GR, and FT).

Pertaining to the extension of NT, we know that NT

never explicitly addressed light phenomena, which EM

addressed directly. Furthermore, historically, scientists

adopted spacetime in FT to address the electromagnetic

behavior found in EM. Therefore, one should find it natural

in the modernization of the concept of impetus that we

replaced ordinary geometry in NT with spacetime geometry

and that we transitioned from the particle concept to the field

concept. Again, the key was to replace the classical primi-

tives—the particle and the wave—with a single primitive—

the fragment of energy—to accommodate both particle and

wave processes. As Section II showed, two fragments of

energy, merely by their radial dependence, exhibit relation-

ships that one already finds in NT, making the connection of

the concept of impetus from NT to FT somewhat anticipated.

Pertaining to the resolutions that SI brings to longstand-

ing paradoxes in NT, let us first consider the primitive, next,

the confusion with mass, and finally the confusion with

force.

First, about the primitive, NT employed the concept of

the particle. The particle represented a spatial point together

with one or more properties (mass in NT plus charge in EM).

According to this view, the universe is a constellation of par-

ticles separated by a void (absence of particles). This view

led to long-standing questions about the mechanism by

which particles interact, given that the void conceptually

implies isolation. EM moved toward resolving this paradox

by employing the field concept but it did not completely

resolve the paradox, because it continued to employ the par-

ticle from NT. There was still a need for universality in the

restricted sense of concepts that cut across the continuum

theories (NT, EM, GR, and FT). In this sense, the concepts

of space, time, and energy were already universal but the

primitives were not. EM was still employing the particle

primitive that originated with NT, and its electromagnetic

wave primitive lacked a source term. The development of

the fragment of energy primitive unites NT and EM, com-

pleting the unification of space, time, and energy. In the new

view, the universe is a constellation of fragments of energy.

There is no void, and the overlap between fragments allows

one fragment to experience a change from another. The elim-

ination of the void and its replacement with an experience of

change resolves the paradox of the particle primitive in NT

and the electromagnetic wave primitive in EM.

Next, about the confusion with mass, NT set two

masses—inertial mass and gravitational mass—equal to each

other without a logical explanation. The two seemed to

exhibit seemingly contradictory behaviors. Inertial massFIG. 4. Mercury precession angle.

FIG. 3. Trajectories of Mercury and the sun.

FIG. 5. Bend angle of photon grazing the sun.
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seemingly impeded acceleration (hence the word “inertial”)

and gravitational mass resulted in bodies accelerating toward

the earth independent of mass. The paradox arose in the

unanswered question as to why the two masses are equal.

Historically, it motivated the equivalence principle, and sub-

sequently GR served as one remedy to the paradox. SI

resolves this paradox in a simpler way. SI interprets mass as

fundamentally the intensity of a fragment of energy. In SI,

one describes the concept of impetus of, say, fragment a by

the change equation Par ¼ kar in which kar are the path cur-

vature components of fragment a and Par are the action force

components by fragment b (in the two-body problem) that

fragment a experiences. Notice that the change equations for

fragment a depend on the mass of fragment b and not on the

mass of fragment a, because Par is from fragment b. Recall

that we deduced the interaction force acting on fragment

a from the definition of the action force acting on fragment

a (Far ¼ maPar), where ma is the mass on which the force

acts. If we multiply the change equation Par ¼ kar by the

mass ma, we get Far ¼ makar. Finally, consider that kar ffi
aar (in light units) when the motion is slow compared with

the speed of light. This yields Newton’s second law (law of

inertia) Far ¼ maaar. Both the gravitational mass and the

inertial mass originate from the intensity of a fragment.

One now sees too that Newton’s second law—the law of

inertia—creates the illusion that the acceleration components

aar of body a are inversely proportional to its mass, serving

to impede a change in velocity, when in fact, by the change

equations, more fundamentally the acceleration components

of body a are linearly proportional to the mass of body b.

The present-day classical form of the second law is a slight-

of-hand in mass. Furthermore, strictly speaking, the law in

NT has the appearance of violating the principle of impetus,

which requires that the change of the state of a primitive not
depend on itself. In any event, we now deduce that the mass

in the law of inertia and the mass in the gravitational law

both originate from the mass of their fragment, which

resolves the paradox of inertial and gravitational masses.

About the confusion with force, the new theory resolves

the paradox in NT that originated from never clarifying

whether the force F in F¼ma is an interaction force or an

action force (NT never successfully distinguished between

the two). When one thought of it as an action force, the

equality of the magnitudes of mutual forces became paradox-

ical. For example, NT predicts that the magnitude of the

force F by the comparatively huge sun on the earth is equal

to the magnitude of the force F by the comparatively tiny

earth back on the sun, which would be counter-intuitive if

one were to think of the force as an action by a primitive. In

contrast, the magnitude of the action force by the sun on the

earth and the magnitude of the action force by sun back on

the earth that SI predict are proportional to their respective

masses, in agreement with intuition, and we now can regard

the equal and opposite properties associated with interactions

to be deduced, not assumed.

