ZAMANASRI IASIFos Institute

Modern Algebra

IFoS (IFS) Previous Year
Questions (PYQ) from 2020 to 2009
Ramanasrí IFoS-IFS Maths Optional Coaching;Ramanasrí

IAS, UPSC, IRS, IFoS, GIVIL SERVICE MAINS EXAMS MATHS
OPTIONAL STUDY MATERIALS

Ramanasri IAS/IFoS(IFS) Maths Optional Modern Algebra PYQ 2020 to 2009

2020

1. Let p be prime number. Then show that $(p-1)!+1 \equiv 0(\bmod p)$. Also, find the remainder when 6^{44}.(22)! +3 is divided by 23 .
[8 Marks]
2. Let R be a non -zero commutative ring with unity. Show that M is a maximal ideal in a ring R if and only if $\frac{R}{M}$ is a field.
[10 Marks]
3. Let G be a finite group and let p be a prime. If p^{m} divides order of G, then show that G has a subgroup of order p^{m}, where m is a positive integer.
[15 Marks]
4. Let K be a finite filed. Show that the number of elements in K is p^{n}, where p is a prime, which is characteristic of K and $n \geq 1$ is an integer. Also, prove that $\frac{\mathbb{Z}_{3}[x]}{\left(X^{2}+1\right)}$ is a field. How many elements does this field have?
[15 Marks]

2019

5.

Let R be an integral domain. Then prove that $\mathrm{Ch} R$ (characteristic of R) is 0 or a prime. [8 Marks]
6.
7. Let I and J be ideals in a ring R. Then prove that the quotient ring $(I+J) / J$ is isomorphic to the quotient ring I/ (I $\cap \mathrm{J})$.
[10 Marks]
8. If in the group $G, a^{5}=e, a b a^{-1}=b^{2}$ for some $a, b \in G$, find the order ofb .
[10 Marks]
9. Show that the smallest subgroup V of A_{4} containing $(1,2)(3,4),(1,3)(2,4)$ and $(1,4)(2,3)$ is isomorphic to the Klein 4-group.
[10 Marks]

2018

10. Prove that a non-commutative group of order $2 n$, where n is an odd prime, must have a subgroup of order n.
[8 Marks]
11. Find all the homomorphisms from the group $(\mathbb{Z},+)$ to $\left(\mathbb{Z}_{4},+\right)$
[10 Marks]
12. Let R be a commutative ring with unity. Prove that an ideal P of R is prime if and only if the quotient ring R / P is an integral domain.
13. Show by an example that in a finite commutative ring, every maximal ideal need not be prime.
[10 Marks]
14. Let H be a cyclic subgroup of a group G. If H be a normal subgroup of G, prove that every subgroup of H is a normal subgroup of G
[10 Marks]

2017

15. Prove that every group of order four is Abelian.
[8 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional Modern Algebra PYQ 2020 to 2009

16. Let G be the set of all real numbers except -1 and define $a * b=a+b+a b \forall a, b \in G$ Examine if G is an Abelian group under *
[10 Marks]
17. Let H and K are two finite normal subgroups of co-prime order of a group G . Prove that $h k=k h \forall h \in H$ and $k \in K$.
[10 Marks]
18. Let A be an ideal of a commutative ring R and $B=\left\{x \in R: x^{n} \in A\right.$ for some positive interger n$\}$ Is B an ideal of R? Justify your answer.
[10 Marks]
19. Prove that the ring $\mathbb{Z}[i]=\{a+i b: a, b \in \mathbb{Z}, i=\sqrt{-1}\}$ of Gaussian integers is a Euclidean domain [10 Marks]

2016

20. Prove that the set of all bijective functions form a non- empty set X onto itself is a group with respect to usual composition of functions.
21. Show that in the ring $R=\{a+b \sqrt{-5} \mid a, b$ are integers $\}$, the elements $\alpha=3$ and $\beta=1+2 \sqrt{-5}$ are relatively prime but $\alpha \gamma$ and $\beta \gamma$ have no g.c.d in R, where $\gamma=7(1+2 \sqrt{5})$
[10 Marks]
22. Let G be a group of order $p q$, where p and q are prime numbers such that $p>q$ and $q \chi(p-1)$ Then prove that G is cyclic.
[15marks]
23. Show that any non-abelian group of order 6 is isomorphic to the symmetric group S_{3}

