ZAMANASRI IASIIFoS Institute

Numerical

Analysis \&

Computer

Programming
IFoS (IFS) Previous Year Questions (PYQ) from 2020 to 2009

Ramana srí Sir

> IAS, UPSC, IFS, IFoS, CIVIL SERVICE MAINS EXAMS MATHS OPTIONAL STUDY MATERIALS

Ramanasri IAS/IFoS(IFS) Maths Optional
 Numerical Analysis \& Computer Programming PYQ 2020 to 2009

2020

1. Using Newton-Raphson method, find the value of $(37)^{1 / 3}$, correct to four decimal places. [8 Marks]
2. Answer the following questions:
(i) Convert (14231) $)_{8}$ into an equivalent binary number and then find the equivalent decimal number. (ii)

Convert $(43503)_{10}$ into an equivalent binary number and then find the equivalent hexadecimal number.
[8 Marks]
3. Find the Lagrange interpolating polynomial that fits the following data values:
$x \quad: \begin{array}{lllll}: 1 & 2 & 3 & 5\end{array}$
$f(x):-1 \quad 10 \quad 25 \quad 60$
Also, interpolate at $x=2.5$, correct to three decimal places.
[15 Marks]
4. Write down the algorithm and flowchart for solving numerically the differential equation
$\frac{d y}{d x}=f(x, y)=1+x \cos y$ with initial condition: at $x=x_{0}, y=y_{0}$ and step length h by Euler's method up to $x=x_{n}=x_{0}+n h$.
[7+8=15 Marks]
5. Evaluate the integral $\int_{0}^{2} \frac{x}{1+x^{3}} d x$, using trapezoidal rule with $h=\frac{1}{4}$, correct to three decimal places. (h is the length of subinterval)
[10 Marks]
6. Solve the following system of linear equations using Gaussian elimination method:
$5 x_{1}+2 x_{2}+x_{3}=-2$
$6 x_{1}+3 x_{2}+2 x_{3}=1$
$x_{1}-x_{2}+2 x_{3}=0$
[10 Marks]
2019
7. The following table gives the values of $y=f(x)$ for certain equidistant values of x Find the values of $\mathrm{f}(\mathrm{x})$ when $\mathrm{x}=0.612$ using Newton's forward difference interpolation formula.

$\mathrm{x}:$	0.61	0.62	0.63	0.64	0.65
$\mathrm{y}=\mathrm{f}(\mathrm{x}):$	1.840431	1.858928	1.877610	1.896481	1.915541

[8 Marks]
8. Following values of x_{i} and the corresponding values of y_{i} are given. Find $\int_{0}^{3} y d x$ using Simpson's one third rule.

$\mathrm{x}_{\mathrm{i}}:$	$0 \cdot 0$	$0 \cdot 5$	$1 \cdot 0$	$1 \cdot 5$	$2 \cdot 0$	$2 \cdot 5$	$3 \cdot 0$
$\mathrm{y}_{\mathrm{i}}:$	$0 \cdot 0$	$0 \cdot 75$	$1 \cdot 0$	$0 \cdot 75$	$0 \cdot 0$	$-1 \cdot 25$	$-3 \cdot 0$

[8 Marks]
9. Solve the following system of equations by Gauss-Jordan elimination method:

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=3 \\
& 2 x_{1}+3 x_{2}+x_{3}=6 \\
& x_{1}-x_{2}-x_{3}=-3
\end{aligned}
$$

[10 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional
 Numerical Analysis \& Computer Programming PYQ 2020 to 2009

10. Given $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$. Find $y(0 \cdot 1)$ and $y(0 \cdot 2)$ by fourth order Runge-Kutta method.
[15 Marks]
11. State the Newton-Raphson iteration formula to compute a root of an equation $f(x)=0$ and hence write a program in BASIC to compute a root of the equation

$$
\cos x-x e^{x}=0
$$

[10 Marks]