IX. SUMMARY

This article introduced the theory of SI. The theory uni-

tes NT and the theory of GR. It does so by replacing the law

F¼ma governing the motion of particles with the change

equation P¼ k governing the motion of fragments of energy,

where F is an interaction force, P is an action force, m is

mass, a is acceleration, and k is the path curvature of the

spacetime path of a source point of a fragment.

In this article, the reader discovers that the fragment of

energy building block, first introduced in Ref. 1, was not a

mere coincidence but rather the basis for the extension of the

concept of impetus to bodies that travel at the speed of light,

in general agreement with the theory of GR. To illustrate just

how SI extends the concept of impetus, let us consider a sim-

ple illustration—the pair of companion problems of the Earth

orbiting the sun and of light bending around the sun. In both

problems, the sun pulls on a body that would otherwise

travel along a straight line, causing it to rotate (orbit or

bend). In classical thinking, one treats the sun as a particle of

mass M, the Earth as a particle of mass m, and light as a

wave, and we now treat each of them as fragments of energy.

In SI, the Earth and light fragments change their directions

of travel due to the gravitational force by the sun fragment.

In Section II, we found the fragment of energy to lead natu-

rally to a new mathematical structure within the FT frame-

work that connects rigorously to one another such concepts

FIG. 6. (a) Setup of photon trajectory problems for GR and SI. (b)

Photon trajectories reaching the neighborhood of the photon sphere for SI

and GR.
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as mass, energy, action, and interaction. In particular, the

interaction force was derived from the action force; the inter-

action force acting on the earth fragment or the light frag-

ment by the sun fragment was equal to the action force by

the sun fragment multiplied by the mass of the fragment on

which it acts (the earth or light), written F¼mP. Substituting

this expression into the spacetime change equation P¼ k
gave F¼mk, which almost looked like Newton’s classical

law of inertia F¼ma governing the motion of a particle. The

difference between SI and the classical concept of impetus

was in the path curvature k of a path in spacetime replacing

the acceleration a of a path in space. Here, it is good to recall

from Section III that a¼ k (in light units) when the speed of

a fragment is small compared with the speed of light, corre-

sponding to the range of speeds over which the classical con-

cept of impetus applied. The path curvature k served to

predict the change that occurs when the speed of the frag-

ment approaches that of light, too. To see how this enabled

the correct prediction, let us continue with the pair of com-

panion problems, and first recognize, regardless of whether

the fragment represents the earth or light, that the sun’s grav-

itational force acts along the line between it and the sun frag-

ment (recall Fig. 2). Furthermore, the specific fragment

derived in Section VI prevented the effect of the sun’s gravita-

tional force from vanishing when the speed of the fragment

on which it acts approaches that of light. When the speed of a

fragment is small when compared with the speed of light, the

fragment’s acceleration is along the line between the two frag-

ments, as in NT. However, when the speed of a fragment

approaches the speed of light, its acceleration vector due to

the gravitational force acting on it rotates. Its acceleration vec-

tor approaches a direction that is perpendicular to its velocity

vector (see Fig. 2). The absence of a component of accelera-

tion tangent to a fragment’s velocity vector creates a limit to

the speed of a fragment and the nonvanishing perpendicular

component of acceleration causes its path to bend. As Section

III describes, light obeys the identical limiting conditions that

the motion of the source of any fragment obeys.

To verify SI, we conducted three tests. Test 1 was a

high-curvature mechanical test that predicted the precessions

of Mercury and of Jupiter, test 2 was a low-curvature light

test that predicted the bending of light when it grazes the

sun, and test 3 was a high-curvature light test that predicted

the photon sphere’s radius. Test 3 is particularly noteworthy,

because it showed that one no longer needs to regard the

black hole as a general relativistic phenomenon—resulting

from the bending of spacetime.

Finally, note that we expressed the equations of motion

in terms of Cartesian coordinates and time, and they are rela-

tively simple to solve. Undergraduate students in science and

engineering and others with similar mathematical skills can

validate the results for themselves.

APPENDIX A: SPACETIME OPERATIONS

Let xr ðr ¼ 0; 1; 2; and 3Þ denote spacetime coor-

dinates. We designate x0 to be a time coordinate t and the

other three to be spatial coordinates. The square of a space-

time metric is

ds2¢dt2 � dx2
1 � dx2

2 � dx2
3 :

Letting wst ¼ wts ¼
1 0 0 0

0 �1 0 0

0 0 �1 0
0 0 0 �1

2
664

3
775, we rewrite

the square of the spacetime metric as

ds2¢wstxsxt: (A1)

In Eq. (A1), we sum repeated indices from 0 to 3. The

spacetime metric motivates operations on first-order tensors

that determine components and generalized perpendiculars.

Table XIII gives the spacetime scalar product of two first-

order tensors, the spacetime magnitude of a first-order ten-

sor, and the generalized perpendiculars to the first-order ten-

sors for 2D, 3D, and 4D spacetimes.