2015

24. If in a group G there is an element a of order 360 , what is the order of a^{220} ? Show that if G is cyclic group of order n and m divides n, then G has subgroup of order m
[10 Marks]
25. If p is a prime number and e a positive integer, what are the elements ' α ' in the ring $\mathbb{Z}_{p} e$ of integer modulo p^{e} such that $\alpha^{2}=a$? Hence(or otherwise) determine the elements in \mathbb{Z}_{35} such that $\alpha^{2}=a$
[14 Marks]
26. What is the maximum possible order of a permutation in S_{8}, the group of permutations on the eight numbers $\{1,2,3, \ldots, 8\}$? Sustify your answer (Majority of marks will be given for the justification).
[13 Marks]

2014

27. If G is a group which $(a \cdot b)=a^{4} \cdot b^{4},(a \cdot b)^{5}=a^{5} \cdot b^{5}$ and $(a \cdot b)^{6}=a^{6} \cdot b^{6}$, for all $a, b \in G$, then prove that G is Abelian.
[8 Marks]
28. Let j_{n} be the set of integers $\bmod n$ then prove then j_{n} is a ring under the operation of addition and multiplication mod n under what continuous on n, j_{n} is a field? Justify you answer.
Let R be an integral domain with unity. Prove that the units of R and $R|x|$ are same.
[10 Marks]

2013

Ramanasri IAS/IFoS(IFS) Maths Optional Modern Algebra PYQ 2020 to 2009

30. Prove that if every element of group $(G, 0)$ be its own inverse, then it is an abelian group
[10 Marks]
31. Show that any integral domain is a field
[13 Marks]
32. Every field is an integral domain -Prove it
[14 Marks]

2012

34. Show that every field is without zero divisor.
[10 Marks]
35. Show that in a symmetric group S_{3}, there are four elements σ satisfying $\sigma^{2}=$ dentity. And three elements satisfying $\sigma^{3}=$ Identity.
[13 Marks]
36. If R is an integral domain, show that the polynomial ring $R[x]$ also an integral domain. [14 Marks]

2011

37. Let G be a group, and x and y be any two elements of G.If $y^{5}=e$ and $y x y^{-1}=x^{2}$, then Show that $O(x)=31$, where e is the identity element of G and $x \neq e$.
[10 Marks]
38. Let Q be the set of all rational numbers show that $Q(\sqrt{2})=\{a+b \sqrt{2}: a, b \in Q\}$ is a field under the usual addition and multiplication.
[10 Marks]
39. Let G be the group of non-zero complex numbers under multiplication, and let N be the set of complex numbers of absolute value 1. Show that G / N is isomorphic to group of all positive real numbers under multiplication.
[13 Marks]
40. Let G be a group of under $2 p, p$ prime show that either G is cyclic of G is generated by $\{a, b\}$ with relations $a^{p}=e=b^{2}$ and $b a b=a^{-1}$
[13 Marks]

2010

41. Let $G=\left\{\left.\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \right\rvert\, a \in R, a \neq 0\right\}$ Show that G is a group under matrix multiplication
[10 Marks]
42. Let F be a field order 32. Show that the only subfields of F are F itself and $\{0,1\}$
[10 Marks]
43.

Prove or disprove that $(\mathbb{R},+)$ and $\left(\mathbb{R}^{+},\right)$are isomorphic group where \mathbb{R}^{+}denote the set of all positive real numbers.
[13 Marks]
44. Show that the zero and unity are only idempotents of Z_{n} if $n=p^{r}$ where p is a prime.
[13 Marks]
45. Let R be a Euclidean domain with Euclidean valuation d. Let n be an integer such that $d(1)+n \geq 0$. show that the function $d_{n}: R-\{0\} \rightarrow S$, where S is the set of all negative integers defined by $d_{n}(a)=d(a)+n$ for all $a \in R-\{0\}$ is a Euclidean valuation
[13 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional Modern Algebra PYQ 2020 to 2009

46. Prove that a non-empty subset H of a group G is normal subgroup of $G \Leftrightarrow$ for all $x, y \in H, g \in G$, $(g x)(g y)^{-1} \in H$
47. If G is a finite abelian group then show that $O(a, b)$ is a divisor of I.c.m of $O(a), O(b)$
48. Show that $d(a)<d(a b)$, where a, b be two non-zero element of a Euclidean domain R and b is not a unit in R
49. Show that a field an integral domain and a non-zero finite integral is a field
50. Find the multiplicative inverse of the element $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$ of the ring M of all matrices of order two over the integers.
