

Calculus Previous year Questions from 2020 to 1992

 WEBSITE: MATHEMATICSOPTIONAL.COM

 CONTACT: 8750706262

UPSC MATHS

1.	Evaluate $\lim_{x \to \frac{\pi}{4}} (\tan x)^{\tan 2x}$.	[10 Marks]
2.	Find all the asymptotes of the curve $(2x+3)y=\left(x-1 ight)^2$	[10 Marks]

[15 Marks]

[20 Marks]

3. Evaluate
$$\int_{0}^{1} \tan^{-1}\left(1-\frac{1}{x}\right) dx$$
.

4. Consider the function
$$f(x) = \int_{0}^{x} (t^2 - 5t + 4)(t^2 - 5t + 6)dt$$

- (i) Find the critical points of the function f(x)
- (ii) Find the points at which local minimum occurs.
- (iii) Find the points at which local maximum occurs.
- (iv) Find the number of zeros of the function f(x) in $\left[0,5
 ight]$
- 5. Find an extreme value of the function $u = x^2 + y^2 + z^2$ subject to the condition 2x + 3y + 5z = 30 by using Lagrange's method of undetermined multiplier. [20 Marks]

2019

6. Let
$$f: \begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix} \to R$$
 be a continuous function such that $f(x) = \frac{\cos^2 x}{4x^2 - \pi^2}, \quad 0 \le x \le \frac{\pi}{2}$. Find the value of $f\left(\frac{\pi}{2}\right)$ [10 Marks]

- 7. Let $f: D(\subseteq R^2) \to R$ be a function and $(a,b) \in D$. If f(x, y) is continuous at (a,b), then show the functions f(x,b) and f(a, y) are continuous at x = a and at y = b respectively. [10 Marks]
- 8. Is $f(x) = |\cos x| + |\sin x|$ differentiable at $x = \frac{\pi}{2}$? If yes, then find its derivative at $x = \frac{\pi}{2} x = \frac{\pi}{2}$ If no, then a proof of it. [15 Marks]
- 9. Find the maximum and the minimum value of the function $f(x) = 2x^3 9x^2 + 12x + 6$ on the interval [2,3] [10 Marks]

10. If $u = \sin^{-1} \sqrt{\frac{x^{1/3} + y^{1/3}}{x^{1/2} + y^{1/2}}}$ then show that $\sin^2 u$ is a homogeneous function of x and y of degree $-\frac{1}{6}$ hence show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{12}\right)$ [12 Marks]

11. Using the Jacobian method, show that if $f'(x) = \frac{1}{1+x^2}$ and f(0) = 0 then $f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)$ [8 Marks]

2018

12. Determine if $\lim_{z \to 1} (1-z) \tan \frac{\pi z}{2}$ exists or not. If the limit exists, then find its value. [10 Marks]

13. Find the limit
$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2 - r^2}$$
. [10 Marks]
14. Find the shortest distance from the point (1,0) to the parabola $y^2 = 4x$ [13 Marks]
15. The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ revolves about the *x*-axis. Find the volume of the solid of revolution. [13 Marks]
16. Let $f(x, y) = \begin{cases} xy^2, & y > 0 \\ -xy^2, & y \le 0 \end{cases}$. Determine which of $\frac{\partial f}{\partial x}(0,1), \frac{\partial f}{\partial y}(0,1)$ and exists and which does not exist.
17. Find the maximum and the minimum values of $x^4 - 5x^2 + 4$ on the interval [2,3].
18. Evaluate the integral $\int_{0,x/a}^{a} \frac{x \, dy \, dx}{x^2 + y^2}$ [12 Marks]
2017

19. Integrate the function
$$f(x, y) = xy(x^2 + y^2)$$
 over the domain $R: \{-3 \le x^2 - y^2 \le 3, 1 \le xy \le 4\}$

20. Find the volume of the solid above the *xy*-plane and directly below the portion of the elliptic
paraboloid
$$x^2 + \frac{y^2}{4} = z$$
 which is cut off by the plane $z=9$ [15 Marks]
21. If $f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$

calculate
$$\frac{\partial^2 f}{\partial x \partial y}$$
 and $\frac{\partial^2 f}{\partial y \partial x}$ at (0,0). [15 Marks]

