(*)

Ramancisrílupscmaths OPTIONAL COACHING

Linear Algebra

Previous year Questions from 2020 to 1992

> 2021-22

2020

1. Consider the set V of all $n \times n$ real magic squares. Show that V is a vector space over R. Give examples of two distinct 2×2 magic squares.
[10 Marks]
2. Let $T: M_{2}(R)$ be the vector space of all 2×2 real matrices. Let $B=\left[\begin{array}{cc}1 & -1 \\ -4 & 4\end{array}\right]$. Suppose $T: M_{2}(R) \rightarrow M_{2}(R)$ is a linear transformation defined by $T(A)=B A$. Find the rank and nullity of T. Find a matrix A which maps to the null matrix.

[10 Marks]

3. Define an $n \times n$ matrix as $A=I-2 u . u^{T}$, where u is a unit column vector
(i) Examine if A is symmetric.
(ii) Examine if A is orthogonal.
(iii) Show that trace $(A)=n-2$.
(iv) Find $A_{3 \times 3}$ when $u=\left[\begin{array}{c}\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right]$
[20 Marks]
4. Let F be a subfield of complex numbers and T a function from $F^{3} \rightarrow F^{3}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+3 x_{3}, 2 x_{1}-x_{2},-3 x_{1}+x_{2}-x_{3}\right)$. What are the conditions on a, b, c such that (a, b, c) be in the null space of T ? find the nullity of T.
[15 Marks]
5. Let $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8\end{array}\right]$ and $B=\left[\begin{array}{cc:c}-11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1\end{array}\right]$
(i) Find $A B$
(ii) Find $\operatorname{det}(A)$ and $\operatorname{det}(B)$
(iii) Solve the following system of linear equations:

$$
x+2 z=3 \quad 2 x-y+3 z=3 \quad 4 x+y+8 z=14
$$

[15 Marks]

2019

6. Let $T: R^{2} \rightarrow R^{2}$ be a linear map such that $T(2,1)=(5,7)$ and $T(1,2)=(3,3)$ If A is the matrix corresponding to T with respect to the standard bases e_{1}, e_{2}, then find rank
[10 Marks]
7. If $A\left[\begin{array}{ccc}1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3\end{array}\right]$ and $B\left[\begin{array}{ccc}2 & 2 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1\end{array}\right]$ then show that $A B=6 I_{3}$. Use this result to solve the following system of equations. $2 x+y+z=5, x-y=0,2 x+y-z=1$
8. Let A and B be two orthogonal matrices of same order and det $A+\operatorname{det} B=0$ Show that $A+B$ is a singular matrix.
[15 Marks]
9. Let $A=\left(\begin{array}{cccc}5 & 7 & 2 & 1 \\ 1 & 1 & -8 & 1 \\ 2 & 3 & 5 & 0 \\ 3 & 4 & -3 & 1\end{array}\right)$
(i) Find the rank of matrix A
(ii) Find the dimension of the subspace $V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in R^{4}\left(A\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=0\right\}\right.$
[15+5=20 Marks]
10. State the Cayley-Hamilton theorem. Use this theorem of find A^{100} where $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
[15 Marks]

2018

11. Let A be a 3×2 matrix and B a 2×3 matrix. Show that $C=A, B$ is a singular matrix.
[10 Marks]
12. Express basis vectors $e_{1}=(1,0)$ and $e_{2}=(0,1)$ as linear combinations of $\alpha_{1}=(2,-1)$ and $\alpha_{2}=(1,3)$.
[10 Marks]
13. Show that if A and B are similar $n \times n$ matrices, then they have the same Eigen values.
[12 Marks]
14. For the system of linear equations $x+3 y-2 z=-1,5 y+3 z=-8, x-2 y-5 z=7$ determine which of the following statements are true and which are false:
(i) The system has no solution.
(ii) The system has a unique solution.
(iii) The system has infinitely many solutions.
[13 Marks]

2017

16. Let $A=\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)$. Find a non-singular matrix P such that $P^{-1} A P$ is diagonal matrix.
[10 Marks]
17. Show that similarmatrices have the same characteristic polynomial.
[10 Marks]
18. Suppose U and W are district four dimensional subspaces of a vector space V, where $\operatorname{dim} V=6$.

Find the possible dimensions of subspace $U \cap W$
[10 Marks]
4. Consider the matrix mapping $A: R^{4} \rightarrow R^{3}$, where $A=\left(\begin{array}{cccc}1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3\end{array}\right)$. Find a basis and dimension of the image of A and those of the kernel A.
5. Prove that distance non-zero eigenvectors of a matrix are linearly independent.
6. Consider the following system of equation in $x, y, z x+2 y+2 z=1, x+a y+3 z=3, x+11 y+a z=b$
(i) For which values of a does the system have a unique?
(ii) For which of values (a, b) does the system have more than one solution?
[15 Marks]

2016

19. (i) Using elementary row operations, find the inverse of $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 1\end{array}\right]$
[6 Marks]
(ii) If $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$ then find $A^{14}+3 A-2 I$.
[4 Marks]
20. (i) Using elementary row operation find the condition that the linear equations have a solution

$$
\begin{aligned}
& x-2 y+z=a \\
& 2 x+7 y-3 z=b \\
& 3 x+5 y-2 z=c
\end{aligned}
$$

