

VILNIUS UNIVERSITETY

Mantas
VAITONIS

High Frequency Computerized
Trading Strategies Engineering in
Financial Markets

SUMMARY OF DOCTORAL DISSERTATION

Technological Sciences,
Informatics Engineering T 007

VILNIUS 2020

The dissertation work was carried out at Vilnius University from

2015 to 2019.

Scientific Supervisor

Assoc. Prof. Saulius Masteika (Vilnius University, Technological

Sciences, Informatics Engineering – T 007).

This doctoral dissertation will be defended in a public meeting of the

Dissertation Defence Panel:

Chairman
Prof. Dr. Julius Žilinskas (Vilnius University, Technological

Sciences, Informatics Engineering – T 007).

Members:

Prof. Dr. Robertas Damaševičius (Kaunas University of Technology,

Technological Sciences, Informatics Engineering – T 007),

Prof. Dr. Raimundas Matulevičius (University of Tartu, Natural

Sciences, Informatics – N 009),
Prof. Habil. Dr. Leonidas Sakalauskas (Vilnius University,

Technological Sciences, Informatics Engineering – T 007),
Prof. Dr. Dmitrij Šešok (Vilnius Gediminas Technical University,

Technological Sciences, Informatics Engineering – T 007).

The dissertation shall be defended at a public meeting of the

Dissertation Defence Panel at 12:00 p. m. on 25th of September,

2020 in Room 203 of the Institute of Data Science and Digital

Technologies of Vilnius University.

Address: Akademijos str. 4, LT-04812 Vilnius, Lithuania.

The summary of the doctoral dissertation was distributed on the 24nd

of August 2020.

The text of this dissertation can be accessed at the library of Vilnius

University, as well as on the website of Vilnius University:

www.vu.lt/lt/naujienos/ivykiu-kalendorius

VILNIAUS UNIVERSITETAS

Mantas
VAITONIS

Didelio dažnio kompiuterizuotų
prekybos strategijų inžinerija
finansinėse rinkose

DAKTARO DISERTACIJOS SANTRAUKA

Technologijos mokslai,
Informatikos inžinerija T 007

VILNIUS 2020

Disertacija rengta 2015– 2019 metais Vilniaus universitete.

Mokslinis vadovas

doc. dr. Saulius Masteika (Vilniaus universitetas, technologijos

mokslai, informatikos inžinerija – T 007).

Gynimo taryba:

Pirmininkas
prof. dr. Julius Žilinskas (Vilniaus universitetas, technologijos

mokslai, informatikos inžinerija – T 007).

Nariai:

prof. dr. Robertas Damaševičius (Kauno technologijos universitetas,

technologijos mokslai, informatikos inžinerija – T 007),

prof. dr. Raimundas Matulevičius (Tartu universitetas, gamtos

mokslai, informatika – N 009),

prof. habil. dr. Leonidas Sakalauskas (Vilniaus universitetas,

technologijos mokslai, informatikos inžinerija – T 007),

prof. dr. Dmitrij Šešok (Vilniaus Gedimino technikos universitetas,

technologijos mokslai, informatikos inžinerija – T 007).

Disertacija ginama viešame Gynimo tarybos posėdyje 2020 m.

rugsėjo mėn. 25 d. 12:00 val. Vilniaus universiteto Duomenų mokslo

ir skaitmeninių technologijų instituto 203 auditorijoje.

Adresas: Akademijos g. 4, LT-04812 Vilnius, Lietuva.

Disertacijos santrauka išsiuntinėta 2020 m. rugpjūčio mėn. 24 d.

Disertaciją galima peržiūrėti Vilniaus universiteto bibliotekoje ir VU

interneto svetainėje adresu: https://www.vu.lt/naujienos/ivykiu-

kalendorius

5

1. INTRODUCTION

The computational power requirements have continuously

increased in computer science fields such as computational physics,

quantitative finance, and others. With the increasing requirements of

parallel architectures like multi-/many-core CPUs and GPUs, parallel

programming has become not an alternative but rather a need. It is

becoming one of the major topics in software and parallelism in

programs that allows multiple processes to be executed concurrently

using separate threads and processing units.

The aforementioned developments in computer technology

have changed the way financial instruments are traded. The

technology has become a competitive differentiator of the

improvement of IT infrastructure that helps to reduce the time for the

execution of market and performance trading strategies. This has

motivated hardware manufacturers and software developers to create

solutions for the financial computing area. Nowadays, a significant

part of trades is handled without human intervention, when trading

algorithms make trading decisions. Although the concept of

algorithmic trading is not brand new, the speed in which algorithmic

trading operates has grown tremendously over the past years and

now is called High-Frequency Trading (HFT).

The rapid development of computational power has allowed

the number of transactions executed daily in electronic markets to be

increased, generating a huge amount of intraday financial data

(Dacorogna M. M., et al., 2001). Thus, the interest in HFT

algorithms (Aldridge I., 2009; Durbin M., 2010; Zubulake P. and Lee

S., 2011) has risen and they have become one of the main tools for

quantitative analysts. HFT is an algorithmic way to generate buy-sell

orders using quantitative models (Mariano R. S. and Kuen Tse Y.,

2008; Lai T. L. and Xing H., 2008; Kantz H. and Schreiber T.,

2004). The trade execution time has grown from daily trading to

microseconds and even nanoseconds. Due to the increase in speed, a

huge number of orders and order cancellations are required. Profit

6

chances for high-frequency traders are very time-sensitive, and low

latency for trade execution is of major importance (Kaya O., 2016).

In order to make decisions very fast and to decide in a split of a

second whether to execute a transaction or not, an electronic trading

system must be able to estimate market behaviour.

MiFID II requires trading operators to inspect all algorithmic

and HFT systems operating in their territory. They must be tested

before they can be operated. Competent authorities also must have

methods for verifying the algorithms and huge amounts of data in

these systems, which requires developing a unified method for

efficient and fast verification of algorithmic trading (AT) and HFT

(Bush D., 2016). The research found that it is not generally defined

which method of parallelization of large-scale data calculations (code

vectorization, multidimensional matrix, or kernel parallelization) is

more efficient in HFT and could be used in MiFID II as a tool to

verify AT and HFT.

After conducting the literature review, the main problem was

identified – HFT strategies and algorithms are not formalized, the

effectiveness of their application has not been studied. There is a

need for a computerized approach using the knowledge of computer

engineering to enable market participants and financial market

supervisors to perform the testing of HFT algorithms. In the absence

of a general view on HFT, there is no method for testing this type of

trading, assessing its impact on markets, and applying it to stock

exchanges. The goal of the work is not to improve the methods of

parallelization of on-site calculations aimed at increasing their

efficiency but to perform applied experimental research in order to

develop an engineering solution that would process AT signals at the

required speed in the HFT environment.

A method for testing high-frequency statistical arbitrage

trading has been proposed and a prototype algorithm has been

developed that formalizes the operation and backtesting of this type

of strategy. This approach allows the testing of algorithmic and HFT

statistical arbitrage trading strategies under the MiFID II Directive.

7

The suggested method applies code vectorization with

multidimensional matrices and kernel parallelization. The

combination of these methods has not been tested in HFT. The

application of all three above-mentioned methods helps to increase

the speed of trading decision making during the experiment, and the

trade itself remains profitable. The use of these methods allows to

parallelize data normalization, trade pair selection, position

opening/closing, deletion of unnecessary trade pairs, and closing of

long-held transactions that are performed simultaneously using the

SIMD method for the entire data vector.

1.1. Object of the research

The object of this study is algorithmic statistical arbitrage

trading systems of high frequency and high-frequency data in

electronic financial exchange.

1.2. Research aim

The work aims to develop high-frequency statistical arbitrage

trading testing method that makes algorithmic trading decisions

faster than the new data from electronic exchanges is received.

The following tasks were set to achieve the aim:

1. To formalize high-frequency algorithmic strategies by

setting technological specifications for high-frequency data

processing, to test the effectiveness of statistical arbitrage HFT

strategies, and to apply the acquired knowledge to achieve the aim of

this work.

2. To propose and develop a method for a real-time HFT

testing and data processing that would work with high-frequency

data and perform algorithmic trading calculations faster than the new

data from electronic exchanges is received.

3. To test the developed method by creating a prototype of a

HFT testing tool that allows calculations with high-frequency and

volume data.

8

4. To describe the obtained results and observations and to

evaluate the possibilities and possible limitations of the developed

high-frequency statistical arbitrage trading algorithm testing method.

1.3. Research methods

The theoretical part of the work was based on scientific

literature, scientific articles, and Internet sources. The following

methods were used in the work: analysis and generalization of

scientific literature, observation, numerical modelling, sampling

method, synthesis, experiments, correlation analysis, statistical

analysis, computer data processing. The systematic review of work

and analytical research aims to analyse the existing HFT systems and

technologies, to determine their application methods, and to

theoretically substantiate the need for the development of high-

frequency statistical arbitrage trading algorithm and high-frequency

data processing method. The theoretical part of the research explains

the need for the developed model and how it can pursue the goals of

the thesis as well as describes the chosen technology and architecture

of the platform for HFT. The theoretical prototype of high-frequency

statistical arbitrage trading algorithm and high-frequency data

processing method, their theoretical and practical applicability are

described in this work. The research experiment, the data used in it,

and the criteria are presented according to which the experiment will

be evaluated. After completing the theoretical part, an experiment is

performed that ends with the evaluation of the prototype, the chosen

technology and architecture of the platform for high frequency

trading, and the entire model of high-frequency statistical arbitrage

trading system.

1.4. Scientific novelty

Although HFT is often discussed in business publications, it is

a relatively underdeveloped branch of science from the perspective

9

of informatics engineering. There is relatively little information on

the application of HFT systems (limitations and risks) and the

optimal technological requirements for such a solution. The vast

majority of scientific articles dealing with HFT investigate

methodologies for selecting optimal strategies, measuring the

profitability of HFT strategies, analysing the optimal parameters for

this type of trading strategies, when to submit trading transaction

information to electronic exchanges, how to measure HFT activity

and other that is not related to the optimal configuration, architecture,

application method of HFT systems and appropriate technology

platform selection (Vaitonis M., 2018, Kearns M. et al., 2010, Anane

M. ir Abergel F., 2014, Beckhardt B. et al., 2016). Therefore, further

investigations and a more detailed study of HFT systems, their

application, architecture, and possible engineering solutions need to

be undertaken to implement HFT with high-frequency and volume

data.

In this thesis, we aimed at creating and implementing the

backtesting method for automated high-frequency statistical arbitrage

trading that would be able to analyse a large amount of tick-by-tick

data received from the electronic market in a millisecond and

nanosecond time-stamp precision. However, as it was discovered in

this research, there is no HFT method developed that would be

suitable for statistical arbitrage. The majority of the research on

algorithmic trading is limited to low frequency (daily, weekly, or

even monthly) trading. Although the ideas of low-frequency trading

could be applied to HFT, the methods of different frequency

implementation differ. Moreover, no system architecture

implementations and methods allowing to implement the HFT

statistical arbitrage algorithm even for backtesting could be found.

Thus, it was the initial motivation to develop a method for automated

HFT statistical arbitrage that would work with a large amount of

high-frequency data and suggest the hardware for this type of

system.

10

The proposed backtesting method demonstrates how the use of

the GPU memory, code vectorization, parallel kernels, and

multidimensional matrices brings impressive speedups in the HFT

trading and analyzation of the HFD. Such HFT system optimization

allows making trading decisions faster than new information is

received from an electronic exchange. The speedup occurs due to

more compute effective processors of the GPU combined with the

memory it has.

The proposed hypothesis was confirmed that the use of code

vectorization, when the statistical arbitrage HFT algorithm is

transferred to the GPU, the algorithm data is formed as a

multidimensional matrix. and the algorithm calculations are

performed in parallel by splitting them between individual parallel

kernels, enables to make HFT decisions faster than the new data

from electronic exchanges is received. A high-frequency statistical

arbitrage trade backtesting method has been developed and with the

help of this method the trading algorithm has been transferred to the

GPU environment by combining code vectorization,

multidimensional matrices, and kernel. This method can be used in

MiFID II to test these strategies.

1.5. Practical value of the research results

The thesis proposes the technology and the way in which a

sophisticated method has been developed that enables high-

frequency and high-volume data to be processed in high-frequency

statistical arbitrage trading strategies faster than it is obtained from

electronic exchanges, thus bypassing other market players. The

essence of the solution is not only fast data processing but also a

quick and correct trading decision. Due to its commercialization, all

HFT system solutions are confidential, thus they require a scientific

description of their operation and the explanation of how the

methods employed in these systems can be used in other scientific

fields. The method proposed in this thesis can be applied to any

11

platform that works with the GPU CUDA with slight adjustments

depending on the platform specifications. The method proposed in

this thesis not only can be applied to the real trade, but can be also

used as a method for testing HF statistical arbitrage strategies. This

approach is recommended by the MiFID II Directive that requires

trading operators to inspect all the algorithmic and HFT systems

operating in their territory.