22. Examine if the improper integral
$$\int_{0}^{3} \frac{2xdx}{(1-x^2)^{2/3}}$$
, exists. [10 Marks]

23. Prove that
$$\frac{\pi}{3} \le \iint_{D} \frac{dxdy}{\sqrt{x^2 + (y-2)^2}} \le \pi$$
 where *D* is the unit disc. [10 Marks]

24. Evaluate:
$$I = \int_{0}^{1} \sqrt[3]{x \log\left(\frac{1}{x}\right)} dx$$

[10 marks]

[10 Marks]

25. Find the matrix and minimum values of $x^2 + y^2 + z^2$ subject to the conditions $\frac{x^2}{4} + \frac{y^2}{5} + \frac{z^2}{25} = 1$ and x + y - z = 0 [20 marks]

26. Let
$$f(x, y) = \begin{cases} \frac{2x^4 - 5x^2y^2 + y^5}{(x^2 + y^2)^2}, & x, y) \neq (0, 0) \\ 0, & x, y = (0, 0) \end{cases}$$
 find a $\delta > 0$ such that $|f(x, y) - f(0, 0)| < 0.01$
whenever $\sqrt{x^2 + y^2} < \delta$ [15 marks]

27. Find the surface area of the plane x + 2y + 2z = 12 cut off by x = 0, y = 0 and $x^2 + y^2 = 16$ [15 marks] 28. Evaluate $\iint_{R} f(x, y) dx dy$, over the rectangle R = [0,1;0,1] where $f(x, y) = \begin{cases} x + y, & \text{if } x^2 < y < 2x^2 \\ 0, & \text{elsewhere} \end{cases}$ [15 marks]

2015

29. Evaluate the following limit
$$\lim_{x\to a} \left(2 - \frac{x}{a}\right)^{\tan\left(\frac{\pi x}{2a}\right)}$$
 [10 Marks]
30. Evaluate the following integral: $\int_{\pi/6}^{\pi/2} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}} dx$ [10 Marks]
31. A conical tent is of given capacity. For the least amount of Canvas required, for it, find the ratio of
its height to the radius of its base. [13 Marks]
32. Which point of the sphere $x^2 + y^2 + z^2 = 1$ is at the maximum distance from the point (2,1,3)
[13 Marks]
33. Evaluate the integral $\iint_{R} (x - y)^2 \cos^2(x + y) dxdy$ where R is the rhombus with successive
vertices as $(\pi, 0), (2\pi, \pi), (\pi, 2\pi), (0, \pi)$ [12 Marks]
34. Evaluate $\iint_{R} \sqrt{|y - x^2|} dxdy$ where $R = [-1, 1; 0, 2]$ [13 Marks]
35. For the function $f(x, y) = \begin{cases} \frac{x^2 - x\sqrt{y}}{x^2 + y}, & (x, y) \neq (0, 0) \\ x^2 + y, & 0 \end{cases}$ [12 Marks]
36. Prove that between two real roots $e^x \cos x + 1 = 0$, a real root of $e^x \sin x + 1 = 0$ lies. [10 Marks]
37. Evaluate: $\int_{1}^{1} \frac{\log_{e}(1+x)}{2} dx$. [10 Marks]

38. By using the transformation x + y = u, y = uv evaluate the integral $\iint \{xy(1-x-y)\}^{\frac{1}{2}} dxdy$ taken over the area enclosed by the straight lines x = 0, y = 0 and x + y = 1. [15 Marks]

 $\int_{0}^{1} 1+x^{2}$

39. Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a. [15 Marks]

40. Find the maximum or minimum values of $x^2 + y^2 + z^2$ subject to the condition $ax^2 + by^2 + cz^2 = 1$ and lx + my + nz = 0 interpret result geometrically [20 Marks]

2013

- 41. Evaluate $\int_0^1 \left(2x \sin \frac{1}{x} \cos \frac{1}{x} dx \right)$ [10 Marks] 42. Using Lagrange's multiplier method find the shortest distance between the line y = 10 - 2x and the
 - 2. Using Lagrange's multiplier method find the shortest distance between the line y = 10 2x and the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ [20 Marks]

Reputed Institute for Maths Optional of UPSC, IAS, IFoS (IFS), Civil Services and State PCS Exams Page 4

- Compute $f_{xy}(0,0)$ and $f_{yx}(0,0)$ for the function $f(x, y) = \begin{cases} \frac{xy^3}{x+y^2}, (x, y) \neq (0,0) \\ 0, (x, y) = (0,0) \end{cases}$ 43.
 - Also distance the continuity of $f_{_{XY}}$ and $f_{_{YX}}$ at (0,0).
- Evaluate $\iint xydA$ where D is the region bounded by the line y = x 1 and the parabola $y^2 = 2x + 6$. 44.