Lying between 0 and 1. Use DEF function to define $f(x)$ and $f^{\prime}(x)$.
12. Use Gauss quadrature formula of point six to evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ Given

$$
\begin{aligned}
& \mathrm{x}_{1}=-0 \cdot 23861919, \quad \mathrm{w}_{1}=0 \cdot 46791393 \\
& \mathrm{x}_{2}=-0 \cdot 66120939, \quad \mathrm{w}_{2}=0 \cdot 36076157 \\
& \mathrm{x}_{3}=-0 \cdot 93246951, \quad \mathrm{w}_{3}=0 \cdot 17132449 \\
& \mathrm{x}_{4}=-\mathrm{x}_{1}, \mathrm{x}_{5}=-\mathrm{x}_{2}, \mathrm{x}_{6}=-\mathrm{x}_{3}, \mathrm{w}_{4}=\mathrm{w}_{1}, \mathrm{w}_{5}=\mathrm{w}_{2} \text { And } \mathrm{w}_{6}=\mathrm{w}_{3} .
\end{aligned}
$$

[15 Marks]

2018

13. A solid of revolution is formed by rotating about the-x axis, the area between the $-x$ axis, the line $x=0$ and a curve through the points with the following coordinates :

x	0.0	0.25	0.50	0.75	1.00	1.25	1.50
y	1.0	0.9896	0.9589	0.9089	0.8415	0.8029	0.7635
Estimate the volume of the							

solid formed using Weddle's rule.
[10 Marks]
14. Write a program in BASIC to multiply two matrices (checking for consistency for multiplication is required).
[10 Marks]
15. Apply fourth-order Runge-Kutta method to compute y at $x=0.1$ and $x=0.2$ given that $\frac{\partial y}{\partial x}=x+y^{2}, y=1$ at $x=0$
[12 Marks]
16. Write a program in BASIC to implement trapezoidal rule to compute $\int_{0}^{10} e^{-x^{2}} d x$ with 10 subdivisions.
[8 Marks]
The velocity $v(\mathrm{~km} / \mathrm{min})$ of a moped is given at fixed interval of time (min) as below:

t	0.1	0.2	0.3	0.4	0.5	0.6
v	1.00	1.104987	1.219779	1.34385	1.476122	1.615146

t	0.7	0.8	0.9	1.0	1.1
v	1.758819	1.904497	2.049009	2.18874	2.31977

during the time (use Simpson's one-third rule).
[10 Marks]
18. Assuming a 16 -bit computer representation of signed integers; represent -44 in 2's complement representation.
[10 Marks]
19. The equation $x^{6}-x^{4}-x^{3}-1=0$ has one real root between 1.4 and 1.5 . Find the root to four places of decimal by Regula-Falsi method.
[10 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional
 Numerical Analysis \& Computer Programming PYQ 2020 to 2009

2017

20. Write a BASIC program to computer the multiplicative inverse of a non-singular square matrix.
[12 Marks]
21. Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ using the composite trapezoidal rule with four decimal precision i.e., with the absolute value of the error not exceeding 5×10^{-5}.
[10 Marks]
22. Find the real root of the equation $x^{3}+x^{2}+3 x+4=0$ correct up to five places of decimal using Newton-Raphson method.
[10 Marks]
23. A river is 80 meter wide, the depth y, in metre, of the river at a distance x from one bank is given by the following table: | x | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 0 | 4 | 7 | 9 | 12 | 15 | 14 | 8 | 3 | Find the area cross-section of the river using Simpson's $\frac{1}{3} r d$ rule

[10 Marks]
24. Find y for $x=0.2$ taking $h=0.1$ by modified Euler's method and compute the error, given that
$\frac{d y}{d x}=x+y, y(0)=1$
[10 Marks]
25. Assuming a 32 bit computer representation of signed integers using 2's complement representation add the two number-1 and -1024 and give the answer in 2's complement representation
[10 Marks]

2016

26. Evaluate $\int_{0}^{0.6} \frac{d x}{\sqrt{1-x^{2}}}$ by Simpson's $\frac{1}{3} r d$ rule, by taking 12 equal sub-intervals
[15 Marks]
27. Find the cube root of 10 up to 5 significant figures by Newton-Raphson method.
[10 Marks]
28. Use the classical Fourth-order Runge Kutta method with $h=.2$ to calculate a solution $x=.4$ at for the initial value problem $\frac{d y}{d x}=x+y^{2}$ with initial condition $y=1$ when $x=0$
[15 Marks]
29. Develop an algorithm for Newton-Raphson method to solve $\phi(x)=0$ starting with initial iterate x_{0}, n be the number of iteration allowed, esp be the prescribed relative error and delta be the prescribed lower bound for $\phi^{\prime}(x)$
[8 Marks]
30. Apply Lagrange's interpolation formula to find $f(5)$ and $f(6)$ given that $f(1)=2, f(2)=4, f(3)=8, f(7)=128$.
[8 Marks]

