

| <section-header><section-header><section-header></section-header></section-header></section-header> |         |
|-----------------------------------------------------------------------------------------------------|---------|
|                                                                                                     | 2021-22 |
|                                                                                                     |         |
|                                                                                                     |         |
|                                                                                                     |         |
| WEBSITE: MATHEMATICSOPTIONAL.C<br>CONTACT: 8750706262                                               | OM      |

1. Consider the set V of all  $n \times n$  real magic squares. Show that V is a vector space over R. Give examples of two distinct  $2 \times 2$  magic squares. [10 Marks]

[10 Marks]

[20 Marks]

2. Let  $T: M_2(R)$  be the vector space of all  $2 \times 2$  real matrices. Let  $B = \begin{bmatrix} 1 & -1 \\ -4 & 4 \end{bmatrix}$ .

Suppose  $T: M_2(R) \to M_2(R)$  is a linear transformation defined by T(A) = BA. Find the rank and nullity of T. Find a matrix A which maps to the null matrix.

3. Define an  $n \times n$  matrix as  $A = I - 2u u^T$ , where u is a unit column vector

 $\begin{bmatrix} 1 \end{bmatrix}$ 

- (i) Examine if A is symmetric.
  - (ii) Examine if A is orthogonal.
  - (iii) Show that trace (A) = n 2.

(iv) Find 
$$A_{3\times 3}$$
 when  $u = \begin{vmatrix} \overline{3} \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \end{vmatrix}$ 

- 4. Let F be a subfield of complex numbers and T a function from  $F^3 \to F^3$  defined by  $T(x_1, x_2, x_3) = (x_1 + x_2 + 3x_3, 2x_1 - x_2, -3x_1 + x_2 - x_3)$ . What are the conditions on a, b, c such that (a, b, c) be in the null space of T? find the nullity of T. [15 Marks]
- 5. Let  $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix}$  and  $B = \begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix}$ 
  - (i) Find AB
  - (ii) Find det (A) and det (B)
  - (iii) Solve the following system of linear equations:

$$x + 2z = 3$$
  $2x - y + 3z = 3$   $4x + y + 8z = 14$  [15 Marks]

## 2019

6. Let  $T: \mathbb{R}^2 \to \mathbb{R}^2$  be a linear map such that T(2,1) = (5,7) and T(1,2) = (3,3) If A is the matrix corresponding to T with respect to the standard bases  $e_1, e_2$ , then find rank [10 Marks]

- 7. If  $A\begin{bmatrix} 1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3 \end{bmatrix}$  and  $B\begin{bmatrix} 2 & 2 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$  then show that  $AB = 6I_3$ . Use this result to solve the following
  - system of equations. 2x + y + z = 5, x y = 0, 2x + y z = 1 [10 Marks]
- 8. Let A and B be two orthogonal matrices of same order and det  $A + \det B = 0$  Show that A + B is a singular matrix. [15 Marks]

9. Let 
$$A = \begin{pmatrix} 5 & 7 & 2 & 1 \\ 1 & 1 & -8 & 1 \\ 2 & 3 & 5 & 0 \\ 3 & 4 & -3 & 1 \end{pmatrix}$$

- (i) Find the rank of matrix A
- (ii) Find the dimension of the subspace  $V = \begin{cases} (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 0 \end{cases}$  [15+5=20 Marks]

10. State the Cayley-Hamilton theorem. Use this theorem of find  $A^{100}$  where  $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ 

## 2018

- 11. Let A be a  $3 \times 2$  matrix and B a  $2 \times 3$  matrix. Show that C = A B is a singular matrix. [10 Marks]
- 12.
- 13. Express basis vectors  $e_1 = (1,0)$  and  $e_2 = (0,1)$  as linear combinations of  $\alpha_1 = (2,-1)$  and  $\alpha_2 = (1,3)$ .
- 14. Show that if A and B are similar  $n \times n$  matrices, then they have the same Eigen values. [12 Marks]
- 15. For the system of linear equations x+3y-2z = -1, 5y+3z = -8, x-2y-5z = 7 determine which of the following statements are true and which are false:
  - (i) The system has no solution.
  - (ii) The system has a unique solution.
  - (iii) The system has infinitely many solutions.

[13 Marks]

[15 Marks]

[10 Marks]

[10 Marks]

[15 Marks]

2017

- 16. Let  $A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$ . Find a non-singular matrix *P* such that  $P^{-1}AP$  is diagonal matrix. [10 Marks]
- 17. Show that similar matrices have the same characteristic polynomial.
- 18. Suppose U and W are district four dimensional subspaces of a vector space V, where dim V = 6. Find the possible dimensions of subspace  $U \cap W$  [10 Marks]
- 4. Consider the matrix mapping  $A: \mathbb{R}^4 \to \mathbb{R}^3$ , where  $A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{pmatrix}$ . Find a basis and dimension

of the image of A and those of the kernel A.

5. Prove that distance non-zero eigenvectors of a matrix are linearly independent. [10 Marks]

- 6. Consider the following system of equation in x, y, z = 1, x + ay + 3z = 3, x + 11y + az = b
  - (i) For which values of *a* does the system have a unique?
  - (ii) For which of values (*a*,*b*) does the system have more than one solution? [15 Marks]