(ii) If $W_{1}=\{(x, y, z) \mid x+y-z=0\}, W_{2}=\{(x, y, z) \mid 3 x+y-2 z=0\}$,
$W_{3}=\{(x, y, z) \mid x-7 y+3 z=0\}$ then find $\operatorname{dim}\left(W_{1} \cap W_{2} \cap W_{3}\right)$ and $\operatorname{dim}\left(W_{1}+W_{2}\right)$ [3 Marks]
21. (i) If $M_{2}(R)$ is space of real matrices of order 2×2 and $P_{2}(x)$ is the space of real polynomials of degree at most 2 , then find the matrix representation of $T: M_{2}(R) \rightarrow P_{2}(x)$ such that $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a+b+c+(a-d) x+(b+c) x^{2}$, with respect to the standard bases of $M_{2}(R)$ and $P_{2}(x)$ further find null space of T
[10 Marks]
(ii) If $T: P_{2}(x) \rightarrow P_{3}(x)$ is such that $T(f(x))=f(x)+5 \int_{0}^{x} f(t) d t$, then choosing $\left\{1,1+x, 1-x^{2}\right\}$ and $\left\{1, x, x^{2}, x^{3}\right\}$ as bases of $P_{2}(x)$ and $P_{3}(x)$ respectively find the matrix of T.

$$
\text { If } A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text {, then find the Eigen values and Eigenvectors of } A \text {. }
$$

(ii) Prove that Eigen values of a Hermitian matrix are all real.
[8 Marks]
8. If $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ -2 & 1 & -1 \\ 1 & 2 & 3\end{array}\right]$ is the matrix representation of a linear transformation $T: P_{2}(x) \rightarrow P_{2}(x)$
with respect to the bases $\{1-x, x(1-x), x(1+x)\}$ and $\left\{1,1+x, 1+x^{2}\right\}$ then find T.
[18 Marks]

2015

9. The vectors $V_{1}=(1,1,2,4), V_{2}=(2,-1,-5,2), V_{3}=(1,-1,-4,0)$ and $V_{4}=(2,1,1,6)$ are linearly independent. Is it true? Justify your answer.
[10 Marks]
10. Reduce the following matrix to row echelon form and hence find its rank:
$\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 5 \\ 1 & 5 & 5 & 7 \\ 8 & 1 & 14 & 17\end{array}\right]$
[10 Marks]
11. If matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ then find A^{30}
[12 Marks]
12. Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$
13. Let $V=R^{3}$ and $T \in A(V)$, for all $a_{i} \in A(V)$, be defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(2 a_{1}+5 a_{2}+a_{3},-3 a_{1}+a_{2}-a_{3}, a_{1}+2 a_{2}+3 a_{3}\right)$. What is the matrix T relative to the basis $V_{1}=(1,0,1), V_{2}=(-1,2,1), V_{3}=(3,-1,1)$?
[12 Marks]
14. Find the dimension of the subspace of R^{4}, spanned by the set $\{(1,0,0,0),(0,1,0,0),(1,2,0,1),(0,0,0,1)\}$. Hence find its basis.
[12 Marks]

2014

15. Find one vector in R^{3} which generates the intersection of V and W, where V is the $x y$-plane and W, is the space generated by the vectors $(1,2,3)$ and $(1,-1,1)$
[10 Marks]
16. Using elementary row or column operations, find the rank of the matrix

$$
\left[\begin{array}{cccc}
0 & 1 & -3 & -1 \\
0 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

[10 Marks]
17. Let V and W be the following subspaces of $R^{4}: V=\{(a, b, c, d): b-2 c+d=0\}$ and $W=\{(a, b, c, d): a=d, b=2 c\}$. Find a basis and the dimension of (i) V (ii) W (iii) $V \cap W$
[15 Marks]
18. Investigate the values of λ and μ so that the equations $x+y+z=6, x+2 y+3 z=10$, $x+2 y+\lambda \bar{z}=\mu$ have (i) no solution (ii) unique solution, (iii) an infinite number of solutions.[10 Marks]
19. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and hence find its inverse. Also, find the matrix represented by $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$
[10 Marks]
20. Let $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$. Find the Eigen values of A and the corresponding Eigen vectors.
[8 Marks]
21. Prove that Eigen values of a unitary matrix have absolute value 1 .
[7 Marks]
2013
22. Find the inverse of the matrix: $A=\left[\begin{array}{ccc}1 & 3 & 1 \\ 2 & -1 & 7 \\ 3 & 2 & -1\end{array}\right]$ by using elementary row operations. Hence solve the system of linear equations $x+3 y+z=10 \quad 2 x-y+7 z=12 \quad 3 x+2 y-z=4$
[10 Marks]
23. Let A be a square matrix and A * be its ad joint, show that the Eigen values of matrices $A A^{*}$ and $A * A$ are real. Further show that trace $\left(A A^{*}\right)=\operatorname{trace}\left(A^{*} A\right)$
[10 Marks]
24. Let P_{n} denote the vector space of all real polynomials of degree at most n and $T: P_{2} \rightarrow P_{3}$ be linear transformation given by $T(f(x))=\int_{0}^{x} p(t) d t, p(x) \in P_{2}$. Find the matrix of T with respect to the bases $\left\{1, x, x^{2}\right\}$ and $\left\{1, x, 1+x^{2}, 1+x^{3}\right\}$ of P_{2} and P_{3} respectively. Also find the null space of T
[10 Marks]
25. Let V be an n-dimensional vector space and $T: V \rightarrow V$ be an invertible linear operator If $\beta=\left\{X_{1}, X_{2}, \ldots X_{n}\right\}$ is a basis of V, show that $\beta^{\prime}=\left\{T X_{1}, T X_{2}, \ldots T X_{n}\right\}$ is also a basis of V $\left[\begin{array}{ccc}1 & 1 & 1\end{array}\right] \quad \beta^{2}=\{T X$,
26. Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2}\end{array}\right]$ where
show that $|\lambda|_{1}+\left|\lambda_{2}\right|+\left|\lambda_{3}\right| \leq 9$
[8 Marks]
27. Find the rank of the matrix $A=$
$A=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 8 & 12 \\ 3 & 5 & 8 & 12 & 17 \\ 3 & 5 & 8 & 17 & 23 \\ 8 & 12 & 17 & 23 & 30\end{array}\right]$
[8 Marks]
28. Let A be a Hermitian matrix having all distinct Eigen values $\lambda_{1}, \lambda_{2}, \ldots . \lambda_{n}$. If $X_{1}, X_{2}, \ldots X_{n}$ are corresponding Eigen vectors then show that the $n \times n$ matrix C whose $k^{\text {th }}$ column consists of the vector X_{n} is nonsingular.
[8 Marks]
29. Show that the vectors $X_{1}=(1,1+i, i), X_{2}=(i,-i, 1-i)$ and $X_{3}=(0,1-2 i, 2-i)$ in C^{3} are linearly independent over the field of real numbers but are linearly dependent over the field of complex numbers.
[8 Marks]