2015

31. Store the value of -1 in hexadecimal in a 32 -bit computer.
[10 Marks]
32. Show that $\sum_{k=1}^{n} l_{k}(x)=1$, where $l_{k}(x), k=1$ to n, are Lagrange's fundamental polynomials. [10 Marks]
33. Solve the following system of linear equations correct to two places by gauss-Seidel method:
$x+4 y+z-1,3 x-y+z=6, x+y+2 z=4$.
[16 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional
 Numerical Analysis \& Computer Programming PYQ 2020 to 2009

34. Use the classical fourth order Runge-kutta methods to find solutions at $x=0.1$ and $x=0.2$ of the differential equation $\frac{d y}{d x}=x+y, y(0)=1$ with step size $h=0.1$.
[14 Marks]
35. Write a BASIC program to compute the product of two matrices.
[12 Marks]

2014

36. Use Lagrange's formula to find from of $f(x)$ the following table:

x	0	2	3	6
$f(x)$	648	704	729	792

[8 Marks]
37. Write a program in BASIC to integrate $\int_{0}^{1} e^{-2 x} \sin x d x$ by Simpson's $\frac{1}{3} r d$ rule with 20 subintervals
[8 Marks]
38. The values of $f(x)$ for different values of x are given as $f(1)=4, f(2)=5, f(7)=5$ and $f(8)=4$. using Lagrange's interpolation formula, Find the value of $f(6)$ Also find the value of x for which $f(x)$ optimum.
39. Write a BASIC program to sum the series $S=1+x+x^{2} \mp \ldots+x^{n}$, for $n=30,60$ and 90 for the values of $x=0.1(0.1) 0.3$.
[10 Marks]
40. Solve the following system of equation

$$
\begin{gathered}
2 x_{1}+x_{2}+x_{3}-2 x_{4}=-10 \\
4 x_{1}+2 x_{3}+x_{4}=8 \\
3 x_{1}+2 x_{2}+2 x_{3}=7 \\
x_{1}+3 x_{2}+2 x_{3}-x_{4}=-5
\end{gathered}
$$

[15 Marks]
41. Using Runge-Kutta $4^{\text {th }}$ order method find y from $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $x=0.2,0.4$.
[10 Marks]

2013

42. Use Newton- Raphson method and derive the iteration scheme $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{N}{x_{n}}\right)$ to calculate an approximate value of the square root of a number N. Show that the formula $\sqrt{N} \approx \frac{A+B}{4} \frac{N}{A+B}$ where $A B=N$, can easily be obtained if the above scheme is applied two times Assume $A=1$ as an initial guess value and use the formula twice to calculate the value of $\sqrt{2}$ [For $2^{\text {nd }}$ iteration one may take $A=$ result of the $1^{\text {st }}$ iteration]
43. Convert $(0.231)_{5},(104.231)_{5}$ and $(247)_{7}$ base 10
44. Write an algorithm to find the inverse of a given non-singular diagonally dominant square matrix using Gauss-Jordan method.
[12 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional
 Numerical Analysis \& Computer Programming PYQ 2020 to 2009

45. Use the classical Fourth-order Runge-Kutta method with $h=0.2$ to calculate a solution at $x=0.4$ for the initial value problem $\frac{d u}{d x}=4-x^{2}+u, u(0)=0$ on the interval $[0,0.4]$
[12 Marks]
46. Draw a flow chart for testing whether a given real number is prime or not
[12 Mark]

2012

47. Using Lagrange's interpolation formula, show that $32 f(1)=-3 f(-4)+10 f(-2)+30 f(2)-5 f(4)$.
48. Write a computer program to implement trapezoidal rule to evaluate $\int_{0}^{10}\left(1-e^{-\frac{x}{2}}\right) d x$
[10 Marks]
49. A river is 80 meters wide. The depth d (in meters) of the river at a distance x from one bank of the river is given by the following table

x	0	10	20	30	40	50	60	70	80
d	0	4	7	9	12	15	14	8	3

Find approximately the area of cross-section of the river.
[14 Marks]
50. Solve the following system of equation using Gauss-Seidel method:

$$
\begin{aligned}
& 28 x+4 y-z=32 \\
& 2 x+17 y+4 z=35 \\
& x+3 y+10 z=24
\end{aligned}
$$