| 19. | (i)   | Using elementary row operations, find the inverse of $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                       | [6 Marks]                  |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|     | (ii)  | If $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$ then find $A^{14} + 3A - 2I$ .                                                                                                                                                                                                       | [4 Marks]                  |
| 20. | (i)   | Using elementary row operation find the condition that the linear equations has<br>x-2y+z=a<br>2x+7y-3z=b<br>3x+5y-2z=c                                                                                                                                                                                            | ve a solution<br>[7 Marks] |
|     | (ii)  | If $W_1 = \{(x, y, z)   x + y - z = 0\}, W_2 = \{(x, y, z)   3x + y - 2z = 0\},$                                                                                                                                                                                                                                   |                            |
| 21. | (i)   | $W_3 = \{(x, y, z)   x - 7y + 3z = 0\}$ then find $\dim(W_1 \cap W_2 \cap W_3)$ and $\dim(W_1 + W_2 \cap W_3)$ and $\dim(W_1 + W_2 \cap W_3)$ is space of real matrices of order $2 \times 2$ and $P_2(x)$ is the space of real of degree at most 2, then find the matrix representation of $T: M_2(R) \to P_2(x)$ | polynomials<br>) such that |
|     |       | $T\left(\begin{vmatrix} a & b \\ c & d \end{vmatrix}\right) = a + b + c + (a - d)x + (b + c)x^2$ , with respect to the standard bas                                                                                                                                                                                | ses of $M_2(R)$            |
|     |       | $T\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = a+b+c+(a-d)x+(b+c)x^2$ , with respect to the standard base and $P_2(x)$ further find null space of T                                                                                                                                                         | [10 Marks]                 |
|     | (ii)  | If $T: P_2(x) \to P_3(x)$ is such that $T(f(x)) = f(x) + 5 \int_0^x f(t) dt$ , then choosing                                                                                                                                                                                                                       |                            |
|     |       | $\{1,1+x,1-x^2\}$ and $\{1,x,x^2,x^3\}$ as bases of $P_2(x)$ and $P_3(x)$ respectively find of T.                                                                                                                                                                                                                  | d the matrix<br>[6 marks]  |
| 7.  | (i)   | If $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ , then find the Eigen values and Eigenvectors of A.                                                                                                                                                                                     | [6 Marks]                  |
|     | (ii)  | Prove that Eigen values of a Hermitian matrix are all real.                                                                                                                                                                                                                                                        | [8 Marks]                  |
| 8.  | If A  | $\begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 1 & 2 & 3 \end{bmatrix}$ is the matrix representation of a linear transformation $T: P_2(x)$                                                                                                                                                                         | $\rightarrow P_2(x)$       |
|     | with  | respect to the bases $\{1 - x, x(1 - x), x(1 + x)\}$ and $\{1, 1 + x, 1 + x^2\}$ then find T.                                                                                                                                                                                                                      | [18 Marks]                 |
|     |       | 2015                                                                                                                                                                                                                                                                                                               |                            |
| 9.  | The v | vectors $V_1 = (1,1,2,4), V_2 = (2,-1,-5,2), V_3 = (1,-1,-4,0)$ and $V_4 = (2,1,1,6)$ are linear last to it true 2 but if we are not used.                                                                                                                                                                         | nearly                     |

independent. Is it true? Justify your answer.10. Reduce the following matrix to row echelon form and hence find its rank:

[10 Marks]

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 5 \\ 1 & 5 & 5 & 7 \\ 8 & 1 & 14 & 17 \end{bmatrix}$$

$$[10 \text{ Marks}]$$

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
then find  $A^{30}$ 

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 12 \text{ Marks} \end{bmatrix}$$

$$\begin{bmatrix} 12 \text{ Marks$$

- 22. Find the inverse of the matrix:  $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & -1 & 7 \\ 3 & 2 & -1 \end{bmatrix}$  by using elementary row operations. Hence solve the system of linear equations x + 3y + z = 10 2x y + 7z = 12 3x + 2y z = 4 [10 Marks]
- system of linear equations x + 3y + z = 10 2x y + 7z = 12 3x + 2y z = 4 [10 Marks] 23. Let *A* be a square matrix and *A* \* be its ad joint, show that the Eigen values of matrices *AA* \* and *A* \* *A* are real. Further show that trace(*AA* \*) = trace(*A* \* *A*) [10 Marks]
- 24. Let  $P_n$  denote the vector space of all real polynomials of degree at most n and  $T: P_2 \to P_3$  be linear transformation given by  $T(f(x)) = \int_0^x p(t) dt$ ,  $p(x) \in P_2$ . Find the matrix of T with respect to the bases  $\{1, x, x^2\}$  and  $\{1, x, 1 + x^2, 1 + x^3\}$  of  $P_2$  and  $P_3$  respectively. Also find the null space of T [10 Marks]
- 25. Let *V* be an *n*-dimensional vector space and  $T: V \to V$  be an invertible linear operator. If  $\beta = \{X_1, X_2, ..., X_n\}$  is a basis of *V*, show that  $\beta' = \{TX_1, TX_2, ..., TX_n\}$  is also a basis of *V* [8 Marks]
- 26. Let  $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{bmatrix}$  where  $\omega \neq 1$  is a cube root of unity. If  $\lambda_1, \lambda_2, \lambda_3$  denote the Eigen values of  $A^2$ , show that  $|\lambda|_1 + |\lambda_2| + |\lambda_3| \leq 9$  [8 Marks]
- 27. Find the rank of the matrix  $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 8 & 12 \\ 3 & 5 & 8 & 12 & 17 \\ 3 & 5 & 8 & 17 & 23 \\ 8 & 12 & 17 & 23 & 30 \end{bmatrix}$  [8 Marks]
- 28. Let A be a Hermitian matrix having all distinct Eigen values  $\lambda_1, \lambda_2, ..., \lambda_n$ . If  $X_1, X_2, ..., X_n$  are corresponding Eigen vectors then show that the  $n \times n$  matrix C whose  $k^{th}$  column consists of the vector  $X_n$  is non-singular. [8 Marks]
- 29. Show that the vectors  $X_1 = (1, 1+i, i)$ ,  $X_2 = (i, -i, 1-i)$  and  $X_3 = (0, 1-2i, 2-i)$  in  $C^3$  are linearly independent over the field of real numbers but are linearly dependent over the field of complex numbers. [8 Marks]



