Numerical Analysis \& Computer Programming

Previous year Questions from 2020 to 1992

> 2021-22

2020

1. Show that the equation $f(x) \equiv \cos \frac{\pi(x+1)}{8}+0.148 x-0.9062=0$ has one root in the interval $(-1,0)$ and one in $(0,1)$. Calculate the negative root correct to four decimal places using Newton-Raphson Method.
[10 Marks]
2. Let $g(w, x, y, z)=(w+x+y)(x+\bar{y}+z)(w+\bar{y})$ be a Boolean function. Obtain the conjunctive normal form for $g(w, x, y, z)$. Also express $g(w, x, y, z)$ as product of maxterms.
[10 Marks]
3. For the solution of system of equations:
$4 x+y+2 z=4$
$3 x+5 y+z=7$
$x+y+3 z=3$
Set up the Gauss-Seidel iterative scheme and iterate three times starting with the initial vector $X^{(0)}=0$. Also find the exact solutions and compare with the iterated solutions.
[15 Marks]
4. Find a quadrature formula $\int_{0}^{1} f(x) \frac{d x}{\sqrt{x(1-x)}}=\alpha_{1} f(0)+\alpha_{2} f\left(\frac{1}{2}\right)+\alpha_{3} f(1)$ which is exact for polynomials of highest possible degree. Then use the formula to evaluate $\int_{0}^{1} \frac{d x}{\sqrt{x-x^{3}}}$ (correct up to three decimal places).
[20 Marks]
5. Write the three-point Lagrangian interpolating polynomial relative to the points $x_{0}, x_{0}+\varepsilon$ and x_{1}. Then by taking the limit $\varepsilon \rightarrow 0$, establish the relation
$f(x)=\frac{\left(x_{1}-x\right)\left(x+x_{1}-2 x_{0}\right)}{\left(x_{1}-x_{0}\right)^{2}} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x_{1}-x\right)}{\left(x_{1}-x_{0}\right)} f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{\left(x_{1}-x_{0}\right)} f\left(x_{1}\right)+E(x)$
where $E(x)=\frac{1}{6}\left(x_{1}-x_{0}\right)^{2}\left(x_{-}-x_{1}\right) f^{\prime \prime \prime}(\xi)$ is the error function and
$\min \left(x_{0}, x_{0}+\varepsilon, x_{1}\right)<\xi<\max \left(x_{0}, x_{0}+\varepsilon, x_{1}\right)$.
[15 Marks]

2019

6. Apply Newton-Raphson method, to find real root of transcendental equation, $x \log _{10} x=1.2$ correct to three decimal places.
[10 Marks]
7. Using Runge-Kutta method of forth order to solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $x=0.2$. Use four decimal places for calculation and step length 0.2
[10 Marks]
8. Draw a flow chart and write a basic algorithm for (in FORTRAN/C/ C^{++}) for evaluating $y=\int_{0}^{6} \frac{d x}{1+x^{2}}$ using Trapezoidal rule
[10 Marks]
9. Find the equivalent numbers given in a specified number to the system mentioned against them:
(i) Integer 524 in binary system.
(ii) 101010110101.101101011 to octal system.
(iii) decimal number 5280 to hexadecimal system.
10. (iv) Find the unknown number $(1101.101)_{8} \rightarrow(\text { ? })_{10}$.
[15 Marks]
11. Apply Gauss-Seidel iteration method to solve the following system of equations: $2 x+y-2 z=17$
$3 x+20 y-z=182 x-3 y+20 z=25$, correct to three decimal places.
[15 Marks]
12. Given the Boolean expression. $X=A B+A B C+A \bar{B} \bar{C}+\bar{A} \bar{C}$
(i) Draw the logical diagram for the expression.
(ii) Minimize the expression.
(iii) Draw the logical diagram for the reduced expression.
[15 Marks]

2018

13. Using Newton's forward difference formula find the lowest degree polynomial u_{x} when it is given that $u_{1}=1, u_{2}=9, u_{3}=25, u_{4}=55$ and $u_{2}=105$.
[10 Marks]
14.
15. Starting from rest in the beginning, the speed (in km / h) of a train at different times (in minutes) is given by the below table:

Time(Minutes)	2	4	6	8	10	12	14	16	18	20
Speed $(\mathrm{Km} / \mathrm{h})$	10	18	25	29	32	20	11	5	2	8.5

