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       2020 

1. Evaluate 


→

tan2

4

lim(tan ) x

x

x .          [10 Marks] 

2. Find all the asymptotes of the curve + = − 2(2 3) ( 1)x y x        [10 Marks] 

 

3.  Evaluate  
1

1

0

1
tan 1 .dx

x

−  
−             [15 Marks] 

4. Consider the function = − + − +
2 2

0

( ) ( 5 4)( 5 6)
x

f x t t t t dt  

(i) Find the critical points of the function ( )f x   

(ii) Find the points at which local minimum occurs.  

(iii) Find the points at which local maximum occurs. 

(iv) Find the number of zeros of the function ( )f x in [0,5]       [20 Marks] 

5. Find an extreme value of the function 
2 2 2u x y z= + + subject to the condition 2 3 5 30x y z+ + =  by 

using Lagrange’s method of undetermined multiplier.       [20 Marks] 
 

2019 

6. Let : 0,
2

f R
 

→ 
 

 be a continuous function such that 
2

2 2

cos
( ) ,

4

x
f x

x
=

−
  0

2
x


  . Find the value of 

2
f

 
 
 

            [10 Marks] 

7. Let 
2: ( )f D R R → be a function and ( , )a b D . If ( , )f x y is continuous at ( , ),a b then show the 

functions ( , )f x b and ( , )f a y are continuous at x a= and at y b= respectively.    [10 Marks] 

8. Is ( ) | cos | | sin |f x x x= + differentiable at ?
2

x


= If yes, then find its derivative at 
2

x


=
2

x


=  If no, then 

a proof of it.            [15 Marks] 

9. Find the maximum and the minimum value of the function 3 2( ) 2 9 12 6f x x x x= − + + on the interval [2,3]  

             [10 Marks] 

10. If 

1/3 1/3
1

1/2 1/2
sin

x y
u

x y

− +
=

+
 then show that 2sin u is a homogeneous function of x and y of degree 

1

6
− hence 

show that 
2 2 2 2

2 2

2 2

tan 13 tan
2

12 12 12

u u u u u
x xy y

x x y y

   
+ + = + 

     
      [12 Marks] 

11. Using the Jacobian method, show that if 
2

1
'( )

1
f x

x
=

+
 and (0) 0f = then ( ) ( )

1

x y
f x f y f

xy

 +
+ =  

− 
 

             [8 Marks] 

2018 

12. Determine if 
1

lim(1 ) tan
2z

z
z



→
− exists or not. If the limit exists, then find its value.   [10 Marks] 
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13. Find the limit 
1

2 2

2
0

1
lim .

n

n
r

n r
n

−

→
=

−         [10 Marks] 

14. Find the shortest distance from the point (1,0)  to the parabola 
2 4y x=     [13 Marks] 

15. The ellipse 

2 2

2 2
1

x y

a b
+ = revolves about the x -axis. Find the volume of the solid of revolution.  [13 Marks] 

16. Let 

2

2

,      0
( , )

,   0

xy y
f x y

xy y

 
= 

− 
. Determine which of (0,1), (0,1)

f f

x y

 

 
and exists and which does not exist. 

             [12 Marks] 

17. Find the maximum and the minimum values of 4 25 4x x− + on the interval[2,3] .   [13 Marks] 

18. Evaluate the integral 
2 2

0 /

a x

x a

xdydx

x y+
          [12 Marks] 

       2017 
 

19. Integrate the function 2 2( , ) ( )f x y xy x y= +  over the domain  2 2: 3 3,  1 4R x y xy−  −                                                                                                                       

             [10 Marks] 
20. Find the volume of the solid above the -xy plane and directly below the portion of the elliptic 

paraboloid 
2

2

4

y
x z+ = which is cut off by the plane 9z =      [15 Marks] 

21. If  

2 2

2 2

( )
, ( , ) (0,0)

( , )

  0               ,  ( , ) (0,0)

xy x y
x y

f x y x y

x y

 −


= +


=

  

calculate 
2 f

x y



 
and 

2 f

y x



 
at (0,0).         [15 Marks] 

