
 Command Summary:
Quick reference guide to useful codes in the Cart3D distribution

Release v1.5.9

November, 2022

$CART3D/doc/COMMAND_SUMMARY.pdf

Cart3D

adapt 1
adjointCart 2
adjointErrorEst_quad 3
aero.csh 4
aero_archive.csh 4
aero_getResults.pl 5
aero_redo.csh NEW! 5
aero_upgrade.py 5
aerograce.csh 5
autoInputs 6
breakTris 6
c3d_checkInputs.py 7
c3dvis 7
clic 7
c3d_parallel_runner.pl NEW! 8
closestPair 9
comp2tri 9
config_space 9
cubes 10
cutter 11
diagnoseGeom.pl 11
diffTriq 12
do_compAvgs.csh 12
dxf2tri.pl 12
flowCart & mpix_flowCart 13
inspectMesh 14
intersect 14
LDM.pl 15
livePlot.pl 15
lsee.pl 16
mesh2mesh 17
mgPrep & mgTree 18
mk_aeroTables.csh 18
model2aero.pl 19
net2p3d 19
reorder 19
stl2tri.pl 20
tri2stl 20
triangulate 20
trimCutPlanes NEW! 21
trix 22
viscousDrag 23
wrl2c3d.pl 23
ws_builder.csh 24
ws_runner.csh 24
xsensit 25

$CART3D/doc/COMMAND_SUMMARY.pdf – i –

 Contents:

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/adapt

Mesh adaptation module for Cart3D. adapt is used to refine an existing mesh either using feature detec-
tion or adjoint-based error estimates. It takes as input an existing mesh and checkpoint file and returns an
adapted mesh and an accompanying checkpoint file with the prolonged solution. This mesh & checkpoint
file can then be run by flowCart to advance the solution further. Technical description in AIAA Paper
2003-0862, & AIAA 2008-6593 available on-line at:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa2002-0863.pdf
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa2008-6593.pdf

 Usage: adapt [argument list]
 e.g.: % adapt -adjoint -i ../adapt01/Mesh.mg.c3d -v -growth 1.4 -b 2
Options:

-i %s Input file name, must be specified. (e.g. Mesh.mg.c3d)
-o %s Output file name, default:<adaptedMesh.R.c3d>
-in %s Input checkpoint file name, default:<preAdapt.ckpt>
-out %s Output checkpoint file name, default:<postAdapt.ckpt>
-v Verbose mode ON
-no_reorder Don't reorder adapted mesh, outfile='adaptedMesh.c3d'
-sfc %c H = Peano-Hilbert ordering (default), M = use Morton
-y_is_spanwise Default assumes z_is_spanwise direction
-mesh2d 2D mesh: XY dir refinement only
-seq Write two-level (input and adapted) mesh sequence
-prolongMap Prolong error estimates from input to adapted mesh
 This allows you to call adapt on its own output
-no_ckpt Do not write output checkpoint file
-Dtagged Dump tecplottable file <taggedHexes.dat>
-DerrorMetric Dump text file for histograms <cellwiseErrorMetric.dat>
-Xcut %d Num of X=const cut planes <aPlanes.dat>
-Ycut %d Num of Y=const cut planes <aPlanes.dat>
-Zcut %d Num of Z=const cut planes <aPlanes.dat>
-pre %s Pre-specified adapt region filename (default = NONE)

 ----- Adaptation Criteria (select one or more) -----
-t %F Adaptation threshold <default = 2.2>
-b %d Number of buffering sweeps <default = 2>
-maxRef %d Max allowed refinement level in mesh <default = none>
-stats Output error statistics and exit
-useSplitTags Allow split-cell error estimates (fragile, not yet recommended)
-adjoint use adjoint-based error ests. for refinement
-Rtau Use Tau LTE estimates for refinement
-Rtrack Use ref params computed with "flowCart -track"
-Rvmag Use first diff of velocity for refinement
-RsqrtM Use first diff of square root of Mach number for refinement
-Rrho Use first diff of density for refinement
-RrhoAtm Use first diff of density variation from atmosphere for refinement
-Rshock Use shock detection
-RcutCells Tag all cut-cells
-RallCells Create embedded mesh (refine all cells)
-growth %F Target mesh growth factor (Adjoint, Rvmag, Rrho: min 1.01 -- max 8)
-maxErr %F Specifiy max error value for error normalization (use w/ “-Rtrack")
-tagBelowHeight %F Tag cells below alt. (> 0). Use only w/ Froude No. & gravity

 o Required files:
• Mesh.mg.c3d => Cart3D mesh in SFC order
• Mesh.c3d.Info => Mesh info file for input mesh
• preAdapt.ckpt => Cart3D checkpoint file on input mesh

$CART3D/doc/COMMAND_SUMMARY.pdf – of –1 25

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa2002-0863.pdf
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa2008-6593.pdf

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/adjointCart

Parallel discrete adjoint solver for Cart3D. This code is usually invoked by aero.csh. See technical de-
scription in NASA/TP-2016-219422 and AIAA Paper 2005-0877, available on-line at:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160013550.pdf and
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.472&rep=rep1&type=pdf

 Usage: adjointCart [argument list]
 e.g.: % adjointCart -fine -T -binaryIO -N 150 -mg 3 -limiter 2 -tm 1 -cfl 1.1
 Options:

 -- Runtime Options--
-N %d Max number of MultiGrid cycles to advance
-fine Do -N cycles on finest mesh (incremental if restart) <FALSE>
-choice %d 1=do_mg_new, 2=jameson, 3=orig_do_mg_cycle
-mg %d Number of multigrid levels
-gs %d Use grid sequencing on # levels for startup (no mg)
-cfl %f CFL number
-rampUp %f ramp up factor from .01*CFL, default: off
-tm %f cut-cell Grad mod (1stOrd=0. -> 1.0=2ndOrd) def: 1.0
-limiter %d 0=None, 1=BJ, 2=VanLeer, 3=SinLim, 4=VanAlbada, 5=MinLim
-buffLim Buffer vol hex limiters default: <false>
-buffLimCC Buffer cut-cell limiters, default: <false>
-flux %d Flux function (0=VanLeer, 1=Colella, 2=HLLC)
-no_fmg no full multigrid (start MG at finestLevel)
-subcell Use subcell resolution on finest mesh
-gr Use grads in MGrestrict (auto ON if gradEval all stages)
-nPart %d Number of Sub Domains for partitioning
-order %d SubDomain ordering, 0=No Reordering, 1=RCM, 2=MLD
-gradhis Evaluate optimization gradient in forcesADJ.dat
-y_is_spanwise Default assumes z_is_spanwise direction

