Ramainasfí |upsc maths OPTIONAL COACHING

Analytical

Geometry

Previous year Questions

from 2020 to 1992

2021-22

2020

1. Find the equations of the tangent plane to the ellipsoid $2 x^{2}+6 y^{2}+3 z^{2}=27$ which passes through the line $x-y-z=0=x-y+2 z-9$
[10 Marks]
2. Find the equation of the cylinder whose generators are parallel to the line $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and whose guiding curve is $x^{2}+y^{2}=4, z=2$
[15 Marks]
3. If the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ represents one of a set of three mutually perpendicular generators of the cone $5 y z-8 z x-3 x y=0$ then find the equations of the other two generators.
[15 Marks]
4. Find the locus of the point of intersection of the perpendicular generators of the hyperbolic paraboloid $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2 z$
[15 Marks]

2019

5. Show that the lines $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and $\frac{x}{1}=\frac{y-7}{-3}=\frac{z+2}{2}$ intersect. Find the coordinates of the point of intersection and the equation of the plane containing them.
[10 Marks]
6. The plane $x+2 y+3 z=12$ cuts the axes of coordinates in. A, B, C Find the equations of the circle circumscribing the triangle $A B C$
[10 Marks]
7. Prove that the plane $z=0$ cuts the enveloping cone of the sphere $x^{2}+y^{2}+z^{2}=11$ which has vertex at $(2,4,1)$ in a rectangular hyperbola.
[10 Marks]
8. Prove that, in general, three normal can be drawn from a given point to the paraboloid $x^{2}+y^{2}=2 a z$ but if the point lies on the surface $27 a\left(x^{2}+y^{2}\right)+8(a-z)^{3}=0$ then two of the three normals coincide.
[15 Marks]
9. Find the length of the normal chord through a point P of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ and prove that if it is equal to $4 P G_{3}$ where G_{3} is the point where the normal chord through P meets $x y$ plane, then P lies on the cone $\frac{x^{2}}{a^{6}}\left(2 c^{2}-a^{2}\right)+\frac{y^{2}}{b^{6}}\left(2 c^{2}-b^{2}\right)+\frac{z^{2}}{c^{4}}=0$
[15 Marks]

2018

10. Find the projection of the straight line $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z+1}{-1}$ on the plane $x+y+2 z=6$
[10 Marks]
11. Find the shortest distance between the lines $a_{1} x+b_{1} y+c_{1} z+d_{1}=0, a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ and the $z-$ axis.
[12 Marks]
12. Find the equations to the generating lines of the paraboloid $(x+y+z)(2 x+y-z)=6 z$ which pass through the point $(1,1,1)$
[13 Marks]
13. Find the equation of the sphere in $x y z$-plane passing through the points $(0,0,0),(0,1,-1),(-1,2,0)$ and $(1,2,3)$
[12 Marks].
14. Find the equation of the cone with $(0,0,1)$ as the vertex and $2 x^{2}-y^{2}=4, z=0$ as the guiding curve.
[13 Marks]
15. Find the equation of the plane parallel to $3 x-y+3 z=8$ and passing through the point $(1,1,1)$ [12 Marks]

2017

16. Find the equation of the tangent at the point $(1,1,1)$ to the Conicoid $3 x^{2}-y^{2}=2 z$.
[10 Marks]
17. Find the shortest distance between the skew the lines: $\frac{x-3}{3}=\frac{8-y}{1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$
[10 Marks]
18. A plane through a fixed point (a, b, c) and cuts the axes at the points A, B, C respectively. Find the locus of the center of the sphere which passes through the origin O and A, B, C
[15 Marks]
19. Show that the plane $2 x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ find the point of contact.
[10 Marks]
20. Find the locus of the points of intersection of three mutually perpendicular tangent planes to $a x^{2}+b y^{2}+c z^{2}=1$.
[10 Marks]
21. Reduce the following equation to the standard form and hence determine the nature of the Conicoid: $x^{2}+y^{2}+z^{2}-y z-z x-x y-3 x-6 y-9 z+21=0$.
[15 Marks]

2016

22. Find the equation of the sphere which passes though the circle $x^{2}+y^{2}=4 ; z=0$ and is cut by the plane $x+2 y+2 z=0$ in a circle of radius 3 .
[10 marks]
23. Find the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{4}=z-3$ and $y-m x=z=0$ for what value of will the two lines intersect?
[10 marks]
24. Find the surface generated by a line which intersects the line $y=a=z, x+3 z=a=y+z$ and parallel to the plane $x+y=0$.
[10 marks]
25.