Drawing on the previous research, a system can be developed

that performs high-frequency calculations with the help of GPU

CUDA. These calculations can be applied for making profit in HFT

or to increase liquidity in electronic exchanges. Likewise, the same

methods can be applied in other fields of science that require quick

and correct decision-making, such as artificial intelligence.

1.6. Statements to be defended

The following statements are made in the thesis:

1. The methodology for formalizing high-frequency

statistical arbitrage trading strategies, which can be used to determine

the optimal window for data normalization and trading in algorithmic

trading at milli and nanoseconds, is appropriate for evaluating the

effectiveness of strategies.

2. Decisions made by HFT using higher-frequency data

are more efficient in algorithmic trading that requires the

parallelization of calculations.

3. By combining code vectorization, multidimensional

matrices, kernel parallelization and transfer of formalized algorithms

to the GPU environment, one can achieve a higher data processing

speed than the speed required for the new data from electronic

exchanges to be received.

12

1.7. Approbation of the research

The results of the research were presented at eight scientific

conferences:

1. On 24
th
 – 26

th
 June 2015, at the international scientific

conference BIS: Business Information Systems Workshops Poznan,

Poland, presenting the paper “Quantitative Research in High

Frequency Trading for Natural Gas Futures Market”.

2. On 3
rd

–5
th
 December 2015 at the 7

th
 scientific

conference DAMSS 2015: Duomenų analizės metodai programų

sistemoms, Druskininkai, Lithuania, presenting the paper “High

frequency statistical arbitrage strategy engineering and algorithm for

pairs trading selection”

3. On 13
th
–15

th
 October 2016 at the 22

nd
 scientific

conference ICIST 2016, Druskininkai, Lithuania, presenting the

paper “Research in high frequency trading and pairs selection

algorithm with Baltic region stocks”.

4. On 1
st
–3

rd
 December 2016 at the 8

th
 scientific

conference DAMSS 2016: Duomenų analizės metodai programų

sistemoms, Druskininkai, Lithuania, presenting the paper

“Computerized high frequency trading of nanoseconds in futures

market”.

5. On 12
th
–14

th
 October 2017 at the 23

rd
 scientific

conference ICIST 2017, Druskininkai, Lithuania, presenting the

paper “Statistical Arbitrage Trading Strategy in Commodity Futures

Market with the Use of Nanoseconds Historical Data”.

6. On 30
th
 November – 2

nd
 December 2017 at the 9th

international conference DAMSS: Data analysis methods for

software systems, Druskininkai, Lithuania, presenting the paper

“Research in High Frequency Statistical Arbitrage Strategies Applied

to Microsecond and Nanosecond Information”.

7. On 27
th
 April 2018 at the 23

rd
 scientific conference

IVUS 2018: Information Society and University Studies, Kaunas,

13

Lithuania, presenting the paper “CPU and GPU Implementations for

High Frequency Trading in Algorithmic Finance”.

8. On 29
th
 May 2018 at the 23

rd
 scientific conference

SYSTEM 2018: Information Society and University Studies,

Gliwice, Poland, presenting the paper “Algorithmic trading and

machine learning based on GPU”.

1.8. Outline of the thesis

The thesis consists of six chapters (Introduction, High

Frequency Trading and High Performance Computing in Finance,

Proposed HFT testing methodology, Experimental setup,

Experimental results, and Conclusions), the list of references, and

appendices.

In the introduction, the motivation of the work, research

objectives, scientific novelty, etc. are presented. Chapter One

discusses algorithmic, high-frequency and statistical arbitrage

trading; it is explained how they work and when they are used.

Chapter Two examines how HFT is applied in high performance

computing and what technologies are used to achieve such HFT.

Following the selection of GPU CUDA technology for this thesis,

Chapter Three introduces statistical arbitrage strategies to be used

throughout the research. Chapter Four introduces a high-frequency

statistical arbitrage trading method that utilizes GPU CUDA, code

vectorization, parallel kernels, and the use of multidimensional

matrices. Further chapters provide with the requirements for this

research, explain what GPU boards and what high-frequency data are

used. The last chapter presents the research findings that are

summarized in the conclusions.

14

2. HIGH FREQUENCY TRADING AND HIGH

PERFORMANCE COMPUTING IN FINANCE

Nowadays markets are made electronic with bid and ask

queues maintained within a computer by using trading algorithms

that employ fundamental and technical analysis for making trading

decisions.

HFT has grown rapidly since the moment it was first

introduced. In Europe, the share of HFT in total equity boomed from

almost zero in 2005 to 40 % in 2010. By 2005, HFT accounted for

approximately 20% of the trades in the USA and peaked to 60% in

2009. Then financial crises took place and, by 2014, the share of

high-frequency equity markets fell to 35% and 50% of the total

market in Europe and the USA (Kaya O., 2016). At the moment the

HFT accounts for approximately 55% of the trading volume in the

USA equity markets and about 40% in European equity markets

(Krauss C., 2015). CFTC found that during the period from October

2012 to October 2014, the algorithmic trading systems were present

on at least one side in nearly 80% of the foreign exchange futures

trading volume; 67% of the interest rate futures volume; 62% of the

equity futures volume; 47% of the metals and energy futures volume;

and 38% of the agricultural product futures volume. The algorithmic

trading has also grown up to 67% of the trading in 10-year Treasury

Futures and 64% of the Eurodollar Futures Markets (Miller R. S. and

Shorter G., 2016).

This type of trading is highly commercialized, and the subject

of employed strategies as well as optimal configuration for this type

of trading for each HFT company is confidential. The information

about the optimal HFT implementation and methods to achieve

speedups in decision-making would not only help to further develop

such trading strategies but could be also applied in other fields of

science that require working with big data and high-speed decision-

making. Most papers provide with the methodologies for the optimal

15

trading strategy selection; the way its profitability should be

measured; the optimal trading strategies parameters; the best time to

send orders; measurement of the HFT activity, etc. However, the

information on the optimal way for the implementation of the trading

strategies on the platform of choice is still lacking (Kearns M., 2010;

Anane M. and Abergel F., 2014; Beckhardt B., et al., 2016; Boehmer

E., et al., 2016). In fact, there is little information on the optimal

configuration of the high-frequency strategies, i.e., how they should

be applied and what method should be used depending on the trading

algorithm.

In order to better understand how the HFT is operating, it is

necessary to prepare a use case scenario for a high-frequency

statistical arbitrage trading system that would make the bases for its

exploration. The next section describes the implemented use case

scenario in more detail.

2.1. Statistical arbitrage use case scenario in the HFT

The main aim of high-frequency statistical arbitrage trading is

to find two financial instruments that work together. Once such a pair

is found, it has to be decided when to take long and short positions

based on the trading rules. With respect to the research on algorithm

formulation, following steps of statistical arbitrage trading strategy

have been identified:

 the selection of the size for data normalization and trading

window;

 data normalization;

 the selection of the correlated pair;

 the definition of the trading rules;

 the act of trading;

 the assessment of the statistical arbitrage strategy (Vaitonis

M. and Masteika S., 2017; Vaitonis M. and Masteika S.,

2018).

16

Firstly, it is necessary to define the trading parameters of data

normalization and trading window size. Drawing on the previous

research that uses the nanosecond data (Vaitonis M. and Masteika S.,

2018), it was determined that 20-second window for data

normalization and trading was optimal. However, as it was indicated

in the section above, there are difficulties with the high-frequency

data since different future contracts send, their data at a different

frequency. Therefore, the data was aggregated in equal time slots and

averaged out. After these parameters were selected, it was necessary

to normalize the future contracts data in order to compare one with

the other. Secondly, the pair selection method had to be selected and

then the trading rules had to be applied on the found pairs. Finally,

the trading signals had to be sent to an electronic exchange. At the

end of trading day, it was vital to assess the trading strategies.

2.1.1. Data normalization in HFT

Obviously, the normalization of the high-frequency data is

significant for recalculating the prices of the correlated future

contracts to a particular unit, thus removing the noise of the price

alteration and offering the comparison of the changes in a more

qualitative way. Data normalization is performed as follows: for each

price of futures contract pi,t, empirical mean µi,t and standard

deviation σi,t are calculated for the selected normalization period, and

then the following equation is applied (Vaitonis M. and Masteika S.,

2018; Perlin M. S., 2009):

𝑃𝑖,𝑡 =
𝑝𝑖,𝑡−𝜇𝑖,𝑡

𝜎𝑖,𝑡
 (1)

P(i,t) is the normalized price of futures commodity contract i

at time t.

17

2.1.2. Pair selection

Before the trading rules are applied, the pairs for future

contracts must be found. In order to do it, the pair selection algorithm

is used. There are two main pair selection methods: the least squared

distance and cointegration. In the research conducted earlier, both

methods were used with the microsecond as well as nanosecond data

and five commodity futures contracts. It has been confirmed that the

statistical arbitrage strategy can be applied in the case of high

frequency by applying the methods of least square distance and

cointegration pair selection (Driaunys K., et al., 2014; Vaitonis M.,

2017; Vaitonis M., and Masteika S., 2016; Vaitonis M., and

Masteika S., 2018).

 Least square distance is the mentioned distance

method requiring only some calculus and linear algebra to determine

which two data elements in the given case correlate with which two

futures contracts (Binh D., 2006; Miller S. J. 2006). According to

Evan Gatev (Gatev E., et al., 2006), the selection of a pair of assets

that minimize the sum of the squared deviation of normalized prices

is a simple strategy with a low cost of implementation and, for this

reason, it may be the favorite one among the practitioners. The

distance method assumes that there is a static linear relationship

between the two assets and prices that are equally independent

random variables. One of the advantages of this non-parametric

model is the absence of mis-specification and mis-estimation but it

does not have forecasting power (Binh D., 2006).

 Cointegration allows for the estimation of a long-term

relation between the two variables when they have the same

integration level; hence two non-stationary time series are

cointegrated if their linear combination is stationary (Engle, R. F.

and Granger C. W. J., 1987). The cointegration approach fits

perfectly with the statistical arbitrage attempting to exploit a short-

term deviation from a long-term relation. Short-term deviations are

rectified by error corrections that, according to Ganapathy

18

Vidyamurthy (Vidyamurthy G., 2004), correspond to the adjustment

of a single or both time series to reach a long-term relation. It means

that, unlike the distance method, cointegration has the ability of

forecasting based on past information. In order to find the

cointegrated data elements, the following steps have to be taken:

 Identification of futures contract pairs that could

potentially be cointegrated;

 Verification of the potential pairs on the basis of the

proposed hypothesis that the futures contracts pair is indeed

cointegrated due to the information obtained from historical data;

 Examination of the cointegrated pairs to determine

whether they can be used for trading (Vidyamurthy G., 2004).

There are two pair selection methods considered in the given

research. In order to fully employ the HFT, hardware acceleration

should be included in the overall solution. It can be achieved by

utilizing specific hardware to gain higher computational results.

Different hardware may be used to achieve high-performance

computing, such as the CPU, the GPU, or the FPGA. In order to

choose the best configuration, it is necessary to know the pros and

cons of each mentioned technology.

2.2. Hardware acceleration with the CPU, the GPU and the

FPGA

Firstly, the difference between the CPU and the GPU was

explored. The modern CPU contains a number of cores optimized for

sequential serial processing, whereas a GPU consists of hundreds of

‘smaller’, more ‘efficient’ cores designed for handling multiple tasks

simultaneously.

The difference between the CPU and the GPU is that GPU is

highly specialized in number crunching, i.e., something that graphics

processing demands, as it involves millions, if not billions, of

calculations per second. The number of cores that the GPU has

depends on the manufacturer. The ability of a GPU with 100+ cores

19

to process thousands of threads can accelerate some software by 100

times over a CPU alone. What is more, the GPU achieves this

acceleration while being more power- and cost-efficient than a CPU

(Asaduzzaman A., et al., 2014; Nambia P.P., et al., 2014). Consider:

Fig. 1. The GPU and the CPU (Asaduzzaman A., et al., 2014)

A specific system of application delivers high performance

with little flexibility, whereas the general-purpose processors provide

flexibility with an average performance. As is well known, the

general-purpose processors are developed to perform numerous

operations; however, they are not suitable for intensive image

processing applications due to their serial processing blocks. The

GPU devotes much more transistors to data processing than to data

caching and flow control. The GPU architecture is highly parallel; it

has a large number of cores that are designed for handling multiple

tasks simultaneously.

It should be noted here that in embedded systems, the Field

Programmable Gate Array (FPGA) has been the leading processor

technologies. In other words, the FPGA is a solution for low power

consumption, whereas the GPU offers the solution for high expense

(Chelva M. S. and Sharanappa V. H., 2016).