In Table XIII, the 2D, 3D, and 4D permutation symbols

ers; erst; and erstu are equal to 0 when any one index is

repeated, and they are equal to 1 when their indices are in

the right-hand order, and equal to �1 when in the left-hand

order. Switching a pair of adjacent indices causes the sign of

a permutation symbol to change. By convention, e01 ¼ 1 for

2D, e012 ¼ 1 for 3D, and e0123 ¼ 1 for 4D. In Table XIII,

a � b ¼ 0 for the 2D perpendicular, a � c ¼ b � c ¼ 0 for the

3D perpendicular, and a � d ¼ b � d ¼ c � d ¼ 0 for the 4D

perpendicular. The operations given in Table XIII are natural

extensions to the operations that one finds with the ordinary

metric in ordinary geometry for 2D, 3D, and 4D spaces.

APPENDIX B: LINEAR MOMENTUM AND ANGULAR

MOMENTUM INVARIANTS FOR N-BODY SYSTEMS

Consider a system of n fragments

Aa¢mau rað Þ; a ¼ 1; 2;…; nð Þ; (B1)

where ma is the mass, r2
a ¼ ðx1 � xa1Þ2 þ ðx2 � xa2Þ2 þ

ðx3 � xa3Þ2 is the square of the distance between a point in

space and the source point of a fragment, and u rað Þ is a unit

fragment. (Note whereas a and b will refer here to running

indices, that in the body of the article a and b were designa-

tions for particular fragments.) The following identities hold

for any indices a and b between 1 and n

raj b ¼ rbja¢rab;
@ra

@xs
¼ xs � xas

ra
¼ � @ra

@xas
;
@rb

@xs
ja

¼ �@ra

@xs
jb u rað Þjb ¼ u rbð Þja;

du rað Þ
dra

jb

¼
du rbð Þ

drb
ja
@Aa

@xs
¼ ma

du rað Þ
dra

@ra

@xs
¼ � @Aa

@xas
: (B2)

TABLE XIII. Spacetime operations.

Dot product a � b ¼ a0rbr a0r ¼ wrsas

Magnitude aj j ¼
ffiffiffiffiffiffiffiffiffi
a � b
p

2D perpendicular br ¼ ersa
0
s ers (r, s¼ 0, 1)

3D perpendicular cr ¼ ersta
0
sb
0
t erst (r, s, t¼ 0, 1, 2)

4D perpendicular dr ¼ erstua0sb
0
t c
0
u erstu (r, s, t, u¼ 0, 1, 2, 3)
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Let us first define the s-th component of the action force

on fragment a by fragment b as

Pabs¢
@Ab

@xs
ja ¼ Gab xbs � xasð Þ;Gab¢

du rbð Þ
drb
ja

mb

rab
: (B3)

It follows from Eqs. (B2) and (B3) that:

maGab þ mbGba ¼ 0;maPabs þ mbPbas ¼ 0: (B4)

Based on the action forces, define the interaction forces

between fragments a and b and obtain from Eq. (B4) the

equal and opposite properties of pairs of interaction forces

Fabs¢maPbas;Fabs þ Fbas ¼ 0: (B5)

Next, turn to the moment components. Define the t-th
component of the action moment on fragment a by fragment

b and obtain from Eq. (B5), the properties of action moment

pairs

Qabt¢ xar � x0rð ÞPabs � xas � x0sð ÞPabr;maQabt

þ mbQbat ¼ 0;
(B6)

where (r, s, t) is a right-handed triad. Based on the action

moments, define the interaction moments between fragments

a and b and obtain from Eqs. (B5) and (B7) the equal and

opposite properties of pairs of interaction moments

Mabt¢maQabt;Mabt þMbat ¼ 0: (B7)

These definitions and properties provide the set up for

examining the invariance of system linear momentum and of

system angular momentum. The linear momentum of a frag-

ment, the linear momentum of the system, the angular rate of

a fragment, the angular momentum of a fragment, and the

angular momentum of the system are

Lar¢maear; Lr¢
Xn

a¼1
Lar

hat¢ xar � x0rð Þeas � xas � x0sð Þear;

Hat¢mahat;Ht¢
Xn

a¼1
Hat:

(B8)

The spacetime change equations for a system of n frag-

ments and the resultant action forces are

Pas ¼ kas;Pas¢
Xn

b 6¼a
Pabs; s ¼ 1; 2; 3ð Þ: (B9)

Thus, from Eqs. (B8) and (B9), the change in system lin-

ear momentum and the change in system angular momentum

are calculated

dLr

ds
¢
Xn

a¼1

dLar

dsa
¼
Xn

a¼1
makar ¼

Xn

a¼1
maPar ¼ 0

dHt

ds
¢
Xn

a¼1

dHat

dsa

¼
Xn

a¼1
ma xar � x0rð Þkas � xas � x0sð Þkar
� �

¼
Xn

a¼1
ma xar � x0rð ÞPas � xas � x0sð ÞPar
� � ¼ 0:

(B10)

Thus, system linear momentum and system angular

momentum are invariant.
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