- Define a function f of two real variables in the plane by $f(x, y) = \begin{cases} \frac{x^3 \cos \frac{1}{y} + y^3 \cos \frac{1}{x}}{y} & \text{for } x, y \neq 0 \end{cases}$ 45. Check the continuity and differentiability of f at (0,0). [12 Marks] Let p and q be positive real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$ show that for real numbers $ab \ge 0$ 46. $ab\frac{a^p}{p}+\frac{b^q}{a}$. [12 Marks]
- Find the point of local extreme and saddle points of the function f for two variables defined by 47. $f(x, y) = x^{3} + y^{3} - 63(x + y) + 12xy$ [20 Marks]

Defined a sequence s_n of real numbers by $s_n = \sum_{i=1}^n \frac{(\log(n+i) - \log n)^2}{n+1} \operatorname{does}_{n \to \infty}^{\lim} s_n$ exist? If so compute 48. the value of this limit and justify your answer [20 Marks]

Find all the real values of p and q so that the integral $\int_0^1 x^p \left(\log \frac{1}{x} \right)^q dx$ converges [20 Marks] 49.

2011

Find $\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^3 + y^3}$ if it exists 50.

Let f be a function defined on $\mathbb R$ such that $f(0)\!=\!-3$ and $f'(x)\!\leq\!5$ for all values of x in $\mathbb R$ How 51. large can $f\left(2
ight)$ possibly be? [10 Marks]

52. Evaluate:

(i) $\lim_{x \to 2} f(x)$ Where $f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} , & x \neq 2 \\ \pi , & x = 2 \end{cases}$ (ii) $\int_{0}^{1} \ell n x dx$. [20 Marks] 2010

A twice differentiable function f(x) is such that f(a) = 0 = f(b) and f(c) > 0 for a < c < b prove 53. that there be is at least one point ξ , $a < \xi < b$ for which $f''(\xi) < 0$ [12 Marks]

[10 Marks]

[15 Marks]

[15 Marks]

- 54. Dose the integral $\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}}$ exist if so, find its value
- 55. Show that a box (rectangular parallelepiped) of maximum volume V with prescribed surface area is a cube. [20 Marks]
- 56. Let D be the region determine by the inequalities x > 0, y > 0, z < 8 and $z > x^2 + y^2$ compute $\iiint 2x dx dy dz$. [20 Marks]
- 57. If f(x, y) is a homogeneous function of degree n in x and y, and has continuous first and second order partial derivatives then show that

(i)
$$x \frac{\partial^2 f}{\partial x} + y \frac{\partial^2 f}{\partial y} = nf$$
 (ii) $x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = n(n-1)f$ [20 Marks]

- 58. Suppose the *j*'is continuous on [1,2] and that *f* has three zeroes in the interval (1,2) show that *f* " has least one zero in the interval (1,2). **[12 Marks]**
- 59. If *f* is the derivative of same function defined on [a,b] prove that there exists a number $\eta \in [a,b]$ such that $\int_{a}^{b} f(t)dt = f(\eta)(b-a)$ [12 Marks]
- 60. If $x = 3 \pm 0.01$ and $y = 4 \pm 0.01$ with approximately what accuracy can you calculate the polar coordinate r and θ of the point P(x, y) Express you estimates as percentage changes of the value that r and θ have at the point (3,4) [20 Marks]
- 61. A space probe in the shape of the ellipsoid $4x^2 + y^2 + 4z^2 = 16$ enters the earth atmosphere and its surface beings to heat. After one hour, the temperature at the point (x, y, z) on the probe surface is given by $T(x, y, z) = 8x^2 + 4yz 16z + 1600$ Find the hottest point on the probe surface. [20 Marks]
- 62. Evaluate $I = \iint_{s} xdydz + dzdx + xz^{2}dxdy$ where S is the outer side of the part of the sphere $x^{2} + y^{2} + z^{2} = 1$ in the first octant. [20 Marks]