Drawing on the previous research (Véstias M. P. and Horácio

C. N., 2014; Jones D. H., et al., 2010; Grozea C., et al., 2010; Minhas

U. I., et al. 2014), the comparison of the GPU, the FPGA and the

multiprocessors can be summarized as given in the table below:

20

Table 1. The FPGA, the GPU and the multicore processor

comparison

FPGA Multicore Processor GPU

Parallel Sequential Limited parallel

Extremely fast real time

processing

Varies with

dependency

Fast real time

processing

No good in floating

point operations

Versatile Excellent in floating

point operations

Need to interface the

software

No need for special

interfacing

No need for special

interfacing

Comparatively less

flexible but with better

performance

- Programming

flexibility

Table 1 can be explained as follows: firstly, the power

consumption of the FPGA based solution offers significantly lower

power consumption than in the case of the GPU ones. Secondly, with

regard to time development, in the case of the FPGA, code and cores

are added, therefore the simulation and implementation time

increases, thus increasing the time of development. In comparison to

the GPU case, the development time is much faster because the GPU

uses existing libraries with high-level programming languages, such

as C/C++, Python, and other. Thirdly, the parallelism should be

discussed since the platforms like the FPGA and the GPU are highly

parallel; yet, as a rule, they have lower clock frequency than the

CPU. Thus, the entire power of the FPGA and the GPU lies in their

high number of computational cores. It should be stressed that the

code pointing from the CPU to the GPU via the CUDA (Compute

Unified Device Architecture) is straightforward, whereas the FPGA

implementation is much more difficult because in this frame, it is

impossible to directly port an algorithm from the CPU to the FPGA.

As for floating point operations, the FPGA seems to suffer due to the

fact that it can only work with the fixed-point units, whereas the

GPU works perfectly with the floating point. Finally, interfacing is

problematic with the FPGA and easy with the GPU because it is

difficult to integrate it into any system, and the CUDA in its turn is

developed for the hybrid CPU/GPU systems.

21

It can be summarized that the FPGA is power-efficient and the

GPU is cost-efficient: it takes less time to develop the GPU solution,

and platform integration is less expensive than in the case of the

FPGA. Moreover, the GPU allows easy integration to the common

CPU – GPU system. It is so because the FPGA is designed to

perform the concurrent fixed-point operations with a close-to-

hardware programming approach, whereas the GPU is optimized for

the parallel processing of floating-point operations with the use of

thousands of small cores and therefore they do not need special

interfacing. While working with HFT, the floating-point operations

cannot be avoided, since the work is performed with the financial

instrument price with floating-point digits. The above factors

confirmed that the use of the GPU via the CUDA to further develop

the HFT solution would be the optimal choice for hardware

application.

2.3. The GPU selection (the CUDA)

As for graphics calculations, they require little control and

communication compared to the volume of calculations (Kirk D.B.

and Hwu W.M., 2010). The GPU is specifically designed to tackle

the problems that can be organized as data-parallel computations

with high arithmetic intensity. A typical GPU is organized as an

array of highly threaded streaming processors (SPs) distributed

among streaming multiprocessors (SMs). It is multiplatform and can

be compiled for any of the new Nvidia GPU architectures. The

concepts of thread, thread block, and grid are three abstractions often

referred to in the CUDA programming paradigm. A thread is each of

the many components responsible for executing a given instruction

over a single data. According to the SIMT paradigm, multiple

threads work in parallel executing the same kernel on a set of data.

Threads are divided into thread blocks each of which is run by every

SM of the GPU. Threads within a block are able to share data

through the SM’s shared memory, and they can be synchronized at a

22

certain point of their execution. Thread blocks are grouped into grids

that spread them among all the SMs of the GPU. A thread block can

be organized as a one-, two- or three-dimensional array of threads,

and the CUDA offers variables with which the index of each thread

inside its block can be recovered. By analogy, the grids may be one-,

two- or three-dimensional arrays of blocks. The thread blocks within

the grids may also be identified by means of indices (Labaki J., et al.,

2011).

The data in the CPU global memory takes more time to be

processed compared with the data in the GPU global memory. In

order to take full advantage of the GPU global memory and available

cores, the CUDA was selected to further develop this research.

Fig. 2 Connecting a CPU and a single GPU via a motherboard

with a PCI-e connector

The ability to use more than one GPU in a system is only

possible with the help of a motherboard, as they usually have more

than one PCI connector. Also, server-based solutions for many GPUs

are usually made by the GPU manufacturers themselves. Proper use

of a system with many GPUs depends on how well they are

connected to the system. There are two possible ways to connect

them. The first one is connecting GPUs to PCI ports as separate

devices (D. Foley and J. Danskin, 2017).

23

Fig. 3. Connecting a CPU and multiple GPUs via a

motherboard with a PCI-e connector

The second option is to have a physical bridge that connects

the individual GPUs. The GPUs connected in this way function as

one and are more efficient than those connected to individual PCI

connectors.

Fig. 4. Connecting a CPU and multiple GPUs via a

motherboard with a PCI-e bridge connector

24

When using this type of connection, the maximum amount of

data transferred is 16 GB per second, which is the highest throughput

of PCI 3.0. This happens because the whole bridge of multiple GPUs

is connected via one PCI slot in the motherboard. It is the weakness

of such a system. Therefore, such a system can be used if the

applications used require little data transfer between the CPU and the

GPU and do not require a high degree of communication between

individual GPUs. When large amounts of data transfer between the

CPU to the GPU and between the GPU itself are required, CPU and

multiple GPUs via a motherboard connection have to be used, which

has been selected in this research (D. Foley and J. Danskin, 2017).

2.4. Code vectorization, multidimensional matrices and

parallel kernels

Vectorization is the process of transforming an algorithm that

operates on the single elements of data into a program that operates

on the matrices of data. In computer science, vectorization is the

process of converting an algorithm from a scalar implementation,

which performs an operation on one pair of operands at a time, to a

vector process, when a single instruction can refer to a vector. Such

transformation requires converting the control flow of the input

program to the data flow by inserting masking instructions and

guards. In effect, it adds a form of parallelism to software in which

one instruction or operation is applied to the multiple pieces of data

(Vaughan C.T., et al., 2018; Li P., et al., 2015).

As a result, the program can be executed on a machine that

provides vector instructions, the action is executed faster. In order to

perform the mentioned transformation, the developers can either use

compiler intrinsic and write a vector code directly or a semi-

automatic vectorizing compiler and write annotations in the parts of

the program that should be vectorized. The performance or efficiency

benefits from vectorization depending on the code structure (Li P., et

al., 2015).

25

When the vectorized algorithm is prepared, it can be moved to

the GPU. The MATLAB provides with some of the best practices for

using the GPU. Firstly, it is necessary to profile the code in order to

identify bottlenecks. Secondly, the code must work on large enough

matrices in order to see the benefits of the GPU parallelization

(Perino F., 2014).

In order to optimize and accelerate the code, it is necessary to

minimize the data transfer between the CPU and the GPU. There are

a couple o ways to achieve it:

 Sustained use of supported functionality;

 Creation of variables on the GPU (Asaduzzaman A.,

et al., 2014).

Once the data transfer between the CPU and the GPU is

minimized it is very important to use array indexing and branching in

moderation. Every time when loop or index search is invoked in the

GPU, the data must be sent to the CPU to make an array work with

indexing.

In the given research, the MATLAB was used for the GPU

computing, which allowed us to accelerate an application with the

GPU. With the MATLAB language, it is possible to get the

advantage of the CUDA GPU computing technology without having

to learn the intricacies of the GPU architectures or low-level GPU

computing libraries.

Applications consist of the interconnection of producer-

consumer kernels (Sugerman J., 2009). Parallel kernels are a

semantic set of core blocks grouped temporarily, repeated many

times, and they can be executed simultaneously without distorting

the result. They consist of various software structures that include

loops, recursions, or library calls. These kernels make up most of the

program execution time (Uhrie R, et al., 2020).

Parallel programming with CUDA involves the direct

implementation of the SAXPY routine defined in the BLAS linear

algebra library both sequentially and in parallel. Given vectors x and

y with n floating-point numbers, it updates y every αx + y. Serial

26

implementation is a simple loop that computes one y element in each

iteration. The parallel kernel efficiently performs each of these

independent iterations in parallel, assigning a separate thread to

compute each y element (Garland M., et al. 2008).

Fig. 5. Parallel kernels

The CUDA program is reorganized into the main program

consisting of one or more serial threads running on the CPU and one

or more parallel kernels suitable for execution in a parallel

processing device, such as the GPU. The kernel runs a scalar

sequence program in a set of parallel threads. The programmer can

combine these threads into a network of thread blocks. The threads in

the thread block can be synchronized with each other and use shared,

high-speed GPU on chip memory. The threads from different blocks

in the same network can only be coordinated by performing

operations on shared GPU memory that is visible to all threads.

CUDA requires that the blocks of threads would be independent,

which means that the kernel must be executed correctly, regardless

of the order in which the blocks are executed even if all blocks are

executed consistently arbitrarily, without exception. This constraint

due to the interdependence of the thread blocks for the kernel

provides an opportunity to expand the computational quantities

(Garland M. et al., 2008; Uhrie R. et al., 2020).

If loop is evoked on the GPU, in order for it to work, the CPU

has to be invoked, and the data from the GPU global memory has to

27

be sent to the CPU memory and, at the end of the loop, it would

come back to the GPU global memory. It is quite a long root for the

data to move and it is extremely time-consuming. One of the ways to

avoid loops is to create the 3D/4D matrices at the expense of

memory. Thus, in this research, the algorithm was coded into the

GPU avoiding loops and creating multidimensional matrices.

For instance, a 3D matrix consists of three axes where x

represents futures contract, y represents prices for each futures

contract for the given trading windows, and z represents the size of

the data passed or the pages of the 3D GPU matrix. In other words,

if there is a 2D matrix in which the row represents prices and the

column represents futures contract, then in a 3D matrix, each page

would consist of these 2D matrices.

Fig. 6. A 3-dimensional GPU matrix

When creating a 4D matrix, one more dimension is used,

where each page consists of a previously explained 3D matrix. A 4D

GPU matrix was used only once in this research, i.e., when the

cointegrated method for trading pair selection was applied.

28

Fig. 7. A 4-dimensional GPU matrix

A 4D GPU matrix is created when a function is used to

compute the augmented Dickey–Fuller test. Actually, function

compares each futures contract with other ones when prices are

already normalized. When a 4D matrix is created, it is of the size of

10x2x30x30, where x is futures contracts, y represents prices for

each contract in trading period, z axis refers to the size of the

possible pair combinations, and q axis represents the size of all the

possible pair combinations to compare different combinations with

each other.

2.5. Logical architecture

Each program that runs inside the GPU is divided into many

threads. All individual threads execute the same program code only

with different data. A thread block is made up of a group of threads

that, using shared block memory, communicate with each other and

synchronize their work that they can coordinate through shared

memory. The thread blocks can be further integrated in a network

consisting of a group of thread blocks. Separate procedures are

performed by merging and creating threads in a network (Plosk N.

and Samaras N., 2016). Each individual CUDA thread can access the

data in different memories. All threads have only their own local

29

memory. All thread blocks have shared memory that is accessible to

each thread in that block and that memory is accessible as long as the

specified block exists. Also, each thread in the thread block network

can access shared global memory of the GPU device.

Using the CUDA model, a programmer can access different

memories in GPU that are visible to threads of running procedures.

Threads that are grouped into blocks can communicate with each

other using shared memory that is only visible to that block. Each

thread that is part of the procedure has its own local memory. There

is a third type of global memory that is accessible to all threads,

regardless of thread blocks. The availability of these memories to

threads greatly accelerates the calculation of procedures and the

execution of tasks (Horrigue, L. et al., 2018).

One of the software packages that supports GPU and CUDA is

MATLAB. In the field of quantitative finance, MATLAB has always

been one of the main languages (Jacquier A., 2017). The algorithm

for the proposed method of backtesting high-frequency statistical

arbitrage strategies was developed using MATLAB, which is also

one of the most commonly used backtesting platforms in the fields of

finance and HFT (Josephine A. and Fransson L., 2016). Although

MATLAB is not well known for its low latency, programming

languages such as C ++, C # and Java, but it is more suitable for

testing. The developed MATLAB algorithm can be compiled into C

language or C executable files, thus achieving low latency (Saikia M.

J. et al., 2014).

Multidimensional matrices are used in this paper to accelerate

the processing of large amounts of data. The logical architecture of

transferring multidimensional matrices to the GPU and calculating

them can be described as follows: suppose we have a function that is

f (A, B) = bsxfun (@minus, A (3,3,3), B (3,3,3)), where A and B are

multidimensional gpuArray arrays. Here, bsxfun is the procedure that

calls function A-B. Both gpuArray multidimensional arrays A and B

are first created in the GPU’s global memory.

30

Fig. 8. Procedures and threads in a logical architecture using a GPU

Although arrays are in the format of multidimensional

matrices, they are stored as column-major in the GPU itself. Running

the procedure function f (A, B) = bsxfun (@minus, A (3,3,3), B

(3,3,3)) in MATLAB environment creates thread blocks in which

each thread performs the same calculation A (n, n, n) -B (n, n, n). In

this way, calculations are performed in parallel simultaneously on all

the thread blocks in the threads that are connected in the network.