 -- I/O Options --
-v verbose mode ON
-mem Report memory usage (auto on with -v)
-i %s Input file name, default:<input.cntl>
-T Dump surf triangulation in Tecplot format <surfName.dat>
-clic Dump surf triangulation in Clic format <surfName.triq>
-no_his Turn off writing history file <historyADJ.dat>
-binaryIO Write post-processing data in binary (plotfiles etc.) <FALSE>
-Xcut %d Num of X=const cut planes <disjointCutPlanes.dat>
-Ycut %d Num of Y=const cut planes <disjointCutPlanes.dat>
-Zcut %d Num of Z=const cut planes <disjointCutPlanes.dat>
-version Dump version info and exit
-Dmatrix Dump i,j formatted connectivity Matrices
-Dcut Dump tecplottable file <cutcells.dat>

-no_ckpt Suppress checkPointing
-restart Restart into any # of partitions <Restart.file>

 o Required files:

• Flow.file => Converged flow solution check-point file
• dObjdQ.q => Right Hand Side (RHS) of linear system
• dResdX.q => Residual sensitivity (optional)

$CART3D/doc/COMMAND_SUMMARY.pdf – of –2 25

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160013550.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.472&rep=rep1&type=pdf

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/adjointErrorEst_quad

Parallel adjoint-based error estimation module for Cart3D. adjointErrorEst_quad takes the coarse
mesh, flow solution and adjoint and estimates error on a uniformly refined embedded mesh to produce a
cell-wise error estimate on the coarse input mesh. This code is usually invoked by aero.csh. See technical
description in NASA/TP-2016-219422 and AIAA Paper 2007-4187, available on-line at:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160013550.pdf and
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa2007-4187.pdf

 Usage: adjointErrorEst_quad [argument list]
 Options:

 -- Runtime Options--
-etol %f Absolute error tolerance on functional
-tm %f cut-cell Grad mod (1stOrd=0. -> 1.0=2ndOrd) def: 1.0
-limiter %d 0=None, 1=BJ, 2=VanLeer, 3=SinLim, 4=VanAlbada, 5=MinLim
-buffLim Buffer vol hex limiters default: <false>
-buffLimCC Buffer cut-cell limiters, default: <false>
-flux %d Flux function (0=VanLeer, 1=Colella, 2=HLLC)
-subcell Use subcell resolution on finest mesh
-gr Use grads in MGrestrict (auto ON if gradEval all stages)
-nPart %d Number of Sub Domains for partitioning
-order %d SubDomain ordering, 0=No Reordering, 1=RCM, 2=MLD
-y_is_spanwise Default assumes z_is_spanwise direction

 -- I/O Options --
-v verbose mode ON
-mem Report memory usage (auto on with -v)
-i %s Input file name, default:<input.cntl>
-binaryIO Write post-processing data in binary (plotfiles etc.) <FALSE>
-Xcut %d Num of X=const cut planes of error estimates <disjointCutPlanes.dat>
-Ycut %d Num of Y=const cut planes of error estimates <disjointCutPlanes.dat>
-Zcut %d Num of Z=const cut planes of error estimates <disjointCutPlanes.dat>
-version Dump version info and exit
-histo Dump cell-wise errors (useful for histograms)
-Dcut Dump tecplottable file <cutcells.dat>

 o Required files:
• Adjoint.file => converged coarse-mesh adjoint check-point file
• Flow.file => converged coarse-mesh flow check-point file
• Mesh.mg.c3d => Cart3D mesh in SFC order
• Mesh.c3d.Info => Mesh info file for input mesh

$CART3D/doc/COMMAND_SUMMARY.pdf – of –3 25

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160013550.pdf
http://www.nas.nasa.gov:~aftosmis/

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/aero.csh

 Top-level driver for adjoint-based mesh adaptation with Cart3D. Copy to working directory and edit user
configurable params. See samples & README.txt in $CART3D/cases/samples_adapt.

• Use 'restart' or '-restart' to run more adaptation cycles. Handles abnormal exits due to machine crash-
es, etc. To restart from a specific 'adapt??' directory, delete all adapt directories that follow it. For exam-
ple, to restart from adapt06 in a run that finished at adapt08, delete adapt07 and adapt08 and restart.
This flag is ignored if there are no 'adapt??' directories and an error is reported if the file AERO_-
FILE_ARCHIVE.txt is detected.
• Use 'jumpstart' or '-jumpstart' to start an adaptive from a given input mesh. To do this, put a

Mesh.c3d.Info file and a mesh file (Mesh.mg.c3d, Mesh.R.c3d, or Mesh.c3d) in the same directory as
aero.csh (along with the other usual input files) and the run will start from this mesh.
• Use 'skipfinest' or '-skipfinest' to skip solving on the finest mesh. This is used when wishing to run a

different solver on the finest mesh, e.g. the MPI version of flowCart. The final adapt directory contains the
final mesh, all the input files and a FLOWCART.txt file that contains the command line. Note that the
BEST link points to the previous 'adapt??' directory.
• Use 'archive' or '-archive' to generate a run archive. This option deep cleans the run directory tree,

keeping only the essential output files. Once archived, restarts are not possible. This option simply calls
the aero_archive.csh script.
• Set the environment variable “debug_verbose” (% setenv debug_verbose) for more verbose output.
 Script returns 0 on success and 1 on error. Read tips, hints and documentation in

$CART3D/doc/adjoint. Use '% touch STOP' to force a stop after the next flow solve.

 Usage: ./aero.csh [help] [restart or jumpstart] [skipfinest] [archive]
Options:

-help Print help message
-restart Run additional adaptation cycles
-jumpstart Start from pre-existing mesh <Mesh.{mg,R}.c3d>
-skipfinest Don’t run flow solve on finest mesh
-archive Keep only essential output

 o Required files:
 • Components.i.tri => Triangulation of input geometry
 • input.cntl => input file for flow solver
 • input.c3d => input file for cubes

$CART3D/bin/aero_archive.csh

Remove non-essential files after an aero.csh run. Execute this script in the run directory. This can be run
directly using the “-archive” aero.csh option. The script cleans up the directory, archives loadsCC.dat from
all the adapt?? directories and keeps only minimum for post-run forensics.

Returns 0 on success and 1 on error.

 Usage: aero_archive.csh [-q] [-a]
Options:

 -q “quiet mode”, no verbose output.
 -a Keep adjoint solutions in BEST.