2008

- 63. Find the value of $\lim_{x \to 1} \ln(1-x) \cot \frac{\pi x}{2}$.
- 64. Evaluate $\int_{0}^{1} (x \ln x)^{3} dx$. [12 Marks]
- 65. Determine the maximum and minimum distances of the origin from the curve given by the equation $3x^2 + 4xy + 6y^2 = 140$. [20 Marks]
- 66. Evaluate the double integral $\int_{y}^{a} \frac{xdxdy}{x^2 + y^2}$ by changing the order of integration [20 Marks]

[12 Marks]

[12 Marks]

67. Obtain the volume bounded by the elliptic paraboloid given by the equations $z - x^2 + 9y^2 \& z = 18 - x^2 - 9y^2$

[20 Marks]

[25 Marks]

2007

- 68. Let $f(x), (x \in (-\pi, \pi))$ be defined by $f(x) = \sin |x|$ is f continuous on $(-\pi, \pi)$ if it is continuous then is it differentiable on $(-\pi, \pi)$? [12 Marks]
- 69. A figure bounded by one arch of a cycloid $x = a(t \sin t)$, $y = a(1 \cos t)$, $t \in [0, 2\pi]$ and the x-axis is revolved about the x-axis. Find the volume of the solid of revolution [12 Marks]
- 70. Fin a rectangular parallelepiped of greatest volume for a give total surface area S using Lagrange's method of multipliers [20 Marks]
- 71. Prove that if $z = \phi(y + ax) + \psi(y ax)$ then $a^2 \frac{\partial^2 z}{\partial y^2} \frac{\partial^2 z}{\partial x^2} = 0$ for any twice differentiable φ and ψ is a constant. [15 Marks]
- 72. Show that $e^{-x}x^n$ is bounded on $[0,\infty)$ for all positive integral values of n. Using this result show that

 $\int_{0}^{\infty} e^{-x} x^{n} dx \text{ exists.}$

73.

Find *a* and *b* so that f'(2) exists where $f(x) = \begin{cases} \frac{1}{|x|}, & \text{if } |x| > 2 \end{cases}$ [12 Marks]

 $a+bx^2$ if $|\mathbf{x}| \le 2$

200

- 74. Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Gamma function and hence evaluate the integral $\int_0^1 x^6 \sqrt{(1-x^2)} dx$ [12 Marks]
- 75. Find the values of *a* and *b* such that $\lim_{x\to 0} \frac{a\sin^2 x \times b\log\cos x}{x^4} = \frac{1}{2}$. [15 Marks]
- 76. If $z = xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$ show that $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = 0$. [15 Marks]

77. Change the order of integration in $\int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ and hence evaluate it. [15 Marks]

78. Find the volume of the uniform ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ [15 Marks]

2005

- 79. Show that the function given below is not continuous at the origin $f(x, y) = \begin{cases} 0 \text{ if } xy = 0 \\ 1 \text{ if } xy \neq 0 \end{cases}$ [12 Marks]
- 80. Let $R^2 \to R$ be defined as $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$, $(x, y) \neq (0, 0)$, f(0, 0) = 0 prove that f_x and f_y exist

at (0,0) but f is not differentiable at $\,(0,0)$.

[12 Marks]

81. If
$$u = x + y + z$$
, $uv = y + z$ and $uvw = z$ then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ [15 Marks]

- Evaluate $\int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$ in terms of Beta function. 82.
- Evaluate $\iiint_v z dV$ where V the volume is bounded below by the cone $x^2 + y^2 = z^2$ and above by the 83. sphere $x^2 + y^2 + z^2 = 1$ lying on the positive side of the *y*-axis. [15 Marks]
- Find the x-coordinate of the center of gravity of the solid lying inside the cylinder $x^2 + y^2 = 2ax$ 84. between the plane z = 0 and the paraboloid $x^2 + y^2 = az$. [15 Marks]

- Prove that the function f defined on [0,4] f(x) = [x] greatest integer $\leq x, x \in [0,4]$ is integrable on 85. [0,4] and that $\int f(x)dx = 6$. [12 Marks]
- Shaw that $x \frac{x^2}{2} < \log(1+x) < x \frac{x^2}{2(1+x)} x > 0$. 86.

Let the roots of the equation in $\lambda(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$ be u, v, w proving that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = -2 \frac{(y - z)(z - x)(x - y)}{(u - v)(v - w)(w - u)}.$ 87. [15 Marks]

Prove that an equation of the form $x^n = \alpha$ where $n \in N$ and $\alpha > 0$ is a real number has a positive 88. root.