31

3. PROPOSED HFT TESTING METHODOLOGY

Before delving into the problem of methodology, it is

important to describe the execution model of the CUDA. In this

model, the main component is kernel, a function in C programming

language, which is executed N times in parallel with N CUDA

threads (Klöckner A., et al., 2012). The CUDA threads are often

stored in blocks that are called thread blocks. As indicated above,

such blocks can be arranged with one (x), two (x, y) or three (x, y, z)

dimensional objects. Such GPU CUDA hierarchy offers a convenient

framework for handling vector, matrix or multidimensional matrix

computation. Furthermore, the CUDA execution model is like the

SIMD (Single Instruction Multiple Data) architecture. Every

instruction that is executed in a CUDA kernel is an instruction

similar to the type of SIMD, which means that it always operates

with a vector type of data (Coon B. W. and Lindholm J. E., 2008;

Coon B. W. and Lindholm J. E., 2009; Coon B. W., et al., 2010;

Coon B. W., et al., 2011).

Taking into account the above-mentioned facts, it becomes

clear that the way to move the HFT to the GPU is by vectorizing the

algorithm of the statistical arbitrage strategies developed in earlier

research and using the multidimensional matrices. In the next

section, the proposed method for HFT testing is presented focusing

on how to implement the HFT in the GPU by using the global

memory, vectorizing the code and implementing multidimensional

matrices.

3.1. The developed method for the HFT testing

The main aim of the proposed method is to receive high-

frequency data from an electronic market, send it from the CPU

memory to the GPU global memory, where calculations are

parallelized and processed, the buy/sell decisions are made and the

information is sent back to an electronic exchange. The data obtained

32

from an electronic market that it is stored in the CPU memory is

immediately sent to the GPU global memory and trading algorithm

or algorithms are evoked. Based on the proposed method (Fig. 9), the

backtesting of the high-frequency statistical arbitrage trading

strategies is introduced. As mentioned above, for the HFD tick-by-

tick data one month of backtesting would be enough; however, in the

given research, a three month period was used. It is worth noting that

algorithmic trading differs from other types of investments in its

ability to provide more reliable expectations about future

performance in comparison with past performance, since there is

abundant data availability. In this paper, backtesting is carried out by

exposing the high-frequency statistical arbitrage trading strategies to

a stream of the historical HFD, which leads to a set of trading

signals. Each trade has either profit or loss and demonstrates how

fast the trading signal was detected and sent to an electronic

exchange.

33

Fig. 9. The proposed method for the HFT on the GPU

After splitting the data using multidimensional matrices, it is

necessary to parallelize all the possible calculations in order to

34

achieve a higher speed of trading decisions. To make better use of

GPU cores and memory, kernel parallelization was used to

implement code vectorization. By transferring the statistical arbitrage

HFT algorithm to the GPU, the algorithm data is formed as

multidimensional matrices and the algorithm calculations are

performed in parallel by splitting them between separate parallel

kernels, allowing HFT decisions to be made faster.

35

Fig. 10. Parallelization of kernels for HFT statistical arbitrage

strategies in the GPU environment

36

After transferring the resulting high-frequency data stream

from electronic exchanges to the GPU global memory, they are

formed as multidimensional matrices and distributed to the shared

thread block memory. Then data can be normalized in parallel. The

obtained normalized data are formed as multidimensional matrices.

They are returned to the global memory and moved back to the

shared memory of the thread blocks. At this step, it is possible to

parallelize two trading pair selection as kernels that can be run

simultaneously. These kernels are cointegration and least squares

pair selection methods. Returning the data to the global memory

removes the trading pair’s duplicates. The study used three statistical

arbitrage trading strategies the trading signals of which can be

selected in parallel. At the final step, positions are closed / opened in

parallel, and positions held for too long are closed.

The aim of trading algorithm on the GPU is to parallelize all

possible calculations across the CUDA cores at the expense of the

GPU global memory. As shown in the Figure 10, the parts that are in

the GPU can be parallelized by implementing a multidimensional

matrix. Due to the way the algorithm works, the following functions

can be parallelized:

 Data normalization;

 Pair selection for the trading period;

 Looking for trading signals;

 Evoking trading and closing positions based on the

received data.

At the beginning of the HFT testing method that used in this

thesis, data is received from an electronic exchange where the CPU

prepares the data that is later transferred to the GPU. The data

transfer is performed using the runSimulationOnGPU function

described in the algorithm, which starts with the two graphics cards

and creates GPU variables. The parallel function is then launched to

parallelize the calculations and transfer the entire trading algorithm

to the GPU. In order to perform calculations faster, they need to run

inside the GPU. Calculations are performed during each CPU CUDA

37

kernel cycle. Calculations are not queued but performed

simultaneously. With the help of the parallel function, the first three-

dimensional matrix is created which forms a 130x62000 matrix with

futures prices indicating purchase and sale prices. The formation of

this matrix triggers the following function that is called mazinta; it

helps to parallelize the selection of trading pairs, the detection of

trading and the closing trades signals. Additional multidimensional

matrices are created at the expense of GPU global memory. The first

created matrix is for all possible pairs, for each futures contract. In

parallel, the search of possible trading pairs is performed using

cointegration and least squares methods. However, the cointegration

method uses 4D matrices and extends the computation time because

some of the data has to be kept in a queue, which does not fully fit in

the available GPU memory. Therefore, after conducting the study

and developing a method that is not only faster but also more reliable

for the selection of pairs, the least squares method was chosen. When

the pair selection function pair is started, a new 3D matrix of only

the selected pairs is created. At the same time, the algorithm

eliminates possible duplicates of trading pairs. The trade function is

then launched, which performs the detection of trading signals on all

three trading strategies. The results obtained are stored in a 3D

matrix. In parallel, existing positions are checked to see whether a

closing signal has occurred or whether the maximum time to keep

the positions open has already been reached. The trading algorithm

ends when it sends the generated orders to the CPU that sends

trading or cancellation orders to electronic exchanges according to

the received information.

When the high-frequency data comes from the exchange, it

goes through the CPU memory to the GPU global memory where

each futures contract prices are first normalized. The normalization

process is parallelized so that all contracts prices are normalized at

once by implementing the MALTAB built it functions arrayfun and

bsxfun.

38

Fig. 11. The high-frequency data normalization

With the help of the mentioned functions, each futures

contract price p is normalized by performing the normalization

function, and normalized prices P are used for further calculations.

First, the 2D matrix of data is loaded to the CPU global

memory where columns represent the prices for different futures

contracts and rows represent different timestamps in nanoseconds for

the given day trading period.

The next step after the normalization is to look for all the pairs

of futures contracts that could be used for trading signal detection.

For this step, only normalized futures contract prices are used, and

all the calculations are done on the GPU. The following pair

selection methods are implemented:

 Least squared distance method;

 Cointegration method.

When the least square distance method is used for each futures

contract, the closest member is searched. For each futures contract,

the pair is formed by finding another futures contract with a

minimized sum of squared difference S in the normalized futures

contracts prices (Huck N. and Afawubo K., 2015).

39

𝑆𝑖,𝑗=∑ (𝑃𝑖,𝑡 − 𝑃𝑗,𝑡)
2𝑇

𝑡 (2)

Here Pi,t and Pi,t are normalized prices of different futures

contracts i and j, on time t and T is the trading window size (Huck N.

and Afawubo K., 2015).

The second method was based on cointegration and used to

detect the pairs for trading. Firstly, the algorithm checks whether all

the series are integrated in the same order by implementing the ADF.

After that, the cointegration tests are performed on all the possible

combinations of pairs. Cointegration is tested by using Engle and

Grangers 2-step approach and Johansen test (Huck N. and Afawubo

K., 2015).

The augmented Dickey Fuller test for a unit root assesses the

null hypothesis of a unit root:

𝑦𝑡 = 𝑐 + 𝜙𝑦𝑡−1𝛽1∆𝑦𝑡−1 +⋯+ 𝛽𝑝∆𝑦𝑡−𝑝 + 𝜀𝑡 (3)

Here Δ is the differencing operator that Δyt = yt- yt-1. The

variable p is determined empirically so that the mean zero error term

εt is serially uncorrelated. The null hypothesis of a unit root is as

follows:

𝐻𝑜: 𝜙 = 1 (4)

Its alternative is 𝜙 <1. If the ADF test is passed, then

cointegration is tested by applying the Engle and Grangers two-step

approach and Johansen test. The Engel and Ganger cointegration test

is a two-step approach embracing the following movements: if P1,t

and P2,t are the prices of the futures contracts at time t, then the first

step will require the regression of P1,t against P2,t :

𝑃1,𝑡 − 𝛽𝑃2,𝑡 = 𝜇 − 𝜀𝑡 (5)

Here μ denotes an intercept. The cointegration between the

two futures contracts is examined performing the analysis of the

order of integration of the residuals εt by using the ADF test. The

futures contracts are cointegrated on the condition that the residuals

of the regression are stationary.

If these tests are passed, the Johansen approach is adopted

once again to test whether the futures contract pair might be used for

40

trading. This approach helps to test the hypothesis of r, the

unrestricted cointegrating relationships in the unrestricted Vector

Autoregressive (VAR) model. The cointegrated pairs with the

highest trace statistics are kept as possible pairs. Then a deviation of

the relation P1,t - βP2,t from its historical mean μ is interpreted as a

possible trading pair (Huck N. and Afawubo K., 2015).

Before looking for all the possible pairs, the 3D matrices are

created. Each 3D matrix represents a different futures contract and its

possible pair. Here the first column represents the futures contract Pi

that is used for the whole 3D matrix, and the second column

represents its possible pair. Thus, each page of the mentioned matrix

represents all the possible pairs for the futures contract Pi with

normalized prices information. It is important to stress that 130 3D

matrices are created at this particular step. When all the 3D matrices

are prepared, the pair selection is implemented. Once again with the

help of the MATLAB built in function pagefun, all the pair

selections are parallelized and performed immediately as pagefun

function is applied to each page.

Fig. 12. High frequency data converted to the 3D GPU matrix

and passed to selected pairs for trading

41

As mentioned above, there are two possible methods for pair

selection, least square and cointegration. Depending on the

parameters, one or both methods could be employed. When both

methods are used, the pair is selected if both methods find that it is

cointegrated and in a minimal distance.

After all the possible trading pairs are found, a new 3D matrix

is created on their basis to perform trading selection on each page in

parallel. For the created 3D matrix, each first column represents the

futures contract Pi and the second column represents its pair PPi;

rows represent the normalized prices for the given futures contract.

Each page of 3D matrix represents a different pair.

Fig. 13. A 3D GPU matrix with the selected pairs is passed to

the trading signal selection part of the algorithm

Once a 3D matrix of the pairs is prepared, the trading signal

search is executed. Depending on the strategy, the trading signal

search may be different. On the basis of the parameters, it is possible

to use one, two or all three trading signal detection strategies. Then

the data is checked in order to see if the same trading signal has not

been already sent or if it is already closed and could be reopened.

42

When the trading signal is detected, the information from the GPU

memory is sent to the CPU memory and then goes to an electronic

exchange. The pair is used only by one trading strategy till the

closing signal or the period for keeping the position open is reached.

Finally, when all the aspects of the suggested statistical

arbitrage for HFT are explained and implemented in the given

research, the experimental setup is executed with backtesting and the

speed of the trading decisions is measured.

4. EXPERIMENTAL SETUP

It should be pointed out here that the research is based on 130

different futures contracts that were provided by the NANOTICK

company and contains tick-by-tick data of the contracts from the ME

group embracing the NYMEX, the COMEX and the CBOT. The

data is used from the period between the 30
th
 of April 2008 and the

3
rd

 of August 2018 that encompasses 69 trading days. All the

information about these 130 futures contracts is given in nanosecond

timestamp precision. Once the data was received, the average data

sending time was measured. The average time of the data sent from

this electronic market was 32,27 microseconds. This means that new

information about one of the provided futures contract is received

every 32,27 microseconds. The information from the electronic

market necessary for the given research is the buy and the sell prices

of the futures contracts and the timestamp.

Considering the fact that new information from the electronic

market provided by the NANOTICK Company comes on average

every 32,27 microsecond, the algorithm will have to make the

buy/sell decision during the indicated time or even faster in order to

achieve HFT and beat other market participants.

43

4.1. Requirements for solution implementation

The proposed statistical trading algorithm consists of several

parts that can be executed in parallel. The parallelization is limited

by the nature of the trading algorithm and the hardware in place. In

the given experiment, NVIDIA GeForce GTX 1060 6GB and

NVIDIA GeForce GTX 1070 Ti 8GB have been used.

The performance of a supercomputer is measured by the

number of floating-point operations per second (FLOPS) that the

machine is able to perform. Thus, it was interesting to calculate

FLOPS of the used system. In order to determine how well the

algorithm was utilizing the GPU, the calculation of the number of

FLOPS was made which was 13,276 FLOPS.

4.2. High frequency data in the research

The NANOTICK Company provided with 130 different future

contracts, encompassing 18 agriculture, 15 energy, 21 equities, 37 fx,

29 interest rate and 10 metals futures contracts. Each contract

consists of data with nanosecond precision timestamps.