$CART3D/doc/COMMAND_SUMMARY.pdf – of –4 25

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/aero_getResults.pl

Script to harvest adjoint adaptation results. Handles multiple functionals. This code is usually invoked by
aero.csh, but may be called manually from within a top-level aero.csh directory.

 Usage: aero_getResults.pl [-v] [-fos] [-update]
Options:

 -v verbose
 -fos %f factor of safety limiting error rise between two consecutive cycles [8]
 -update update results to include Richardson extrapolation

$CART3D/bin/aero_redo.csh NEW!

Run a different flowCart (or command line options) on a sequence of grids generated by aero.csh. Cre-
ates a REDO directory. Can be executed after an aero.csh run or simultaneously with an aero.csh run.
Copy to your working directory and edit the top few lines of the script to specify your heart’s desire.

Usage: ./aero_redo.csh

$CART3D/bin/aero_upgrade.py

Upgrade any older aero.csh script to the current version. This is very handy if you have a legacy aero.c-
sh run that you want to re-do with a newer release of Cart3D. aero_upgrade.py will preserve your run-di-
rectory aero.csh customizations and report anything out of the ordinary that it encounters. aero_up-
grade.py always makes a backup of your original aero.csh so that you can refer to it if necessary. The de-
fault location for the template is $CART3D/bin/aero.csh which is included in the standard distribution.

 Usage: aero_upgrade.py [-h] [-i I] [-o O] [-template TEMPLATE]
Options:

 -h, --help show this help message and exit
 -i I aero.csh file to upgrade <aero.csh>
 -o O Output aero.csh filename <aero.csh> (makes
 backup of original file if run in-place)
 -template TEMPLATE Template aero.csh file. <$CART3D/bin/aero.csh>

$CART3D/bin/aerograce.csh

Mesh convergence plotter for aero.csh runs. Invoke from within a top-level aero.csh directory. This
script uses templates in $CART3D/lib/ and requires xmgr/xmgrace in your path. Plots generated include
functional convergence with error estimation, as well as plots of error and functional convergence. If there
are multiple fun_con_ID.dat files, you can specify the ID to plot a particular output. Data from results_ID.dat
will be automatically included. If you omit ID, then func_con.dat and results.dat are used as defaults.

 Usage: aerograce.csh [-help] [-nw] [ID]
Options:

 -nw “no window” — make plots in batch mode, just create files and quit
 -h, --help Show this help message and exit

$CART3D/doc/COMMAND_SUMMARY.pdf – of –5 25

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/autoInputs

Automatically generates both required and optional input files for cubes, the volume mesh generator.
The autoInputs tool automatically nudges the mesh in the three Cartesian directions to avoid most com-
mon degeneracies. In general, the user has the capability to control the overall domain extent as well as the
initial background mesh density. The tool also provides the capability to create meshes on half of an as-
sumed symmetric geometry to cut flow solution time The default values for the tool are generally quite good
for most cases and the use of this tool is highly recommended.

 Usage: autoInputs [argument list]
 e.g: % autoInputs -r 10 -t Components.i.tri
 Options:

 -t %s Input geometry file name <Components.i.tri>
 -r %F Distance to farfield normalized by max geometry size <15>
 -nDiv %d Nominal # of divisions in background mesh <4>
 -maxR %d Max # of cell refinements to perform <11>
 -symmX Make mesh with x-symmetry
 -symmY Make mesh with y-symmetry
 -symmZ Make mesh with z-symmetry
 -mesh2d Make 2D mesh in x-y plane
 -halfBody Input geometry is a half-body
 -i %s File name for mesh input control file <input.c3d>
 -pre %s File name for preSpec control file <preSpec.c3d.cntl>

$CART3D/bin/$CART3D_ARCH/breakTris

Add component labels to existing watertight surface triangulations. Labels can be added based on logical
entities (individual watertight components) or based on geometric features (“creases” in the geometry). See
the HOWTO on labeling triangulations for examples and a complete discussion of component labeling. La-
bels can be applied either to separate watertight components or to entities in the GMP hierarchy of the con-
figuration.

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/howto/faceLabels/

 Usage: breakTris [argument list]
 e.g.: % breakTris -seed 14435 13839 -i engine.tri -o engine_tags.i.tri
 Options:

 -i %s Input tri file name, default=<surf.tri>
 -o %s Output tri file name, default=<Components.i.tri>
 -v verbose mode ON
 -ascii make ascii-formatted output
 -s make separate output file starting
 with <component001.a.tri> for each component.
 default single file=<components.a.tri>
 --- Labeling Mode Options (automatic with seed option) --
 -t %F threshold for dot prod of angle <default=0.8>
 -seed ... seed triangle # (1 or more) to mark inlets etc.
 -startNewNumbersAt %d output # for new components, default = max found+1
 -useCompNum separate based on compIDs, rather than logical closed

 entities.

$CART3D/doc/COMMAND_SUMMARY.pdf – of –6 25

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/howto/faceLabels/index.html

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/c3d_checkInputs.py

Check Cart3D input files. Run in aero-shell directory or optimization directory. Add search terms to com-
mand line to search error strings ("all" prints all). Output details what settings have been migrated and iden-
tifies any unknown or additional additions to legacy aero.csh scripts. This script uses python 2.6 or 2.7. If
that is not default on your system, then you’ll want to run using “% /path/to/python2 c3d_checkInputs.py”

 Usage: c3d_checkInputs.py [options]
Options:

 -h, --help show this help message and exit
 -q (Quiet) Print errors, but not warnings and notes

$CART3D/bin/$CART3D_ARCH/c3dvis

A post-processing tool for visualizing the solution on the volume mesh. For those cases that the Carte-
sian cut-plane functionality of flowCart is insufficient, such as arbitrary slices through the grid or three-di-
mensional streamlines, c3dvis can be used to create a Tecplot or an Ensight data file. The inputs required
for c3dvis are the surface triangulation, mesh files and input control file previously used as inputs to flow-
Cart and the checkpoint restart file created by flowCart.