[15 Marks]

[15 Marks]

Prove that $\int \frac{x^2 + y^2}{p} dx = \frac{\pi ab}{4} [4 + (a^2 + b^2)(a^{-2} + b^{-2})]$ when the integral is taken round the ellipse 89.

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and p is three length of three perpendicular from the center to the tangent. [15 Marks]

If the function f is defined by $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0) \end{cases}$ then show that possesses both the 90.

partial derivative at but it is not continuous thereat

2003

- Let f be a real function defined as follow: 91. $f(x) = x, -\leq x < 1$ $f(x+2) = x, \forall x \in R$ Show that f is discontinuous at every odd integer. [12 Marks]
- For all real numbers x, f(x) is given as $f(x) = \begin{cases} e^x + a \sin x, & x < 0 \\ b(x-1)^2 + x 2, & x \ge 0 \end{cases}$. Find values of a and b for 92. which is differentiable at x = 0. [12 Marks]

[12 Marks]

[15 Marks]

- A rectangular box open at the top is to have a volume of $4m^3$. Using Lagrange's method of 93. multipliers find the dimension of the box so that the material of a given type required to construct it may be least. [15 Marks]
- Test the convergent of the integrals(i) $\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}}(1+x^2)}$ (ii) $\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx$ 94. [15 Marks]

95. Evaluate the integral
$$\int_{0}^{a} \int_{\frac{y^{2}}{a}}^{y} \frac{y dx dy}{(a-x)\sqrt{ax-y^{2}}}$$
 [15 Marks]

Find the volume generated by revolving by the real bounded by the curves $(x^2 + 4a^2)y = 8a^3$, 96. 2y = x and x = 0 about the y-axis. [15 Marks]

[12 Marks]

[12 Marks]

2002

97. Show that
$$\frac{b-a}{\sqrt{1-a^2}} \le \sin^{-1}b - \sin^{-1}a \le \frac{b-a}{\sqrt{1-b^2}}$$
 for $0 < a < b < 1$.

Show that $\iint_{0}^{\infty} e^{-(x^2+y^2)} dx dy = \frac{\pi}{4}$ 98.

Let $f(x) = \begin{cases} x^p \sin \frac{1}{x}, x \neq 0\\ 0 & x = 0 \end{cases}$. Obtain condition on p such that (i) f is continuous at x = 0 and (ii) f is 99.

differentiable at x = 0[15 Marks] Consider the set of triangles having a given base and a given vertex angle show that the triangle 100. having the maximum area will be isosceles [15 Marks] If the roots of the equation $(\lambda - u)^3 + (\lambda - v)^3 + (\lambda - w)^3 = 0$ in λ are x, y, z. show that 101.

 $\frac{\partial(x, y, z)}{\partial(u, v, w)} = -\frac{2(u-v)(v-w)(w-u)}{(x-y)(y-z)(z-x)}.$ Find the center of gravity of the region bounded by the curve $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} = 1$ and both axes I the [15 Marks]

102. first quadrant the density being $\rho = kxy$ where k is constant. [15 Marks]

2001

Let be defined on by setting f(x) = x if x is rational and f(x) = 1 - x if x is irrational show that is 103. continuous at $x = \frac{1}{2}$ but is discontinuous at every other point. [12Marks]

104. Test the convergence of
$$\int_0^1 \frac{\sin\left(\frac{1}{x}\right)}{\sqrt{x}} dx$$
. [12 Marks]

- Find the equation of the cubic curve which has the same asymptotes as $2x(y-3)^2 = 3y(x-1)^2$ and 105. which touches the axis at the origin and passes though the point (1,1). [15 Marks]
- Find the maximum and minimum radii vectors of the section of the surface 106. $(x^{2} + y^{2} + z^{2}) = a^{2}x^{2} + b^{2}y^{2} + c^{2}z^{2}$ by the plane lx + my + nz = 0[15 Marks]

107. Evaluate $\iiint (x+y+z+1)^2 dx dy dz$ over the region defined by $x \ge 0, y \ge 0, z \ge 0, x+y+z \le 1$

[15 Marks] 108. Find the volume of the solid generated by revolving the cardioid $r = a(1 - \cos \theta)$ about the initial line [15 Marks]