Using Simpsons' $\frac{1}{3} r d$ rule, Find the approximate distance travelled (in km) in 20 minutes from the beginning.
[10 Marks]
16. Write down the basic algorithm for solving the equation $x e^{x}-1=0$ by bisection method, correct to 4 decimal places.
[10 Marks]
17. Find the equivalent of numbers given in a specified number system to the system mentioned against them.
[15 Marks]
(i) $(111011 \cdot 101)_{2}$ to decimal system
(ii) $(1000111110000 \cdot 00101100)_{2}$ to hexadecimal system
(iii) $(C 4 F 2)_{16}$ to decimal system
(iv) $(418)_{10}$ to binary system
18. Simplify the Boolean expression: $(a+b) \cdot(\bar{b}+c)+b \cdot(\bar{a}+\bar{c})$ By using the laws of Boolean algebra. From its truth table write it in min-terms normal form.
[15 Marks]
19. Find the values of the constants a, b, c such that the quadrature formula
$\int_{o}^{h} f(x) d x \equiv h\left[a f(o)+b f\left(\frac{h}{3}\right)+c f(h)\right]$ is exact for polynomials of as high degree as possible, and hence find the order of the truncation error.
[15 Marks]

2017

20. Explain the main steps of the Gauss-Jordan method and apply this method to find the inverse of the matrix
$\left[\begin{array}{lll}2 & 6 & 6 \\ 2 & 8 & 6 \\ 2 & 6 & 8\end{array}\right]$.
[10 Marks]
21. Write the Boolean expression $z(y+z)(x+y+z)$ in the simplest form using Boolean postulate rules. Mention the rules used during simplification. Verify your result by constructing the truth table for the given expression and for its simplest form.
[10 Marks]
22. For given equidistant values u_{-1}, u_{0}, u_{1} and u_{2} a values are interpolated by Lagrange's formula. Show that it may be written in the form $u_{x}=y u_{0}+x u_{1}+\frac{y\left(y^{2}-1\right)}{3!} \Delta^{2} u_{-1}+\frac{x\left(x^{2}-1\right)}{3!} \Delta^{2} u_{0}$, where $x+y=1$.
[15 Marks]
23. Derive the formula $\int_{a}^{b} y d x=\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\ldots+y_{n-1}\right)+2\left(y_{3}+y_{6}+y_{n-3}\right)\right]$. Is there any restriction on n ? State that condition. What is the error bounded in the case of Simpson's $\frac{3}{8}$ rule?
[20 Marks]
24. Write an algorithm in the form of a flow chart for Newton-Raphson method. Describe the cases of failure of this method.
[15 Marks]

2016

25. Convert the following decimal numbers to univalent binary and hexadecimal numbers:
[i] 4096
[ii] 0.4375
[iii] 2048.0625
[10 marks]
26. Let $f(x)=e^{2 x} \cos 3 x$ for $x \in[0,1]$. Estimate the value of $f(0.5)$ Using Lagrange interpolating polynomial of degree 3 over the nodes $x=0, x=0.3, x=0.6$ and $x=1$.Also compute the error bound over the interval $[0,1]$ and the actual error $E(0.5)$
[20 marks]
27. For an integral $\int_{-1}^{1} f(x) d x$ show that the two-point Gauss quadrature rule is given by $\int_{-1}^{1} f(x) d x=f\left(\frac{1}{\sqrt{3}}\right)+f\left(-\frac{1}{\sqrt{3}}\right)$ using this rule estimate $\int_{2}^{4} 2 x e^{x} d x$
[15 marks]
28. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be Boolean variable denote complement $A, A+B$ of is an expression for $A O R B$ and $B . A$ is an expression for $A A N D B$.Then simplify the following expression and draw a block diagram of the simplified expression using $A N D$ and $O R$ gates.
$A \cdot(A+B C) \cdot(\bar{A}+B+C) \cdot(A+\bar{B}+C) \cdot(A+B+\bar{C})$.
[15 marks]