Table 2. Future contracts used in the research
Agri-

culture
Energy Equit. Equit. FX FX FX

Inter.

rate

Inter.

rate
Metals

ZS CL ES RSV 6E SEK ACD GE TUL HG

ZM RB NQ TPY 6J EAD ENK ZQ TAF GC

KE HO YM SDA 6A EPZ - ZN FIT SI

ZL BZ RTY - RP ZAR - ZB FIX MGC

LE NG NKD - 6C NOK - UB NON QO

ZW QM NIY - RY PSF - NBY NCB PL

ZC HH BTC - ECD J7 - ZF TUF SIL

SOM MB EMD - M6E ANE - FYN TFY ZNC

HE NOB IBV - 6N 6Z - TUB NUB QC

44

XK FOB FT1 - 6S MJY - FYT ZT PA

GF BOB XAY - AJY 6L - TN N1U -

XC HP XAK - E7 M6A - TUT - -

GD NBP XAE - 6M PLN - TFY - -

XW TTE FTU - PJY SIR - BUB - -

DC QG XAV - RF MCD - NOL - -

CSC - RS1 - M6B MSF - FOL - -

CJ - RSG - CNH ESK - TEX - -

HET - XAI - SEK MIR - TUX - -

The main problem related to the high-frequency data is caused

by the discrepancies between the timestamps of the correlated

contracts. It occurred that the timestamps for trades or bid/ask

changes during the same trading second differ. For instance, if the

timestamp of the quote for the contract A changes at

16:45:00.024827526, in the contract B, one can notice quote changes

at 16:45:00.027226312 and no activity at 16:45:00.024827526. This

requires comparing the timestamp sequences of the correlated futures

contracts. If the timestamps differ, the contract that lacks the

timestamp is filled in with a missing timestamp and the previous

bid/ask or trade prices. As a result, not only the timestamps of the

correlated contracts are brought together but also the prices are kept

accurate.

All the information vital for this research is shown in the table

below:

Table 3. Data set example
Receiving

Date ReceivingT ime ID Symbol Asset

Security

Group

Entry

Type

Entry

Price

20180604 16:45:00.02477685 15144

GE:PS

M1-M2 GE GE A 0,75

20180604 16:45:00.02479496 15144

GE:PS

M1-M2 GE GE A 0,5

20180604 16:45:00.02481003 15144
GE:PS
M1-M2 GE GE A 0,25

20180604 16:45:00.02482752 15144 GE:PS GE GE A 0,25

45

M1-M2

20180604 16:45:00.02482752 15144
GE:PS
M1-M2 GE GE B 0,25

20180604 16:45:00.02493238 15144

GE:PS

M1-M2 GE GE A 0,25

20180604 16:45:00.02493238 15144
GE:PS
M1-M2 GE GE B 0,25

20180604 16:45:00.02494946 15144

GE:PS

M1-M2 GE GE A 0,25

20180604 16:45:00.02494946 15144
GE:PS
M1-M2 GE GE B 0,25

As shown in the table above, there are different entry types, A

and B, where A represents ask price and B represents bid price. The

trading algorithm used in this research shortens the futures contract

with the bid price and takes a long position of the futures contract

with the ask price. Since all the data is of high frequency, all the

market orders are made in high-frequency mode, which reduces the

risk of the order execution slippage to a minimum.

4.3. Tested trading strategies for the HFT

The statistical arbitrage strategies that are applied in this

research have already been adopted in previous studies that

measured their performance and profitability (Vaitonis M. and

Masteika S., 2018; Vaitonis M., 2017; Vaitonis M. and Masteika S.,

2016; Vaitonis M. and Masteika S., 2018; Vaitonis M., 2018). It was

concluded that such “end-of-day” strategies can be implemented on

high-frequency data and hence used in this research. Although these

strategies are based on the same methodology, their trading signal

detection methods differ. Statistical arbitrage strategy suggested by J.

Caldeira and G. V. Moura (Caldeira J. and Moura G. V., 2013)

detects trading signals by calculating at first the difference εt between

the pair for normalized price of the futures contract:

εt=Pi,t-pi,t. (6)

In the formula (2), εt indicates the difference between the

futures contracts Pi,t and its pair pi,t at time t. Later on the threshold zt

is found:

46

𝑧𝑡=𝜀𝑡−𝜇𝑡𝜎𝑡 (7)

Here μt is the mean and σt is the standard deviation of the

found pair of the futures contracts for former trading window. When

the threshold zt is calculated, the strategy may start searching for the

trading signals that are detected using the following logic (Caldeira J.

and Moura G. V., 2013):

Open long position, if zt< −2σ;

Open short position, if zt > 2σ;

Close short position, if zt < 0.75σ;

Close long position, if zt > −0.50σ (Caldeira J. and Moura G.

V., 2013).

The second strategy is based on the research carried out by M.

S. Perlini (Perlin M. S., 2009). Similarly to the former strategy, it is

necessary to calculate the difference εt between the two normalized

prices of the futures contracts and measure it against the threshold d,

which is defined by the trader before starting the process of trading.

When εt is calculated, long and short positions are established.

The trading positions are kept open till the spread becomes

smaller than the threshold d. If there are two commodity futures

contracts A and B, one pair for the selected trading window would be

Ai,t and Bi,t and the very trading would look as follows:

while d > spread;

if Ai,t>Bi.t, then short Ai,t and long Bi,t;

in other case, long Ai,t and short Bi,t (Perlin M. S., 2009).

The basic idea of the described statistical arbitrage strategy is

to follow the distance between the pair of the correlated futures

contracts normalized prices and wait till the threshold d is reached. In

such a case, there is a probability that the prices are going to

converge in the future, and this opportunity can be exploited to gain

the profit (Perlin M. S., 2009).

The third employed statistical arbitrage strategy is based on D.

Herlemont’s research offering the theoretical statistical arbitrage

model and focusing on its efficiency (Herlemont D., 2013).

47

While applying this trading strategy, mean μt and standard

deviation σt for the given trading window of the differences of

normalized futures contract prices have to be calculated. When the

difference of prices of found futures contract pair A and B, price is

<2* σt:

If At>Bt, then open short position with At and long position

with Bt;

If At<Bt, then open long position with At and short position

with Bt (Herlemont D., 2013).

All the positions should be closed when the differences

between the normalized prices of At and Bt pair are < μt, or the

maximum period of keeping the positions open is reached

(Herlemont D., 2013).

The data is not applied to the real market, but is used in a

simulated market. In order to find out whether profit or loss is

generated at the end of the research, all the arrays for each statistical

arbitrage strategy with the real prices for the opening and closing

long or short positions are considered to measure the result obtained

by the statistical arbitrage strategy (Vaitonis M. and Masteika S.,

2018; Perlin M. S., 2009):

𝑃𝐿=Σ(𝑙𝑠𝑖−𝑙𝑏𝑖)-𝐾 (8)

𝑃𝑆=Σ(𝑠𝑠𝑖−𝑠𝑏𝑖)-𝐾 (9)

The variable PL represents the profit from a long position, and

the variable PS marks the profit from a short position, while whereas

the variable i represents the trade that the profit/loss is calculated for.

The profit from a long position is the difference between the futures

commodity contract i sell – ls and buy – lb values minus K, which

isis the transaction cost representing the number of contracts. The

profit/loss for short positions is found in a similar manner; , where it

is equal to the difference between the futures commodity contract i

sell – ss and buy – sb, minus K. Finally, at the end of each algorithm,

the total profit is calculated (Vaitonis M. and Masteika S., 2018;

Perlin M. S., 2009):

TP=PL+PS (10)

48

It is important to stress that the given research is not based on

the profitability aspect for each trading strategy but on how fast each

of the trading strategies can generate and send the signal to the

market.

5. EXPERIMENTAL RESULTS

The previous research attempted to confirm that the use of

HFT brings better results compared to the profitability offered by

each strategy (Vaitonis M. and Masteika S., 2018; Vaitonis M.,

2017). The very fact that all the trading strategies can bring profit to

a trader demonstrates the necessity to create a new method for

making trading decisions with the use of the HFT mode enabling to

send trading decisions to an electronic exchange faster than new

information is received.

As the research focus on the very speed of data processing, it

is measured which way of pair selection was less time-consuming. In

order to find it out, two weeks trading period from the 30
th
 of April

2018 to the 11
th
 of May 2018 was tested. The average time showed

how much time was required to process the prices data from the

electronic exchange and send it back in seconds. Consider the results

given below:

49

Fig. 14. Time comparison based on the average response time

for each time data received from the electronic exchange each

trading day worked with the use of the least squared distance and

cointegration methods

It is hardly surprising that the least squared distance method

was less time-consuming. Even though both the cointegration and

least squared distance pair detection methods were parallelized, the

former included the measurement of more parameters and the

calculation of a significantly higher number of variables. In addition,

the use of the four-dimensional matrices which had to be converted

to the three-dimensional matrices for the GPU due to its architecture,

could not reach a better performance with the cointegration method.

The aim was to beat the time of sending data from the exchange in

32,27 microsecond.

50

Table 4. The average response time on each trading day was

calculated by using the least squared distance and cointegration

methods for selecting the trading pairs

Date

Cointegration

(µs)

Least squared distance

(µs)

2018.04.30 345,62 0,9446

2018.05.01 411,8 0,3017

2018.05.02 253,12 0,22312

2018.05.03 381,86 0,3018

2018.05.04 726,42 0,8264

2018.05.05 0 0

2018.05.06 0 0

2018.05.07 531,42 0,67142

2018.05.08 688,87 0,88587

2018.05.09 830,38 0,80938

2018.05.10 731,56 0,80156

2018.05.11 571,07 0,40101

Since the cointegration method needs more time to analyze the

given data with the hardware used in this research compared to the

data obtained from the electronic exchange, it was refused. Only the

least squared distance method was implemented. However, the

calculations of the Sharpe Ratio for each method were done in order

to find out which of them is more suitable.

The Sharpe Ratio is calculated by using the formula S=
𝜇𝑃𝑛𝐿

𝜎𝑃𝑛𝐿

where µPnL is the mean of profit and loss and σPnL is the standard

deviation from PnL. The same procedure was followed adopting the

strategy with the use of nanosecond and microsecond data.

51

Table 5. The Sharpe Ratio for each pairs selection method

Pair selection method Average
Standart

Deviation
Sharp Ratio

Least square distance 2060,55 2039,217237 1,010461819

Cointegration 951,514 1332,581485 0,714038351

To summarize, the higher the Sharpe Ratio, the better strategy

it marks. The table above demonstrates that the least squared

distance method is not only able to respond faster than the market

provides the information but also the Sharpe Ratio is higher, which

reveals that this method results in a better overall performance when

compared to the response time. Thus, in order to work with the given

high-frequency data without further modification of the hardware

used in this research, only the least squired method could be

effective.

On average, each trading day consists of 536909612

timestamps with 130 futures contracts bid/ask prices, resulting in the

total of 69798249560 records per day to be analysed. Depending on

the liquidity of the day, the number may vary. In the graph below,

more detailed information of the number of timestamps processed

each day is provided:

52

Fig. 15. The number of timestamps for each trading day

Actually, it took 711,11 nanoseconds on average to process

each timestamp in 62000 tick-by-tick trading window. It is necessary

to compare this result with the average response time for trading

strategy given in the graph below. It comes as no surprise that on the

days when more timestamps occured, it took a bit more time fo

algorithm to process the given data. Nevertheless, the response time

was still faster than the time needed for the information to come from

the electronic exchange. This can be explained by the fact that in 20

second or 62000 tick-by-tick trading window, more information had

to be processed.

53

Fig. 16. High frequency trading average response time for

every trading day

The implicated parallelization methods help to improve the

speed of data normalization, pair selection, and trading/closing signal

detection. Since all the data from the electronic exchange is received

with the nanosecond precision, it has to be processed and sent back

to the exchange at the same speed or even faster.

54

Fig. 17. High frequency trading time and the number of

timestamps for a given day

Looking a bit closer at the trading period from the 30
th
 of April

2008 to the 3
rd

 of August 2018 provides us with a better

understanding of the trading response time and the number of

timestamps for a given day. There is a clear correlation between

these two variables, hence the higher number of the response time,

the more timestamps occur. It is reasonable that the days with a

higher number of the timestamps would require more calculations to

be made by the trading algorithm, which happens due to more

changes and variations in the 62000 tick-by-tick data trading window

from the electronic market of the future markets. Such alterations

include the modifications in a high number of pairs, the creation of

more trading signals, and more opening and closing position. Thus,

more buy/sell signal recalculation will have to be made, due to the

higher intensity of the swapping of the trading pairs.

55

Overall, the proposed methodology of HFT significantly

increased the response time of the algorithm with regard to the

typical solutions. As a result, it improved the response time by 83,7

%. As mentioned earlier, the previous research tested the same

algorithm moved to the GPU without the multidimensional matrices,

no code vectorization, no parallel kernels and with only five futures

contracts that managed to give back information to the electronic

exchange in 849,49 microseconds. The proposed backtesting method

with the multidimensional matrices, code vectorization, and parallel

kernels when moved to the GPU with CUDA did improve the

response time almost 10 times and managed to send response in

711,11 nanosecond.