22. Examine if the improper integral 
3

2 2/3
0

2
,

(1 )

xdx

x−
  exists.       [10 Marks]  

23. Prove that 
2 23 ( 2)D

dxdy

x y


 

+ −
 where D  is the unit disc.     [10 Marks] 

 

       2016 
24. Evaluate: 

 
=  

 

1

3

0

1
log  I x dx

x         
[10 marks] 

25. Find the matrix and minimum values of 2 2 2x y z+ +  subject to the conditions
2 2 2

1
4 5 25

x y z
+ + =  and

0x y z+ − =              [20 marks] 

26. Let

4 2 2 5

2 2 2

2 5
,  , ) (0,0)

( , ) ( )

    0                      ,  , ) (0,0)

x x y y
x y

f x y x y

x y

 − +


=  +


=

 find a 0  such that ( , ) (0,0) 0.01f x y f−   

whenever
2 2x y +           [15 marks]  

27. Find the surface area of the plane 2 2 12x y z+ + =  cut off by 0, 0x y= = and 2 2 16x y+ =  

             [15 marks] 
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28. Evaluate ( , ) ,
R

f x y dxdy  over the rectangle [0,1;0,1]R =  where
2 2,   if 2

( , )
0,         elsewhere

x y x y x
f x y

 +  
= 


 

             [15 marks] 

       2015 

29. Evaluate the following limit  

tan
2

lim 2

x

a

x a

x

a

 
 
 

→

 
− 

 
      [10 Marks] 

30. Evaluate the following integral: 

/2 3

3 3
/6

sin
 

sin cos

x
dx

x x



 +
      [10 Marks] 

31. A conical tent is of given capacity. For the least amount of Canvas required, for it, find the ratio of 
its height to the radius of its base.         [13 Marks] 

32. Which point of the sphere 2 2 2 1x y z+ + = is at the maximum distance from the point (2,1,3)  

             [13 Marks] 

33. Evaluate the integral 2 2( ) cos ( ) 
R

x y x y dxdy− + where R is the rhombus with successive 

vertices as( ,0),(2 , ),( ,2 ),(0, )             [12 Marks] 

34. Evaluate
2  

R

y x dxdy−  where [ 1,1;0,2]R = −       [13 Marks] 

35. For the function

2

2
,   ( , ) (0,0)

( , )

    0         ,   ( , ) (0,0)

x x y
x y

f x y x y

x y

 −


=  +


=

 Examine the continuity and differentiability.

             [12 Marks] 

       2014        

36. Prove that between two real roots cos 1 0,+ =xe x a real root of sin 1 0+ =xe x lies.    [10 Marks] 

37. Evaluate:
( )1

2

0

log 1

1

+

+
e x

dx
x

.         [10 Marks] 

38. By using the transformation ,+ = =x y u y uv  evaluate the integral ( ) 
1

21− − xy x y dxdy taken over 

the area enclosed by the straight lines 0, 0= =x y and 1+ =x y .      [15 Marks] 

39. Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a . 
             [15 Marks] 

40. Find the maximum or minimum values of
2 2 2+ +x y z subject to the condition

2 2 2 1+ + =ax by cz and

0+ + =lx my nz  interpret result geometrically       [20 Marks]

  

       2013 

41. Evaluate
1

0

1 1
2 sin
 

− 
 
 x cos dx

x x         
[10 Marks] 

42. Using Lagrange’s multiplier method find the shortest distance between the line 10 2= −y x  and the 

ellipse

2 2

1
4 9
+ =

x y

          
[20 Marks] 



 

Reputed Institute for Maths Optional of UPSC, IAS, IFoS (IFS), Civil Services and State PCS Exams  Page 5 

43. Compute ( )0,0xyf and ( )0,0yxf for the function
( )

( )

3

2
, ( , ) 0,0

( , )

 0       ,  ( , ) 0,0

xy
x y

x yf x y

x y




+= 
 =

  

Also distance the continuity of xyf and yxf  at ( )0,0 .      [15 Marks] 

44. Evaluate 
D

xydAwhere D is the region bounded by the line 1= −y x  and the parabola
2 2 6= +y x . 