2012

30. Prove or disprove the following statement: If $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$ is a basis for \mathbb{R}^{5} and V is a twodimensional subspace of \mathbb{R}^{5}, then V has a basis made of two members of B.
[12 Marks]
31. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T(\alpha, \beta, \gamma)=(\alpha+2 \beta-3 \gamma, 2 \alpha+5 \beta-4 \gamma, \alpha+4 \beta+\gamma)$. Find a basis and the dimension of the image of T and the kernel of T
[12 Marks]
32. Let V be the vector space of all 2×2 matrices over the field of real numbers. Let W be the set consisting of all matrices with zero determinant. Is W a subspace of V ? Justify your answer?
[8 Marks]
33. Find the dimension and a basis for the space W of all solutions of the following homogeneous system using matrix notation:
$x_{1}+2 x_{2}+3 x_{3}-2 x_{4}+4 x_{5}=0$
$2 x_{1}+4 x_{2}+8 x_{3}+x_{4}+9 x_{5}=0$
[12 Marks]
$3 x_{1}+6 x_{2}+13 x_{3}+4 x_{4}+14 x_{5}=0$
34. (i) Consider the linear mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $f(x, y)=(3 x+4 y, 2 x-5 y)$. Find the matrix A relative to the basis $(1,0),(0,1)$ and the matrix B relative to the basis $(1,2),(2,3)$ [12 Marks]
(ii) If λ is a characteristic root of a non-singular matrix A, then prove that $\frac{|A|}{\lambda}$ is a characteristic root of Adj A
[8 Marks]
35. Let $H=\left(\begin{array}{ccc}1 & i & 2+i \\ -i & 2 & 1-i \\ 2-i & 1+i & 2\end{array}\right)$ be a Hermitian matrix. Find a non-singular matrix P such that $D=P^{T} H \bar{P}$ is diagonal.

2011

36. Let A be a non-singular $n \times n$, square matrix. Show that A. $(\operatorname{adj} A)=|A| \cdot I_{n}$ Hence show that $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(n-1)^{2}}$
[10 Marks]
37. Let $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}2 \\ 6 \\ 5\end{array}\right]$ Solve the system of equations given by $A X=B$ Using the above, also solve the system of equations $A^{T} X=B$ where A^{T} denotes the transpose of matrix A.
[10 Marks]
38. Let $\lambda_{1}, \lambda_{2}, \ldots . . \lambda_{n}$ be the Eigen values of a $n \times n$ square matrix A with corresponding Eigen vectors $X_{1}, X_{2}, \ldots . . X_{n}$. If B is a matrix similar to show that the Eigen values of B is same as that of A . Also find the relation between the Eigen vectors of B and Eigen vectors of A.
[10 Marks]
39. Show that the subspaces of \mathbb{R}^{3} spanned by two sets of vectors $\{(1,1,-1),(1,0,1)\}$ and $\{(1,2,-3),(5,2,1)\}$ are identical. Also find the dimension of this subspace.
(10Marks)
40. Find the nullity and a basis of the null space of the linear transformation $A: \mathbb{R}^{(4)} \rightarrow \mathbb{R}^{(4)}$ given by the matrix $A=\left[\begin{array}{ccccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$.
[10 Marks]
41. Show that the vectors $(1,1,1),(2,1,2)$ and $(1,2,3)$ are linearly independent in $\mathbb{R}^{(3)}$. Let $\mathbb{R}^{(3)} \rightarrow \mathbb{R}^{(3)}$ be a linear transformation defined by $T(x, y, z)=(x+2 y+3 z, x+2 y+5 z, 2 x+4 y+6 z)$ Show that the images of above vectors under are linearly dependent. Given the reason for the same.
(ii)Let $A=\left[\begin{array}{ccc}2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$ and C be a non-singular matrix of order 3×3. Find the Eigen values of the matrix B^{3} where $B=C^{-1} A C$.
42. If $\lambda_{1}, \lambda_{2}, \ldots . . \lambda_{3}$ are the Eigen values of the matrix $A=\left[\begin{array}{ccc}26 & -2 & 2 \\ 2 & 21 & 4 \\ 44 & 2 & 28\end{array}\right]$ show that $\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}} \leqq \sqrt{1949}$
[12 Marks]
43. What is the null space of the differentiation transformation $\frac{d}{d x}: P_{n} \rightarrow P_{n}$ where P_{n} is the space of all polynomials of degree $\leq n$ over the real numbers? What is the null space of the second derivative as a transformation of? What is the null space of the kith derivative P_{n} ?
[12 Marks]
44. Let. $M=\left[\begin{array}{lll}4 & 2 & 1 \\ 0 & 1 & 3\end{array}\right]$ Find the unique linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ so that M is the matrix of T with respect to the basis $\beta=\left\{v_{1}=(1,0,0) v_{2}=(1,1,0) v_{3}=(1,1,1)\right\}$ of \mathbb{R}^{3} and $\beta^{\prime}=\left\{w_{1}=(1,0), w_{2}=(1,1)\right\}$ of \mathbb{R}^{2}. Also find $T(x, y, z)$.
[20 Marks]
45. Let A and B be $n \times n$ matrices over reals. Show that $B \mathrm{~A}$ is invertible if $I-A B$ is invertible. Deduce that AB and AB have the same Eigen values.
[20 Marks]
46. (i) In the space R^{n} determine whether or not the $\left\{e_{1}-e_{2}, e_{2}-e_{3}, \ldots . ., e_{n-1}-e_{n}, e_{n}-e_{1}\right\}$ set is linearly independent.
(ii) Let T be a linear transformation from a vector V space over reals into V such that $T-T^{2}=I$ Show that is invertible.
[20 Marks]