6. CONCLUSIONS

1. The thesis identifies the HFT strategies with the largest

market share. In the work, a market-leading statistical arbitrage

strategy that ensures the interconnection of correlating financial

instruments and the mutual integrity of financial markets is

formalized. Experimental studies have shown that daily closing price

statistical arbitrage strategies can be effectively applied in HFT.

After the computerization of the HFT strategies for statistical

arbitrage, the need for parallel calculations in the proposed method to

perform HFT tests with historical data was identified. A comparative

analysis of the FPGA and the GPU application that addressed the

challenges identified the advantage of GPU in terms of its floating-

point number operator and the economy of the solution.

2. While developing the method, the parts of the HFT

algorithm that are subject to parallelization were identified: HF data

normalization; selection and cancellation of the trading pairs; HFT

trade signal identification; trading position opening/closing. The

algorithm has been transferred to the GPU. The use of code

vectorization for the algorithm helped to achieve the average trading

56

decision speed of 2.77 milliseconds but it was insufficient in the

high-frequency data environment.

3. Multidimensional matrices for the GPU calculations have

been applied to increase the average HFT decision-making speed

along with code vectorization. The research found that using these

computational parallelization methods, the speed of trading decisions

improved to 76.88 microseconds, but this was an insufficient speed

compared to the speed of the data received from the electronic

exchanges, which is equal to 32.27 microseconds.

4. In order to make better use of the GPU cores and memory,

kernel parallelization was implemented. Combined with code

vectorization and multidimensional matrices, the proposed method

achieved the HFT speed that is higher than the speed of high-

frequency data received from the electronic exchanges. The

experiment showed that the number of loops for computations was

reduced using the proposed method, so the decision speed was

increased up to 389.63 times compared to the original method and

was equal to 711,1 nanoseconds, which is 45.37 times faster than the

speed of the data received from the stock exchanges.

LIST OF PUBLICATIONS ON THE TOPIC OF

DISSERTATION

1. Masteika S., Vaitonis M., Quantitative Research in

High Frequency Trading for Natural Gas Futures Market, Business

Information Systems Workshops, Springer International Publishing,

Vol. 228,p. 29-35, 2015.

2. Vaitonis M., Masteika S. (2016). High frequency

statistical arbitrage strategy engineering and algorithm for pairs

trading selection. 7th International Workshop on Data Analysis

Methods for Software Systems [abstracts book], Druskininkai,

Lithuania, December 3-5, 2015. ISBN 978-9986-680-58-1. p. 51.

3. Vaitonis M., Masteika S. (2016). Research in high

frequency trading and pairs selection algorithm with Baltic region

57

stocks. Information and Software Technologies. 22nd International

Conference, ICIST 2016, Druskininkai, Lithuania, October 13-15,

2016, Proceedings. ISBN 978-3-319-46254-7, p.p. 208 – 217.

4. Vaitonis M., (2017). Pairs Trading Using HFT in

OMX Baltic Market. Baltic J. Modern Computing, Vol. 5(2017), No.

1, 37-49

5. Vaitonis M., Masteika S. (2017) „Statistical Arbitrage

Trading Strategy in Commodity Futures Market with the Use of

Nanoseconds Historical Data“,Information and Software

Technologies: 23rd International Conference, ICIST 2017,

Druskininkai, Lithuania, October 12–14, 2017, Proceedings. R.

Damaševičius and V. Mikašytė (Eds.): ICIST 2017, CCIS 756, pp.

303–313, ISBN 978-3-319-67642-5

6. Vaitonis M., Masteika S. (2018). Experimental

Comparison of HFT Pair Trading Strategies using Microsecond and

Nanosecond Future Commodity Contracts Data. Baltic J. Modern

Computing, Vol. 6(2018), No. 2, 195-216, ISSN 2255-8950

REFERENCE

Aldridge I. (2013), High-Frequency Trading: A Practical Guide

to Algorithmic Strategies and Trading Systems. John Wiley & Sons,

368 p. ISBN: 978-0-470-57977-0.

Aldrige, I. (2010), High-Frequency Trading - A Practical Guide

to Algorithmic Strategies and Trading Systems, John Wiley and

Sons, Inc, Hoboken, New Jersey.

Anane M. and Abergel F., (2014). Optimal high frequency

strategy in an omniscient order book.

Asaduzzaman A., Gummadi D. and Yip C. M., (2014). A

talented CPU-to-GPU memory mapping technique,

SOUTHEASTCON 2014, Lexington, KY, pp. 1-6.

Beckhardt B., Frankl D.E., Lu C. and Wang, M.I. (2016). A

Survey of High-Frequency Trading Strategies.

58

Binh D., Faff R. and Hamza K., (2006). A new approach to

modeling and estimation for statistical arbitrage. In Proceedings of

2006 Financial Management Association European Conference, pp.

87–99.

Busch D. (2016) MiFID II: regulating high frequency trading,

other forms of algorithmic trading and direct electronic market

access, Law and Financial Markets Review, Vol. 10, No. 2, pp.72-

82.

Busch D., (2016) MiFID II: regulating high frequency trading,

other forms of algorithmic trading and direct electronic market

access, Law and Financial Markets Review, Vol. 10, No. 2, pp. 72-

82.

Caldeira J., Moura G. V. (2013). Selection of a portfolio of pairs

based on cointegration: A statistical arbitrage strategy, Revista

Brasileira de Financas, Vol. 11, No. 1, pp. 49–80.

Chelva M. S. and Sharanappa V. H., (2016). A Performance

Study of GPU, FPGA, DSP and Multicore Processors For Embedded

Vision Systems.

Coon B. W. and Lindholm J. E. (2008). System and method for

managing divergent threads in a SIMD architecture. US Patent

7,353,369.

Coon B. W. and Lindholm J. E. (2009). System and method for

managing divergent threads using synchronization tokens and

program instructions that include setsynchronization bits. US Patent

7,543,136.

Coon B. W., Lindholm J. E., Mills P. C. and Nickolls J. R.

(2010). Processing an indirect branch instruction in a SIMD

architecture. US Patent 7,761,697.

Coon B. W., Nickolls J. R., Lindholm J. E. and S. Tzvetkov D.

(2011). Structured programming control flow in a SIMD

architecture. US Patent 7,877,585.

Dacorogna M. M., Gencay R., Muller U., Olsen R. B., and

Olsen O. V., (2001). An introduction to high frequency finance.

59

International Review of Economics & Finance, Elsevier, Vol. 12,

No. 4, pp. 525-529.

Dickey D., Fuller W. (1979). Distribution of the Estimator for

Autoregressive Time series with a Unit Root, Journal of the

American Statistical Association, Vol. 74, pp. 427-431.

Driaunys K., Masteika S., Sakalauskas V., Vaitonis M. (2014).

An algorithm-based statistical arbitrage high frequency trading

system to forcast prices of natural gas futures. Transformations in

business and economics, Vol. 13, No. 3, p. 96–109.

Durbin M., (2010). All About High-Frequency Trading.

McGraw-Hill, New York.

Engle, R. F. and Granger C. W. J., (1987). Co-integration and

error correction: Representation, estimation, and testing,

Econometrica, Vol. 55, No. 2, pp. 251–276..

Foley D. and Danskin J., (2017). Ultra-performance Pascal GPU

and NVLink interconnect. In: IEEE Micro, Vol. 37, No. 2, pp. 7–17.

Garland M., et al. (2008). Parallel Computing Experiences with

CUDA, IEEE Micro, Vol. 28, No. 4, pp. 13-27.

Gatev E., Goetzmann W. N., Rouwenhorst K. G. (2006). Pairs

Trading: Performance of a Relative-Value Arbitrage Rule. The

Review of Financial Studies, Vol. 19, No. 3, p. 797-827..

Grozea C., Bankovic Z. and Laskov P., (2010). FPGA vs. Multi-

core CPUs vs. GPUs: Hands-On Experience with a Sorting

Application, Facing the Multicore-Challenge.

He F., Ren Y., Chen Y. and Cao Q. (2015). GPU Accelerate RD

Algorithm Based on MATLAB, International Journal of Advanced

Research in Computer Science & Technology, Vol. 3, No. 4, pp. 84-

86.

Herlemont D. (2013), “Pairs Trading, Convergence Trading,

Cointegration”, Quantitative Finance, Vol. 12, No. 9.

Horrigue, L., Ghodhbane, R., Saidani, T. and Atri M. (2018).

GPU acceleration of image processing algorithm based on Matlab

CUDA. International Journal of Computer and Network Security,

Vol. 18, pp. 91–99.

60

Huck N. and Afawubo K., (2015). Statistical arbitrage and

selection methods: is cointegration superior?, Applied Economics,

Vol. 47, No. 6, pp. 599-613

Jacquier A., (2017). Some Notes On Python For Finance,

Department of Mathematics, Imperial College Londo, URL

https://wwwf.imperial.ac.uk/~ajacquie/IC_IntroPython/IC_IntroPyth

on_Docs/PythonNotes.pdf.

Jones D. H., Powell A., Bouganis C. H. and Cheung P. Y. K.,

(2010). GPU Versus FPGA for High Productivity Computing, In

Proceedings of the 2010 International Conference on Field

Programmable Logic and Applications (FPL '10). IEEE Computer

Society, Washington, DC, USA.

Josephine A. and Fransson L., (2016). Algorithmic Trading

Based on Hidden Markov Models, , URL

https://gupea.ub.gu.se/bitstream/2077/44767/1/gupea_2077_44767_1

.pdf.

K. Group (1992). OpenGL - The Industry’s Foundation for High

Performance Graphics. URL https://www.opengl.org/.

K. Group (2009). The open standard for parallel programming

of heterogeneous systems. URL https://www.khronos.org/opencl/.

Kaya O. (2016), High – frequency trading. Reaching the limits,

Automated trader magazine. Vol. 41, pp. 23 – 27.

Kearns M., Kulesza A. and Nevmyvaka Y., (2010). Empirical

Limitations on High Frequency Trading Profitability, URL

https://ssrn.com/abstract=1678758.

Kirk D.B., Hwu W.M., (2010). Programming Massively Parallel

Processors: A Hands-On Approach, Morgan Kaufmann Publishers.

Klöckner A., Pinto N., Lee Y., Catanzaro B., Ivanov P. ir Fasih

A.(2012). PyCUDA and PyOpenCL: A Scripting-Based Approach to

GPU Run-Time Code Generation, Parallel Computing, Vol. 38, No.

3, pp. 157–174.

Krauss C. (2015), “Statistical arbitrage pairs trading strategies:

Review and outlook”, IWQW Discussion Paper Series, No. 09/2015.

https://gupea.ub.gu.se/bitstream/2077/44767/1/gupea_2077_44767_1.pdf
https://gupea.ub.gu.se/bitstream/2077/44767/1/gupea_2077_44767_1.pdf

61

Labaki J., Ferreira L. O. S. and Mesquita E., (2011). Constant

Boundary Elements on graphics hardware: a GPU-CPU

complementary implementation. Journal of the Brazilian Society of

Mechanical Sciences and Engineering, Vol. 33, No. 4, pp. 475-482.

Lai T. L. and Xing H., (2008). Statistical Models and Methods

for Financial Markets, Springer Texts in Statistics, Springer.

Li P., Zhang Q., Zhao R. and Yu H., (2015). Data layout

transformation for structure vectorization on SIMD architectures,

2015 IEEE/ACIS 16th International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), Takamatsu,, pp. 1-7.

Mackintosh P., (2019), Time is Relative: Where Trade Speed

Matters, and Where It Doesn't, URL

https://www.nasdaq.com/articles/time-relative%3A-where-trade-

speed-matters-and-where-it-doesnt-2019-05-30.

Mariano R. S. and Kuen Tse Y., (2008). Econometric

Forecasting And HighFrequency Data Analysis,Lecture Notes Series,

Institute for Mathematical Sciences, National University of

Singapore, World Scientific Publishing Company.

Matlab. (2015). se.mathworks.com. URL

https://se.mathworks.com/discovery/matlab-gpu.html.

Matlab. (2016), se.mathworks.com. URL

https://se.mathworks.com/help/distcomp/gpu-computing.html.

Miller R. S., Shorter G., (2016). High Frequency Trading:

Overview of Recent Developments, Congressional Research Service,

April 4; Washington D.C.

Miller S. J. (2006). The method of least squares. Mathematics

Department Brown University.

Minhas U. I., Bayliss S. and Contantinides G. A., (2014). GPU

vs FPGA: A Comparative Analysis for Non-standard Precision, In

proceedings of Reconfigurable Computing: Architectures, Tools, and

Applications, pp. 298-305

Nambia P.P., Saveetha V., Sophia S. and Sowbarnika A.,

(2014). GPU Acceleration Using CUDA Framework, International

https://www.nasdaq.com/authors/phil-mackintosh
https://www.nasdaq.com/articles/time-relative%3A-where-trade-speed-matters-and-where-it-doesnt-2019-05-30
https://www.nasdaq.com/articles/time-relative%3A-where-trade-speed-matters-and-where-it-doesnt-2019-05-30

62

Journal of Innovative Research in Computer and Communication

Engineering, Vol. 2 No. 3, pp. 200-205.