2015

29. Find the principal [or canonical] disjunctive normal form in three variables p, q, r for the Boolean expression $((p \wedge q) \rightarrow r) \vee((p \wedge q) \rightarrow-r)$. Is the given Boolean expression a contradiction or a tautology?
[10 Marks]
30. Find the Lagrange interpolating polynomial that fits the following data:

$$
\begin{gathered}
x \\
f(x)
\end{gathered} c^{-1} \begin{array}{cccc}
2 & 3 & 4 \\
-1 & 11 & 31 & 69
\end{array}
$$

Find $f(1.5)$
[20 Marks]
31. Solve the initial value problem $\frac{d y}{d x}=x(y-x), y(2)=3$ in the interval [2, 2.4] using the RungeKutta fourth-order method with step size $h=0.2$
[15 Marks]
32. Find the solution of the system

$$
\begin{aligned}
& 10 x_{1}-2 x_{2}-x_{3}-x_{4}=3 \\
& -2 x_{1}+10 x_{2}-x_{3}-x_{4}=15 \\
& -x_{1}-x_{2}+10 x_{3}-2 x_{4}=27 \\
& -x_{1}-x_{2}-2 x_{3}+10 x_{4}=-9
\end{aligned}
$$

2014

33. Apply Newton-Raphson method to determine a root of the equation $\cos x-x e^{x}=0$ correct up to four decimal places.
[10 Marks]
34. Use five subintervals to integrate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using trapezoidal rule.
[10 Marks]
35. Use only AND and OR logic gates to construct a logic circuit for the Boolean expression $z=x y+u v$ 36. Solve the system of equations

$$
\begin{aligned}
& 2 x_{1}-x_{2}=7 \\
& -x_{1}+2 x_{2}-x_{3}=1 \\
& -x_{2}+2 x_{3}=1
\end{aligned}
$$

using Gauss-Seidel iteration method [perform three iterations]
[10 Marks]
[15 Marks]
37. Use Runge-Kutta formula of fourth order to find the value of y at $x=0.8$, where $\frac{d y}{d x}=\sqrt{x+y}$, $y(0.4)=0.41$. Take the step length $h=0.2$
38. Draw a flowchart for Simpson's one-third rule.
39. For any Boolean variables x and y, show that $x+x y=x$.

2013

40. In an examination, the number of students who obtained marks between certain limits were given in the following table:

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	31	42	51	35	31

Using Newton's forward interpolation formula, find the number of students whose marks lie between 45 and 50.
[10 Marks]
41. Develop an algorithm for Newton-Raphson method to solve $f(x)=0$ starting with initial iterate x_{0}, n be the number of iterations allowed, epsilon be the prescribed relative error and delta be the prescribed lower bound for $f^{\prime}(x)$
[20 Marks]
42. Use Euler's method with step size $h=0.15$ to compute the approximate value of $y(0.6)$, correct up to five decimal places from the initial value problem. $y^{\prime}=x(y+x)-1, y(0)=2$
[15 Marks]
43. The velocity of a train which starts from rest is given in the following table. The time is in minutes and velocity is in $\mathrm{km} / \mathrm{hour}$.

t	2	4	6	8	10	12	14	16	18	20
v	16	28.8	40	46.4	51.2	32.0	17.6	8	3.2	0

Estimate approximately the total distance run in 30 minutes by using composite Simpson's $\frac{1}{3}$ rule.
[15 Marks]
44. Use Newton-Raphson method to find the real root of the equation $3 x=\cos x+1$ correct to four decimal places
45. Provide a computer algorithm to solve an ordinary differential equation $\frac{d y}{d x}=f(x, y)$ in the interval [a, b] for n number of discrete points, where the initial value is $y(a)=\alpha$, using Euler's method.
[15 Marks]
46. Solve the following system of simultaneous equations, using Gauss-Seidel iterative method :

$$
\begin{aligned}
& 3 x+20 y-z=-18 \\
& 20 x+y-2 z=17 \\
& 2 x-3 y+20 z=25
\end{aligned}
$$