2009

47. Find a Hermitian and skew-Hermitian matrix each whose sum is the matrix. $\left[\begin{array}{ccc}2 i & 3 & -1 \\ 1 & 2+3 i & 2 \\ -i+1 & 4 & 5 i\end{array}\right]$ Marks]
48. Prove that the set V of the vectors $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in which \mathbb{R}^{4} satisfy the equation $x_{1}+, x_{2}+x_{3}+x_{4}=0$ and $2 x_{1}+3 x_{2}-x_{3}+x_{4}=0$, is a subspace of \mathbb{R}^{4}. What is dimension of this subspace? find one of its bases.
[12 Marks]
49. Let $\beta=\{(1,1,0)(1,01)(0,1,1)\}$ and $\beta^{\prime}=\{(2,1),(1,2,1)(-1,1,1)\}$ be the two ordered bases of R^{3}. Then find a matrix representing the linear transformation $T: R^{3} \rightarrow R^{3}$ which transforms β into β^{\prime}. Use this matrix representation to find $T(x)$, where $x=(2,3,1)$.
[20 Marks]
50. Find a 2×2 real matrix A which is both orthogonal and skew-symmetric. Can there exist a 3×3 real matrix which is both orthogonal and skew-symmetric? Justify your answer.
(20Marks
51. Let $L: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $\left.L=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)$
$=\left(x_{3}+x_{4}-x_{1}-x_{2}, x_{3}-x_{2}, x_{4}-x_{1}\right)$. Then find the rank and nullity of L . Also, determine null space and range space of L .
[20 Marks]
52. Prove that the set V of all 3×3 real symmetric matrices form a linear subspace of the space of all 3×3 real matrices. What is the dimension of this subspace? Find at least of the bases for V.
[20 Marks]
53. Show that the matrix A is invertible if and only if the $\operatorname{adj}(A)$ is invertible. Hence find $|\operatorname{adj}(A)|$
54. Let S be a non-empty set and let V denote the set of all functions from S into R . Show that V is vector space with respect to the vector addition $(f+g)(x)=f(x)+g(x)$ and scalar multiplication $(c . f)(x)=c f(x)$
[12 Marks]
55. Show that $\mathrm{B}=\{(1,0,0),(1,1,0),(1,1,1)\}$ is a basis of. R^{3} Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation such that $T(1,0,0)=(1,0,0), T(1, .1,0)=(1,1,1)$ and $T(1,1,1)=(1,1,0)$. Find $T(x, y, z)$
[15 Marks]
56. Let A be a non-singular matrix. Show that if $I+A+A^{2}+\ldots . .+A^{n}=0$ then $A^{-1}=A^{n}$.
[15 Marks]
57. Find the dimension of the subspace of R^{4} spanned by the set $\{(1,0,0,0)(0,1,0,0)(1,2,0,1),(0,0,0,1)\}$. Hence find a basis for the subspace.
[15 Marks]

2007

58. Let S be the vector space of all polynomials, $p(x)$ with real coefficients, of degree less than or equal to two considered over the real field $\mid R$ such that $p(0)$ and $p(1)=0$. Determine a basis for S and hence its dimension.
[12 Marks]
59. Let T be the linear transformation from $\mid R^{3}$ to $\mid R^{4}$ define by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+x_{2}+x_{3}, x_{1}, x_{2}, x_{1}+x_{3}, 3 x_{1}+x_{2}=2 x_{3}\right)$ for each $\left(x_{1}, x_{2}, x_{3}\right) \in \mid R^{3}$ Determine a basis for the Null space of T. What is the dimension of the Range space of T?
[12 Marks]
60. Let W be the set of all 3×3 symmetric matrices over R does it from a subspace of the vector space of the 3×3 matrices over R ? In case it does, construct a basis for this space and determined its dimension
[15 Marks]
61. Consider the vector space $X:=\{p(x)\}$ is a polynomial of degree less than or equal to 3 with real coefficients. Over the real field $\mid R$ define the map $D: X \rightarrow X$ by $(D p)(x):=P_{1}+2 P_{2} x+3 P_{3} x^{2}$ where $p(x):=P_{0} \pm P_{1} x+P_{2} x^{2}+p_{3} x^{3}$ is D a linear transformation on X ? If it is then construct the matrix representation for D with respect to the order basis $\left\{1, x, x^{2}, x^{3}\right\}$ for X .
62. Reduce the quadratic form $q(x, y, z):=x^{2}+2 y^{2}-4 x z-4 y z+7 z^{2}$ to canonical form. Ss positive definite?
[15 Marks]

2006

63. Let V be the vector space of all 2×2 matrices over the field F . Prove that V has dimension 4 by exhibiting a basis for V .
[12 Marks]
64. State Cayley-Hamilton theorem and using it, find the inverse of $\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$.
65. If $T: R^{2} \rightarrow R^{2}$ is defined by $T(x, y)=(2 x-3 y, x+y)$ compute the matrix of T relative to the basis $\beta\{(1,2),(2,3)\}$
[15 Marks]
66. Using elementary row operations, find the rank of the matrix $\left[\begin{array}{cccc}3 & -2 & 0 & -1 \\ 0 & 2 & 2 & 1 \\ 1 & -2 & -3 & -2 \\ 0 & 1 & 2 & 1\end{array}\right]$.
[15 Marks]
67. Investigate for what values of and the equations