             [15 Marks]  

       2012 

45. Define a function f  of two real variables in the plane by ( )

3 3

2 2

1 1
cos cos

,

0,otherewis


+


= 

+


x y
y x

f x y
x y

for , 0x y

Check the continuity and differentiability of f at ( )0,0 .     [12 Marks] 

46. Let p and q be positive real numbers such that
1 1

1+ =
p q

show that for real numbers 0ab

+
p qa b

ab
p q

.            [12 Marks] 

47. Find the point of local extreme and saddle points of the function f for two variables defined by

( ) ( )3 3, 63 12= + − + +f x y x y x y xy
        

[20 Marks]   

48. Defined a sequence ns of real numbers by
2

1

(log( ) log )

1

n

n

i

n i n
s

n=

+ −
=

+
 does

lim

→n ns exist? If so compute 

the value of this limit and justify your answer       [20 Marks]
   

49. Find all the real values of p and q so that the integral
1

0

1
log
 
 
 


q

px dx
x

converges   [20 Marks] 

 

       2011 
50. Find 

2

3 3( , ) (0,0)
lim

x y

x y

x y→ +
 if it exists         [10 Marks] 

51. Let f be a function defined on  such that ( )0 3= −f and ( )' 5f x  for all values of x in  How 

large can ( )2f  possibly be?         [10 Marks] 

52. Evaluate:  

(i) 
2

lim ( )
x

f x
→

Where

2 4
  ,   2

( ) 2

         ,    2

x
x

f x x

x

 −


= −
 =

        (ii)
1

0

 nxdx .    [20 Marks]

      2010 

 

53. A twice differentiable function ( )f x is such that ( ) ( )0= =f a f b and ( ) 0f c for  a c b prove 

that there be is at least one point ,  a b  for which ( )'' 0 f      [12 Marks]  



 

Reputed Institute for Maths Optional of UPSC, IAS, IFoS (IFS), Civil Services and State PCS Exams  Page 6 

54. Dose the integral
1

1

1

1−

+

−
x

x
 exist if so, find its value      [12 Marks] 

        
55. Show that a box (rectangular parallelepiped) of maximum volume V with prescribed surface area is 

a cube.            [20 Marks] 

56.  Let D be the region determine by the inequalities 0, 0, 8  x y z  and
2 2 +z x y  compute

2
D

xdxdydz .           [20 Marks] 

57. If ( ),f x y is a homogeneous function of degree n in x and y, and has continuous first and second 

order partial derivatives then show that 
2 2

( )  
f f

i x y nf
x y

 
+ =

 
  ( )

2 2 2
2 2

2 2
( )  2 1

f f f
ii x xy y n n f

x y y

  
+ + = −

  
   [20 Marks]

    

       2009 

 

58. Suppose the ''f is continuous on 1,2 and that f has three zeroes in the interval ( )1,2 show that ''f  has 

least one zero in the interval ( )1,2 .         [12 Marks] 

59. If f is the derivative of same function defined on  ,a b prove that there exists a number  , a b

such that ( ) ( )( )= −
b

a
f t dt f b a          [12 Marks] 

60. If 3 0.01= x and 4 0.01= y with approximately what accuracy can you calculate the polar 

coordinate r and of the point ( ),P x y Express you estimates as percentage changes of the value 

that r and  have at the point ( )3,4
        

[20 Marks] 

61. A space probe in the shape of the ellipsoid
2 2 24 4 16+ + =x y z  enters the earth atmosphere and its 

surface beings to heat. After one hour, the temperature at the point ( ), ,x y z on the probe surface is 

given by ( ) 2, , 8 4 16 1600= + − +T x y z x yz z Find the hottest point on the probe surface.  [20 Marks] 

62. Evaluate
2= + +

s

I xdydz dzdx xz dxdy  where S  is the outer side of the part of the sphere

2 2 2 1+ + =x y z  in the first octant.         [20 Marks] 