 Usage: c3dvis [argument list]
 Options:

-i %s Mesh file name: <Mesh.mg.c3d>
-ckpt %s Checkpoint file name <Restart.file>
-v Verbose mode <FALSE>
-tecplot %s Output Tecplot format file <tec.dat>
-ensight %s Output Ensight gold format file
-ascii Output Ensight file in ASCII format <FALSE>

 o Required files:
• Components.i.tri => Watertight surface triangulation of the configuration
• input.cntl => flowCart input file
• Mesh.mg.c3d => Cart3D mesh in SFC order
• Mesh.c3d.Info => Mesh info file for input mesh
• check.##### => flowCart checkpoint file with solution

$CART3D/bin/$CART3D_ARCH/clic

Standalone force and moment package that computes forces, moments, and slice extractions from clic
triangulations (“-clic” option to flowCart). This package has been largely replaced through the use of inter-
nal calls within flowCart & mpix_flowCart to the clic library (which is more accurate) its still very useful for
doing slice extractions on the surface (e.g. Cp cuts on wings and bodies). An example showing its use is in
the $CART3D/cases/samples/oneraM6 self-running example in the distribution

 Usage: clic [argument list]
 Options:

-i %s control file name, def:<clic.cntl>
-outDir %s output directory, def:<./>
-v verbose more ON
-mem Report memory usage (auto on with -v)
-parse verbose parsing ON
-T Create tecplot file

$CART3D/doc/COMMAND_SUMMARY.pdf – of –7 25

http://docs.desktop.aero/docs/cart3d/index.php/flowCart

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/c3d_parallel_runner.pl & domany NEW!

A very convenient job manager for multi-core CPUs. Just setup a list of subdirectories (e.g. tmp1, tmp2,
… tmpN) and run jobs in all of them. The script will ‘% cd' into the root-directory (optionally specified by -r)
Once there, it searchs for subdirectories that contain the string in '-d', and also contain the string in '-s' (if
specified). For example, if you want to run a simple mach alpha sweep and you have run directories called
“cases/mach_0.{2,4,6,8}/alpha_{0,2,4,6,8}/”, You’d simply say:

 % c3d_parallel_runner.pl -c aero.csh -r cases -d alpha -s mach_
And it will run all 20 cases simultaneously on your machine. If you want to run these jobs 4 at a time, then
just add “-j 4” to the command line.

 If the script detects a file called “DONE” in any run directory, that directory gets skipped. Use '-f' option
to ignore DONE.

Since c3d_parallel_runner.pl is equally helpful for heavy lifting outside of Cart3D, it’s frequently soft-
linked to “domany”.

% cd $CART3D/bin; ln -s c3d_parallel_runner.pl domany; rehash; cd -

 Usage: c3d_parallel_runner.pl [argument list]
 e.g.: % c3d_parallel_runner.pl -c pwd -d tmp -v # …run “pwd” command in “tmp*” subdirs
 % c3d_parallel_runner.pl -j 4 -c aero.csh -d Mach_ -v # …run “aero.csh” in “Mach_*” subdirs

with no more than 4 active jobs at a time
 % domany -c aero_archive.csh -d Mach_ -f # … aero_archive all the “Mach_*” subdirs

 Options:
 -j %d max. number of concurrent parallel jobs
 -c %s command to run <"sboom -e -C 1.e-6">
 -f force, rerun command again
 -t test, show job-list and exit

 -- Options to identify the location of case directories --
 -r %s root directory that contains all run directories
 -d %s string in directory name where case runs, may include regex
 -s %s optional string to help find run directories, may include regex
 -x exclude matches on optional '-s string'

 -- Options to control IO and other runtime behavior --
 -w %d IO format extra whitespace <0>
 -z %d sleep time to check job status in seconds <1>
 -v be verbose
 -q be quiet

$CART3D/doc/COMMAND_SUMMARY.pdf – of –8 25

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/closestPair

Efficiently determine the closest component to any particular target component. closestPair uses partic-
ularly efficient search techniques so that it can be called with low overhead.

 Usage: closestPair [argument list]
 Options:

 -t %s Input triangulation file name, default:<Components.i.tri>
 -c %d Component ID of target, default = 1
 -v Turn on verbose messages
 -T dump Tecplot file 'closestPair.dat'

$CART3D/bin/$CART3D_ARCH/comp2tri

Combine a set of individual components or combinations of components into a Cart3D un-intersected
configuration triangulation with multiple components. See the HOWTO on labeling triangulations for exam-
ples and a complete discussion with many examples. comp2tri can also be used to modify component IDs
or GMP tags on-the-fly during the assembly process. See useful examples online:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/howto/faceLabels/

 Usage: comp2tri [OPTIONS] file0.tri file1.tri file2.tri ...
 e.g.: % comp2tri -trix -v wing_body_tail_gmp.i.tri engine_gmp.i.tri engine_mirror.i.tri
Options:

 -inflate Inflate geometry to break degeneracies
 -o %s Output filename <Components.tri>
 -trix Output file will be eXtended-TRI (trix) format
 -ascii Output file will be ASCII (if not trix)
 -keepComps Preserve 'intersect' component tags
 -makeGMPtags Create GMPtags from volume indexes
 -gmpTagOffset %d Renumber GMPtags by adding '1 x offset' to tags
 in file1.tri, '2 x offset' to tags in file2.tri, etc.
 First file, file0.tri, gets no offset,
 i.e. tags are unchanged <0>
 -gmp2comp Copy GMPtags to IntersectComponents
 -config Write Config.xml using component tags
 -dp Use double precision vert-coordinates <FALSE>
 -v Verbose more ON

$CART3D/bin/$CART3D_ARCH/config_space

Utility to manipulate and position individual components within a Cart3D configuration with a hierarchical
configuration description (Config.xml) according to a pre-set schedule established by ConfigSpace.xml.

 Usage: config_space [argument list]
 Options:
 -in %s Input triangulation file name
 -out %s Output triangulation file name
 -ascii ascii output default: <FALSE>
 -tri Output Cart3D tri file instead of trix (VTU) default:<FALSE>
 -param_list ... parameter list, e.g. Flap=2, ...
 -v verbose mode ON

$CART3D/doc/COMMAND_SUMMARY.pdf – of –9 25

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/howto/faceLabels/index.html

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/cubes

Cart3D’s multi-level Cartesian mesh generator with cut-cell boundaries. The Cart3D website includes a
large section on underlying concepts and usage. For specific usage info, the easiest place to get started are
the examples in $CART3D/cases/samples/. Background and theory with other important details can be
found in (1) AIAA Jol. 36(6):952-960, 1998, (2) the CRC handbook of Mesh Generation, or (3) VKI Lecture
Series 1998-02. Online documentation is at: https://www.nas.nasa.gov/publications/software/docs/cart3d/
pages/meshGeneration.html
Additional background and theory references are available on-line at:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/AIAA-97-0196.pdf
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/crcChapterDraft.ps.gz
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aftosmis_97vkiNotes.pdf