Show that the cone $3 y z-2 z x-2 x y=0$ has an infinite set of three mutually perpendicular generators. If $\frac{x}{1}=\frac{y}{1}=\frac{z}{z}$ is a generator belonging to one such set, Find the other two. [10 marks]
26. Find the locus of the point of intersection of three mutually perpendicular tangent planes to the Conicoid $a x^{2}+b y^{2}+c z^{2}=1$.
[15 marks]

2015

27. Find what positive value of a, the plane $a x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ and hence find the point of contact.
[10 Marks]
28. If $6 x=3 y=2 z$ represents one of the mutually perpendicular generators of the cone $5 y z-8 z x-3 x y=0$ then obtain the equations of the other two generators.
[13 Marks]
29. Obtain the equation of the plane passing through the points $(2,3,1)$ and $(4,-5,3)$ parallel to x - axis [6 Marks]
30. Verify if the lines: $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar. If yes, find the equation of the plane in which they lie.
[7 Marks]
31. Two perpendicular tangent planes to the paraboloid $x^{2}+y^{2}=2 z$ intersect in a straight line in the plane $x=0$. Obtain the curve to which this straight-line touch.
[13 Marks]

2014

32. Examine whether the plane $x+y+z=0$ cuts the cone $y z+z x+x y=0$ in perpendicular lines
[10 Marks]
33. Find the co-ordinates of the points on the sphere $x^{2}+y^{2}+z^{2}-4 x+2 y=4$, the tangent planes at which are parallel to the plane $2 x-y+2 z=1$
[10 Marks]
34. Prove that equation $a x^{2}+b y^{2}+c z^{2}+2 u x+2 v y+2 w z+d=0$ represents a cone if $\frac{u^{2}}{a}+\frac{v^{2}}{b}+\frac{w^{2}}{c}=d$
[10 Marks]
35. Show that the lines drawn from the origin parallel to the normals to the central Conicoid $a x^{2}+b y^{2}+c z^{2}=1$, at its points of intersection with the plane $l x+m y+n z=p$ generate the cone

$$
p^{2}\left(\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}\right)=\left(\frac{l x}{a}+\frac{m y}{b}+\frac{n z}{c}\right)^{2}
$$

[15 Marks]
36. Find the equations of the two generating lines through any point ($a \cos \theta, b \sin \theta, 0)$ of the principal elliptic section $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, z=0$ of the hyperboloid by the plane $z=0$
[15 Marks]

2013

37. Find the equation of the plane which passes through the points $(0,1,1)$ and $(2,0,-1)$ and is parallel to the line joining the points $(-1,1,-2),(3,-2,4)$. Find also the distance between the line and the plane.
[10 Marks]
38. A sphere S has points $(0,1,0)(3,-5,2)$ at opposite ends of a diameter. Find the equation of the sphere having the intersection of the sphere S with the plane $5 x-2 y+4 z+7=0$ as a great circle.
[10 Marks]
39. Show that three mutually perpendicular tangent lines can be drawn to the sphere $x^{2}+y^{2}+z^{2}=r^{2}$ from any point on the sphere $2\left(x^{2}+y^{2}+z^{2}\right)=3 r^{2}$
[15 Marks]
40. A cone has for its guiding curve the circle $x^{2}+y^{2}+2 a x+2 b y=0, z=0$ and passes through a fixed point $(0,0, c)$. If the section of the cone by the plane $y=0$ is a rectangular hyperbola, prove that vertex lies one the fixed circle $x^{2}+y^{2}+2 a x+2 b y=0,2 a x+2 b y+c z=0$
[15 Marks]
41. A variable generator meets two generators of the system through the extremities B and B^{1} of the minor axis of the principal elliptic section of the hyperboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z^{2} c^{2}=1$ in P and P^{1} Prove that $B P . P^{1} B^{1}=a^{2}+c^{2}$
[20 Marks]