[20 Marks]
47. Find $\frac{d y}{d x}$ at $x=0.1$ from the following data:
$x: \quad 0.1$
0.2
0.3
0.4
$y: 0.99750 .9900 \quad 0.9776 \quad 0.9604$
48. In a certain examination, a candidate has to appear for one major \& two major subjects. The rules for declaration of results are marks for major are denoted by M_{1} and for minors by M_{2} and M_{3}.If the candidate obtains 75% and above marks in each of the three subjects, the candidate is declared to have passed the examination in first class with distinction. If the candidate obtains 60% and above marks in each of the three subjects, the candidate is declared to have passed the examination in first class. If the candidate obtains 50% or above in major, 40% or above in each of the two minors and an average of 50% or above in all the three subjects put together, the candidate is declared to have passed the examination in second class. All those candidates, who have obtained 50% and above in major and 40% or above in minor, are declared to have passed the examination. If the candidate obtains less than 50% in major or less than 40% in anyone of the two minors, the candidate is declared to have failed in the examinations. Draw a flow chart to declare the results for the above.
[20 Marks]

2011

49. Calculate $\int_{2}^{10} \frac{d x}{1+x}$ [up to 3 places of decimal] by dividing the range into 8 equal parts by Simpson's $\frac{1}{3}$ rd rule.
[12 Marks]
50. [i] Compute (3205) ${ }_{10}$ to the base 8.
[iii] Let A be an arbitrary but fixed Boolean algebra with operations \wedge, \vee and ' and the zero and the unit element denoted by 0 and 1 respectively. Let $x, y, z \ldots$ be elements of A. If
$x, y \in A$ be such that $x \wedge y=0$ and $x \vee y=1$ then prove that $y=x^{\prime} \ldots$
51. A solid of revolution is formed by rotating about the x-axis, the area between the x-axis, the line $x=0$ and $x=1$ and a curve through the points with the following co-ordinates:

x	0.00	0.25	0.50	0.75	1
y	1	0.9896	0.9589	0.9089	0.8415

Find the volume of the solid.
[20 Marks]
52. Find the logic circuit that represents the following Boolean function. Find also an equivalent simpler circuit:

x	y	z	$f(x, y, z)$
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

53. Draw a flow chart for Lagrange's interpolation formula.

2010

54. Find the positive root of the equation $10 x e^{-x^{2}}-1=0$ correct up to 6 decimal places by using Newton-Raphson method. Carry out computations only for three iterations
[12 Marks]
55. [i] Suppose a computer spends 60 per cent of its time handling a particular type of computation when running a given program and its manufacturers make a change that improves its performance on that type of computation by a factor of 10 . If the program takes 100 sec to execute, what will its execution time be after the change?
[ii] If $A \oplus B=A B^{\prime}+A^{\prime} B$, find the value of $x \oplus y \oplus z$.
[6+6=12 Marks]
56. Given the system of equations

$$
\begin{aligned}
& 2 x+3 y=1 \\
& 2 x+4 y+z=2 \\
& 2 y+6 z+A w=4 \\
& 4 z+B w=C
\end{aligned}
$$

State the solvability and uniqueness conditions for the system. Give the solution when it exists.
[20 Marks]
57. Find the value of the integral $\int_{1}^{5} \log _{10} x d x$ by using Simpson's $\frac{1}{3}$ rd rule correct up to 4 decimal places. Take 8 subintervals in your computation.
[20 Marks]
58. [i] Find the hexadecimal equivalent of the decimal number (587632) ${ }_{10}$
[ii] For the given set of data points $\left(x_{1}, f\left(x_{1}\right),\left(x_{2}, f\left(x_{2}\right), \ldots\left(x_{n}, f\left(x_{n}\right)\right.\right.\right.$ write an algorithm to find the value of $f(x)$ by using Lagrange's interpolation formula
[iii] Using Boolean algebra, simplify the following expressions
[a] $a+a^{\prime} b+a^{\prime} b^{\prime} c+a^{\prime} b^{\prime} c^{\prime} d+\ldots$
[b] $\quad x^{\prime} y^{\prime} z+y z+x z$ where x^{\prime} represents the complement of x
[5+10+5=15 Marks]