- 30. Prove or disprove the following statement: If  $B = \{b_1, b_2, b_3, b_4, b_5\}$  is a basis for  $\mathbb{R}^5$  and V is a twodimensional subspace of  $\mathbb{R}^5$ , then V has a basis made of two members of B. [12 Marks]
- 31. Let  $T : \mathbb{R}^3 \to \mathbb{R}^3$  be the linear transformation defined by  $T(\alpha, \beta, \gamma) = (\alpha + 2\beta - 3\gamma, 2\alpha + 5\beta - 4\gamma, \alpha + 4\beta + \gamma)$ . Find a basis and the dimension of the image of T and the kernel of T [12 Marks]
- 32. Let  $\overline{V}$  be the vector space of all  $2 \times 2$  matrices over the field of real numbers. Let W be the set consisting of all matrices with zero determinant. Is W a subspace of V? Justify your answer? [8 Marks]
- 33. Find the dimension and a basis for the space W of all solutions of the following homogeneous system using matrix notation:

$$\begin{aligned} x_1 + 2x_2 + 3x_3 - 2x_4 + 4x_5 &= 0\\ 2x_1 + 4x_2 + 8x_3 + x_4 + 9x_5 &= 0\\ 3x_1 + 6x_2 + 13x_3 + 4x_4 + 14x_5 &= 0 \end{aligned}$$

[12 Marks]

- Consider the linear mapping  $f: \mathbb{R}^2 \to \mathbb{R}^2$  by f(x, y) = (3x + 4y, 2x 5y). Find the matrix A 34. (i) relative to the basis (1,0),(0,1) and the matrix B relative to the basis (1,2),(2,3) [12 Marks]
  - If  $\lambda$  is a characteristic root of a non-singular matrix A, then prove that  $\frac{|A|}{2}$  is a (ii) characteristic root of  $\operatorname{Adj} A$ [8 Marks]

Let  $H = \begin{pmatrix} -i & 2 & 1-i \\ -i & 2 & 1-i \\ 2-i & 1+i & 2 \end{pmatrix}$  be a Hermitian matrix. Find a non-singular matrix P such that 35.  $D = P^T H \overline{P}$  is diagon [20 Marks]

## 2011

Let A be a non-singular  $n \times n$ , square matrix. Show that A. (adjA) = |A|.  $I_n$  Hence show that 36.  $\left|adj(adjA)\right| = \left|A\right|^{(n-1)^2}$ [10 Marks]

Let  $A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7 \end{bmatrix}$ ,  $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ ,  $B = \begin{bmatrix} 2 \\ 6 \\ 5 \end{bmatrix}$  Solve the system of equations given by AX = B Using the 37.

above, also solve the system of equations  $A^T X = B$  where  $A^T$  denotes the transpose of matrix A. [10 Marks]

Let  $\lambda_1, \lambda_2, \dots, \lambda_n$  be the Eigen values of a  $n \times n$  square matrix A with corresponding Eigen vectors 38.  $X_1, X_2, \dots, X_n$ . If B is a matrix similar to show that the Eigen values of B is same as that of A. Also find the relation between the Eigen vectors of B and Eigen vectors of A.

[10 Marks]

- Show that the subspaces of  $\mathbb{R}^3$  spanned by two sets of vectors  $\{(1,1,-1),(1,0,1)\}$  and 39.  $\{(1,2,-3),(5,2,1)\}$  are identical. Also find the dimension of this subspace. (10Marks)
- Find the nullity and a basis of the null space of the linear transformation  $A: \mathbb{R}^{(4)} \to \mathbb{R}^{(4)}$  given by the 40. matrix  $A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \end{bmatrix}$ .

- Show that the vectors (1,1,1), (2,1,2) and (1,2,3) are linearly independent in  $\mathbb{R}^{(3)}$ . Let  $\mathbb{R}^{(3)} o \mathbb{R}^{(3)}$  be 41. a linear transformation defined by T(x, y, z) = (x + 2y + 3z, x + 2y + 5z, 2x + 4y + 6z) Show that the images of above vectors under are linearly dependent. Given the reason for the same.
  - (ii)Let  $A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 3 & -1 \end{vmatrix}$  and C be a non-singular matrix of order  $3 \times 3$ . Find the Eigen values of the

matrix  $B^3$  where  $B = C^{-1}AC$ .

[10 Marks]

42. If  $\lambda_1, \lambda_2, \dots, \lambda_3$  are the Eigen values of the matrix  $A = \begin{bmatrix} 26 & -2 & 2 \\ 2 & 21 & 4 \\ 44 & 2 & 28 \end{bmatrix}$  show that  $\sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2} \leq \sqrt{1949}$ 

#### [12 Marks]

43. What is the null space of the differentiation transformation  $\frac{d}{dx}: P_n \to P_n$  where  $P_n$  is the space of all polynomials of degree  $\leq n$  over the real numbers? What is the null space of the second derivative as a transformation of? What is the null space of the kith derivative  $P_n$ ?

[12 Marks]

44. Let  $M = \begin{bmatrix} 4 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}$  Find the unique linear transformation  $T : \mathbb{R}^3 \to \mathbb{R}^3$  so that M is the matrix of T with respect to the basis  $\beta = \{v_1 = (1,0,0)v_2 = (1,1,0)v_3 = (1,1,1)\}$  of  $\mathbb{R}^3$  and  $\beta' = \{w_1 = (1,0), w_2 = (1,1)\}$  of  $\mathbb{R}^2$ . Also find T(x, y, z). [20 Marks]

- 45. Let A and B be  $n \times n$  matrices over reals. Show that BA is invertible if I AB is invertible. Deduce that AB and AB have the same Eigen values. [20 Marks]
- 46. (i) In the space  $R^n$  determine whether or not the  $\{e_1 e_2, e_2 e_3, \dots, e_{n-1} e_n, e_n e_1\}$  set is linearly independent.