2012

42. Prove that two of the straight lines represented by the equation $x^{3}+b x^{2} y+c x y^{2}+y^{3}=0$ will be at right angles, if $b+c=-2$
[12 Marks]
43. A variable plane is parallel to the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$ and meets the axes in A, B, C respectively. Prove that circle $A B C$ lies on the cone $y z\left(\frac{b}{c}+\frac{c}{b}\right)+z x\left(\frac{c}{a}+\frac{a}{c}\right)+x y\left(\frac{a}{b}+\frac{b}{a}\right)=0$
[20 Marks]
44. Show that locus of a point from which three mutually perpendicular tangent lines can be drawn to the paraboloid $x^{2}+y^{2}+2 z^{2}=0$ is $x^{2}+y^{2}+4 z=1$
[20 Marks]

2011

45. Find the equation of the straight line through the point $(3,1,2)$ to intersect the straight line $x+4=y+1=2(z-2)$ and parallel to the plane $4 x+y+5 z=0$
[10 Marks]
46. Show that the equation of the sphere which touches the sphere $4\left(x^{2}+y^{2}+z^{2}\right)+10 x-25 y-2 z=0$ at the point $(1,2,-2)$ and the passes through the point $(-1,0,0)$ is $x^{2}+y^{2}+z^{2}+2 x-6 y+1=0$
[10 Marks]
47. Find the points on the sphere $x^{2}+y^{2}+z^{2}=4$ that are closest to and farthest from the point $(3,1,-1)$
[20 Marks]
48. Three points P, Q, R are taken on the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ so that lines joining to P, Q and R to origin are mutually perpendicular. Prove that plane $P Q R$ touches a fixed sphere
[20 Marks]
49. Show that the cone $y z+x z+x y=0$ cuts the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in two equal circles, and find their area
[20 Marks]
50. Show that generators through any one of the ends of an equi-conjugate diameter of the principal elliptic section of the hyperboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ are inclined to each other at an angle of 60^{0} if $\mathrm{a}^{2}+b^{2}=6 c^{2}$. Find also the condition for the generators to be perpendicular to each other.
[20 Marks]

2010

51. Show that the plane $x+y-2 z=3$ cuts the sphere $x^{2}+y^{2}+z^{2}-x+y=2$ in a circle of radius 1 and find the equation of the sphere which has this circle as a great circle
[12 Marks]
52. Show that the plane $3 x+4 y+7 z+\frac{5}{2}=0$ touches the paraboloid $3 x^{2}+4 y^{2}=10 z$ and find the point of contact
[20 Marks]
53. Show that every sphere through the circle $x^{2}+y^{2}-2 a x+r^{2}=0, z=0$ cuts orthogonally every sphere through the circle $x^{2}+z^{2}=r^{2}, y=0$
[20 Marks]
54. Find the vertices of the skew quadrilateral formed by the four generators of the hyperboloid $\frac{x^{2}}{4}+y^{2}-z^{2}=49$ passing through $(10,5,1)$ and $(14,2,-2)$.
[20 Marks]

2009

55. A line is drawn through a variable point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, z=0$ to meet two fixed lines $y=m x, z=c$ and $y=-m x, z=-c$. Find the locus of the line
[12 Marks]
56. Find the equation of the sphere having its center on the plane $4 x-5 y-z=3$ and passing through the circle $x^{2}+y^{2}+z^{2}-12 x-3 y+4 z+8=0,3 x+4 y-5 z+3=0$
[12 Marks]
57. Prove that the normals from the point (α, β, γ) to the paraboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2 z$ lie on the cone
$\frac{\alpha}{x-\alpha}+\frac{\beta}{y-\beta}+\frac{a^{2}-b^{2}}{z-\gamma}=0$
[20 Marks]

2008

58. The plane $x-2 y+3 z=0$ is rotated through a right angle about its line of intersection with the plane $2 x+3 y-4 z-5=0$; find the equation of the plane in its new position
[12 Marks]
59. Find the equations (in symmetric form) of the tangent line to the sphere $x^{2}+y^{2}+z^{2}+5 x-7 y+2 z-8=0$, $3 x-2 y+4 z+3=0$ at the point $(-3,5,4)$.
[12 Marks]
60. A sphere S has points $(0,1,0),(3,-5,2)$ at opposite ends of diameter. Find the equation of the sphere having the intersection of the sphere S with the plane $5 x-2 y+4 z+7=0$ as a great circle \quad [20 Marks]
61. Show that the enveloping cylinders of the ellipsoid $a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}=1$ with generators perpendicular to z-axis meet the plane $z=0$ in parabolas.
[20 Marks]