           

       2008 

 

63. Find the value of  
1

lim ln(1 )cot
2x

x
x



→
− .                                    [12 Marks] 

64. Evaluate
1

3

0

( ln )x x dx .           [12 Marks]  

65. Determine the maximum and minimum distances of the origin from the curve given by the equation
2 23 4 6 140+ + =x xy y .          [20 Marks]  

66. Evaluate the double integral 2 2+
a

y

xdxdy

x y
 by changing the order of integration   [20 Marks] 



 

Reputed Institute for Maths Optional of UPSC, IAS, IFoS (IFS), Civil Services and State PCS Exams  Page 7 

67. Obtain the volume bounded by the elliptic paraboloid given by the equations
2 2 2 29 & 18 9− + = − −z x y z x y         [20 Marks] 

 

       2007        
68. Let ( ), ( ( , ))f x x   −  be defined by ( ) sin | |f x x= is f continuous on ( , ) −  if it is continuous then 

is it differentiable on ( , ) − ?        [12 Marks] 

69. A figure bounded by one arch of a cycloid ( ) ( )  sin , 1 cos , 0,2= − = − x a t t y a t t  and the x-axis is 

revolved about the x-axis. Find the volume of the solid of revolution    [12 Marks] 
70. Fin a rectangular parallelepiped of greatest volume for a give total surface area S using Lagrange’s 

method of multipliers          [20 Marks] 

71. Prove that if ( ) ( ) = + + −z y ax y ax  then
2 2

2

2 2
0

 
− =

 

z z
a

y x
 for any twice differentiable  and  is a 

constant.           [15 Marks] 

72. Show that −x ne x is bounded on )0,  for all positive integral values of n . Using this result show that

0



−


x ne x dx exists.          [25 Marks] 

       2006 

73. Find a  and b  so that '(2)f exists where
2

1
,    if |x| 2

 |x|( )

 if  |x| 2  

f x

a bx




= 
 + 

   [12 Marks] 

74. Express
1

0
(1 )m n px x dx−  in terms of Gamma function and hence evaluate the integral 

( )
1

6 2

0
1− x x dx            [12 Marks]  

75. Find the values of a  and b such that
2

lim

0 4

sin logcos 1

2
→


=x

a x b x

x
.     [15 Marks] 

76. If 
   

= +   
   

y y
z xf g

x x
show that

2 2 2
2 2

2 2
2 0

z z z
x xy y

x x y y

  
+ + =

   
.     [15 Marks] 

77. Change the order of integration in
−




y

x

e
dydx

y
 and hence evaluate it.    [15 Marks] 

78. Find the volume of the uniform ellipsoid
2 2 2

2 2 2
1+ + =

x y z

a b c
      [15 Marks] 

 

       2005 

79. Show that the function given below is not continuous at the origin
0 if 0

( , )
1 if 0

xy
f x y

xy

=
= 


[12 Marks]  

80. Let 2 →R R be defined as
( )

( ) ( )
2 2

( , ) , ( , ) 0,0 , 0,0 0
xy

f x y x y f
x y

=  =
+

prove that xf and yf exist 

at (0,0) but f is not differentiable at (0,0) .       [12 Marks]  
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81. If ,= + + = +u x y z uv y z and =uvw z  then find
( , , )

( , , )

x y z

u v w




      [15 Marks]  

82. Evaluate
1 1

1

0 (1 )

m n

m n

x x
dx

x

− −

+

+

+  in terms of Beta function.       [15 Marks] 

83. Evaluate
v
zdV  where V the volume is bounded below by the cone

2 2 2+ =x y z and above by the 

sphere
2 2 2 1+ + =x y z  lying on the positive side of the y -axis.     [15 Marks]  

84. Find the x-coordinate of the center of gravity of the solid lying inside the cylinder
2 2 2+ =x y ax  

between the plane 0=z and the paraboloid
2 2+ =x y az .     [15 Marks] 

 

       2004 

85. Prove that the function f defined on[0,4]  ( )f x x= greatest integer , [0,4]x x   is integrable on

 0,4  and that
4

0

( ) 6f x dx = .         [12 Marks] 

86. Shaw that ( )
( )

2 2

log 1 0
2 2 1

−  +  − 
+

x x
x x x x

x
.       