 Usage: cubes [argument list]
 e.g.: % cubes -v -maxR 12 -Xcut 3 -Zcut 5 -verify -b 4
 Options:

 -- Meshing Options--
-maxR %d Max number of refinements (overrides input file)
-a %f Angle threshold (deg) for geom refinement <25 deg>
-b %d Number of layers of buffer cells <3>
-pre %s Prespecified adapt region filename <None>
-d %f Angle (deg) for directional refinement (aniso only) <10 deg>
-Internal Mesh the *interior* of the geometry
-mesh2d Make 2D mesh in X-Y, no refinement in Z
-I Restrict cells to isotropic division only
-remesh Set cell density from "refMesh.{mg.c3d,c3d.Info}"
-reorder Reorder output mesh in space-filling curve order
-sfc %c Mesh order: H=Peano-Hilbert, M=Morton <H>
-verify Verify that all cut cells close

 -- Advanced Options--
-sf %d Number of additional levels at sharp edges
-weight Area-weight triangles in divide criteria
-TPC %d Adapt based on # of triangles-per-cutCell
-vtest Special vtest for buffering
-lin %s Linearize cut-cells for specified design variable
-try_exact (if -N specified) Use Newton solve to hit -N exactly

 -- I/O Options--
-i %s Input file name <input.c3d>
-o %s Output file name <Mesh.c3d>
-no_file Suppress output file
-v Verbose mode ON
-quiet Don't make excessive noise
-mem Report memory usage (auto on with -v)
-h Print history of # of cells with refinement (auto on with -v)
-STARS Record intermediate refinement history
-Dunset Dump Tecplot file <unset.dat>
-Dcut Dump Tecplot file <cutcells.dat>
-Dflow Dump Tecplot file <flowcells.dat>
-Dsolid Dump Tecplot file <solidcells.dat>
-Dsplit Dump Tecplot file <splitcells.dat>
-Daniso Dump Tecplot file <anisocells.dat>
-Xcut %d Number of X=const cut planes <cutPlanes.dat>
-Ycut %d Number of Y=const cut planes <cutPlanes.dat>
-Zcut %d Number of Z=const cut planes <cutPlanes.dat>

$CART3D/doc/COMMAND_SUMMARY.pdf – of –10 25

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/meshGeneration.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/meshGeneration.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/AIAA-97-0196.pdf
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/crcChapterDraft.ps.gz
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aftosmis_97vkiNotes.pdf

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

 (cubes options continued...)
 -- Memory Options--
-memLim %f Target memory usage (in MB) of final mesh
-N %d Target final number of Cartesian cells
-no_est Don't estimate memory requirements (slower, less compact)

 -- (DEPRECATED)--
-P
-T
-ascii

 o Required files:

• Components.i.tri => Watertight surface triangulation of the configuration
• input.c3d => cubes control file
• preSpec.cntl.c3d => (optional) pre-specified adaptation regions and XLevs

$CART3D/bin/$CART3D_ARCH/cutter

Cut-cell engine that optionally produces sensitivities of cut-cells to perturbations in the geometry. This
code is typically called internally within the Cart3D package and design framework and is not generally
called directly by users from the command line.

 Usage: cutter [OPTIONS]
Options:

 -m %s Mesh file <Mesh.c3d>
 -lin %s Design variable name
 -verify Check cut-mesh and linearization
 -Dsplit Dump split-cells (tecplot)
 -v Verbose mode ON

$CART3D/bin/diagnoseGeom.pl

 This script runs intersect on all the pairwise combinations of components of a geometry to find any of-
fending component combinations. In Cart3D release v1.4.9 and later the "-ascii" flag is no longer needed
since ascii/binary filetypes automatically detected.

 Usage: diagnoseGeom.pl [-ascii -i|base=basename -s|plit -v|erbose -h|elp]
 e.g.: % diagnoseGeom.pl -ascii -i <myTri.a.tri> -s -v | grep -e === -e Err
Options:

 -- Meshing Options--
-i, -base=%s Base name of the triangulation
-s, -split Split up all components of the triangulation
-v, -verbose Make a lot of noise about whats going on
-ascii (depricated 2016/03) Input file is ascii formatted

$CART3D/doc/COMMAND_SUMMARY.pdf – of –11 25

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/diffTriq

Take the point-wise difference between Cp and flow values in 2 different *.triq files on the same triangula-
tion. Useful for finding point-wise changes in surface loads at various unsteady time steps or multigrid cy-
cles.

 Usage: diffTriq [argument list]
 e.g.: % diffTriq -t0 mySurf_at_step_1000.i.tri -t1 mySurf_at_step_1100.i.tri -nScalars 6
 Options:
 -t0 %s Base *triq filename
 -t1 %s Other *triq filename
 -q_inf %F Freestream dynamic pressure <default = 1.0>
 -o %s Output Tecplot File Name <pdiff.dat>
 -f flip sign so its delta = t0-t1
 -nScalars %d Number of scalars in triq file <default=6>
 -v Verbose mode ON

$CART3D/bin/do_compAvgs.csh

 Run this script from the top of the windspace directories created with ws_builder.csh to iteratively av-
erage loads outputs for all components for which loads histories exist. If the integer averaging_window is
unspecified, the script will try to detect it from flowCart's stdout or from the setting in aero.csh. Since in-
ternal averaging was added to flowCart in 2016 (v1.5 and later), this script has been largely replaced by the
average loads data found in "loadsCC.avg.dat” (which is done internally by flowCart and is generally
more accurate).

 Usage: do_compAvgs.csh [averaging_window]

$CART3D/bin/dxf2tri.pl

An input interface that converts a basic “*.dxf” format triangulation file to a Cart3D triangulation format.
Additional documentation available on-line at:

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/surfaceModeling.html

 Usage: dxf2tri.pl infile.dxf outfile.tri

$CART3D/doc/COMMAND_SUMMARY.pdf – of –12 25

http://www.nas.nasa.gov:~aftosmis/

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/flowCart & mpix_flowCart

flowCart / mpix_flowCart is the basic inviscid flow solver in the Cart3D package. It is a highly efficient,
scalable, multilevel, linearly-exact upwind solver which uses domain-decomposition to achieve excellent
parallel scalability for both steady and time-dependent flows. Full documentation and quick-start information
is available on-line at the Cart3D website.