(ii) Let T be a linear transformation from a vector V space over reals into V such that  $T - T^2 = I$ Show that is invertible. [20 Marks]

47. Find a Hermitian and skew-Hermitian matrix each whose sum is the matrix.  $\begin{bmatrix} 2i & 3 & -1 \\ 1 & 2+3i & 2 \\ -i+1 & 4 & 5i \end{bmatrix}$ 

2009

#### Marks]

- 48. Prove that the set V of the vectors  $(x_1, x_2, x_3, x_4)$  in which  $\mathbb{R}^4$  satisfy the equation  $x_1+, x_2+x_3+x_4=0$  and  $2x_1+3x_2-x_3+x_4=0$ , is a subspace of  $\mathbb{R}^4$ . What is dimension of this subspace? Find one of its bases. [12 Marks]
- 49. Let  $\beta = \{(1,1,0)(1,01)(0,1,1)\}$  and  $\beta' = \{(2,1),(1,2,1)(-1,1,1)\}$  be the two ordered bases of  $R^3$ . Then find a matrix representing the linear transformation  $T : R^3 \to R^3$  which transforms  $\beta$  into  $\beta'$ . Use this matrix representation to find T(x), where x = (2,3,1). [20 Marks]
- 50. Find a  $2 \times 2$  real matrix A which is both orthogonal and skew-symmetric. Can there exist a  $3 \times 3$  real matrix which is both orthogonal and skew-symmetric? Justify your answer. (20Marks
- 51. Let  $L: \mathbb{R}^4 \to \mathbb{R}^3$  be a linear transformation defined by  $L = (x_1, x_2, x_3, x_4)$

=  $(x_3 + x_4 - x_1 - x_2, x_3 - x_2, x_4 - x_1)$ . Then find the rank and nullity of L. Also, determine null space and range space of L. [20 Marks]

52. Prove that the set V of all  $3 \times 3$  real symmetric matrices form a linear subspace of the space of all  $3 \times 3$  real matrices. What is the dimension of this subspace? Find at least of the bases for V.

[20 Marks]

- 53. Show that the matrix A is invertible if and only if the adj(A) is invertible. Hence find |adj(A)|
- 54. Let S be a non-empty set and let V denote the set of all functions from S into R. Show that V is vector space with respect to the vector addition (f + g)(x) = f(x) + g(x) and scalar multiplication (c.f)(x) = cf(x) [12 Marks]
- 55. Show that  $B = \{(1,0,0), (1,1,0), (1,1,1)\}$  is a basis of.  $R^3 \text{Let } T : R^3 \to R^3$  be a linear transformation such that T(1,0,0) = (1,0,0), T(1,.1,0) = (1,1,1) and T(1,1,1) = (1,1,0). Find T(x, y, z)
- 56. Let A be a non-singular matrix. Show that if  $I + A + A^2 + \dots + A^n = 0$  then  $A^{-1} = A^n$ .
- 57. Find the dimension of the subspace of  $R^4$  spanned by the set  $\{(1,0,0,0)(0,1,0,0)(1,2,0,1),(0,0,0,1)\}$ . Hence find a basis for the subspace.

[15 Marks]

[12 Marks]

[12 Marks]

[15 Marks]

[15 Marks]

### 2007

- 58. Let S be the vector space of all polynomials, p(x) with real coefficients, of degree less than or equal to two considered over the real field |R| such that p(0) and p(1) = 0. Determine a basis for S and hence its dimension.
- 59. Let T be the linear transformation from  $|R^3$  to  $|R^4$  define by  $T(x_1, x_2, x_3) = (2x_1 + x_2 + x_3, x_1, x_2, x_1 + x_3, 3x_1 + x_2 = 2x_3)$  for each  $(x_1, x_2, x_3) \in |R^3$  Determine a basis for the Null space of T. What is the dimension of the Range space of T? [12 Marks]
- 60. Let W be the set of all  $3 \times 3$  symmetric matrices over |R| does it from a subspace of the vector space of the  $3 \times 3$  matrices over |R|? In case it does, construct a basis for this space and determined its dimension [15 Marks]
- 61. Consider the vector space  $X := \{p(x)\}$  is a polynomial of degree less than or equal to 3 with real coefficients. Over the real field |R| define the map  $D: X \to X$  by  $(Dp)(x) := P_1 + 2P_2x + 3P_3x^2$  where  $p(x) := P_0 + P_1x + P_2x^2 + p_3x^3$  is D a linear transformation on X? If it is then construct the matrix representation for D with respect to the order basis  $\{1, x, x^2, x^3\}$  for X. [15 Marks]
- 62. Reduce the quadratic form  $q(x, y, z) := x^2 + 2y^2 4xz 4yz + 7z^2$  to canonical form. Ss positive definite? [15 Marks]

# 2006

- 63. Let V be the vector space of all 2×2 matrices over the field F. Prove that V has dimension 4 by exhibiting a basis for V.
   [12 Marks]
- 64. State Cayley-Hamilton theorem and using it, find the inverse of  $\begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}$ .
- 65. If  $T: R^2 \to R^2$  is defined by T(x, y) = (2x 3y, x + y) compute the matrix of T relative to the basis  $\beta\{(1,2), (2,3)\}$  [15 Marks]

#### [12 Marks]

| ob. Using elementary row operations, find the rank of the matrix | 66. | Using elementary row operation | ons, find the rank of the matrix |
|------------------------------------------------------------------|-----|--------------------------------|----------------------------------|
|------------------------------------------------------------------|-----|--------------------------------|----------------------------------|

|     | 3 | -2      | 0  | -1 |   |
|-----|---|---------|----|----|---|
| rix | 0 | 2<br>-2 | 2  | 1  |   |
|     | 1 | -2      | -3 | -2 | • |
|     | 0 | 1       | 2  | 1  |   |

[15 Marks]

[15 Marks]

[15 Marks]

- 67. Investigate for what values of and the equations
  - x + y + z = 6x + 2y + 3z = 10

 $x + 2y + \lambda z = \mu$ 

Have-

2 0

5 1

0 1

0

3

- (i) no solution;
- (ii) a unique solution;
- (iii) infinitely many solutions
- 68. Find the quadratic form q(x, y) corresponding to the symmetric matrix  $A = \begin{bmatrix} y \\ y \end{bmatrix}$  Is this

quadratic from positive definite? Justify your answer.

