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Bayesian Optimization

Bayesian optimization (BO) is effective and popular approach for global optimization of black-box

functions [2].

Using BO we want to find an input x ∈ X that maximizes real-valued black-box function f : X → R
defined on a compact domain X ⊆ RD

x∗ = argmaxx∈X f (x)

given noisy observations y ∼ N (f (x) , σ2
ε ) with noise variance σ2

ε .

Build probabilistic surrogate model based on observations Dn = {(xi, yi)}n
i=1.

Find the next candidate point xn+1 which maximizes the acquisition function α : X → R

xn+1 = argmaxx∈X α (x|Dn)

.

Probabilistic Surrogate Models

Gaussian process

A Gaussian process GP (µ, κ) is fully specified by a mean function µ (·) and a covariance function

k (·, ·) [3].
The objective is to infer the latent function f from a training set (X, y) where
X = {xi}n

i=1 , y = {yi}n
i=1.

GP posterior predictive distribution at a test point p (f∗| X, y, θ, x∗) = N (µ∗, σ2
∗) is Gaussian with

the mean and variance given by

µ∗ = k∗n

(
Knn + σ2

ε I
)−1

y, (1)

σ2
∗ = k∗∗ − k∗n

(
Knn + σ2

ε I
)−1

k∗n
T , (2)

where k∗n = k (x∗, X) and k∗∗ = k (x∗, x∗).

The main challenge of GP is that training requires the inversion and the

determinant of Knn + σ2
ε I , which is frequently realised via the Cholesky

decomposition with computational cost of O (n3). For this reason, train-
ing GP on large datasets is computationally intractable.

Generalized Product Of Experts

Partitions the data into M subsets D(i) =
{

X(i), y(i)
}
, where 1 ≤ i ≤ M, and train GP on D(i) as an

expert GP model [1].

Predictive distribution of GP expert i conditioned on the related subset of the data D(i) and test

input x∗ ∈ RD is Gaussian pi

(
y∗|D(i), x∗

)
∼ N (µi(x∗), σ2

i (x∗)) with mean and covariance

µi (x∗) = k∗i

(
Ki + σ2

ε,iI
)−1

yi, (3)

σ2
i (x∗) = k∗∗ − k∗i

(
Ki + σ2

ε, iI
)−1

k∗i
T + σ2

ε,i. (4)

The Generalized Product Of Expert (gPoE) model combines each individual GP expert prediction into

the final aggregate model

pA (y∗|x∗, D) =
M∏
i=1

p
αi(x∗)
i

(
y∗|x∗, D(i)

)
, (5)

which is again Gaussian N (µA(x∗), σ2
A(x∗)) with mean and covariance given by

µA = σ2
A (x∗)

M∑
i=1

αi (x∗) σ−2
i (x∗) µi (x∗) , (6)

σ−2
A (x∗) =

M∑
i=1

αi (x∗) σ−2
i (x∗) . (7)

The weight αi (x∗) is a measure of reliability and controls the contribution of each expert i at test

point x∗, where αi (x∗) > 0 and
∑M

i=1 αi (x∗) = 1.
The factorization of the log-marginal likelihood degenerates the full covariance matrix

Knn = k(X, X) into block-diagonal matrix:

Figure 1. Block-diagonal covariance matrix.

The gPoE reduces the training complexity time to O(Mni
3), where M is

the number of experts and ni is the number of training points assigned

to the i GP expert. If we train GP experts in parallel with M compute

nodes the training time complexity can be reduced to O(ni
3).

Trust region Bayesian optimization with Generalized PoE

Figure 2. The workflow of gPoETRBO algorithm.

Algorithm 1 Generalized PoE based Trust Region Bayesian Optimization (gPoETRBO)

Input: Number of initializing points N , iterations T , points per expert ni, initial TR parameters.

Output: The best recommendation x∗
T .

1: Randomly select and evaluate N points in the search space D0 = {(xi, f (xi))}N
i=1.

2: for t = 1 to T do

3: Randomly partition Dt−1 into M = |Dt−1|/ni subsets.

4: Train M local GP experts on {Di
t−1}M

i=1 subsets.
5: Construct TR of length δ around the best point x∗

t = max1≤i≤|Dt−1| f (xi).
6: Generate q candidate points Xc = {xc

1, . . . , xc
q} from TR (x∗

t ).
7: Evaluate i local GP expert posterior mean µi

t and variance σi
t on Xc points.

8: Aggregate µA
t and σA

t using (6) and (7).

9: Maximize UCB acquisition function x̂ = argmaxx∈Xc µA
t (x) +

√
βσA

t (x)
10: Evaluate the objective function ŷ = f (x̂).
11: Add a new data point to the dataset Dt = Dt−1 ∪ {x̂, ŷ}
12: Update the TR parameters and check whether to restart.

Numerical experiments
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Figure 3. Optimization performance and running times on 50D benchmark functions.

Ablation study
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Figure 4. The effect of number of data points per expert on accuracy and computing time.
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