             [12 Marks]  

87. Let the roots of the equation in 3 3 3( ) ( ) ( ) 0x y z   − + − + − = be , ,u v w  proving that

( , , ) ( )( )( )
2

( , , ) ( )( )( )

u v w y z z x x y

x y z u v v w w u

 − − −
= −

 − − −
.        [15 Marks]  

88. Prove that an equation of the form =nx  where n N and 0  is a real number has a positive 
root. 

              [15 Marks] 

89. Prove that
2 2

2 2 2 2[4 ( )( )]
4

x y ab
dx a b a b

p

 − −+
= + + +  when the integral is taken round the ellipse

2 2

2 2
1+ =

x y

a b
 and p is three length of three perpendicular from the center to the tangent. [15 Marks] 

90. If the function f is defined by
( )

( )

2 2
, ( , ) 0,0

( , )

0          , ( , ) 0,0

xy
x y

x yf x y

x y




+= 
 =

 then show that possesses both the 

partial derivative at but it is not continuous thereat.      [15 Marks] 
 

       2003      
91. Let f be a real function defined as follow: 

( ) , 1

( 2) ,

f x x x

f x x x R

= −  

+ =  
  

Show that f is discontinuous at every odd integer.       [12 Marks] 

92. For all real numbers , ( )x f x  is given as
2

sin ,            0
( )

( 1) 2,    0

 + 
= 

− + − 

xe a x x
f x

b x x x
. Find values of a  and b for 

which is differentiable at 0=x .         [12 Marks]  
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93. A rectangular box open at the top is to have a volume of 34m . Using Lagrange’s method of 
multipliers find the dimension of the box so that the material of a given type required to construct 
it may be least.          [15 Marks]  

94. Test the convergent of the integrals(i)

( )

1

1

20 3 1+


dx

x x

(ii)
2

2

0

sin



x

dx
x

     [15 Marks]  

95. Evaluate the integral
2

2
0 ( )− −
 

ya

y

a

ydxdy

a x ax y
       [15 Marks]

     

96. Find the volume generated by revolving by the real bounded by the curves 2 2 3( 4 ) 8 ,x a y a+ =  

2y x=  and 0x = about the y -axis.            [15 Marks]  

       2002 

97. Show that
1 1

2 2
sin sin

1 1

− −− −
 − 

− −

b a b a
b a

a b
 for 0 1  a b .     [12 Marks] 

98. Show that
2 2( )

0 0
4

x ye dxdy


 

− + =           [12 Marks]  

99. Let
1

sin , 0
( )

0           0

px x
f x x

x




= 
 =

 . Obtain condition on p such that (i)f is continuous at 0=x  and (ii) f is 

differentiable at 0=x           [15 Marks] 
100. Consider the set of triangles having a given base and a given vertex angle show that the triangle 

having the maximum area will be isosceles       [15 Marks] 

101. If the roots of the equation 3 3 3( ) ( ) ( ) 0u v w  − + − + − =  in   are , ,x y z . show that

( , , ) 2( )( )( )

( , , ) ( )( )( )

x y z u v v w w u

u v w x y y z z x

 − − −
= −

 − − −
.         [15 Marks] 

102. Find the center of gravity of the region bounded by the curve

2 2

3 3

1
   

+ =   
   

x y

a b
 and both axes I the 

first quadrant the density being  = kxy where k is constant.    [15 Marks] 

 

       2001 
 
103. Let be defined on by setting ( )f x x=  if x  is rational and ( ) 1f x x= −  if x  is irrational show that is 

continuous at
1

2
=x but is discontinuous at every other point.     [12Marks] 

104. Test the convergence of
1

0

1
sin

 
 
 


x

dx
x

.        [12 Marks] 