## 2005

- 69. Find the values of k for which the vectors (1,1,1,1), (1,3,-2,k), (2,2k-2,-k-2,3k-1) and (3,k+2,-3,2k+1) are linearly independent in  $\mathbb{R}^4$ . [12 Marks]
- 70. Let V be the vector space of polynomials in x of degree  $\le n$  over R. Prove that the set  $\{1, x, x^2, ..., x^n\}$  is a basis for the set of all polynomials in x. [12 Marks]
- 71. Let T be a linear transformation on  $R^3$  whose matrix relative to the standard basis of  $R^3$  is
  - 2 1 -1 1 2 2 3 3 4 Find the matrix of T relative to the basis  $\beta = \{(1,1,1), (1,1,0), (01,1)\}$ . [15 Marks]
- 72. Find the inverse of the matrix given below using elementary row operations only:
- [15 Marks]

73. If S is a skew-Hermitian matrix, then show that is a unitary matrix. Also show that  $A = (I+S)(I-S)^{-1}$  every unitary matrix can be expressed in the above form provided -1 is not an Eigen value of A. [15 Marks]

74. Reduce the quadratic form  $6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 - 2x_2x_3 + 4x_3x_1$  to the sum of squares. Also find the corresponding linear transformation, index and signature.

[15 Marks]

# 2004

75. Let S be space generated by the vectors  $\{(0,2,6),(3,1,6),(4,-2,-2)\}$  what is the dimension of the space S? Find a basis for S. [12 Marks]

- 76. Show that  $f : \mathbb{R}^3 \to I\mathbb{R}$  is la linear transformation, where f(x, y, z) = 3x + y z what is the dimension of the Kernel? Find a basis for the Kernel.
- 77. Show that the linear transformation form  $IR^3$  to  $IR^4$  which is represented by the matrix
  - $\begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & -2 \\ 2 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}$  is one-to-one. Find a basis for its image. [12 Marks]
- 78. Verify whether the following system of equation is consistent x+3z=5

$$-2x + 5y - z = 0$$
$$-x + 4y + z = 4$$

[15 Marks]

- 79. Find the characteristic polynomial of the matrix  $A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$  Hence find  $A^{-1}$  and  $A^{6}$  (15Marks)
- 80. Define a positive definite quadratic form. Reduce the quadratic form to canonical form. Is this quadratic form positive definite? [15 Marks]

### 2003

- 81. Let S be any non-empty subset of a vector pace V over the field F. Show that the set  $\{a_1\alpha_1 + a_2\alpha_2 + ... + a_n\alpha_n : a_1, a_2, ..., a_n \in F, \alpha_1, \alpha_2, ..., \alpha_n \in S, n \in N\}$  is the subspace generated by S. [12 Marks]
- 82. If =  $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$  then find the matrix represented by
- $2A^{10-1}0A^9 + 14A^8 6A^7 3A^6 + 15A^5 21A^4 + 9A^3 + A 1.$ 83. Prove that the Eigen vectors corresponding to distinct Eigen values of a square matrix are linearly independent.
  [15 Marks]
- 84. If H is a Hermitian matrix, then show that  $A = (H + iI)^{-1} (H iI)$  is a unitary matrix. Also, so that every unitary matrix can be expressed in this form, provided 1 is not an Eigen value of A.

#### [15 Marks]

85. If  $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & -3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$  then find a diagonal matrix D and a matrix B such that A = BDB' where B'

denotes the transpose of B.

[15 Marks]

[12 Marks]

86. Reduce the quadratic form given below to canonical form and find its rank and signature  $x^{2} + 4y^{2} + 9z^{2} + u^{2} - 12yz + 6zx - 4xy - 2xu - 6zu$ . [15 Marks]

- 87. Show that the mapping  $T: \mathbb{R}^3 \to \mathbb{R}^3$  where T(a,b,c) = (a-b,b-c,a+c) is linear and non-singular
- 88. A square matrix A is non-singular if and only if the constant term in its characteristic polynomial is different from zero. [12 Marks]
- 89. Let  $R^5 \to R^5$  be a linear mapping given by T(a,b,c,d,e) = (b-d,+e,b,2d+e,b+e) Obtain based for its null space and range space. [15 Marks]

90. Let A be a real  $3 \times 3$  symmetric matrix with Eigen values0, 0 and 5 If the corresponding Eigen-vectors are (2,0,1), (2,1,1) and (1,0,-2) then find the matrix A.

[15 Marks]

 $x_1 - 2x_2 - 3x_3 + 4x_4 = -1$ 91. Solve the following system of linear equations  $-x_1 + 3x_2 + 5x_3 - 5x_4 - 2x_5 = 0$   $2x_1 + x_2 - 2x_3 + 3x_4 - 4x_5 = 17,$ [15 Marks]

92. Use Cayley-Hamilton theorem to find the inverse of the following matrix: 1 2 3 [15 Marks] 3 1 1

## 2001

- 93. Show that the vectors (1,0-1), (0,-3,2) and (1,2,1) form a basis for the vector space  $R^3(R)$ 
  - [12 Marks]

[12 Marks]

[15 Marks]

94. If  $\lambda$  is a characteristic root of a non-singular matrix A then prove that  $\frac{|A|}{\lambda}$  is a characteristic root of

Adj.A

95. If  $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$  show that for every integer  $n \ge 3$ ,  $A^n = A^{n-2} + A^2 - I$  Hence determine  $A^{50}$ .