Nvidia (2007). CUDA Toolkit Documentation. URL

http://docs.nvidia.com/cuda/cuda-cprogramming-guide/index.html.7

Nvidia (2007). Nvidia CUDA C/C++. URL

https://developer.nvidia.com/cuda-toolkit.

Nvidia (2013). Parallel Thread Execution ISA. URL

http://docs.nvidia.com/cuda/parallel-threadexecution/index.html.

Nvidia (2018). Nvidia Volta Architecture Whitepaper. URL

http://images.nvidia.com/content/volta-architecture/pdf/volta-

architecturewhitepaper.pdf.

Nvidia (2019). CUDA toolkit documentation. URL

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

Nvidia. OpenCL Programming Guide for the CUDA

Architecture. URL

http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDI

A_OpenCL_ProgrammingGuide.pdf.

Perino F., (2014). Getting Started with MATLAB. URL

https://www.fisicamedica.it/sites/default/files/documenti/Perino.pdf.

Perlin M. S. (2009). Evaluation of Pairs-trading strategy at the

Brazilian financial market, Journal of Derivatives & Hedge Funds,

Vol. 15, No. 2, pp. 122–136.

Saikia M. J., Kanhirodan R., and Vasu R. M., (2014). High-

Speed GPU-Based fully three-dimensional diffuse optical

tomographic system. Journal of Biomedical Imaging, Vol 3.

Sugerman J., Fatahalian K., Boulos S., Akeley K. and Hanrahan

P., (2009). Gramps: A programming model for graphics pipelines,

ACM Trans. Graph., Vol. 28, pp. 4:1–4:11.

Uhrie R., Chaitali C. and John Brunhaver (2020). Automated

Parallel Kernel Extraction from Dynamic Application Traces. ArXiv

abs/2001.09995.

Vaitonis M. (2017). Statistical arbitrage Using HFT in OMX

Baltic Market, Baltic J. Modern Computing, Vol. 5, No. 1, pp. 37-49.

http://docs.nvidia.com/cuda/cuda-cprogramming-guide/index.html.7
https://developer.nvidia.com/cuda-toolkit
http://docs.nvidia.com/cuda/parallel-threadexecution/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf

63

Vaitonis M., (2018). CPU and GPU Implementations for High

Frequency Trading in Algorithmic Finance, Proceedings of the

International Conference on Information Technologies, pp. 119 –

124

Vaitonis M., Masteika S. (2016). Research in High Frequency

Trading and Pairs Selection Algorithm with Baltic Region Stocks, In:

Dregvaite G., Damasevicius R. Information and Software

Technologies. ICIST 2016. Communications in Computer and

Information Science, Vol. 639. Springer.

Vaitonis M., Masteika S. (2017). Statistical arbitrage trading

strategy applied on future commodity market using nanosecond

information, ICIST 2017, Communications in Computer and

Information Science, Vol. 756. Springer.

Vaitonis M., Masteika S., (2018), Experimental Comparison of

HFT Statistical arbitrage Strategies Using the Data of Microsecond

and Nanosecond Future Commodity Contracts, Baltic J. Modern

Computing, Vol. 6, No. 2, pp. 195-216.

Vaughan C.T., Cook J., Benner R.E., Dinge D.C., Lin P.T.,

Hughes C., Hoekstra R.J., Hammond S.D., (2018), On the Use of

Vectorization in Production Engineering Workload, Proceedings

CUG 2018 Stockholm, Sweden from 20-24 May.

Véstias M. P. and Horácio C. N., (2014). Trends of CPU, GPU

and FPGA for high-performance computing. 24th International

Conference on Field Programmable Logic and Applications (FPL).

Vidyamurthy G. (2004). Pairs Trading – Quantitative Methods

and Analysis. John Wiley & Sons, p. 224.

Zubulake, P. and Lee, S. (2011), The High Frequency Game

Changer - How Automated Trading Strategies Have Revolutionized

the Markets, John Wiley and Sons, Inc, Hoboken, New Jersey.

ABOUT THE AUTHOR

Mantas Vaitonis obtained bachelor’s degree in 2011 in the field

of Business Informatics at Vilnius University, Kaunas faculty. From

64

2011 till 2015 he worked as IT administrator at LTD NOVAKOPA.

In 2015 received Master of Business Informatics at Vilnius

University, Kaunas faculty. From 2015, is working as IT project

manager at LTD NOVAKOPA. He was a PhD student at Vilnius

University Kaunas Faculty from 2015 to 2019.

DIDELIO DAŽNIO KOMPIUTERIZUOTŲ PREKYBOS

STRATEGIJŲ INŽINERIJA FINANSINĖSE RINKOSE

SANTRAUKA

Elektroninėse vertybinių popierių biržose prekyba atliekama

investuotojų ir informacinių technologijų specialistų kuriamais ir

automatizuotais prekybiniais algoritmais. Iki šios dienos prekybiniai

algoritmai generuoja bemaž du trečdalius visų sandorių finansų

rinkose. Pastaraisiais metais algoritmų kompiuterizavimas ir

būtinybė būti greitesniam už konkurentus, atliekant investicinius

sprendimus bei prekybinius sandorius, dienos prekybą perkėlė į

nanosekundinių sandorių dažnį. Tobulėjant elektroninių biržų

informacinių technologijų infrastruktūrai, greitėjant sandorių

atlikimui bei spartėjant atliekamų sandorių dažniui, prekybos finansų

rinkų veikla labiau susiduria su informatikos inžinerijos nei

finansinių strategijų kūrimo problematika ir uždaviniais. Tampa

aktuali ir būtina tiriamoji mokslinės eksperimentinės plėtros veikla,

taikant informatikos inžinerijos žinias finansų sektoriaus dalykinėje

srityje, kuriant, testuojant ir pasiūlant inovatyvius sprendimus,

tinkamus spręsti didelio dažnio prekybos problematiką ir uždavinius.

Šiuo darbu siekiama sukurti, pritaikyti ir adaptuoti didelio dažnio

statistinio arbitražo prekybos algoritmo testavimo metodą, galintį

analizuoti realaus laiko nanosekundžių tikslumo duomenų, gaunamų

iš elektroninių biržų, srautą. Siekiant išsiaiškinti, kaip veikia didelio

dažnio prekyba elektroninėse biržose, darbe nagrinėti jų šaltiniai ir

elektroninės prekybos mokslo raida. Atlikta literatūros analizė

65

atskleidė, kad trūksta ištestuoto formalizuoto metodo ir technologinio

sprendimo, leidžiančio testuoti algoritmines didelio dažnio prekybos

– DDP strategijas finansų rinkose. DDP strategijų testavimą numato

Europos Sąjungos MiFID II direktyva, kuria siekiama DDP prekybos

operatorius įpareigoti testuoti naudojamas algoritmines ir DDP

strategijas. Nustatyta, kad nėra sprendimo, kaip testavimą

formalizuoti ir atlikti technologiškai, todėl reikia sukurti DDP

strategijų testavimo metodą. Siekiant įgyvendinti išsikeltą užduotį,

buvo sukurtas DDP statistinio arbitražo strategijų testavimo

algoritmo prototipas, kuris remiasi pasiūlytu metodu. Atlikus

testavimą, buvo įrodyta, kad taikomas metodas, kuris naudoja GPU

atmintį, kodo vektorizavimą, lygiagrečius skaičiavimus, daugiamates

matricas ir lygiagrečius branduolius, pasiekia užsibrėžtą tikslą ir

geba atlikti duomenų analizę bei priimti prekybos sprendimą greičiau

nei atkeliauja nauji duomenys iš elektroninės biržos.

Darbo objektas

Šio darbo tyrimo objektas – didelio dažnio statistinio arbitražo

algoritminės prekybos sistemos ir didelio dažnio duomenys

elektroninėse finansų biržose.

Darbo tikslas ir uždaviniai

Darbo tikslas – sukurti didelio dažnio statistinio arbitražo

prekybos testavimo metodą, priimantį algoritminės prekybos

sprendimus greičiau, nei generuojami nauji duomenys elektroninėse

biržose.

Darbo tikslui pasiekti iškelti uždaviniai:

1. Formalizuoti didelio dažnio algoritmines strategijas, nustatant

technologines specifikacijas didelio dažnio duomenų apdorojimui,

ištestuoti statistinio arbitražo DDP strategijų efektyvumą, pritaikyti

įgytas žinias šio darbo tikslui pasiekti.

2. Pasiūlyti ir sukurti DDP testavimo ir duomenų apdorojimo

realiu laiku metodą, kuris dirbtų su didelio dažnio duomenimis ir

66

atliktų algoritminės prekybos skaičiavimus sparčiau nei gaunami

didelio dažnio duomenys iš elektroninių biržų.

3. Ištestuoti sukurtą metodą, sukuriant DDP testavimo įrankio

prototipą, leidžiantį atlikti skaičiavimus su didelio dažnio ir apimties

duomenimis.

4. Aprašyti gautus rezultatus ir pastebėjimus, įvertinti sukurto

didelio dažnio statistinio arbitražo prekybos algoritmų testavimo

metodo taikymo galimybes ir galimus apribojimus.

Tyrimo metodika

Rengiant darbą, remtasi moksline literatūra, moksliniais

straipsniais, šaltiniais internete. Darbe taikomi metodai: mokslinės

literatūros analizė ir apibendrinimas, stebėjimas, skaitmeninis

modeliavimas, atrankos metodas, sintezė, eksperimentai, koreliacinė

analizė, statistinė analizė, kompiuterinis duomenų apdorojimas.

Sistemine darbų ir analitine tyrimų apžvalga siekiama

išanalizuoti esamas didelio dažnio prekybos sistemas ir

technologijas, išsiaiškinti jų taikymo metodus; taip pat siekiama

teoriškai pagrįsti kuriamo didelio dažnio statistinio arbitražo

prekybos algoritmo ir didelio dažnio duomenų apdorojimo metodo

poreikį.

Teorinėje tyrimo dalyje aiškinamas sukurto modelio poreikis,

leidžiantis įgyvendinti išsikeltus tikslus, taip pat aprašoma

platformos architektūra. Toliau pateikiamas teorinis didelio dažnio

statistinio arbitražo prekybos algoritmo prototipas ir didelio dažnio

duomenų apdorojimo metodas, nagrinėjamas jų teorinis ir praktinis

tinkamumas, pristatomas tyrimo eksperimentas, jame naudojami

duomenys ir nurodomos nuostatos, pagal kokius kriterijus bus

vertinamas eksperimentas.

Po teorinės dalies aptariamas atliktas eksperimentas, vertinamas

sukurtas prototipas, pasirinkta platformos architektūra,

argumentuojamas pasirinktas didelio dažnio statistinio arbitražo

prekybos sistemos modelis.

67

Mokslinis naujumas

Nors didelio dažnio prekyba yra neretai aptariama verslo

publikacijose, tačiau jos informatikos inžinerijos aspektas mažai

nagrinėjamas. Labai mažai informacijos yra apie didelio dažnio

prekybos sistemų taikymą (limitacijas ir rizikas) bei optimalius

technologinius reikalavimus. Daugumoje mokslinių straipsnių,

susijusių su didelio dažnio prekyba, tyrinėjamos optimalių strategijų

parinkimo metodologijos, nusakančios, kaip matuoti didelio dažnio

prekybos strategijų pelningumą, kokie yra optimalūs prekybos

strategijos naudojami parametrai, kada pateikti sandorių informaciją

elektroninėms biržoms, kaip matuoti didelio dažnio prekybos

aktyvumą, taip pat tai, kas nėra susiję su optimalia didelio dažnio

prekybos sistemų konfigūracija, architektūra, metodu, kaip taikyti

didelio dažnio prekybos sistemas pasirinktai technologiniai

platformai (Vaitonis M., 2018, Kearns M. et al. 2010, Anane M. ir

Abergel F., 2014, Beckhardt B. et al., 2016). Todėl svarbu detaliau

išnagrinėti didelio dažnio prekybos sistemas, jų taikymą, architektūrą

ir galimus inžinerinius sprendimus, kurie padėtų įgyvendinti didelio

dažnio prekybą dirbant su didelio dažnio ir apimties duomenimis.

Norint naudoti didelio dažnio prekybos algoritmus, reikia

įvertinti, keliose biržose bus prekiaujama, kiek finansinių

instrumentų ir skirtingų prekybos strategijų bus naudojama, koks bus

naudojamų duomenų dažnumas (sekundiniai, milisekundiniai ir t. t.),

koks bus lango, kuriame vyks prekyba, dydis. Priklausomai nuo

pasirinktos konfigūracijos, gali paaiškėti, kad, norint įgyvendinti

didelio dažnio prekybą, teks lygiagrečiai atlikti tūkstančius

skaičiavimų.