105. Find the equation of the cubic curve which has the same asymptotes as ( ) ( )
2 2

2 3 3 1− = −x y y x  and 

which touches the axis at the origin and passes though the point ( )1,1 .   [15 Marks] 

106. Find the maximum and minimum radii vectors of the section of the surface
2 2 2 2 2 2 2 2 2( )x y z a x b y c z+ + = + +  by the plane 0+ + =lx my nz      [15 Marks] 
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107. Evaluate ( )
2

1+ + + x y z dxdydz  over the region defined by 0, 0, 0, 1   + + x y z x y z  

             [15 Marks] 
108. Find the volume of the solid generated by revolving the cardioid (1 cos )r a = − about the initial line 

             [15 Marks] 
 

       2000 
 

109. Use the mean value theorem to prove that
2 2

log1.4 .
7 5
         

             [12 Marks] 

110. Show that
( )

2 1 2 1 2( )1  

4 1

l m l m l m
x y dxdy r

l m

− − +  
=

 + +  for all positive values of and laying the circle

2 2 2+ =x y r .            [12 Marks] 

111. Find the center of gravity of the positive octant of the ellipsoid
2 2 2

2 2 2
1+ + =

x y z

a b c
 if the density varies 

as xyz             [15 Marks] 

112. Let
2,   is irrational

( )
1,    is rational

x
f x

x


= 


 show that if is not Riemann integrable on[ , ]a b   [15 Marks 

113. Show that ( ) 1

log ! 1 1 1
1 log 1 ....

2 3+

   
= − − − − −   

   

n
n

n n

d x n
x

dx x x n
     [15 Marks] 

114. Find constant a and b for which ( )  2 2

0

, log



= − +F a b x ax bx dx  is a minimum  [15 Marks] 

 

       1999 
 

115. Determine the set of all points where the function ( )
1

x
f x

x
=

+
 is differentiable.    [20 Marks] 

116. Find three asymptotes of the curve 3 2 2 32 4 8 4 8 10 0.x x y xy y x y+ − − − + − = Also find the intercept of 

one asymptote between the other two.        [20 Marks] 
117. Find the dimensions of a right circular cone of minimum volume which can be circumscribed about 

a sphere of radius a .           [20 Marks] 
118. If f is Riemann integral over every interval of finite length and ( ) ( ) ( )f x y f x f y+ = +  for every 

pair of real numbers x and y show that ( )f x cx= where (1)c f=      [20 Marks] 

119. Show that the area bounded by cissoids
3

2 sin
sin ,

cost

t
x a t y a= = and its asymptote is

23

4

a
  

             [20 Marks] 

120. Show that 1 1− −


m nx y over the positive quadrant of the ellipse

2 2

2 2
1+ =

x y

a b
is 

2 2

4
1

2 2

   
    
   

 
 + + 
 

m n

m n

a b

m n
  

             [20 Marks] 

       1998  
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121.  Find the asymptotes of the curve 
2(2 3 1) ( ) 8 2 9 0x y x y x y− + + − + − = and show that they intersect the 

curve again in their points which lie on a straight line.       [20 Marks] 
122. A thin closed rectangular box is to have one edgen times the length of another edge and the volume of the 

box is given to bev . Prove that the least surface s is given by ( )
23 254 1ns n v= +    [20 Marks] 

123. If 1,x y+ = Prove that ( ) ( )− − 
= − + + + − 

 

2 2
1 2 2

1 2
( ) ! ( 1)

n
n n n n n n n

n

d
x y n y n y x n y x x

dx
  [20 Marks] 

124. Show that ( )
1

0
,

(1 )

p

p q

x
dx B p q

x

−


+
=

+
         [20 Marks] 

125. Show that 
2

2 2 2 8(1 )

dxdydz

x y z


=

− − −
 Integral being extended over all positive values of  , ,x y z for which 

the expression is real.          [20 Marks] 

126. The ellipse 
2 2 2 2 2 2b x a y a b+ = is divided into two parts by the line

1
,

2
x a=  and the smaller part is rotated 

through for right angles about this line. Prove that the volume generated is 2 3 3

4 3
a b




  
− 

  

 [20 Marks] 

 

       1997 

127. Suppose = − + − + −12 9 3 2( ) 17 124 16 129 1f x x x x x x  determine −1( )
d

f
dx

 if = −1x  it exists. 