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=10 \\
& x+2 y+\lambda z=\mu
\end{aligned}
$$

Have-
(i) no solution;
(ii) a unique solution;
(iii) infinitely many solutions
[15 Marks]
68. Find the quadratic form $q(x, y)$ corresponding to the symmetric matrix $A=\left(\begin{array}{cc}5 & -3 \\ -3 & 8\end{array}\right)$ Is this quadratic from positive definite? Justify your answer.
[15 Marks]

2005

69. Find the values of k for which the vectors $(1,1,1,1),(1,3,-2, k),(2,2 k-2,-k-2,3 k-1)$ and $(3, k+2,-3,2 k+1)$ are linearly independent in R^{4}
[12 Marks]
70. Let V be the vector space of polynomials in x of degree $\leq n$ over R . Prove that the set $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis for the set of all polynomials in x.
[12 Marks]
71. Let T be a linear transformation on R^{3} whose matrix relative to the standard basis of R^{3} is
$\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 2 & 2 \\ 3 & 3 & 4\end{array}\right]$ Find the matrix of T relative to the basis $\beta=\{(1,1,1),(1,1,0),(01,1)\}$.
[15 Marks]
72. Find the inverse of the matrix given below using elementary row operations only:
$\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
[15 Marks]
73. If S is a skew-Hermitian matrix, then show that is a unitary matrix. Also show that $A=(I+S)(I-S)^{-1}$ every unitary matrix can be expressed in the above form provided -1 is not an Eigen value of A.
[15 Marks]
74. Reduce the quadratic form $6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{3} x_{1}$ to the sum of squares. Also find the corresponding linear transformation, index and signature.
[15 Marks]

2004

75. Let S be space generated by the vectors $\{(0,2,6),(3,1,6),(4,-2,-2)\}$ what is the dimension of the space S ? Find a basis for S.
[12 Marks]
76. Show that $f: R^{3} \rightarrow I R$ is la linear transformation, where $f(x, y, z)=3 x+y-z$ what is the dimension of the Kernel? Find a basis for the Kernel.
77. Show that the linear transformation form $I R^{3}$ to $I R^{4}$ which is represented by the matrix
$\left(\begin{array}{ccc}1 & 3 & 0 \\ 0 & 1 & -2 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right)$ is one-to-one. Find a basis for its image.
[12 Marks]
78. Verify whether the following system of equation is consistent

$$
\begin{aligned}
& x+3 z=5 \\
& -2 x+5 y-z=0 \\
& -x+4 y+z=4
\end{aligned}
$$

[15 Marks]
79. Find the characteristic polynomial of the matrix $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$ Hence find A^{-1} and A^{6}
80. Define a positive definite quadratic form. Reduce the quadratic form to canonical form. Is this quadratic form positive definite?
[15 Marks]

2003

81. Let S be any non-empty subset of a vector pace V over the fietd F . Show that the set $\left\{a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n:}: a_{1}, a_{2}, \ldots, a_{n} \in F, \alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n} \in S, n \in N\right\}$ is the subspace generated by S .
[12 Marks]
82. If $=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ then find the matrix represented by
$2 A^{10-} 10 A^{9}+14 A^{8}-6 A^{7}-3 A^{6}+15 A^{5}-21 A^{4}+9 A^{3}+A-1$.
[12 Marks]
83. Prove that the Eigen vectors corresponding to distinct Eigen values of a square matrix are linearly independent.
[15 Marks]
84. If H is a Hermitian matrix, then show that $A=(H+i I)^{-1}(H-i I)$ is a unitary matrix. Also, so that every unitary matrix can be expressed in this form, provided 1 is not an Eigen value of A.
[15 Marks]
85. If $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & -3 & -1 \\ 2 & -1 & 3\end{array}\right]$ then find a diagonal matrix D and a matrix B such that $A=B D B^{\prime}$ where B^{\prime} denotes the transpose of B.
[15 Marks]
86. Reduce the quadratic form given below to canonical form and find its rank and signature
$x^{2}+4 y^{2}+9 z^{2}+u^{2}-12 y z+6 z x-4 x y-2 x u-6 z u$.
[15 Marks]
2002
87. Show that the mapping $T: R^{3} \rightarrow R^{3}$ where $T(a, b, c)=(a-b, b-c, a+c)$ is linear and non-singular
[12 Marks]
88. A square matrix A is non-singular if and only if the constant term in its characteristic polynomial is different from zero.
[12 Marks]
89. Let $R^{5} \rightarrow R^{5}$ be a linear mapping given by $T(a, b, c, d, e)=(b-d,+e, b, 2 d+e, b+e)$ Obtain based for its null space and range space.
[15 Marks]
90. Let A be a real 3×3 symmetric matrix with Eigen values 0,0 and 5 If the corresponding Eigen-vectors are $(2,0,1),(2,1,1)$ and $(1,0,-2)$ then find the matrix A .
[15 Marks]

$$
x_{1}-2 x_{2}-3 x_{3}+4 x_{4}=-1
$$

91. Solve the following system of linear equations $-x_{1}+3 x_{2}+5 x_{3}-5 x_{4}-2 x_{5}=0$
[15 Marks]

$$
2 x_{1}+x_{2}-2 x_{3}+3 x_{4}-4 x_{5}=17,
$$

92. Use Cayley-Hamilton theorem to find the inverse of the following matrix: $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
[15 Marks]