2009

59. [i] The equation $x^{2}+a x+b=0$ has two real roots α and β. Show that the iterative method given by: $x_{k+1}=-\frac{\left(a x_{k}+b\right)}{x_{k}}, k=0,1,2 \ldots$ is convergent near $x=\alpha$, if $|\alpha|>|\beta|$
[ii] Find the values of two valued Boolean variables A, B, C, D by solving the following simultaneous equations:

$$
\begin{aligned}
& \bar{A}+A B=0 \\
& A B+A C \\
& A B+A \bar{C}+C D=\bar{C} D
\end{aligned}
$$

where \bar{x} represents the complement of x
[6+6=12 Marks]
60. [i] Realize the following expressions by using NAND gates only:
$g=(\bar{a}+\bar{b}+c) \bar{d}(\bar{a}+e) f$ where \bar{x} represents the complement of x
[ii] Find the decimal equivalent of (357.32) 8_{8}
[6+6=12 Marks]
61. Develop an algorithm for Regula-Falsi method to find a root of $f(x)=0$ starting with two initial iterates x_{0} and x_{1} to the root such that $\operatorname{sign}\left(f\left(x_{0}\right)\right) \neq \operatorname{sign}\left(f\left(x_{1}\right)\right)$. Take n as the maximum number of iterations allowed and epsilon be the prescribed error.
[30 Marks]
62. Using Lagrange interpolation formula, calculate the value of $f(3)$ from the following table of values of x and $f(x)$:

x	0	1	2	4	5	6
$f(x)$	1	14	15	5	6	19

[15 Marks]
63. Find the value of $y(1.2)$ using Runge-Kutta fourth order method with step size $h=0.2$ from the initial value problem: $y^{\prime}=x y, y(1)=2$
[15 Marks]

2008

64. Find the smallest positive root of equation $x e^{x}-\cos x=0$ using Regula-Falsi method. Do three iterations.
[12 Marks]
65. State the principle of duality
(i) in Boolean algebra and give the dual of the Boolean expressions $(X+Y) \cdot(\bar{X} \cdot \bar{Z}) \cdot(Y+Z)$ and $X \bar{X}=0$
(ii) Represent $(\bar{A}+\bar{B}+\bar{C})(A+\bar{B}+C)(A+B+\bar{C})$ in NOR to NOR logic network.
[6+6=12 Marks]
66. [i] The following values of the function $f(x)=\sin x+\cos x$ are given:

$$
x=10^{\circ} / 20^{\circ} \quad 30^{\circ}
$$

$\begin{array}{llll}f(x) & 1.1585 & 1.2817 & 1.3360\end{array}$
Construct the quadratic interpolating polynomial that fits the data. Hence calculate $f\left(\frac{\pi}{12}\right)$.
Compare with exact value.
[ii] Apply Gauss-Seidel method to calculate x, y, z from the system:
$-x-y+6 z=42$
$6 x-y-z=11.33$
$-x+6 y-z=32$
with initial values $(4.67,7.62,9.05)$. Carry out computations for two iterations
[15+15=30 Marks]
67. Draw a flow chart for solving equation $F(x)=0$ correct to five decimal places by Newton-Raphson method
[30 Marks]

2007

68. Use the method of false position to find a real root of $x^{3}-5 x-7=0$ lying between 2 and 3 and correct to 3 places of decimals.
[12 Marks]
69. Convert:
(i) 46655 given to be in the decimal system into one in base 6 .
(ii) $(11110.01)_{2}$ into a number in the decimal system.
[6+6=12 Marks]
70. [i] Find from the following table, the area bounded by the x - axis and the curve $y=f(x)$ between $x=5.34$ and $x=5.40$ using the trapezoidal rule:

x	5.34	5.35	5.36	5.37	5.38	5.39	5.40
$f(x)$	1.82	1.85	1.86	1.90	1.95	1.97	2.00

[15 Marks]
[ii] Apply the second order Runge-Kutta method to find an approximate value of y at $x=0.2$ taking $h=0.1$, given that y satisfies the differential equation and the initial condition

$$
y^{\prime}=x+y, y(0)=1
$$

[15 Marks]

2006

71. Evaluate $I=\int_{0}^{1} e^{-x^{2}} d x$ by the Simpson's rule

$$
\begin{aligned}
& \left.\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)\right]+4 f\left(x_{3}\right)+\ldots .+2 f\left(x_{2 n-2}\right)+4 f\left(x_{2 n-1}\right)+f\left(x_{2 n}\right)\right] \text { with } \\
& 2 n=10, \Delta x=0.1, x_{0}=0, x_{1}=0.1, \ldots, x_{10}=1.0
\end{aligned}
$$