96. When is a square matrix A said to be congruent to a square matrix B? Prove that every matrix congruent to skew-symmetric matrix is skew symmetric. [15 Marks]

97. Determine an orthogonal matrix P such that is a diagonal matrix, where =  $\begin{pmatrix} 7 & 4 & 4 \\ 4 & -8 & -1 \\ -4 & -1 & -8 \end{pmatrix}$  [15 Marks]

98. Show that the real quadratic form  $\phi = n(x_1^2 + x_2^2 + ... + x_n^2) - (x_1x_2 + ... + x_n)^2$  in n variables is positive semi-definite. [15 Marks]

### 2000

- 99. Let V be a vector space over R and  $T = \{(x, y) | x, y, \in v\}$  Let. Define addition in component wise and scalar multiplication by complex number  $\alpha + i\beta$  by  $(\alpha + i\beta)(x, y) = (\alpha x + \beta y, \beta y + \alpha y) \forall \alpha \beta \in R$ Show that T is a vector space over C. [12 Marks]
- 100. Show that if  $\lambda$  is a characteristic root of a non-singular matrix A then  $\lambda^{-1}$  is a characteristic root of  $A^{-1}$  [15 Marks]
- 101. Prove that a real symmetric matrix A is positive definite if and only  $A = BB^{t}$  if for some non-singular

matrix. B Show also that  $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 11 \end{pmatrix}$  is positive definite and find the matrix B such that  $A = BB^{t}$ 

Here stands for the transpose of.

102. Prove that a system AX = B if non-homogeneous equations in unknowns have a unique solution<br/>provided the coefficient matrix is non-singular.[15 Marks]

### [15 Marks]

- 103. Prove that two similar matrices have the same characteristic roots. Is its converse true? Justify your claim.

   [15 Marks]
- 104. Reduce the equation  $x^2 + y^2 + z^2 2xy 2yz + 2zx + x y 2z + 6 = 0$  into canonical form and determine the nature of the quadratic. [15 Marks]

- 105. Let V be the vector space of functions from R to R (the real numbers). Show that f, g, h in V are linearly independent where  $f(t) = e^{2t}$ ,  $g(t) = t^2$  and h(t) = t. [20 Marks]
- 106. If the matrix of a linear transformation T on  $V_2(R)$  with respect to the basis, then what is the matrix of with respect to the ordered basis  $B = \{(1,0), (0,1)\}$  is  $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$  then what Is the matrix of T with

respect to the ordered basis.

- 107. Diagonalize the matrix  $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$
- 108. Test for congruency of the matrices  $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$  and  $B = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$  Prove that  $A^{2n} = B^{2m}I$  when and are positive integers. [20 Marks]
- 109. If A is askew symmetric matrix of order n Prove that  $(I A)(I + A)^{-1}$  is orthogonal.
- 110. Test for the positive definiteness of the quadratic form  $2x^2 + y^2 + 2z^2 2zx$ . [20 Marks]
- 111. Given two linearly independent vectors (1,0,1,0) and (0,-1,1,) of  $R^4$  find a basis of which included these two vectors [20 Marks]
- 112. If is a finite dimensional vector space over R and if and are two linear transformations from V to R such that Vf(v) = 0 in plies g(v) = 0 then prove that  $g = \lambda f$  form some  $\lambda$  in R.

### [20 Marks]

[20 Marks]

[20 Marks]

[20 Marks]

- 113. Let  $T: R^3 \rightarrow R^3$  be defined by  $T(x_1, x_2, x_3) = (x_2, x_3 cx_1bx_2 ax_3)$  where a, b, c are fixed real numbers. Show that T is a linear transformation of  $R^3$  and that  $A^3 + aA^2 + ba + = cI = 0$  where A is the matrix of T with respect to standard basis of  $R^3$  [20 Marks]
- 114. If A and B are two matrices of order  $2 \times 2$  such that A is skew Hermitian and AB = B then show that B = 0 [20 Marks]
- 115. If T is a complex matrix of order  $2 \times 2$  such that  $trT = trT^2 = 0$  then show that  $T^2 = 0$

#### [20 Marks]

- 116. Prove that a necessary and sufficient condition for a  $n \times n$  real matrix to be similar to a diagonal matrix A is that the set of characteristic vectors A of includes a set of linearly independent vectors.
  - [20 Marks]
- 117. Let be a matrix. Then show that the sum of the rank and nullity of A is n.[20 Marks]
- 118. Find all real  $2 \times 2$  matrices A whose characteristic roots are real and which satisfy A A' = 1 (20Marks)

119. Reduce to diagonal matrix by rational congruent transformation the symmetric matrix

 $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & 3 \\ -1 & 3 & 1 \end{pmatrix}.$  [20 Marks]

### 1997

120. Let V be the vector space of polynomials over R. Find a basis and dimension of the subspace W of V spanned by the polynomials

- $v_{1} = t^{3} 2t^{2} + 4t + 1, v_{2} = 2t^{3} 3t^{2} + 9t 1, v_{3} = t^{3} + 6t 5, v_{4} = 2t^{3} 5t^{2} + 7t + 5$ [20 Marks]
  121. Verify that the transformation defined by  $T(x_{1}, x_{2}) = (x_{1} + x_{2}, x_{1} x_{2}, x_{2})$  is a linear transformation from  $R^{2}$  into  $R^{3}$ . Find its range, null space and nullity.
  [20 Marks]
- 122. Let *V* be the vector space of  $2 \times 2$  matrices over *R*. Determine whether the matrices  $A, B, C \in V$ are dependent where  $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 \\ 2 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & -5 \\ -4 & 0 \end{bmatrix}$  [20 Marks]
- 123. Let a square matrix A of order n be such that each of its diagonal elements is  $\mu$  and each of its offdiagonal elements is 1. If  $B = \lambda A$  is orthogonal, determined the values of  $\lambda$  and  $\mu$  [20 Marks]
- 124. Show that  $A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & 2 & 3 \end{bmatrix}$  is diagonalizable over R and find a matrix P such that  $P^{-1}AP$  is

diagonal. Hence determine  $A^{25}$ 

- 125. Let  $A = [a_{ij}]$  be a square matrix of order n such that  $[a_{ij}] \le M \quad \forall i, j = 1, 2, ... n$ . Let  $\lambda$  be an Eigenvalue of A. Show that  $|\lambda| \le nM$  [20 Marks]
- 126. Define a positive definite matrix. Show that a positive definite matrix is always non-singular. Prove that its converse does not hold. [20 Marks]
- 127. Find the characteristics roots and their corresponding vectors for the matrix