Tyrimo metu naudojant statistinio arbitražo strategijas, reikia

rasti koreliuotas finansinių instrumentų poras. Tai atlikti, naudojantis

didelio dažnio duomenimis, tampa labai sudėtinga. Taip nutinka, nes

skirtingi finansiniai instrumentai rinkose juda skirtingu dažnumu,

todėl, norint palyginti didelio dažnio prekybos duomenis, juos reikia

agreguoti. Dėl prieš tai jau minėtų priežasčių, pereinant į didelio

dažnio prekybą su didelio dažnio duomenimis, prekyba vykdoma ne

68

tam tikru laiku, bet pagal tai, kiek būna gaunama tick-by-tick

duomenų. Todėl algoritmai seka ne paprastą laiką, bet pasirinkto

GPU procesorių ciklų skaičių, t. y. prekybos langas yra ne tam tikras

laikas, bet gautų duomenų kiekis ir procesoriaus ciklų skaičius.

Darbe iškelta ir patvirtinta hipotezė – kodo vektorizacijos

naudojimas, kai statistinio arbitražo DDP algoritmas perkeliamas į

GPU, algoritmo duomenys formuojami kaip daugiamatės matricos ir

algoritmo skaičiavimai, vykdomi lygiagrečiai išskaidant juos tarp

atskirų lygiagrečių branduolių (angl. kernel), leidžia priimti didelio

dažnio prekybos sprendimus greičiau nei gaunamas didelio dažnio

duomenų srautas iš elektroninių biržų.

Sukurtas didelio dažnio statistinio arbitražo prekybos testavimo

metodas, kuriuo šio tipo prekybos algoritmas perkeltas į GPU

aplinką, sujungus kodo vektorizaciją, daugiamates matricas ir

branduolių lygiagretinimą, yra pakankamas priimti prekybinius

sprendimus.

Darbo rezultatų praktinė vertė

Disertacijoje pasiūlyta technologija, būdas ir jais grįstas

sukurtas metodas, kuris leidžia apdoroti didelio dažnio ir apimties

duomenis didelio dažnio prekybos strategijose greičiau nei gaunami

nauji duomenys iš elektroninių biržų. Tai leidžia aplenkti kitus rinkos

dalyvius. Sprendimo esmė – ne tik greitas duomenų apdorojimas, bet

ir greitas teisingo prekybos sprendimo priėmimas. Atsižvelgus į tai,

kad dėl komercializacijos visi didelio dažnio prekybų sistemų

sprendimai yra konfidencialūs, būtina moksliškai aprašyti jų veikimo

principą ir parodyti, kaip šiose sistemose taikomi metodai gali padėti

kitose mokslo srityse. Disertacijoje pasiūlytas metodas gali būti

taikomas ne tik realiai prekybai, bet gali būti naudojamas kaip DD

statistinio arbitražo strategijų testavimo metodas. Šio metodo reikia

dėl MiFID II direktyvos, kuri reikalauja iš prekybos operatorių

tikrinti visas algoritminės ir didelio dažnio prekybos sistemas, kurios

veikia pas juos.

69

Atliktų tyrimų pagrindu gali būti kuriama sistema, kuri leistų,

naudojantis GPU, atlikti didelio dažnio skaičiavimus. Šie

skaičiavimai gali būti pritaikomi didelio dažnio prekyboje siekiant

pelno arba elektroninėse biržose didinant likvidumą. Taip pat tie

patys metodai gali būti pritaikomi kitose mokslo srityse, kuriose

reikia greitai ir teisingai priimti sprendimus, pavyzdžiui dirbtinio

intelekto srityje.

Ginamieji teiginiai

Disertacijos ginamieji teiginiai:

1. Didelio dažnio statistinio arbitražo prekybos strategijų

formalizavimo metodologija, kuria remiantis galima nustatyti

optimalų duomenų normalizavimo ir prekybos langą algoritminėje

prekyboje mili ir nanosekundiniu dažniu, yra tinkama įvertinti

strategijų efektyvumą.

2. DDP priimami sprendimai, naudojant didesnio dažnio

duomenis, yra efektyvesni algoritminėje prekyboje ir nulemia

skaičiavimų lygiagretinimo būtinybę.

3. Sujungus kodo vektorizaciją, daugiamates matricas,

branduolių lygiagretinimą ir perkeliant formalizuotus algoritmus į

GPU, pasiekiama duomenų apdorojimo sparta yra didesnė, nei

generuojamas didelio dažnio duomenų srautas elektroninėse biržose.

Darbo aprobavimas

Disertacijos rezultatai pristatyti aštuoniose mokslinėse

konferencijose:

1. 2015 metais BIS 2015 tarptautinėje mokslinėje

konferencijoje „Business Information Systems Workshops“

Poznanėje, Lenkijoje skaitytas pranešimas „Quantitative Research in

High Frequency Trading for Natural Gas Futures Market“.

2. 2015-12-03–2015-12-05 7-ojoje mokslinėje konferencijoje

DAMSS 2015 „Duomenų analizės metodai programų sistemoms“

Druskininkuose pristatytas stendinis pranešimas „High frequency

70

statistical arbitrage strategy engineering and algorithm for pairs

trading selection“.

3. 2016-10-13–2016-10-15 ICIST 2016 22-ojoje

„Tarptautinėje informacijos ir programų technologijų konferencijoje“

Druskininkuose skaitytas pranešimas „Research in high frequency

trading and pairs selection algorithm with Baltic region stocks“.

4. 2016-12-01–2016-12-03 8-ojoje mokslinėje

konferencijoje DAMSS 2016 „Duomenų analizės metodai programų

sistemoms“ Druskininkuose pristatytas stendinis pranešimas „

Computerized high frequency trading of nanoseconds in futures

market“.

5. 2017-10-12–2017-10-14 ICIST 2017 23-ojoje

„Tarptautinėje informacijos ir programų technologijų konferencijoje“

Druskininkuose skaitytas pranešimas „Statistical Arbitrage Trading

Strategy in Commodity Futures Market with the Use of Nanoseconds

Historical Data“.

6. 2017-11-30 – 2017-12-02 9-oje mokslinėje

konferencijoje DAMSS 2017 „Duomenų analizės metodai programų

sistemoms“, Druskininkuose, skaitytas pranešimas „Research in

High Frequency Statistical Arbitrage Strategies Applied to

Microsecond and Nanosecond Information“.

7. 2018-04-27 IVUS 2018 23-ojoje tarptautinėje

mokslinėje konferencijoje Kaune „Information Society and

University Studies“ skaitytas pranešimas „CPU and GPU

Implementations for High Frequency Trading in Algorithmic

Finance“.

8. 2018-05-29 SYSTEM 2018 23-ojoje tarptautinėje

mokslinėje konferencijoje Gliwice, Lenkijoje „Information Society

and University Studies“ skaitytas pranešimas „Algorithmic trading

and machine learning based on GPU“.

71

Dizertacijos rezultatai pateikti šešiose mokslinėse

publikacijose:

1. Masteika S., Vaitonis M., Quantitative Research in

High Frequency Trading for Natural Gas Futures Market, Business

Information Systems Workshops, Springer International Publishing,

Vol. 228, p. 29–35, 2015 m.

2. Vaitonis M., Masteika S. (2016). High frequency

statistical arbitrage strategy engineering and algorithm for pairs

trading selection. 7th International Workshop on Data Analysis

Methods for Software Systems [abstracts book], Druskininkai,

Lithuania, December 3-5, 2015. ISBN 978-9986-680-58-1. p. 51.

3. Vaitonis M., Masteika S. (2016). Research in high

frequency trading and pairs selection algorithm with Baltic region

stocks. Information and Software Technologies. 22nd International

Conference, ICIST 2016, Druskininkai, Lithuania, October 13-15,

2016, Proceedings. ISBN 978-3-319-46254-7, p.p. 208 – 217.

4. Vaitonis M., (2017). Pairs Trading Using HFT in

OMX Baltic Market. Baltic J. Modern Computing, Vol. 5(2017), No.

1, 37-49.

5. Vaitonis M., Masteika S. (2017) „Statistical Arbitrage

Trading Strategy in Commodity Futures Market with the Use of

Nanoseconds Historical Data“,Information and Software

Technologies: 23rd International Conference, ICIST 2017,

Druskininkai, Lithuania, October 12–14, 2017, Proceedings. R.

Damaševičius and V. Mikašytė (Eds.): ICIST 2017, CCIS 756, pp.

303–313, ISBN 978-3-319-67642-5.

6. Vaitonis M., Masteika S. (2018). Experimental

Comparison of HFT Pair Trading Strategies using Microsecond and

Nanosecond Future Commodity Contracts Data. Baltic J. Modern

Computing, Vol. 6(2018), No. 2, 195-216, ISSN 2255-8950.

Bendros išvados

1. Darbe nustatytos didžiausią rinkos dalį užimančios

DDP strategijos. Formalizuota rinkoje lyderio pozicijas

72

užimanti,statistinio arbitražo strategija, užtikrinanti koreliuojančių

finansinių instrumentų susietumą, finansinių rinkų tarpusavio

integralumą. Atlikus eksperimentinius tyrimus, nustatyta, kad dienos

uždarymo kainų statistinio arbitražo strategijos gali būti efektyviai

pritaikomos didelio dažnio prekyboje. Kompiuterizavus statistinio

arbitražo DDP strategijas, nustatyta lygiagrečių skaičiavimų būtinybė

siūlomame metode, siekiant atlikti DDP patikimumo testavimus su

istoriniais duomenimis, vykdyti didelio dažnio prekybą realiu laiku.

Atlikus palyginamąją FPGA ir GPU taikymo analizę, skirtą spręsti

keliamus uždavinius, nustatytas GPU pranašumas dėl slankiojo

kablelio skaičiaus operatoriaus, skaičiavimų resursų pakankamumo ir

ekonomiškumo.

2. Sudarant metodą, išskirtos DDP algoritmo dalys,

kurioms taikytinas lygiagretinimas, t. y. DDP duomenų

normalizavimo, prekybinių instrumentų porų parinkimo ir

anuliavimo, DDP prekybos signalų identifikavimo, prekybinių

pozicijų atidarymo / uždarymo algoritmo dalys perkeltos į GPU

skaičiavimus. Algoritmo kodo vektorizavimas parodė, kad vidutinis

sprendimų priėmimo greitis lygus 2,77 milisekundėms, tačiau jis yra

nepakankamas didelio dažnio duomenų aplinkos prekyboje.

3. Siekiant paspartinti vidutinį DDP sprendimų

priėmimo greitį, kartu su kodo vektorizacija pritaikytos daugiamatės

matricos GPU skaičiavimams. Atlikus eksperimentą, nustatyta, kad

taikant šiuos skaičiavimų lygiagretinimo metodus, prekybos

sprendimų greitis pagerėjo iki 76,88 mikrokundžių, tačiau jis buvo

nepakankamas, palyginti su gaunamų duomenų greičiu iš

elektroninių biržų, kuris lygus 32,27 mikrosekundėms.

4. Norint geriau išnaudoti GPU branduolius ir atmintis,

buvo panaudotas branduolių lygiagretinimas. Sujungus jį su kodo

vektorizavimu ir daugiamatėmis matricomis, darbe siūlomas metodas

pasiekė DDP greitį, kuris yra didesnis už gaunamų didelio dažnio

duomenų greitį iš elektroninių biržų. Atliktas eksperimentas

atskleidė, kad, taikant pasiūlytą metodą, buvo sumažinta skaičiavimų

išsišakojimų, todėl sprendimų greitis padidėjo iki 389,63 kartų,

73

palyginti su pradiniu metodu, ir tapo lygus 711,11 nanosekundžių.

Tai yra 45,37 kartų greičiau nei gaunami duomenys iš biržų.

TRUMPAI APIE AUTORIŲ

Mantas Vaitonis 2011 m. įgijo verslo informatikos bakalauro

laipsnį Vilniaus universitete Kauno fakultete. Nuo 2011 iki 2015 m.

dirbo IT administratoriumi UAB „NOVAKOPA“. 2015 m. įgijo

verslo informatikos magistro laipsnį Vilniaus universitete Kauno

fakultete. Nuo 2015 m. dirba UAB „NOVAKOPA“ IT projektų

vadovu. 2015–2019 m. jis buvo Vilniaus universiteto Kauno

fakulteto doktorantas.

NOTES

NOTES

Mantas Vaitonis

HIGH FREQUENCY COMPUTERIZED TRADING

STRATEGIES ENGINEERING IN FINANCIAL MARKETS

Summary of a Doctoral Dissertation

Technological Sciences

Informatics Engeneering (T 007)

Editor Evelina Kazakevičiūtė

Mantas Vaitonis

DIDELIO DAŽNIO KOMPIUTERIZUOTŲ PREKYBOS

STRATEGIJŲ INŽINERIJA FINANSINĖSE RINKOSE

Daktaro disertacijos santrauka

Technologijos mokslai

Informatikos inžinerija (T 007)

Redaktorė Gabija Bankauskaitė

Vilniaus universiteto leidykla

Saulėtekio al. 9, LT-10222 Vilnius

El. p. info@leidykla.vu.lt

www.leidykla.vu.lt

Tiražas 35 egz.