2000

Use the mean value theorem to prove that $\frac{2}{7} < \log 1.4 < \frac{2}{5}$. 109. [12 Marks] Show that $\iint x^{2l-1}y^{2m-1}dxdy = \frac{1}{4}r^{2(l+m)}\frac{\Gamma l \Gamma m}{\Gamma(l+m+1)}$ for all positive values of and laying the circle 110. $x^2 + y^2 = r^2$. [12 Marks] Find the center of gravity of the positive octant of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$ = 1 if the density varies 111. as xyz [15 Marks] Let $f(x) = \begin{cases} 2, x \text{ is irrational} \\ 1, x \text{ is rational} \end{cases}$ show that if is not Riemann integrable on [a,b]112. [15 Marks Show that $\frac{d^n}{dx^n} \left(\frac{\log x}{\log x} \right) = (-1)^n \frac{n!}{\log x} \left(\log x - 1 - \frac{1}{\log x} \right)$ 113. [15 Marks]

$$dx^{n} (x) (y) x^{n+1} (y) = \frac{2}{3} \frac{3}{n}$$
114. Find constant *a* and *b* for which $F(a,b) = \int_{-\pi}^{\pi} \{\log x - ax^{2} + bx^{2}\} dx$ is a minimum [15 Marks]

115. Determine the set of all points where the function
$$f(x) = \frac{x}{1+|x|}$$
 is differentiable. [20 Marks]

- 116. Find three asymptotes of the curve $x^3 + 2x^2y 4xy^2 8y^3 4x + 8y 10 = 0$. Also find the intercept of one asymptote between the other two. [20 Marks]
- 117. Find the dimensions of a right circular cone of minimum volume which can be circumscribed about a sphere of radius *a* . [20 Marks]
- 118. If f is Riemann integral over every interval of finite length and f(x+y) = f(x) + f(y) for every pair of real numbers x and y show that f(x) = cx where c = f(1) [20 Marks]
- 119. Show that the area bounded by cissoids $x = a \sin^2 t$, $y = a \frac{\sin^3 t}{\cos t}$ and its asymptote is $\frac{3\pi a^2}{4}$ [20 Marks]

120. Show that $\iint x^{m-1}y^{n-1}$ over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{a^m b^n}{4} \frac{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{m}{2} + \frac{n}{2} + 1\right)}$

[20 Marks]

1998

- Find the asymptotes of the curve $(2x-3y+1)^2(x+y)-8x+2y-9=0$ and show that they intersect the 121. curve again in their points which lie on a straight line. [20 Marks]
- A thin closed rectangular box is to have one edge n times the length of another edge and the volume of the 122. box is given to be v. Prove that the least surface s is given by $ns^3 = 54(n+1)^2 v^2$ [20 Marks]

123. If
$$x + y = 1$$
, Prove that $\frac{d^n}{dx^n}(x^n y^n) = n! \left[y^n - \left(n_1\right)^2 y^{n-1}x + \left(n_2\right)^2 y^{n-2}x^2 + \dots + (-1)^n x^n \right]$ [20 Marks]

- Show that $\int_0^\infty \frac{x^{p-1}}{(1+x)^{p+q}} dx = B(p,q)$ 124. [20 Marks]
- Show that $\iiint \frac{dxdydz}{\sqrt{(1-x^2-y^2-z^2)}} = \frac{\pi^2}{8}$ Integral being extended over all positive values of x, y, z for which 125. [20 Marks]

the expression is real

The ellipse $b^2x^2 + a^2y^2 = a^2b^2$ is divided into two parts by the line $x = \frac{1}{2}a$, and the smaller part is rotated 126.

through for right angles about this line. Prove that the volume generated is $\pi a^2 b \left\{ \frac{3\sqrt{3}}{\sqrt{2}} - \frac{\pi}{2} \right\}$ [20 Marks]

1997 🔺

Suppose $f(x) = 17x^{12} - 124x^9 + 16x^3 - 129x^2 + x - 1$ determine $\frac{d}{dx}(f^{-1})$ if x = -1 it exists. 127.