[20 Marks]

[20 Marks]

128. Find an invertible matrix P which reduces Q(x, y, z) = 2xy + 2yz + 2zx to its canonical form.

[20 Marks]

- 129.  $R^4$ , let  $W_1$  be the space generated by (1,1,0,-1), (2,6,0) and (-2,-3,-3,1) and let  $W_2$  be the space generate by (-1,-2,-2,2), (4,6,4,-6) and (1,3,4,-3). Find a basis for the space  $W_1 + W_2$  [20 Marks]
- 130. Let V be a finite dimensional vector space and  $v \in V, v \neq 0$ . Show that there exist a linear functional f on V such that V [20 Marks]

131. Let  $V = R^3$  and  $v_1, v_2, v_3$  be a basis of  $R^3$ . Let  $T: V \to V$  be a linear transformation such that. By

writing the matrix of T with respect to another basis, show that the matrix  $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$  is similar to

1 1 1

[20 Marks]

[20 Marks]

- $\begin{bmatrix} 3 & 0 & 0 \end{bmatrix}$
- 0 0 0
- 0 0 0
- 132. Let  $V = R^3$  and  $T: V \to V$  be linear map defined by T(x, y, z) = (x + z, -2x + y, -x + 2y + z). What is the matrix of T with respect to the basis (1,0,1), (-1,1,1) and (0,1,1)? Using this matrix, write down the matrix of T with respect to the basis (0,1,2), (-1,1,1) and (0,1,1) [20 Marks]
- 133. Let V and W be finite dimensional vector spaces such that  $\dim V \ge \dim W$ . Show that there is always a linear map from V onto W [20 Marks]
- 134. Solve

$$x + y - 2z = 1$$
  

$$2x - 7z = 3$$
 by using Cramer's rule  

$$x + y - z = 5$$

- 135. Find the inverse of the matrix
  - $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$  by computing its characteristic polynomial. [20 Marks]
- 136. Let A and B be  $n \times n$  matrices such that AB = BA. Show that A and B have a common characteristic vector. [20 Marks]
- 137. Reduce to canonical form the orthogonal matrix  $\begin{bmatrix} 2/3 & -2/3 & 1/3 \\ 2/3 & 1/3 & -2/3 \\ 1/3 & 2/3 & 2/3 \end{bmatrix}$  [20 Marks] 1995
- 138. Let T be the linear operator in  $R^3$  defined by  $T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3)$ . What is the matrix of T in the standard ordered basis of  $R^3$ ? What is a basis of range space of T and a basis of null space of T? [20 Marks]
- 139. Let A be a square matrix of order n. Prove that AX = b has solution if and only if  $b \in R^n$  is orthogonal to all solutions Y of the system  $A^TY = 0$  [20 Marks]
- 140. Define a similar matrix. Prove that the characteristic equation of two similar matrices is the same. Let 1, 2, and 3 be the Eigen-values of a matrix. Write down such a matrix. Is such a matrix unique?

[20 Marks]

- 141. Show that  $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$  is diagonalizable and hence determine  $A^5$ . [20 Marks]
- 142. Let A and B be matrices of order n. Prove that if (I AB) is invertible, then (I BA) is also invertible and  $(I - BA)^{-1} = I + B(I - AB)^{-1}A$ . Show that AB and BA have precisely the same characteristic values. [20 Marks]

- 143. If a and b complex numbers such that and H is a Hermitian matrix, show that the Eigen values of lie on a straight line in the complex plane. [20 Marks]
- 144. Let A be a symmetric matrix. Show that A is positive definite if and only if its Eigen values are all positive.
  [20 Marks]
- 145. Let A and B be square matrices of order n. Show that AB-BA can never be equal to unit matrix.
- 146. Let A and for every. Show that A is a non-singular matrix. Hence or otherwise prove that the Eigenvalues of A lie in the discs in the complex plane. [20 Marks]



- 147. Show that  $f_1(t) = 1$ ,  $f_2(t) = t 2$ ,  $f_3(t) = (t 2)^2$  form a basis of  $P_3$ , the space of polynomials with degree  $\le 2$ . Express  $3t^2 5t + 4$  as a linear combination of  $f_1, f_2, f_3$ . [20 Marks]
- 148. If  $T: V_4(R) \rightarrow V_3(R)$  is a linear transformation defined by T(a,b,c,d) = (a-b+c+d, a+2c-d, a+b+3c-3d). For  $a,b,c,d \in R$ , then verify that Rank T + Nullity  $T = \dim V_4(R)$  [20 Marks]
- 149. If *T* is an operator on  $R_3$  whose basis is  $B = \{(1,0,0), (0,1,0), (-1,1,0)\}$  such that

$$[T:B] = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$$
 find the matrix  $T$  with respect to a basis

$$B_1 = \{(0,1,-1), (1,-1,1), (-1,1,0)\}$$

1 1 ]