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/flowSolvers.html
For a technical discussion of what’s under the hood see AIAA Paper 2000-0808, AIAA Paper
2005-0490, and AIAA Paper 2018-0334 all available on the pubs page of the Cart3D website:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/

 Usage: flowCart [argument list]
 or mpiexec -n <NumThreads> mpix_flowCart [argument list]
 e.g.: % flowCart -T -binaryIO -mg 4 -N 200
 % mpiexec -n 8 mpi_flowCart -T -binaryIO -mg 4 -N 200
 Options:

 -- Runtime Options --
 -N %d Max # of multigrid cycles to advance (# inners if TD)
 -fine Do -N cycles on finest mesh (incremental if restart) <FALSE>
 -mg %d Number of multigrid levels
 -gs %d Number of grid sequencing levels (disables MG)
 -cfl %f CFL number
 -tm %f Cutcell gradient mod (1stOrder = 0.-->1.0 = 2nd Order) <1.0>
 -limiter %d 0=None, 1=BJ, 2=VanLeer, 3=SinLim, 4=VanAlbada, 5=MinLim <0>
 -buffLim Buffer limiters to neighbors <FALSE>
 -flux %d Flux function: 0=VanLeer,1=VanLeer-Hanel,2=Colella,3=HLLC <0>
 -subcell Use subcell resolution on finest mesh
 -gr Use grads in MGrestrict <auto ON if gradEval all stages>
 -choice %d 1=do_mg_new, 2=Jameson, 3=orig_do_mg_cycle <3>
 -y_is_spanwise Y direction is spanwise <def: Z is spanwise>
 -stats %d Compute running avgs over this many cycles or timesteps
 -- Steady Run Options --
 -no_fmg Disable full multigrid startup (begin MG at finest level)
 -- Unsteady Run Options --
 -nSteps %d Max # of unsteady time steps (also signals time-dependent)
 -dt %f Non-dimensional size of physical timesteps Lref/ainf
 -checkptTD %d TD checkpoint every "checkptTD" timesteps <end of run>
 -checkptGrads Write out checkpoint files for gradients at end of run
 -vizTD %d Output viz files every "vizTD" timesteps <same as checkptTD>
 -autoDT Auto adjust physical time step for roughly constant CFLphys <FALSE>
 -refWaveSpeed %F Reference max wave speed (with -autoDT option) <UNSET>
 -track %d Track error for adapt every "track" time steps <don't track err>
 -clean 'Relax' solution before time-stepping and reset nSteps <FALSE>
 -- I/O Options --
 -no_ckpt Suppress checkpointing
 -restart Restart from checkpoint "Restart.file" (into any # of cores)
 -v Verbose mode ON
 -T Dump surface triangulation in Tecplot format [surfName.dat]
 -clic Dump surface triangulation in Clic format [surfName.triq]
 -his (DEPRECATED) Write [history.dat,forces.dat] <auto on>
 -no_his Don't write history files [history.dat,forces.dat]
 -binaryIO Write Tecplot plotfiles in binary <FALSE (ASCII)>
 -i %s Input file name <input.cntl>
 -Xcut %d Number of X=const cut planes [disjointCutPlanes.dat]
 -Ycut %d Number of Y=const cut planes [disjointCutPlanes.dat]
 -Zcut %d Number of Z=const cut planes [disjointCutPlanes.dat]
 -Dcut Dump Tecplot file of cutcells [cutcells.dat]
 -version Dump version info and exit

$CART3D/doc/COMMAND_SUMMARY.pdf – of –13 25

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/flowCart.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/flowCart.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/flowSolvers.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa2000-0808.pdf

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/inspectMesh

inspectMesh is a quick way to print the vital stats of an existing Mesh.mg.c3d, Mesh.c3d, or Mesh.R.c3d
file. It tells you how many meshes are in the file (multigrid levels), if the mesh is 2D or 3D, and how many
cells and faces of each type there are. Its also handy for locating a particular cell within the mesh, the “-cell
%d” option reports the cell’s coordinates and refinement levels in each direction.

 Usage: inspectMesh [OPTIONS] Mesh1.mg.c3d Mesh2.R.c3d ...
 Options:

 -v Verbose mode
 -cell %d Print info for this cell (flowCart single domain “global” index)
 ... [list of meshes]

$CART3D/bin/$CART3D_ARCH/intersect

Extracts the wetted surface of a configuration. "Configurations" are collections of components output ei-
ther by triangulate, comp2tri, or made by some other method. intersect is extensively documented in AIAA
Paper 97-0197. The wetted surface extracted by intersect is in the form of a Cart3D wetted surface triangu-
lation and is watertight. Component information is retained. By convention, output files are generally named
*.i.tri to indicate that they are post-intersection and do not contain any internal geometry. If "intersect" ever
fails, it drops an "Error.dat" file which is a tecplotable file containing geometry local to the problem which
caused it to fail. Intersect is quite robust, and it begins and ends with a geometry verification phase. If inter-
sect stops during the initial geometry verification it will suggest possible problems in the input geometry
(e.g. “Component N” is not closed, non-manifold, etc.) These checks are topological in nature and do not
depend on floating point math. They are therefore robust. Intersect is based on boolean intersection predi-
cates and uses adaptive precision floating point math with automatic tie-breaking to resolve
degeneracies. See the $CAR3D/cases/samples/ and on-line documentation at:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/surfaceModeling.html

Additional background and theory references are available on-line at:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/AIAA-97-0196.pdf
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aftosmis_97vkiNotes.pdf

 Usage: intersect [-i infile -o outfile -T -v -intersections -ascii -mem -cutout %d -overlap %d]
 Options:
 -i Input triangulation filename <Components.tri>
 -o Output triangulation filename <Components.i.tri>
 -ascii Input geometry file is ASCII
 -T Also output Tecplot file "Components.i.plt"
 -fast Also output unformatted FAST file "Components.i.fast"
 -v Verbose Mode
 -mem Report memory usage (auto on with "-v")
 -cutout %d Perform boolean subtraction (A-B) for component <%d>
 -overlap %d Perform boolean intersection of comp <%d> with others
 -intersections Write line segments of all intersections "intersect.dat"

$CART3D/doc/COMMAND_SUMMARY.pdf – of –14 25

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/cart3dTriangulations.html#3.%20Wetted%20Surface%20Triangulation%20Format%20::
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/cart3dTriangulations.html#3.%20Wetted%20Surface%20Triangulation%20Format%20::
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/bool_intersection.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/bool_intersection.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/degeneracy.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/degeneracy.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/surfaceModeling.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/AIAA-97-0196.pdf
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aftosmis_97vkiNotes.pdf

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/LDM.pl

A simple output formatter for the clic force and moment utility. The LDM.pl script takes in the output from
a clic run and reformats the output info in a tabular format (for shipping to MS Excel etc..)