[12 Marks]
72. [i] Given the number 59.625 in decimal system. Write its binary equivalent.
[ii] Given the number 3898 in decimal system. Write its equivalent in system base 8.
[6+6=12 Marks]
73. If Q is a polynomial with simple roots $\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}$ and if P is a polynomial of degree $<n$, show that $\frac{P(x)}{Q(x)}=\sum_{k=1}^{n} \frac{P\left(\alpha_{k}\right)}{Q^{\prime}\left(\alpha_{k}\right)\left(x-\alpha_{k}\right)}$. Hence prove that there exists a unique polynomial of degree with given values c_{k} at the point $\alpha_{k}, k=1,2, \ldots n$. .
74. Draw a flowchart and algorithm for solving the following system of 3 linear equations in 3 unknowns $x_{1}, x_{2} \& x_{3}: C * X=D$ with $C=\left(c_{i j}\right)_{i, j=1}^{3}, X=\left(x_{j}\right)_{j=1}^{3}, D=\left(d_{i}\right)^{3}{ }_{i=1}$

2005

75. Use appropriate quadrature formulae out of the Trapezoidal and Simpson's rules to numerically integrate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ with $h=0.2$. Hence obtain an approximate value of π. Justify the use of particular quadrature formula.
[12 Marks]
76. Find the hexadecimal equivalent of (41819) ${ }_{10}$ and decimal equivalent of $(111011.10)_{2}$
[12 Marks]
77. Find the unique polynomial $P(x)$ of degree 2 or less such that $P(1)=1, P(3)=27, P(4)=64$. Using the Lagrange's interpolation formula and the Newton's divided difference formula, evaluate $P(1.5)$
[30 Marks]
78. Draw a flow chart and also write algorithm to find one real root of the nonlinear equation $x=\phi(x)$ by the fixed-point iteration method. Illustrate it to find one real root, correct up to four places of decimals, of $x^{3}-2 x-5=0$.

2004

79. The velocity of a particle at distance from a pint on it s path is given by the following table:

$S($ meters $)$	0	10	20	30	40	50	60
$V(\mathrm{~m} / \mathrm{sec})$	47	58	64	65	61	52	38

Estimate the time taken to travel the first 60 meters using Simpson's $\frac{1}{3}$ rd rule. Compare the result with Simpson's $\frac{3}{8}$ th rule.
80. [i] If $(A B C D)_{16}=(x)_{2}=(y)_{8}=(z)_{10}$ then find $x, y \& z$
[ii] In a 4-bit representation, what is the value of 1111 in signed integer form, unsigned integer form, signed 1's complement form and signed 2's complement form?
[6+6=12 Marks]
81. How many positive and negative roots of the equation $e^{x}-5 \sin x=0$ exist? Find the smallest positive root correct to 3 decimals, using Newton-Raphson method.
[10 Marks]
82. Using Gauss-Seidel iterative method, find the solution of the following system:

$$
\begin{aligned}
& 4 x-y+8 z=26 \\
& 5 x+2 y-z=6 \quad \text { up to three iterations. } \\
& x-10 y+2 z=-13
\end{aligned}
$$

[15 Marks]

2003

83. Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ by employing three points Gaussian quadrature formula, finding the required weights and residues. Use five decimal places for computation.
[12 Marks]
84. [i] Convert the following binary number into octal and hexa decimal system:

$$
101110010.10010
$$

[ii] Find the multiplication of the following binary numbers:11001.1 and 101.1 [6+6=12 Marks]
85. Find the positive root of the equation $2 e^{-x}=\frac{1}{x+2}+\frac{1}{x+1}$ using Newton-Raphson method correct to four decimal places. Also show that the following scheme has error of second order:
$x_{n+1}=\frac{1}{2} x_{n}\left(1+\frac{a}{x_{n}^{2}}\right)$
[30 Marks]
86. Draw a flow chart and algorithm for Simpson's $\frac{1}{3}$ rd rule for integration $\int_{a}^{b} \frac{1}{1+x^{2}} d x$ correct to 10^{-6}
[30 Marks]

2002

87. Find a real root of the equation $f(x)=x^{3}-2 x-5=0$ by the method of false position.
[12 Marks]
88. [i] Convert (100.85) into its binary equivalent.
[ii] Multiply the binary numbers $(1111.01)_{2}$ and $(1101.11)_{2}$ and check with its decimal equivalent
[4+8=12 Marks]
89. [i] Find the cubic polynomial which takes the following values: $y(0)=1, y(1)=0, y(2)=1 \& y(3)=10$. Hence, or otherwise, obtain $y(4)$
[ii] Given: $\frac{d y}{d x}=y-x$ where $y(0)=2$, using the Runge-Kutta fourth order method, find $y(0.1)$ and $y(0.2)$. Compare the approximate solution with its exact solution. $\left(e^{0.1}=1.10517, e^{0.2}=1.2214\right)$.
[10+20=30 Marks]
90. Draw a flow chart to examine whether a given number is a prime.