- 150. If  $A = [a_{ij}]$  is an  $n \times n$  matrix such that  $a_{ii} = n, a_{ij} = r$  if  $i \neq j$ , show that [A - (n - r)I][A - (n - r + nr)I] = 0. Hence find the inverse of the  $n \times n$  matrix  $B = [b_{ij}]$ . where  $b_{ii} = 1, b_{ij} = \rho$  when  $i \neq j$  and  $\rho \neq 1, \rho \neq \frac{1}{1 - n}$ [20 Marks]
- 151. Prove that the Eigen vectors corresponding to distinct Eigen values of a square matrix are linearly independent. [20 Marks]
- 152. Determine the Eigen values and Eigen vectors of the matrix  $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$
- 153. Show that a matrix congruent to a skew-symmetric matrix is skew-symmetric. Use the result to prove that the determinant of skew-symmetric matrix of even order is the square of a rational function of its elements.
  [20 Marks]

 $\begin{bmatrix} 0 & c & -b & a' \\ -c & 0 & a & b' \\ b & -a & 0 & c' \\ -a' & -b' & -c' & 0 \end{bmatrix}$  where  $aa' + bb' + cc' = 0 \ a, b, c$  are all positive

integers

155. Reduce the following symmetric matrix to a diagonal form and interpret the result in terms of

|            | -1 | 3 2 |                        |
|------------|----|-----|------------------------|
| [20 Marks] | 3  | 2 2 | quadratic forms: $A =$ |
|            | 1  | 1 3 |                        |
| 1993       |    |     |                        |

[20 Marks]

[20 Marks]

[20 Marks]

[20 Marks]

- 156. Show that the set  $S = \{(1,0,0), (1,1,0), (1,1,1), (0,1,0)\}$  spans the vector space  $R^3(R)$  but it is not a basis set. [20 Marks]
- 157. Define rank and nullity of a linear transformation T. If V be a finite dimensional vector space and T a linear operator on V such that rank  $T^2 = \operatorname{rank} T$ , then prove that the null space of T = the null space of  $T^2$  and the intersection of the range space and null space to T is the zero subspace of V. [20 Marks]
- 158. If the matrix of a linear operator T on  $R^2$  relative to the standard basis  $\{(1,0),(0,1)\}$  is  $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ , what is the matrix of T relative to the basis  $B = \{(1,1),(1,-1)\}$ ? [20 Marks]
- 159. If A be an orthogonal matrix with the property that -1 is not an Eigen value, then show that a is expressible as  $(I-S)(S+S)^{-S1}$  for some suitable skew-symmetric matrix S. [20 Marks] 160. Determine the following form as definite, semi-definite or indefinite:

[20 Marks]

[20 Marks]

- $2x_1^2 + 2x_2^2 + 3x_3^2 4x_2x_3 4x_3x_1 + 2x_1x_2$
- 161. Prove that the inverse of  $\begin{pmatrix} A & O \\ B & C \end{pmatrix}$  is  $\begin{pmatrix} A^{-1} & O \\ C^{-1}BA^{-1} & C^{-1} \end{pmatrix}$  where A, C are non-singular matrices and hence find the inverse of  $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$  [20 Marks]
- 162. Show that any two Eigen vectors corresponding to two distinct Eigen values of Hermitian matrix and Unitary matrix are orthogonal [20 Marks]
- 163. A matrix B of order  $n \times n$  is of the form  $\lambda A$  where  $\lambda$  is a scalar and A has unit elements everywhere except in the diagonal which has elements  $\mu$ . Find  $\lambda$  and  $\mu$  so that B may be orthogonal. [20 Marks]
- 164. Find the rank of the matrix  $\begin{pmatrix} 1 & -1 & 3 & 6 \\ 1 & 3 & -3 & -4 \\ 5 & 3 & 3 & 11 \end{pmatrix}$  by reducing it to canonical form. [20 Marks]

- 165. Let V and U be vector spaces over the field K and let V be of finite dimension. Let  $T: V \to U$  be a linear Map. dim  $V = \dim R(T) + \dim N(T)$  [20 Marks]
- 166. Let  $S = \{(x, y, z) \mid x + y + z = 0\}$ , x, y, z being real. Prove that S is a subspace of  $R^3$ . Find a basis of S [20 Marks]
- 167. Verify which of the following are linear transformations?

(i) 
$$T: R \to R^2$$
 defined by  $T(x) = (2x, -x)$ 

- (ii)  $T: \mathbb{R}^2 \to \mathbb{R}^3$  defined by T(x, y) = (xy, y, x)
- (iii)  $T: \mathbb{R}^2 \to \mathbb{R}^3$  defined by T(x, y) = (x + y, y, x)

(iv) 
$$T: R \rightarrow R^2$$
 defined by  $T(x) = (1, -1)$ 

168. Let  $T: M_{_{2,1}} \rightarrow M_{_{2,3}}$  be a linear transformation defined by (with usual notations)

$$T\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}2 & 1 & 3\\4 & 1 & 5\end{pmatrix}, T\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}6 & 1 & 0\\0 & 0 & 2\end{pmatrix}$$
 Find  $T\begin{pmatrix}x\\y\end{pmatrix}$  [20 Marks]

169. For what values of  $\eta$  do the following equations

x + y + z = 1 $x + 2y + 4z = \eta$ Have solutions? Solve them completely in each case. [20 Marks]  $x + 4y + 10z = \eta^2$ Prove that a necessary and sufficient condition of a real quadratic form X'AX to be positive 170. definite is that the leading principal minors of A are all positive. [20 Marks] State Cayley-Hamilton theorem and use it to calculate the inverse of the matrix  $\rightarrow \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ 1 171. 3 [20 Marks] Transform the following to the diagonal forms and give the transformation employed: 172.  $x^2 + 2y, 8x^2 - 4xy + 5y^2$ [20 Marks] Prove that the characteristic roots of a Hermitian matrix are all real and a characteristic root of a 173. skew-Hermitian is either zero or a pure imaginary number. [20 Marks]