2007

62. Find the equation of the sphere inscribed in the tetrahedron whose faces are $x=0, y=0, z=0$ and $2 x+3 y+6 z=6$
[12 Marks]
63. Find the locus of the point which moves so that its distance from the plane $x+y-z=1$ is twice its distance from the line $x=-y=z$
[12 Marks]
64. Show that the spheres $x^{2}+y^{2}+z^{2}-x+z-2=0$ and $3 x^{2}+3 y^{2}-8 x-10 y+8 z+14=0$ cut orthogonally. Find the center and radius of their common circle
[15 Marks]
65. A line with direction ratios $2,7,-5$ is drawn to intersect the lines $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{4}$ and $\frac{x-11}{3}=\frac{y-5}{-1}=\frac{z}{1}$. Find the coordinate of the points of intersection and the length intercepted on it
66. Show that the plane $2 x-y+2 z=0$ cuts the cone $x y+y z+z x=0$ in perpendicular lines
67. Show that the feet of the normals from the point $P(\alpha, \beta, \gamma), \beta \neq 0$ on the paraboloid $x^{2}+y^{2}=4 z$ lie on the sphere $2 \beta\left(x^{2}+y^{2}+z^{2}\right)-\left(\alpha^{2}+\beta^{2}\right) y-2 \beta(2+\gamma) z=0$
[15 Marks]

2006

68. A pair of tangents to the conic $a x^{2}+b y^{2}=1$ intercepts a constant distance $2 k$ on the y - axis. Prove that the locus of their point of intersection is the conic $a x^{2}\left(a x^{2}+b y^{2}-1\right)=b k^{2}\left(a x^{2}-1\right)^{2}$
[12 Marks]
69. Show that the length of the shortest distance between the line $z=x \tan \alpha, y=0$ and any tangent to the ellipse $x^{2} \sin ^{2} \alpha+y^{2}=a^{2}, z=0$ is constant
[12 Marks]
70. If $P S P^{1}$ and $Q S Q^{1}$ are the two perpendicular focal chords of a conic $\frac{1}{r}=1+e \cos \theta$, Prove that $\frac{1}{S P \cdot S P^{1}}+\frac{1}{S Q \cdot S Q^{1}}$ is constant
71. Find the equation of the sphere which touches the plane $3 x+2 y-z+2=0$ at the point $(1,-2,1)$ and cuts orthogonally the sphere $x^{2}+y^{2}+z^{2}-4 x+6 y+4=0$
[15 Marks]
72. Show that the plane $a x+b y+c z=0$ cuts the cone $x y+y z+z x=0$ in perpendicular lines, if $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
[15 Marks]
73. If the plane $l x+m y+n z=p$ passes through the extremities of three conjugate semi-diameters of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ prove that $a^{2} l^{2}+b^{2} m^{2}+c^{2} n^{2}=3 p^{2}$
[15 Marks]

2005

74. If normals at the points of an ellipse whose eccentric angles are α, β, γ and δ in a point then show that $\sin (\beta+\gamma)+\sin (\gamma+\alpha)+\sin (\alpha+\beta)=0$
[12 Marks]
75. A square $A B C D$ having each diagonal $A C$ and $B D$ of length $2 a$ is folded along the diagonal $A C$ so that the planes $D A C$ and $B A C$ are at right angle. Find the shortest distance between $A B$ and $D C$
[12 Marks]
76. A plane is drawn through the line $x+y=1, z=0$ to make an angle $\sin ^{-1}\left(\frac{1}{3}\right)$ with plane $x+y+z=5$. Show that two such planes can be drawn. Find their equations and the angle between them.
[15 Marks]
77. Show that the locus of the centers of sphere of a co-axial system is a straight line.
[15 Marks]
78. Obtain the equation of a right circular cylinder on the circle through the points $(a, 0,0),(0, b, 0),(0,0, c)$ as the guiding curve.
[15 Marks]
79. Reduce the following equation to canonical form and determine which surface is represented by it:

$$
x^{2}-7 y^{2}+2 z^{2}-10 y z-8 z x-10 x y+6 x+12 y-6 z+2=0
$$

[15 Marks]