2001

91. Show that the truncation error associated with linear interpolation of $f(x)$, using ordinates at x_{0} and x_{1} with $x_{0} \leq x \leq x_{1}$ is not larger in magnitude than $\left.\frac{1}{8} \right\rvert\, M_{2}\left(x_{1}-x_{0}\right)^{2}$ where $M_{2}=\max \left|f^{\prime \prime}(x)\right|$ in $x_{0} \leq x \leq x_{1}$. Hence show that if $f(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{\pi} e^{-t^{2}} d t$, the truncation error corresponding to linear interpolation of $f(x)$ in $x_{0} \leq x \leq x_{1}$ cannot exceed $\frac{\left(x_{1}-x_{0}\right)^{2}}{2 \sqrt{2 \pi e}}$.
[12 Marks]
92. [i] Given $A \cdot B^{\prime}+A^{\prime} . B=C$ show that $A . C^{\prime}+A^{\prime} . C=B$
[ii] Express the area of the triangle having sides of lengths $6 \sqrt{2}, 12,6 \sqrt{2}$ units in binary number system.
[6+6=12 Marks]
93. Using Gauss Seidel iterative method and the starting solution $x_{1}=x_{2}=x_{3}=0$, determine the solution of the following system of equations in two iterations

$$
\begin{aligned}
& 10 x_{1}-x_{2}-x_{3}=8 \\
& x_{1}+10 x_{2}+x_{3}=12 \\
& x_{1}+x_{2}+10 x_{3}=10
\end{aligned}
$$

Compare the approximate solution with the exact solution
[30 Marks]
94. Find the values of the two-valued variables $A, B, C \& D$ by solving the set of simultaneous

equations

$$
A^{\prime}+A \cdot B=0
$$

$A . B=A . C$
[15 Marks]
$A \cdot B+A \cdot C^{\prime}+C \cdot D=C^{\prime} \cdot D$

2000

95. [i] Using Newton-Raphson method, show that the iteration formula for finding the reciprocal of the $p^{\text {th }}$ root of N is $x_{i+1}=\frac{x_{i}\left(p+1-N x_{i}\right)}{p}$
[ii] Prove De Morgan's Theorem $(p+q)^{\prime}=p^{\prime} . q^{\prime}$
[6+6=12 Marks]
96. [i] Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$, by subdividing the interval $(0,1)$ into 6 equal parts and using Simpson's onethird rule. Hence find the value of π and actual error, correct to five places of decimals
[ii] Solve the following system of linear equations, using Gauss-elimination method:

$$
\begin{aligned}
& x_{1}+6 x_{2}+3 x_{3}=6 \\
& 2 x_{1}+3 x_{2}+3 x_{3}=117 \\
& 4 x_{1}+x_{2}+2 x_{3}=283
\end{aligned}
$$

[15+15=30 Marks]

1999

97. Obtain the Simpson's rule for the integral $I=\int_{a}^{b} f(x) d x$ and show that this rule is exact for polynomials of degree $n \leq 3$. In general show that the error of approximation for Simpson's rule is given by
$R=-\frac{(b-a)^{5}}{2880} f^{i v}(\eta), \eta \in(0,2)$.
Apply this rule to the integral $\int_{0}^{1} \frac{d x}{1+x}$ and show that $|R| \leq 0.008333$.
[20 Marks]
98. Using fourth order classical Runge-Kutta method for the initial value problem $\frac{d u}{d t}=-2 t u^{2}, u(0)=1$, with $h=0.2$ on the interval $[0,1]$, calculate $u(0.4)$ correct to six places of decimal.
[20 Marks]