 Usage: LDM.pl clic.output
 e.g.: % clic -i clic.cntl -ascii -v | LDM.pl

$CART3D/bin/livePlot.pl

 livePlot.pl is a “live” convergence history and force summary plotter for {mpix_}flowCart and ad-
jointCart. Invoke from within a directory where flowCart is currently running (or has already run), and it will
create a plot using xmgrace. If the case is currently running, the plot will update every few seconds. live-
Plot.pl can also be run from within a top level aero.csh directory and will automatically update as the simu-
lation evolves through multiple adaptation cycles. This is an extremely handy utility. livePlot.pl depends on
xmgrace/xmgr which needs to be in your path.

You can download xmgrace from:
http://plasma-gate.weizmann.ac.il/Grace/

 Usage: livePlot [-mom -adj -lin -mf -dir <plotdirectory>]
 e.g.: % livePlot.pl
 % livePlot.pl -dir adapt00/FLOW
 % livePlot.pl -adj -dir adapt00/AD_A_J
 Options:

 -adj Plot adjoint convergence
 -mom Plot moment convergence
 -adj Plot adjoint convergence
 -lin Plot linCart convergence
 -dir %s Search down the specified directory for plotting candidates

$CART3D/doc/COMMAND_SUMMARY.pdf – of –15 25

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/lsee.pl

This script generates point-wise estimates of discretization error along line sensors extracted from a se-
quence of meshes. See figs.6, 7 & 8 in AIAA Paper 2017-3255 for some useful examples.
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa_2017-3255.pdf
Notes:

1. You must specify at least a medium and a fine mesh signature. If only two are specified, first-order
spatial convergence is assumed.

2. Signature file format needs to be one of: two columns of x-y values, Cart3D lineSensor (reads fourth
and fifth columns), or Tecplot 'ZONE' file (reads first and fourth columns). Data must be ordered.

3. Output files are prepended with ee_. Check headers for help. Output files named ee_jeb_ can be
used to plot error bars. File name strings _l, _m and _h represent low, medium and high confidence
error regions. File ee_cm_best represents the error region as a continuous poly-line. This is a alter-
nate way to plot the error regions --- fill in or shade the polygon.

 Usage: lsee.pl [OPTIONS] -c coarseLineSensor.dat -m medLineSensor.dat -f fineLineSensor.dat
 e.g.: % lsee.pl -c adapt09/line.dat -m adapt10/line.dat -f adapt11/line.dat -d 2
 % lsee.pl -c coarse.dat -m medium.dat -f fine.dat -n cells.dat -v

Options:
 -v verbose
 -d problem dimension, needed for computing refinement ratios <3>
 -c file name for data from coarse mesh
 -m file name for data from medium mesh
 -f file name for data from fine mesh
 -n file name for the number of control volumes in each mesh,
 list in increasing order, one-per-line
 if not specified attempts to parse fun_con.dat
 -id optional ID when using Tecplot files with multiple zones,
 this is the zone title string, e.g. 'HL=0.85000,PHI=0.00000'
 if not specified, first zone will be parsed
 -bxy %d:%d format that specifies the columns of the input files to use
 as the x and y data sets:
 default for Tecplot files is 1:4
 default for Cart3D lineSensor files is 4:5
 otherwise default is 1:2
 -sharp account for error offset from coarse and medium mesh when
 interpolating error to finest mesh (do not use this if you prefer
 a more conservative error estimate)
 -re write realization error file
 -debug outputs coarse and medium error estimates

 -- Options to scale, translate and trim the output data --
 -dx x-axis offset (shift in x position) <0>
 -sx factor to normalize x axis, e.g. body length <1>
 -sy factor to normalize y axis <1>
 -triml trim low side of signature to define metric section, e.g. avoid
 upstream region, applied after dx and sx, default <-9999999>
 -trimh trim high side of signature to define metric section, e.g. avoid
 trailing wake, applied after dx and sx, default <9999999>

$CART3D/doc/COMMAND_SUMMARY.pdf – of –16 25

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa_2017-3255.pdf

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/mesh2mesh

Transfer the solution (and optionally the residual) between two meshes with different geometries for
warm-starting nearby cases. mesh2mesh uses an the space filling curves to do this transfer with linear
time complexity so its very fast. This code permits solutions warm starting of solutions for perturbations of
the geometry (e.g. control surface deflection) or small modifications to the geometry during design. A
worked example is in $CART3D/cases/samples/mesh2mesh_ex/, Other examples, along with a technical
description and approach are in:

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa2004_1232.pdf

 Usage: mesh2mesh [argument list]
 e.g.: % mesh2mesh -v -m1 Mesh1.mg.c3d -m2 Mesh.mg.c3d -q1 check.00100 -q2 Restart.file
Options:

-m1 %s Source mesh filename
-m2 %s Target mesh filename
-q1 %s Source checkpoint filename
-q2 %s Output checkpoint filename
-g1 %s Source mesh gradient checkpoint file for time N (optional)
-g1o %s Source mesh gradient checkpoint file for time N-1 (optional)
 (NOTE: providing gradients at N turns on linear prolongation)
-o %s Output map file name <m2m.map>

-mesh2d Mesh is 2D
-sfc %c SFC ordering: H = Peano-Hilbert (default), M = Morton
-Uinf Initialize newly exposed cells with free stream conditions <FALSE>
-no_fill (DEBUG) Don't fill new cells <FALSE>

-v Verbose mode <FALSE>

 -- Time-dependent and moving geometry options --
-TD Checkpoint is from unsteady simulation <FALSE>
-move_geom DEPRECATED - Moving geometry <FALSE>
-r1 %s DEPRECATED - Source residual filename (optional)
-r2 %s DEPRECATED - Output residual filename (optional)
-t1 %s DEPRECATED - Source surface geometry
-t2 %s DEPRECATED - Target surface geometry
-timeN %F DEPRECATED - Time at level N <0.0>
-timeN1 %F DEPRECATED - Time at level N+1 <0.0>

$CART3D/doc/COMMAND_SUMMARY.pdf – of –17 25

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa2004_1232.pdf

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/mgPrep & mgTree

mgPrep/mgTree is the coarse mesh generator for the multi-level Cartesian meshes that are produced by
cubes. It takes reordered meshes (from reorder or cubes -reorder) usually named Mesh.R.c3d and pro-
duces hierarchies of meshes (usually named Mesh.mg.c3d). The ordering of the input meshes is preserved
and is propagated to coarser meshes in the hierarchy. So if you pass it a mesh that you reordered with
Peano-Hilbert, all the coarse meshes will be ordered by Peano-Hilbert too. mgPrep works best with 3D
meshes, for 2D meshes, use mgTree.
On-line documentation:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/flowCart_mgPrep.html
Technical description and approach:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa2004_1232.pdf