2004

80. Prove that the locus of the foot of the perpendicular drawn from the vertex on a tangent to the parabola $y^{2}=4 a x$ is $(x+a) y^{2}+x^{3}=0$.
[12 Marks]
81. Find the equations of the tangent planes to the sphere $x^{2}+y^{2}+z^{2}-4 x+2 y-6 z+5=0$, which are parallel to the plane $2 x+y-z=4$
[12 Marks]
82. Find the locus of the middle points of the chords of the rectangular hyperbola $x^{2}-y^{2}=a^{2}$ which touch the parabola $y^{2}=4 a x$
[15 Marks]
83. Prove that the locus of a line which meets the lines $y= \pm m x, z= \pm c$ and the circle $x^{2}+y^{2}=a^{2}, z=0$ is $c^{2} m^{2}(c y-m z x)^{2}+c^{2}(y z-c m x)^{2}=a^{2} m^{2}\left(z-c^{2}\right)^{2}$
[15 Marks]
84. Prove that the lines of intersection of pairs of tangent planes to $a x^{2}+b y^{2}+c z^{2}=0$ which touch along perpendicular generators lie on the cone $a^{2}(b+c) x^{2}+b^{2}(c+a) y^{2}+c^{2}(a+b) z^{2}=0$
[15 Marks]
85. Tangent planes are drawn to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ through the point (α, β, γ). Prove that the perpendiculars to them through the origin generate the cone $(\alpha x+\beta y+\gamma z)^{2}=\alpha^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}$
[15 Marks]

2003

86. A variable plane remains at a constant distance unity from the point $(1,0,0)$ and cuts the coordinate axes at A, B, and C, find the locus of the center of the sphere passing through the origin and the point and the point A, B and C.
[12 Marks]
87. Find the equation of the two straight lines through the point $(1,1,1)$ that intersect the line $x-4=4(y-4)=2(z-1)$ at an angle of 60°
[12 Marks]
88. Find the volume of the tetrahedron formed by the four planes $l x+m y+n z=p, l x+m y=0, m y+n z=0$ and $n z+l x=0$
[15 Marks]
89. A sphere of constant radius r passes through the origin O and cuts the co-ordinate axes at A, B and C. Find the locus of the foot of the perpendicular from O to the plane $A B C$.
[15 Marks]
90. Find the equations of the lines of intersection of the plane $x+7 y-5 z=0$ and the cone $3 x y+14 z x-30 x y=0$
[15 Marks]
91. Find the equations of the lines of shortest distance between the lines: $y+z=1, x=0$ and $x+z=1, y=0$ as the intersection of two planes
[15 Marks]

2002

92. Show that the equation $9 x^{2}-16 y^{2}-18 x-32 y-151=0$ represents a hyperbola. Obtain its eccentricity and foci.
[12 Marks]
93. Find the co-ordinates of the center of the sphere inscribed in the tetrahedron formed by the plane $x=0, y=0, z=0$ and $x+y+z=a$
[12 Marks]
94. Tangents are drawn from any point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to the circle $x^{2}+y^{2}=r^{2}$. Show that the chords of contact are tangents to the ellipse $a^{2} x^{2}+b^{2} y^{2}=r^{2}$.
[15 Marks]
95. Consider a rectangular parallelepiped with edges a, b and c. Obtain the shortest distance between one of its diagonals and an edge which does not intersect this diagonal
[15 Marks]
96. Show that the feed of the six normals drawn from any point (α, β, γ) to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ lie on the cone $\frac{a^{2}\left(b^{2}-c^{2}\right) \alpha}{x}+\frac{b^{2}\left(c^{2}-a^{2}\right) \beta}{y}+\frac{c^{2}\left(a^{2}-b^{2}\right) \gamma}{z}=0$
[15 Marks]
97. A variable plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$ is parallel to the plane meets the co-ordinate axes of A, B and C. Show that the circle $A B C$ lies on the conic $y z\left(\frac{b}{c}+\frac{c}{b}\right)+z x\left(\frac{c}{a}+\frac{a}{c}\right)+x y\left(\frac{a}{b}+\frac{b}{a}\right)=0$
[15 Marks]

2001

98. Show that the equation $x^{2}-5 x y+y^{2}+8 x-20 y+15=0$ represents a hyperbola. Find the coordinates of its center and the length of its real semi-axes.
[12 Marks]
99. Find the shortest distance between the axis of z and the lines $a x+b y+c z+d=0, a^{1} x+b^{1} y+c^{1} z+d^{1}=0$
[12 Marks]
100. Find the equation of the circle circumscribing the triangle formed by the points $(a, 0,0),(0, b, 0),(0,0, c)$. Obtain also the coordinates of the center of the circle.
[15 Marks]
101. Find the locus of equal conjugate diameters of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
[15 Marks]
102. Prove that $5 x^{2}+5 y^{2}+8 z^{2}+8 y z+8 z x-2 x y+12 x-12 y+6=0$ represents a cylinder whose crosssection is an ellipse of eccentricity $\frac{1}{\sqrt{2}}$
[15 Marks]
103. If $T P, T Q$ and $T^{1} P^{1}, T^{1} Q^{1}$ all lie one a conic.
[15 Marks]