[20 Marks]

Prove that the volume of the greatest parallelepiped that can be inscribe in the ellipsoid 128.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\frac{8abc}{3\sqrt{3}}$$
 [20 Marks]

Show that the asymptotes of the cut the curve 129. Show that the asymptotes of the cut the curve $(x^2 - y^2)(y^2 - 4x^2) + 6x^3 - 5x^2y - 3xy^2 + zy^3 - x^2 + 3xy - 1 = 0$ again in eight points which lie on a circle of radius 1. [20 Marks]

- An area bounded by a quadrant of a circle of radius a and the tangent at its extremities revolve about one of 130. the tangents. Find the volume so generated. [20 Marks]
- Show how the changes of order in the integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-xy} \sin x \, dx dy$ leads to the evaluation of $\int_{0}^{\infty} \frac{\sin x}{x} dx$ 131. hence evaluate it. [20 Marks]

Show that in $\left[n + \frac{1}{2}\right] = \frac{|\pi|}{2^{2n-1}} \left[2n\right]$ where n > 0 and $\left[n\right]$ denote gamma function. 132. [20 Marks]

1996

- Find the asymptotes of all curves $4(x^4 + y^4) 17x^2y^2 4x(4y^2 x^2) + 2(x^2 2) = 0$ and show that 133. they pass thought the point of intersection of the curve with the ellipse $x^2 + 4y^2 = 4$. [20 Marks]
- Show that any continuous function defined for all real x and satisfying the equation f(x) = f(2x+1) for all 134. [20 Marks] x must be a constant function.

135. Show that the maximum and minimum of the radii vectors of the section of the surface

$$(x^2 + y^2 + z^2)^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$$
 by the plane $\lambda x + \mu y + \upsilon z = 0$ are given by the equation
$$a^2 \lambda^2 \qquad b^2 \mu^2 \qquad a^2 \nu^2$$

$$\frac{a^2\lambda^2}{1-a^2r^2} + \frac{b^2\mu^2}{1-b^2r^2} + \frac{a^2\nu^2}{1-c^2r^2} = 0.$$
 [20 Marks]

136. If
$$u = f\left(\frac{x}{a}, \frac{y}{b}, \frac{z}{c}\right)$$
 prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$ [20 Marks]

137. Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} dx dy$$
. [20 Marks]

138. The area cut off from the parabola $y^2 = 4ax$ by chord joining the vertex to an end of the latus rectum is rotated though four right angles about the chord. Find the volume of the solid so formed. [20 Marks]

1995

139. If g is the inverse of f and
$$f'(x) = \frac{1}{1+x^3}$$
 prove that $g(x) = 1 + [g(x)]^3$ [20 Marks]

140. Taking the nth derivative of
$$(x^n)^2$$
 in two different ways show that $1 + \frac{n}{1^2} + \frac{n}{1^2 \cdot 2^2} + \frac{n}{1^2 \cdot 2^2 \cdot 3^2} + \dots$ to

$$(n+1)term = \frac{(2n)!}{(n!)^2}$$
 [20 Marks]

141. Let f(x, y) which possesses continuous partial derivatives of second order be a homogeneous function of xand y off degree n prove that $x^2 f_{xx} + 2xy f_{xy} + y^2 f_{yy} = n(n-1)f$. [20 Marks]

142. Find the area bounded by the curve
$$\left(\frac{x^2}{4} + \frac{y^2}{9}\right) = \frac{x^2}{4} - \frac{y^2}{9}$$
. [20 Marks]

143. Let f(x), $x \ge 1$ be such that the area bounded by the curve y = f(x) and the lines x = 1, x = b is equal to $\sqrt{1+b^2} - \sqrt{2}$ for all $b \ge 1$. Does f attain its minimum? If so, what is its values? [20 Marks]

144. Show that
$$\Gamma\left(\frac{1}{n}\right)\Gamma\left(\frac{2}{n}\right)\Gamma\left(\frac{3}{n}\right)\cdots\Gamma\left(\frac{n-1}{n}\right) = \frac{(2\pi)}{\sqrt{n}}\frac{n-1}{2}$$
. [20 Marks]

1994

145.
$$f(x)$$
 is defined as follows: $f(x) = \begin{vmatrix} \frac{1}{2}(b^2 - a^2) & \text{if } 0 < x \le a \\ \frac{1}{2}b^2 - \frac{x^2}{6} - \frac{a^2}{3x} & \text{if } a < x \le b \text{ . Prove that } f(x) \text{ and } f'(x) \text{ are} \\ \frac{1}{3}\left(\frac{b^3 - a^3}{x}\right) & \text{if } x > b \end{vmatrix}$

continuous but f''(x) is discontinuous.