             [20 Marks] 
128. Prove that the volume of the greatest parallelepiped that can be inscribe in the ellipsoid

2 2 2

2 2 2

8
1

3 3

x y z abc

a b c
+ + =

         

[20 Marks] 

129. Show that the asymptotes of the cut the curve
2 2 2 2 3 2 2 3 2( )( 4 ) 6 5 3 3 1 0x y y x x x y xy zy x xy− − + − − + − + − =  again in eight points which lie on a 

circle of radius 1.           [20 Marks] 
130. An area bounded by a quadrant of a circle of radiusa and the tangent at its extremities revolve about one of 

the tangents.  Find the volume so generated.        [20 Marks] 

131. Show how the changes of order in the integral


−
 
0 0

sin  xye x dxdy  leads to the evaluation of



0

sinx
dx

x
 

hence evaluate it.           [20 Marks] 

132. Show that in 

−

 
+ = 

  2 1

1
 2

2 2 n
n n nwhere  0n  and n  denote gamma function.      [20 Marks] 

       1996 
 

133. Find the asymptotes of all curves + − − − + − =4 4 2 2 2 2 24( ) 17 4 (4 ) 2( 2) 0x y x y x y x x  and show that 

they pass thought the point of intersection of the curve with the ellipse
2 24 4x y+ = .   [20 Marks] 

134. Show that any continuous function defined for all realx and satisfying the equation ( ) (2 1)f x f x= +  for all

x must be a constant function.         [20 Marks] 
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135. Show that the maximum and minimum of the radii vectors of the section of the surface

+ + = + +
2 2 2

2 2 2 2

2 2 2
( )

x y z
x y z

a b c
 by the plane  + + = 0x y z  are given by the equation

  
+ + =

− − −

2 2 2 2 2 2

2 2 2 2 2 2
0

1 1 1

a b a

a r b r c r
.         [20 Marks] 

136. If , ,
x y z

u f
a b c

 
=  

 
prove that 0

u u u
x y z
x y z

  
+ + =

  
      [20 Marks] 

137. Evaluate

 −

 
0 0

ye
dxdy

y
.          [20 Marks] 

138. The area cut off from the parabola
2 4y ax=  by chord joining the vertex to an end of the latus rectum is 

rotated though four right angles about the chord. Find the volume of the solid so formed.  [20 Marks] 

       1995 

139. If g is the inverse of f and
3

1
'( )

1
f x

x
=

+
 prove that = + 3( ) 1 [ ( )]g x g x     [20 Marks] 

140. Taking the nth derivative of
2( )nx in two different ways show that

−
+ + + +

2 2 2 2

2 2 2 2 2 2

( 1)
1 ...

1 1 .2 1 .2 .3

n n n n
to 

2

(2 )!
( 1)

( !)

n
n term

n
+ =

          

[20 Marks] 

141. Let ( , )f x y which possesses continuous partial derivatives of second order be a homogeneous function of x

and y off degree n  prove that 2 22 ( 1)xx xy yyx f xyf y f n n f+ + = − .    [20 Marks] 

142. Find the area bounded by the curve
2 2 2 2

4 9 4 9

x y x y 
+ = − 

 
 

.      [20 Marks] 

143. Let ( ),f x  1x  be such that the area bounded by the curve ( )y f x=  and the lines 1,x x b= =  is equal to

21 2b+ −  for all 1b . Does f attain its minimum? If so, what is its values?   [20 Marks] 

144. Show that
1 2 3 1 (2 ) 1

...
2

n n

n n n n n

− −       
    =       
       

.      [20 Marks] 

 
 
 

       1994 

145. ( )f x  Is defined as follows: 