2000

104. Find the equations to the planes bisecting the angles between the planes $2 x-y-2 z=0$ and $3 x+4 y+1=0$ and specify the one which bisects the acute angle.
[12 Marks]
105. Find the equation to the common conjugate diameters of the conics $x^{2}+4 x y+6 y^{2}=1$ and $2 x^{2}+6 x y+9 y^{2}=1$
[12 Marks]
106. Reduce the equation $x^{2}+y^{2}+z^{2}-2 x y-2 y z+2 z x+x-y-2 z+6=0$ into canonical form and determine the nature of the quadric
[15 Marks]
107. Find the equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=4, x+2 y-z=2$ and the point ($1,-1,1$)
[15 Marks]
108. A variable straight line always intersects the lines $x=c, y=0 ; y=c, z=0 ; z=c, x=0$. Find the equations to its locus
[15 Marks]
109. Show that the locus of mid-points of chords of the cone $a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0$ drawn parallel to the line $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$ is the plane $(a l+h m+g n) x+(h l+b m+f n) y+(g l+f m+c n) z=0$
[15 Marks]

1999

110. If P and D are ends of a pair of semi-conjugate diameters of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ show that the tangents at P and D meet on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$
[20 Marks]
111. Find the equation of the cylinder whose generators touch the sphere $x^{2}+y^{2}+z^{2}=9$ and are perpendicular to the plane $x-y-3 z=5$.
[20 Marks]
112. Calculate the curvature and torsion at the point u of the curve given by the parametric equations
$x=\alpha\left(3 u-\bar{u}^{3}\right), y=3 a u^{2}, z=\alpha\left(3 u+u^{2}\right)$
[20 Marks]

1998

113. Find the locus of the pole of a chord of the conic $\frac{l}{r}=1+e \cos \theta$ which subtends a constant angle 2α at the focus
[20 Marks]
114. Show that the plane $a x+b y+c z+d=0$ divides the join of $P_{1} \equiv\left(x_{1}, y_{1}, z_{1}\right), P_{2} \equiv\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio $-\frac{a x_{1}+b y_{1}+c z_{1}+d}{a x_{2}+b y_{2}+c z_{2}+d}$. Hence show that the planes $U \equiv a x+b y+c z+d=0=a^{1} x+b^{1} y+c^{1} z+d^{1} \equiv V$, $U+\lambda V=0$ and $U-\lambda V=0$ divide any transversal harmonically
[20 Marks]
115. Prove that a curve $x(s)$ is a generalized helix if and only if it satisfies the identity $x^{i i} \cdot x^{i i i} \times x^{i v}=0$ [20 Marks]
116. Find the smallest sphere (i.e. the sphere of smallest radius) which touches the lines $\frac{x-5}{2}=\frac{y-2}{-1}=\frac{z-5}{-1}$ and $\frac{x+4}{-3}=\frac{y+5}{-6}=\frac{z-4}{4}$
[20 Marks]
117. Find the co-ordinates the point of intersection of the generators $\frac{x}{a}-\frac{y}{b}-2 \lambda=0=\frac{x}{a}-\frac{y}{b}-\frac{z}{\lambda}$ and $\frac{x}{a}+\frac{y}{b}-2 \mu=0=\frac{x}{a}-\frac{y}{b}-\frac{z}{\mu}$ of the surface $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2 z$. Hence show that the locus of the points of intersection of perpendicular generators curves of intersection of the surface with the plane $2 z+\left(a^{2}-b^{2}\right)=0$
[20 Marks]
118. Let $P \equiv\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ lie on the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. If the length of the normal chord through P is equal to $4 P G$, where G is the intersection of the normal with the z-plane, then show that P lies on the cone $\frac{x^{2}}{a^{6}}\left(a c^{2}-a^{2}\right)+\frac{y^{2}}{b^{6}}\left(a c^{2}-b^{2}\right)+\frac{z^{2}}{c^{4}}=0$