2001

93. Show that the vectors $(1,0-1),(0,-3,2)$ and $(1,2,1)$ form a basis for the vector space $R^{3}(R)$
[12 Marks]
94. If λ is a characteristic root of a non-singular matrix A then prove that $\frac{|A|}{\lambda}$ is a characteristic root of Adj.A
[12 Marks]
95. If $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ show that for every integer $n \geq 3, A^{n}=A^{n-2}+A^{2}-I$ Hence determine A^{50}.
[15 Marks]
96. When is a square matrix A said to be congruent to a square matrix B? Prove that every matrix congruent to skew-symmetric matrix is skew symmetric.
[15 Marks]
97. Determine an orthogonal matrix P such that is a diagonal matrix, where $=\left(\begin{array}{ccc}7 & 4 & 4 \\ 4 & -8 & -1 \\ -4 & -1 & -8\end{array}\right)$
98. Show that the real quadratic form $\phi=n\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)-\left(x_{1} x_{2}+\ldots+x_{n}\right)^{2}$ in n variables is positive semi-definite.
[15 Marks]

2000

99. Let V be a vector space over R and $T=\{(x, y) \mid x, y, \in v\}$ Let. Define addition in component wise and scalar multiplication by complex number $\alpha+i \beta$ by $(\alpha+i \beta)(x, y)=(\alpha x+\beta y, \beta y+\alpha y) \forall \alpha \beta \in R$ Show that T is a vector space over C .
[12 Marks]
100. Show that if λ is a characteristic root of a non-singular matrix A then λ^{-1} is a characteristic root of A^{-1}
[15 Marks]
101. Prove that a real symmetric matrix A is positive definite if and only $A=B B^{t}$ if for some non-singular matrix. B Show also that $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 11\end{array}\right)$ is positive definite and find the matrix B such that $A=B B^{t}$ Here stands for the transpose of.
102. Prove that a system $A X=B$ if non-homogeneous equations in unknowns have a unique solution provided the coefficient matrix is non-singular.
[15 Marks]
103. Prove that two similar matrices have the same characteristic roots. Is its converse true? Justify your claim.
[15 Marks]
104. Reduce the equation $x^{2}+y^{2}+z^{2}-2 x y-2 y z+2 z x+x-y-2 z+6=0$ into canonical form and determine the nature of the quadratic.
[15 Marks]

1999

105. Let V be the vector space of functions from R to R (the real numbers). Show that f, g, h in V are linearly independent where $f(t)=e^{2 t}, g(t)=t^{2}$ and $h(t)=t$.
[20 Marks]
106. If the matrix of a linear transformation T on $V_{2}(R)$ with respect to the basis, then what is the matrix of with respect to the ordered basis $B=\{(1,0),(0,1)\}$ is $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ then what Is the matrix of T with respect to the ordered basis.
[20 Marks]
107. Diagonalize the matrix $A=\left[\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right]$
[20 Marks]
108. Test for congruency of the matrices $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and. $B=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right]$ Prove that $A^{2 n}=B^{2 m} I$ when and are positive integers.
[20 Marks]
109. If A is askew symmetric matrix of order $\mathrm{n} \operatorname{Prove}$ that $(I-A)(I+A)^{-1}$ is orthogonal.
[20 Marks]
110. Test for the positive definiteness of the quadratic form $2 x^{2}+y^{2}+2 z^{2}-2 z x$.
[20 Marks]

1998

111. Given two linearly independent vectors $(1,0,1,0)$ and $(0,-1,1$,$) of R^{4}$ find a basis of which included these two vectors
[20 Marks]
112. If is a finite dimensional vector space over R and if and are two linear transformations from V to R such that $V f(v)=0$ in plies $g(v)=0$ then prove that $g=\lambda f$ form some λ in R .
[20 Marks]
113. Let $T: R^{3} \rightarrow R^{3}$ be defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{3}-c x_{1} b x_{2}-a x_{3}\right)$ where a, b, c are fixed real numbers. Show that T is a linear transformation of R^{3} and that $A^{3}+a A^{2}+b a+=c I=0$ where A is the matrix of T with respect to standard basis of R^{3}
[20 Marks]
114. If A and B are two matrices of order 2×2 such that A is skew Hermitian and $A B=B$ then show that $B=0$
[20 Marks]
115. If T is a complex matrix of order 2×2 such that $\operatorname{tr} T=\operatorname{tr} T^{2}=0$ then show that $T^{2}=0$
[20 Marks]
116. Prove that a necessary and sufficient condition for a $n \times n$ real matrix to be similar to a diagonal matrix A is that the set of characteristic vectors A of includes a set of linearly independent vectors.
[20 Marks]
117. Let be a matrix. Then show that the sum of the rank and nullity of A is n.
[20 Marks]
118. Find all real 2×2 matrices A whose characteristic roots are real and which satisfy $A A^{\prime}=1$ (20Marks)
119. Reduce to diagonal matrix by rational congruent transformation the symmetric matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 0 & 3 \\
-1 & 3 & 1
\end{array}\right)
$$

[20 Marks]

1997

120. Let V be the vector space of polynomials over R. Find a basis and dimension of the subspace W of V spanned by the polynomials

$$
v_{1}=t^{3}-2 t^{2}+4 t+1, v_{2}=2 t^{3}-3 t^{2}+9 t-1, v_{3}=t^{3}+6 t-5, v_{4}=2 t^{3}-5 t^{2}+7 t+5
$$