−  

= − −  

 −
 

 
 

2 2

2 2
2

3 3

1
( )         if  0

2

1
( )    if  

2 6 3

1
       if  

3

b a x a

x a
f x b a x b

x

b a
x b

x

 . Prove that ( )f x  and '( )f x  are 

continuous but ''( )f x  is discontinuous.        [20 Marks] 



 

Reputed Institute for Maths Optional of UPSC, IAS, IFoS (IFS), Civil Services and State PCS Exams  Page 13 

146. If and   lie between the least and greatest values of , ,a b c prove that

( ) ( ) ( ) ( ) '( ) ( )

( ) ( ) ( ) ( ) '( ) ( )

( ) ( ) ( ) ( ) '( ) ( )

f a f b f c f a f f

a b c K a

x b c x

 

       

       

=  where = − − −
1

( )( )( )
2

K b c c a a b
 

[20 Marks] 

147. Prove that all rectangular parallelepipeds of same volume, the cube has the least surface  [20 Marks] 

148. Show that means of beta function that
 




−
=  

− −
 1

(0 1)
sin( ) ( )

z

t

dx

z x x t
.   [20 Marks] 

149. Prove that the value of
3( 1)

dxdydz

x y z+ + +
  taken over the volume bounded by the co-ordinate planes and 

the plane 1x y z+ + =  is
1 5

log2
2 8

 
− 

 
.         [20 Marks] 

150. The sphere
2 2 2 2x y z a+ + =  is pierced by the cylinder

2 2 2 2 2 2( ) ( )x y a x y+ = −  prove by the cylinder

2 2 2 2 2 2( ) ( )x y a x y+ = −  is
38 5 4 2

3 4 3 3

a  
+ = 

         

[20 Marks] 

       1993 

151. Prove that 2 1
( ) sin , 0f x x x

x
=   and ( ) 0 0f x x= =  for is continuous and differentiable at 0x =  but its 

derivative is not continuous there.         [20 Marks] 

152. If ( ), ( ), ( )f x x x   have derivative whena x b   show that there is a value c  of x  lying between a and 

b such that

 

 

 

=

( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) ( )

f a a a

f b b b

f c c c

         [20 Marks] 

153. Find the triangle of maximum area which can be inscribed in a circle     [20 Marks] 

154. Prove that
 − = 

2

0
( 0)

2

axe dx a
a

 deduce that
 −

+
= −

22

10
[1.3.5...(2 1)]

2

n x

n
x e dx n  [20 Marks] 

155. Defined Gamma function and prove that

−

 
+ = 

  2 1

1
 2

2 2 n
n n n      [20 Marks] 

156. Show that volume common to the sphere
2 2 2 2x y z a+ + =  and the cylinder

2 2x y ax+ =  is

22
(3 4)

9

a
 − .            [20 Marks] 

 
 

       1992 

 

157. If = cosaxy e bx prove that − + + =2 2
2 12 ( ) 0y ay a b y and hence expand 2 cosxe bx  in powers of x  

Deduce the expansion of axe and cosbx .        [20 Marks] 
158. If sin cos , sin sin , cosx r y r z r    = = = then prove that

2 2 2 2 2 2 2 2 2sindx dy dz dr r d r d  + + = + + .       [20 Marks] 
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159. Find the dimension of the rectangular parallelepiped inscribed in the ellipsoid
2 2 2

2 2 2
1

x y z

a b c
+ + =  that has 

greatest volume.            [20 Marks] 

160. Prove that the volume enclosed by the cylinders + = =2 2 22 , 2x y ax z  axis 
3128

15

a
  [20 Marks] 

161. Find the centre of gravity of the volume formed by revolving the area bounded by the parabolas
2 4y ax=  

and
2 4x by= about the x-axis         [20 Marks] 

162. Evaluate the following integral in terms of Gamma function
−

+ −  −  −
1

1

(1 ) (1 ) ,   [ 1, 1]p qx x dx p q  and 

prove that
1 2 2

3 3 3


   
  =   
   

           [20 Marks] 