1998

99. Evaluate $\int_{1}^{3} \frac{d x}{x}$ by Simpson's rule with 4 strips. Determine the error by direct integration. [20 Marks]
100. By the fourth -order Runge-Kutta method.tabulate the solution of the differential equation $\frac{d y}{d x}=\frac{x y+1}{10 y^{2}+4}, y(0)=0$ in $[0,0.4]$ with step length 0.1 correct to five places of decimals
[20 Marks]
101. Use Regula-Falsi method to show that the real root of $x \log _{10} x-1.2=0$ lies between 3 and 2.740646
[20 Marks]

1997

102. Apply that fourth order Runge-Kutta method to find a value of y correct to four places of decimals at $x=0.2$, when $y^{\prime}=\frac{d y}{d x}=x+y, y(0)=1$
[20 Marks]
103. Show that the iteration formula for finding the reciprocal of N is $x_{n+1}=x_{n}\left(2-N_{x n}\right), n=0,1 \ldots$
[20 Marks]
104. Obtain the cubic spline approximation for the function given in the tabular form below:

x	0	1	2	3
$f(x)$	1	2	33	244

[20 Marks]

1996

105. Describe Newton-Raphson method for finding the solutions of the equation $f(x)=0$ and show that the method has a quadratic convergence.
[20 Marks]
106. The following are the measurements t made on a curve recorded by the oscillograph representing a change of current i due to a change in the conditions of an electric current:
$t \quad 1.2$
2.0
2.5
3.0
$\begin{array}{lll}i & 1.36 & 0.58\end{array}$
0.34
0.20

Applying an appropriate formula interpolate for the value of i when $t=1.6$
[20 Marks]
107. Solve the system of differential equations $\frac{d y}{d x}=x z+1, \frac{d z}{d x}=-x y$ for $x=0.3$ given that $y=0$ and $z=1$ when $x=0$, using Runge-Kutta method of order four
[20 Marks]

1995

108. Find the positive root of $\log _{e} x=\cos x$ nearest to five places of decimal by Newton-Raphson method.
[20 Marks]
109. Find the value of $\int_{1.6}^{3.4} f(x) d x$ from the following data using Simpson's $\frac{3}{8}$ rd rule for the interval $(1.6,2.2)$ and $\frac{1}{8}$ th rule for $(2.2,3.4)$:

x	1.6	1.8	2.0	2.2	2.4
$f(x)$	4.953	6.050	7.389	9.025	11.023

x	2.6	2.8	3.0	3.2	3.4
$f(x)$	13.464	16.445	20.086	24.533	29.964

[20 Marks]
110. Find the positive root of the equation $e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6} e^{0.3 x}$ correct to five decimal places.
[20 Marks]
111. Fit the following four points by the cubic splines.

i	0	1	2	3
x_{i}	1	2	3	4
y_{i}	1	5	11	8

Use the end conditions Use the end conditions $y{ }^{\prime \prime}=y{ }_{0}=0$
Hence compute [i] $\quad y(1.5)$

$$
\text { [ii] } \quad y^{\prime}(2)
$$

[20 Marks]
112. Find the derivative of $f(x)$ at $x=0.4$ from the following table:

x	0.1	0.2	0.3	0.4
$y=f(x)$	1.10517	1.22140	1.34986	1.49182

[20 Marks]

1993

113. Find correct to 3 decimal places the two positive roots of $2 e^{x}-3 x^{2}=2.5644$
[20 Marks]
114. Evaluate approximately $\int_{-3}^{3} x^{4} d x$ Simpson's rule by taking seven equidistant ordinates. Compare it with the value obtained by using the trapezoidal rule and with exact value.
115. Solve $\frac{d y}{d x}=x y$ for $x=1.4$ by Runge-Kutta method, initially $x=1, y=2$ (Take $h=0.2$)

1992

116. Compute to 4 decimal placed by using Newton-Raphson method, the real root of $x^{2}+4 \sin x=0$.
[20 Marks]
117. Solve by Runge-Kutta method $\frac{d y}{d x}=x+y$ with the initial conditions $x_{0}=0, y_{0}=1$ correct up to 4 decimal places, by evaluating up to second increment of y (Take $h=0.1$)
[20 Marks]
118. Fit the natural cubic spline for the data.
x : $\begin{array}{llllll}0 & 1 & 2 & 3 & 4\end{array}$
$y: 0 \begin{array}{llllll} & 0 & 1 & 0 & 0\end{array}$
[20 Marks]