[20 Marks]
121. Verify that the transformation defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}-x_{2}, x_{2}\right)$ is a linear transformation from R^{2} into R^{3}. Find its range, null space and nullity.
[20 Marks]
122. Let V be the vector space of 2×2 matrices over R. Determine whether the matrices $A, B, C \in V$ are dependent where $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right], B=\left[\begin{array}{cc}3 & -1 \\ 2 & 2\end{array}\right], C=\left[\begin{array}{cc}1 & -5 \\ -4 & 0\end{array}\right]$
[20 Marks]
123. Let a square matrix A of order n be such that each of its diagonal elements is μ and each of its offdiagonal elements is 1 . If $B=\lambda A$ is orthogonal, determined the values of λ and μ
[20 Marks]
124. Show that $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & 0 \\ 2 & 2 & 3\end{array}\right]$ is diagonalizable over R and find a matrix P such that $P^{-1} A P$ is diagonal. Hence determine A^{25}
[20 Marks]
125. Let $A=\left[a_{i j}\right]$ be a square matrix of order n such that $\left[\alpha_{i j}\right] \leq M \forall i, j=1,2, \ldots n$. Let λ be an Eigenvalue of A. Show that $|\lambda| \leq n M$
[20 Marks]
126. Define a positive definite matrix. Show that a positive definite matrix is always non-singular. Prove that its converse does not hold.
[20 Marks]
127. Find the characteristics roots and their corresponding vectors for the matrix

$$
\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

[20 Marks]
128. Find an invertible matrix P which reduces $Q(x, y, z)=2 x y+2 y z+2 z x$ to its canonical form.
[20 Marks]

1996

129. $\quad R^{4}$, let W_{1} be the space generated by $(1,1,0,-1),(2,6,0)$ and $(-2,-3,-3,1)$ and let W_{2} be the space generate by $(-1,-2,-2,2),(4,6,4,-6)$ and $(1,3,4,-3)$. Find a basis for the space $W_{1}+W_{2}$ [20 Marks]
130. Let V be a finite dimensional vector space and $v \in V, v \neq 0$. Show that there exist a linear functional f on V such that V
[20 Marks]
131. Let $V=R^{3}$ and v_{1}, v_{2}, v_{3} be a basis of R^{3}. Let $T: V \rightarrow V$ be a linear transformation such that. By writing the matrix of T with respect to another basis, show that the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ is similar to $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
[20 Marks]
132. Let $V=R^{3}$ and $T: V \rightarrow V$ be linear map defined by $T(x, y, z)=(x+z,-2 x+y,-x+2 y+z)$. What is the matrix of T with respect to the basis $(1,0,1),(-1,1,1)$ and $(0,1,1)$? Using this matrix, write down the matrix of T with respect to the basis $(0,1,2),(-1,1,1)$ and $(0,1,1)$
[20 Marks]
133. Let V and W be finite dimensional vector spaces such that $\operatorname{dim} V \geq \operatorname{dim} W$. Show that there is always a linear map from V onto W
[20 Marks]
134. Solve

$$
\begin{aligned}
& x+y-2 z=1 \\
& 2 x-7 z=3 \quad \text { by using Cramer's rule } \\
& x+y-z=5
\end{aligned}
$$

135. Find the inverse of the matrix

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

by computing its characteristic polynomial.
[20 Marks]
[20 Marks]
136. Let A and B be $n \times n$ matrices such that $A B=B A$. Show that A and B have a common characteristic vector.
[20 Marks] Reduce to canonical form the orthogonal matrix $\left[\begin{array}{ccc}2 / 3 & -2 / 3 & 1 / 3 \\ 2 / 3 & 1 / 3 & -2 / 3 \\ 1 / 3 & 2 / 3 & 2 / 3\end{array}\right]$

1995

138. Let T be the linear operator in R^{3} defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3},-2 x_{1}+x_{2},-x_{1}+2 x_{2}+4 x_{3}\right)$. What is the matrix of T in the standard ordered basis of R^{3} ? What is a basis of range space of T and a basis of null space of T ?
[20 Marks]
139. Let A be a square matrix of order n. Prove that $A X=b$ has solution if and only if $b \in R^{n}$ is orthogonal to all solutions Y of the system $A^{T} Y=0$
[20 Marks]
140. Define a similar matrix. Prove that the characteristic equation of two similar matrices is the same. Let 1,2 , and 3 be the Eigen-values of a matrix. Write down such a matrix. Is such a matrix unique?
[20 Marks]
141. Show that $A=\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$ is diagonalizable and hence determine A^{5}.
[20 Marks]
142. Let A and B be matrices of order n. Prove that if $(I-A B)$ is invertible, then $(I-B A)$ is also invertible and $(I-B A)^{-1}=I+B(I-A B)^{-1} A$. Show that $A B$ and $B A$ have precisely the same characteristic values.
[20 Marks]
143. If a and b complex numbers such that and H is a Hermitian matrix, show that the Eigen values of lie on a straight line in the complex plane.
[20 Marks]
144. Let A be a symmetric matrix. Show that A is positive definite if and only if its Eigen values are all positive.
[20 Marks]
145. Let A and B be square matrices of order n. Show that $A B-B A$ can never be equal to unit matrix.
[20 Marks]
146. Let A and for every. Show that A is a non-singular matrix. Hence or otherwise prove that the Eigenvalues of A lie in the discs in the complex plane.
[20 Marks]