1997

[20 Marks]
119. Let P be a pint on an ellipse with its center at the point C. Let $C D$ and $C P$ be two conjugate diameters. If the normal at P cuts $C D$ in F, show that $C D . P F$ is a constant and the locus of F is $\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=\left[\frac{a^{2}-b^{2}}{x^{2}+y^{2}}\right]^{2}$ where $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ equation of the given ellipse
[20 Marks]
120. A circle passing through the focus of conic section whose latus rectum is $2 l$ meets the conic in four points whose distances from the focus are $\gamma_{1}, \gamma_{2}, \gamma_{3}$ and γ_{4} Prove that $\frac{1}{\gamma_{1}}+\frac{1}{\gamma_{2}}+\frac{1}{\gamma_{3}}+\frac{1}{\gamma_{4}}=\frac{2}{l}$
[20 Marks]
121. Determine the curvature of the circular helix $\hat{r}(t)=(a \cos t) \hat{i}+a(\sin t) \hat{j}+(b t) \hat{k}$ and an equation of the normal plane at the point $\left(0, a, \frac{\pi b}{2}\right)$.
[20 Marks]
122. Find the reflection of the plane $x+y+z-1=0$ in plane $3 x+4 z+1=0$
[20 Marks]
123. Show that the pint of intersection of three mutually perpendicular tangent planes to the ellipsoid
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ lies on the sphere $x^{2}+y^{2}+z^{2}=a^{2}+b^{2}+c^{2}$
[20 Marks]
124. Find the equation of the spheres which pass through the circle $x^{2}+y^{2}+z^{2}-4 x-y+3 z+12=0$, $2 x+3 y-7 z=10$ and touch the plane $x-2 y+2 z=1$
[20 Marks]

1996

125. Find the equation of the common tangent to the parabolas $y^{2}=4 a x$ and $x^{2}=4 b y$
[20 Marks]
126. If the normal at any point ' t_{1} ' of a rectangular hyperbola $x y=c^{2}$ meets the curve again at the point ' t_{2} ', prove that $t_{1}^{3} t_{2}=-1$.
[20 Marks]
127. A variable plane is at a constant distance p from the origin and meets the axes in A, B and C. Through A, B, C the planes are drawn parallel to the coordinate planes. Show that the locus of their point of intersection is given by $x^{-2}+y^{-2}+z^{-2}=p^{-2}$
[20 Marks]
128. Find the equation of the sphere which passes through the points $(1,0,0),(0,1,0),(0,0,1)$ and has the smallest possible radius.
[20 Marks]
129. The generators through a point P on the hyperboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ meet the principal elliptic section in two points such that the eccentric angle of one is double that of the other. Show that P lies on the curve $x=\frac{a\left(1-3 t^{2}\right)}{1+t^{2}}, y=\frac{b t\left(3-t^{2}\right)}{1+t^{2}}, z=c t$
[20 Marks]
130. A curve is drawn on a right circular cone, semi-vertical angle α, so as to cut all the generators at the same angle β. Show that its projection on a plane at right angles to the axis is an equiangular spiral. Find expressions for its curvature and torsion.
[20 Marks]

1995

131. Two conjugate semi-diameters of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ cuts the circle $x^{2}+y^{2}=r^{2}$ at P and Q. Show that the locus of middle point of $P Q$ is $a^{2}\left\{\left(x^{2}+y^{2}\right)^{2}-r^{2} x^{2}\right\}+b^{2}\left\{\left(x^{2}+y^{2}\right)^{2}-r^{2} y^{2}\right\}=0$
[20 Marks]
132. If the normal at one of the extremities of latus rectum of the conic $\frac{1}{r} \geq 1+e \cos \theta$, meets the curve again at Q, show that $S Q=\frac{l\left(1+3 e^{2}+e^{4}\right)}{\left(1+e^{2}-e^{4}\right)}$, where S is the focus of the conic.
[20 Marks]
133. Through a point $P\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ a plane is drawn at right angles to $O P$ to meet the coordinate axes in A, B, C. Prove that the area of the triangle $A B C$ is $\frac{r^{2}}{2 x^{\prime} y^{\prime} z^{\prime}}$ where r is the measure of $O P$.
[20 Marks]
134. Two spheres of radii r_{1} and r_{2} cut orthogonally. Prove that the area of the common circle is $\frac{\pi r_{1}^{2} r_{2}^{2}}{r_{1}^{2}+r_{2}{ }^{2}}$
[20 Marks]
135. Show that a plane through one member of the λ-system and one member of μ-system is tangent plane to the hyperboloid at the point of intersection of the two generators.
[20 Marks]
136. Prove that the parallels through the origin to the binormals of the helix $x=a \cos \theta, y=a \sin \theta, z=k \theta$ lie upon the right cone $a^{2}\left(x^{2}+y^{2}\right)=k^{2} z^{2}$.