Correct to three decimal places.
51. Draw a flow chart for interpolation using Newton's forward difference formula
[14 Marks]
52. Using Euler's Modified Method, obtain the salutation of $\frac{d y}{d x}=x+|\sqrt{y}|, y(0)=1$ for the range $0 \leq x \leq 0.6$ and step size. 0.2
[14 Marks]

2011

53. For the data

$$
f(x)=2 \quad 3 \quad 12 \quad 147 \text { find the function of } x \text {. }
$$

[10 Marks]
54. Solve by Gauss-Jacobi method or iteration the equation

[10 Marks]
55. Draw a flow chart to declare the results for the following examination system 60 candidates take the examination. Each candidate writes one major and two minor papers. A candidate is declared to have passed in the examination if he /She gets a minimum of 40 in all the three papers separately and an average of 50 in all the three papers put together. Remaining candidates fail in the examination with an exemption in major if they obtain 60 and above and exemption in each minor if they obtain 50 and more in that minor.
[12 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional
 Numerical Analysis \& Computer Programming PYQ 2020 to 2009

56. Find the smallest positive root of the equation $x^{3}-6 x+4=0$ correct to four decimal placed using Newton-Raphson Method. Form this root, determine the positive square root of 3 correct to four decimal places.
[12 Marks]
57. The velocity of a particle at time t is as follows: $\begin{array}{cccccccc}t(\mathrm{sec} \text { onds }) & : 0 & 2 & 4 & 6 & 8 & 10 & 12 \\ v(\mathrm{~m} / \mathrm{sec}) & : 4 & 6 & 16 & 36 & 60 & 94 & 136\end{array}$ Find its displacement at the $12^{\text {th }}$ second and acceleration at the $2^{\text {nd }}$ second [12 Marks]
58. Draw a flow chart to solve a quadratic equation with non-zero coefficients. The roots be classified as real distinct, real repeated and complex.
[12 Marks]

2010

59. Solve $x \log _{10} x=1.2$ by Regula-Falsi method
[10 Marks]
60. Convert the following:
(i) $(736.4)_{8}$ to decimal number
(ii) (41.6875) ${ }_{10}$ to binary number
(iii) $(101101)_{2}$ to decimal number
(iv) $(A F 63)_{16}$ to decimal number
(v) $(101111011111)_{2}$ to hexadecimal number
[10 Marks]
61. Using Lagrange interpolation Obtain an approximate value of $\sin (0.15)$ and a bound on the truncation error for the given data: $\sin (0.1)=0.09983, \sin (0.2)=0.19867$
[12 Marks]
62. Draw flow chart for finding the roots of the quadratic equation $a x^{2}+b x+c=0$
[12 Marks]
63. Find the interpolating polynomial for $(0,2),(1,3),(2,12)$ and $(5,147)$
[14 Marks]

2009

64. Obtain the iterative scheme for finding p th root of a function of single variable using Newton Raphson method hence find $\sqrt[7]{277234}$ correct to four decimal places
[10 Marks]
65. Convert the following binary numbers to the base indicated:
(i) $(10111011001.101110)_{2}$ To octal
(ii) $(10111011001,10111000)_{2}$ To hexademical
(iii) $(0.101)_{2}$ to decimal
[10 Marks]
66. Convert the following to the base indicated against each:
(i) $(266.375)_{10}$ to base 8 (ii)(341.24) $)_{5}$ to base $10\left(\right.$ (iii) $(43.3125)_{10}$ to base 2
[7 Marks]
67. Draw the circuit diagram for $\vec{F}=A \vec{B} C+C \bar{B}$ using $N A N D$ to $N A N D$ logic long.
[6 Marks]
68. From the following data
$\begin{array}{ccccc}x: & 1 & 8 & 27 & 64 \\ y: & 1 & 2 & 3 & 4\end{array}$ Calculate $y(20)$ using Lagrangian interpolation technique Use four decimal
points for computation.
[13 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional

Numerical Analysis \& Computer Programming PYQ 2020 to 2009
69. Derive composite $\frac{1}{3} r d$ Simpson's rule hence evaluate $\int_{0}^{0.6} e^{-x^{2}} d x$ by taking seven ordinates. Tabulate the integrand for these ordinates to four decimal places.

13 Marks]
70. Using Runge-Kutta method solve $y^{\prime \prime}=x y^{\prime 2}-y^{2}$ for $x=0 \cdot 2$ initial conditions are at $x=0, y=1$ and $y^{\prime}=0$. Use four decimal places for computations
[13 Marks]