1994

147. Show that $f_{1}(t)=1, f_{2}(t)=t-2, f_{3}(t)=(t-2)^{2}$ form a basis of P_{3}, the space of polynomials with degree ≤ 2. Express $3 t^{2}-5 t+4$ as a linear combination of f_{1}, f_{2}, f_{3}.
148. If $T: V_{4}(R) \rightarrow V_{3}(R)$ is a linear transformation defined by
$T(a, b, c, d)=(a-b+c+d, a+2 c-d, a+b+3 c-3 d)$. For $a, b, c, d \in R$, then verify that Rank $T+$ Nullity $T=\operatorname{dim} V_{4}(R)$
[20 Marks]
149. If T is an operator on R_{3} whose basis is $B=\{(1,0,0),(0,1,0),(-1,1,0)\}$ such that
$[T: B]=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right]$ find the matrix T with respect to a basis
$B_{1}=\{(0,1,-1),(1,-1,1),(-1,1,0)\}$
[20 Marks]
150. If $A=\left[\alpha_{i j}\right]$ is an $n \times n$ matrix such that $\alpha_{i i}=n, \alpha_{i j}=r$ if $i \neq j$, show that
$[A-(n-r) I][A-(n-r+n r) I]=0$. Hence find the inverse of the $n \times n$ matrix $B=\left[b_{i j}\right]$. where
$b_{i i}=1, b_{i j}=\rho$ when $i \neq j$ and $\rho \neq 1, \rho \neq \frac{1}{1-n}$
[20 Marks]
151. Prove that the Eigen vectors corresponding to distinct Eigen values of a square matrix are linearly independent.
[20 Marks]
152. Determine the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$
[20 Marks]
153. Show that a matrix congruent to a skew-symmetric matrix is skew-symmetric. Use the result to prove that the determinant of skew-symmetric matrix of even order is the square of a rational function of its elements.
[20 Marks]
154. Find the rank of the matrix
integers
[20 Marks]
155. Reduce the following symmetric matrix to a diagonal form and interpret the result in terms of quadratic forms: $A=\left[\begin{array}{ccc}3 & 2 & -1 \\ 2 & 2 & 3 \\ -1 & 3 & 1\end{array}\right]$
[20 Marks]
1993
156. Show that the set $S=\{(1,0,0),(1,1,0),(1,1,1),(0,1,0)\}$ spans the vector space $R^{3}(R)$ but it is not a basis set.
[20 Marks]
157. Define rank and nullity of a linear transformation T. If V be a finite dimensional vector space and T a linear operator on V such that rank $T^{2}=\operatorname{rank} T$, then prove that the null space of $T=$ the null space of T^{2} and the intersection of the range space and null space to T is the zero subspace of V.
[20 Marks]
158. If the matrix of a linear operator T on R^{2} relative to the standard basis $\{(1,0),(0,1)\}$ is $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, what is the matrix of T relative to the basis $B=\{(1,1),(1,-1)\}$?
[20 Marks]
159. If A be an orthogonal matrix with the property that -1 is not an Eigen value, then show that a is expressible as $(I-S)(S+S)^{-S 1}$ for some suitable skew-symmetric matrix S
[20 Marks]
160. Determine the following form as definite, semi-definite or indefinite:
$2 x_{1}{ }^{2}+2 x_{2}{ }^{2}+3 x_{3}{ }^{2}-4 x_{2} x_{3}-4 x_{3} x_{1}+2 x_{1} x_{2}$
[20 Marks]
161. Prove that the inverse of $\left(\begin{array}{ll}A & O \\ B & C\end{array}\right)$ is $\left(\begin{array}{cc}A^{-1} & O \\ C^{-1} B A^{-1} & C^{-1}\end{array}\right)$ where A, C are non-singular matrices and hence find the inverse of $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$
[20 Marks]
162. Show that any two Eigen vectors corresponding to two distinct Eigen values of Hermitian matrix and Unitary matrix are orthogonal
[20 Marks]
163. A matrix B of order $n \times n$ is of the form λA where λ is a scalar and A has unit elements everywhere except in the diagonal which has elements μ. Find λ and μ so that B may be orthogonal.
[20 Marks]
164. Find the rank of the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & 3 & 6 \\
1 & 3 & -3 & -4 \\
5 & 3 & 3 & 11
\end{array}\right) \text { by }
$$

165. Let V and U be vector spaces over the field K and let V be of finite dimension. Let $T: V \rightarrow U$ be a linear Map. $\operatorname{dim} V=\operatorname{dim} R(T)+\operatorname{dim} N(T)$
[20 Marks]
166. Let $S=\{(x, y, z) \mid x+y+z=0\}, x, y, z$ being real. Prove that S is a subspace of R^{3}. Find a basis of S
[20 Marks]
167. Verify which of the following are linear transformations?
(i) $\quad T: R \rightarrow R^{2}$ defined by $T(x)=(2 x,-x)$
(ii) $\quad T: R^{2} \rightarrow R^{3}$ defined by $T(x, y)=(x y, y, x)$
(iii) $\quad T: R^{2} \rightarrow R^{3}$ defined by $T(x, y)=(x+y, y, x)$
(iv) $\quad T: R \rightarrow R^{2}$ defined by $T(x)=(1,-1)$
[20 Marks]
168. Let $T: M_{2,1} \rightarrow M_{2,3}$ be a linear transformation defined by (with usual notations)

$$
T\binom{1}{0}=\left(\begin{array}{lll}
2 & 1 & 3 \\
4 & 1 & 5
\end{array}\right), T\binom{1}{1}=\left(\begin{array}{lll}
6 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) \text { Find } T\binom{x}{y}
$$

[20 Marks]
169. For what values of η do the following equations
$x+y+z=1$
$x+2 y+4 z=\eta \quad$ Have solutions? Solve them completely in each case.
$x+4 y+10 z=\eta^{2}$
170. Prove that a necessary and sufficient condition of a real quadratic form $X^{\prime} A X$ to be positive definite is that the leading principal minors of A are all positive.
171. State Cayley-Hamilton theorem and use it to calculate the inverse of the matrix $\rightarrow\left[\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right]$
[20 Marks]
172. Transform the following to the diagonal forms and give the transformation employed: $x^{2}+2 y, 8 x^{2}-4 x y+5 y^{2}$
173. Prove that the characteristic roots of a Hermitian matrix are all real and a characteristic root of a skew-Hermitian is either zero or a pure imaginary number.