1994

137. If 2φ be the angle between the tangents from $P\left(x_{1}, y_{1}\right)$ to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, prove that $\lambda_{1} \cos ^{2} \varphi+\lambda_{2} \sin ^{2} \varphi=0$ where λ_{1}, λ_{2} are the parameters of two con-foci to the ellipse through P
[20 Marks]
138. If the normals at the points $\alpha, \beta, \gamma, \delta$ on the $\operatorname{conic} \frac{l}{r}=1+e \cos \theta$ meet at (ρ, ϕ), prove that $\alpha+\beta+\gamma+\delta-2 \phi=$ odd multiple of π radians.
[20 Marks]
139. A variable plane is at a constant distance p from the origin O and meets the axes in A, B and C. Show that the locus of the centroid of the tetrahedron $O A B C$ is $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{16}{p^{2}}$
[20 Marks]
140. Find the equations to the generators of hyperboloid, through any point of the principal elliptic section
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, z=0$
[20 Marks]
141. Planes are drawn through a fixed point (α, β, γ) so that their sections of the paraboloid $a x^{2}+b y^{2}=2 z$ are rectangular hyperbolas. Prove that they touch the cone $\frac{\left(x-\alpha^{2}\right)}{b}+\frac{\left(y-\beta^{2}\right)}{a}+\frac{\left(z-\gamma^{2}\right)}{a+b}=0$.
[20 Marks]
142. Find $f(\theta)$ so that the curve $x=a \cos \theta, y=a \sin \theta, z=f(\theta)$ determines a plane curve.
[20 Marks]

1993

143. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of lines, prove that the area of the triangle formed by their bisectors and axis of x is $\sqrt{\frac{(a-b)^{2}+4 h^{2}}{2 h}}, \frac{c a-g^{2}}{a b-h^{2}}$
[20 Marks]
144. Find the equation of the director circle of the conic $\frac{l}{r}=1+e \cos \theta$ and also obtain the asymptotes of the above conic.
145. A line makes angles $\alpha, \beta, \gamma, \delta$ with the diagonals of a cube. Prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$
[20 Marks]
146. Prove that the center of the spheres which touch the lines $y=m x, z=c ; y=-m x, z=-c$ lie upon the Conicoid $m x y+c z\left(1+m^{2}\right)=0$
[20 Marks]
147. Find the locus of the point of intersection of perpendicular generators of a hyperboloid of one sheet.
[20 Marks]
148. A curve is drawn on a parabolic cylinder so as to cut all the generators at the same angle. Find its curvature and torsion.
[20 Marks]

1992

149. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two intersecting lines, show that the square of the distance of the point of intersection of the straight lines from the origin is $\frac{c(a+b)-f^{2}-g^{2}}{a b-h^{2}}\left(a b-h^{2} \neq 0\right)$
[20 Marks]
150. Discuss the nature of the conic $16 x^{2}-24 x y+9 y^{2}-104 x-172 y+144=0$ in detail
151. A straight line, always parallel to the plane of $y z$, passed through the curves $x^{2}+y^{2}=a^{2}, z=0$ and $x^{4}=a x, y=0$ prove that the equation of the surface generated is $x^{4} y^{2}=\left(x^{2}-a z\right)^{2}\left(a^{2}-x^{2}\right)$
[20 Marks]
152. Tangent planes are drawn to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ through the point (α, β, γ). Prove that the perpendicular them from the origin generate the cone $(\alpha x+\beta y+\gamma z)^{2}=a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}$
153. Show that the locus of the foot of the perpendicular from the center to the plane through the extremities of three conjugate semi-diameters of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ is $a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}=3\left(x^{2}+y^{2}+z^{2}\right)$
[20 Marks]
154. Define an osculating plane and derive its equation in vector form. If the tangent and binormal at a point P of the curves make angles θ, ϕ respectively with the fixed direction, show that $\left(\frac{\sin \theta}{\sin \phi}\right)\left(\frac{d \theta}{d \phi}\right)=-\frac{k}{\tau}$ where k and τ are respectively curvature and torsion of the curve at P.