[20 Marks]

146. If α and β lie between the least and greatest values of a, b, c prove that

$$\begin{vmatrix} f(a) & f(b) & f(c) \\ \phi(a) & \phi(b) & \phi(c) \\ \psi(x) & \psi(b) & \psi(c) \end{vmatrix} = K \begin{vmatrix} f(a) & f'(\alpha) & f(\beta) \\ \phi(a) & \phi'(\alpha) & \phi(\beta) \\ \psi(x) & \psi'(\alpha) & \psi(\beta) \end{vmatrix}$$
 where $K = \frac{1}{2}(b-c)(c-a)(a-b)$ [20 Marks]

- 147. Prove that all rectangular parallelepipeds of same volume, the cube has the least surface [20 Marks]
- 148. Show that means of beta function that $\int_{t}^{z} \frac{dx}{(z-x)^{1-\alpha}(x-t)^{\alpha}} = \frac{\pi}{\sin \pi \alpha} (0 < \alpha < 1).$ [20 Marks]

149. Prove that the value of $\iiint \frac{dxdydz}{(x+y+z+1)^3}$ taken over the volume bounded by the co-ordinate planes and

the plane
$$x + y + z = 1$$
 is $\frac{1}{2} \left(\log 2 - \frac{5}{8} \right)$.

 $\frac{2a^{-}}{9}(3\pi-4)$.

150. The sphere $x^2 + y^2 + z^2 = a^2$ is pierced by the cylinder $(x^2 + y^2)^2 = a^2(x^2 - y^2)$ prove by the cylinder

$$(x^{2} + y^{2})^{2} = a^{2}(x^{2} - y^{2}) \text{ is } \frac{8a^{3}}{3} \left\lfloor \frac{\pi}{4} + \frac{5}{3} = \frac{4\sqrt{2}}{3} \right\rfloor$$

$$1993$$

151. Prove that $f(x) = x^2 \sin \frac{1}{x}, x \neq 0$ and f(x) = 0x = 0 for is continuous and differentiable at x = 0 but its derivative is not continuous there. [20 Marks]

152. If $f(x), \phi(x), \psi(x)$ have derivative when $a \le x \le b$ show that there is a value c of x lying between a and $\begin{vmatrix} f(a) & \phi(a) & \psi(a) \end{vmatrix}$

b such that
$$\begin{vmatrix} f(b) & \phi(b) & \psi(b) \\ f(c) & \phi(c) & \psi(c) \end{vmatrix} = 0$$
 [20 Marks]

- 153. Find the triangle of maximum area which can be inscribed in a circle [20 Marks] 154. Prove that $\int_0^\infty e^{-ax^2} dx = \frac{\sqrt{\pi}}{2\sqrt{a}} (a > 0) \text{ deduce that } \int_0^\infty x^{2n} e^{-x^2} dx = \frac{\sqrt{\pi}}{2^{n+1}} [1.3.5...(2n-1)]$ [20 Marks]
- 155. Defined Gamma function and prove that $\ln \left(n + \frac{1}{2} \right) = \frac{\pi}{2^{2n-1}} \ln \left[2n \right]$ [20 Marks]

156. Show that volume common to the sphere $x^2 + y^2 + z^2 = a^2$ and the cylinder $x^2 + y^2 = ax$ is

[20 Marks]

[20 Marks]

[20 Marks]

1992

157. If $y = e^{ax} \cos bx$ prove that $y_2 - 2ay_1 + (a^2 + b^2)y = 0$ and hence expand $e^{2x} \cos bx$ in powers of xDeduce the expansion of e^{ax} and $\cos bx$. [20 Marks] 158. If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ then prove that $dx^2 + dy^2 + dz^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2$. [20 Marks]

- 159. Find the dimension of the rectangular parallelepiped inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ that has greatest volume. [20 Marks]
- 160. Prove that the volume enclosed by the cylinders $x^2 + y^2 = 2ax$, $z^2 = 2$ axis $\frac{128a^3}{15}$ [20 Marks]
- 161. Find the centre of gravity of the volume formed by revolving the area bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4by$ about the x-axis [20 Marks]
- 162. Evaluate the following integral in terms of Gamma function $\int_{-1}^{1} (1+x)^p (1-x)^q dx$, [p > -1, q > -1] and

[20 Marks]

prove that
$$\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right) = \frac{2}{\sqrt{3}}\pi$$