 Usage: mgPrep [argument list]
 or
 mgTree [argument list]

 Options:
-n %d Number of multigrid levels to prepare (n>0) <5>
-i %s Input file name <Mesh.R.c3d>
-o %s Output file name <Mesh.mg.c3d>
-sfc %c Input mesh sfc order: H=Peano-Hilbert, M=Morton <H>
-v Verbose mode ON
-mesh2d Input mesh is 2D (x-y adaptation only)
-separate Dump coarser meshes in separate files
-pmg Write the finest mesh twice (for p-multigrid)
-no_stats Suppress printing of coarsening statistics
-verifyInput Verify the input mesh before coarsening
-Xcut %d Number of X=const cut planes (mgPlanes.dat)
-Ycut %d Number of Y=const cut planes (mgPlanes.dat)
-Zcut %d Number of Z=const cut planes (mgPlanes.dat)
-Dcut Dump Tecplot file (cutcells.dat)
 -Dflow Dump Tecplot file (flowcells.dat)
-Dall Dump Tecplot file (allcells.dat)

$CART3D/bin/mk_aeroTables.csh

 For a specified list of components, traverse the wind-space directory structure and harvest aero per-
formance data run this script from within a particular windspace (where M*A*B*R* subdirectories are visi-
ble). You must run do_compAvgs.csh first. Any component who’s force/moment is requested in the “$__-
Force_Moment_Processing:” in input.cntl is allowed, default is entire.

 Usage: mk_aeroTables.csh entire [gmp_comp1] ...
 e.g.: % mk_aeroTables
 % mk_aeroTables wing
 % mk_aeroTables fuselage wing htail

  

$CART3D/doc/COMMAND_SUMMARY.pdf – of –18 25

http://www.nas.nasa.gov:~aftosmis/
http://www.nas.nasa.gov:~aftosmis/

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/model2aero.pl

 Script to convert from model to body to aero frames using forces.dat and moments.dat history files out-
put from flowCart.

 Usage: model2aero.pl [OPTIONS]
Options:

 -c %s component force and moment history file <entire.dat>
 -i %s flowCart input file <input.cntl>

$CART3D/bin/$CART3D_ARCH/net2p3d

 Convert a Langley Wireframe Grid Standard (LaWGS) mesh network to a multiple grid plot3D struc-
tured grid. See the sample in $CART3D/cases/samples/oneraM6/ for a good description and illustration.

 Usage: net2p3d [-i infile -o outfile -v -m -C Compfile -no -ascii]
 Options:
 -i Input file name, def:<LaWGS.net>
 -o Output file name, def:<mgrid.unf>
 -v Verbose mode
 -m "memory verbose" report malloc/free
 -C Component list file name,def:<Component.list>
 -no Dont write out a Component list
 -ascii..... Output file ascii format

$CART3D/bin/$CART3D_ARCH/reorder

reorder takes meshes (Mesh.c3d) output by cubes and re-orders them using a space-filling-curve based
ordering. Think of it as a backend for cubes. flowCart takes these re-ordered meshes and can partition
them on-the-fly onto any number of processors. Even if you're going to run on a single CPU (unpartitioned
domain) its worth reordering since reordered meshes have better locality and will execute faster on cache-
based machines. reorder is the key to flowCart's domain-decomposition strategy and is required for mesh
coarsening. reorder can be invoked from within cubes using the “-reorder” flag on the cubes command line.
On-line documentation:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/flowCart_reorder.html
Technical description and approach:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aiaa2004_1232.pdf

 Usage: reorder [argument list]
 Options:

 -i %s Input mesh file name, default:<Mesh.c3d>
 -o %s output mesh file name, default:<Mesh.R.c3d>
 -m %s Mesh info file, default:<Mesh.c3d.Info>
 -sfc %c sfc choice, H=peano-hilbert (default), M=morton
 -s Use perfect sort of face list (default is bin sort)

$CART3D/doc/COMMAND_SUMMARY.pdf – of –19 25

http://www.nas.nasa.gov:~aftosmis/

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/stl2tri.pl

An input interface that converts an ascii stereolithography “*.stl” format triangulation file to a Cart3D in-
dexed triangulation format with component information. NOTE: admesh is a prerequisite and must be in
your path. You can download admesh at
https:/github.com/admesh/admesh
Additional documentation available on-line at:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/surfaceModeling.html

 Usage: stl2tri.pl infile.stl outfile.a.tri

$CART3D/bin/$CART3D_ARCH/tri2stl

The inverse of stl2tri.pl. Convert a Cart3D indexed triangulation to an ascii-formatted stereolithography
triangulation. All component information is lost.

 Usage: tri2stl [argument list]
 Options:
 -i %s Input surface triangulation:<comp.tri
 -o %s Output STL file name <Comp.a.stl>

$CART3D/bin/$CART3D_ARCH/triangulate

Triangulate a structured grid file. Triangulate takes a multiple-grid plot3d format configuration and triangu-
lates it component-by-component. Points with duplicate geometry (same point in physical space) are re-
moved. (Comparisons for point removal use a default tolerance of 1.e-6 model units.) It is used for convert-
ing components specified from structured geometry sources into intersection-ready triangulations. Compo-
nent information is retained for each triangulation. See the example in the distribution at $CART3D/cases/
samples/oneraM6/ Additional documentation available on-line at:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/surfaceModeling.html

 Usage: triangulate [-i infile -o outfile -T -v -r -n -C comp_file -inward -inflate]
 Options:

 -i Input file name, def:<mgrid.unf>
 -o Output file name, def:<Components.tri>
 -T Output to tecplot file "tec.dat"
 -fast Output to unformatted FAST file "Components.fast"
 -C Component list for infile, def:<Component.list>
 -v Verbose Mode
 -r Remove duplicate nodes in input file (keeps order)
 -lex Lex sort the triangle verts (needs -r)
 -n Dont perturb identical pts on diff components
 -inward ... Norm vectors on input geom face INWARD. def:<outward>
 -ascii input file is ascii fmt -(output single-precision unformatted)
 -dp double precision I/O (output trix)
 -zero set (data < ZERO) to 0.0000 - (param ZERO = 1.E-12)
 -inflate .. Inflate geometry by 10*Eps to break degeneracies

$CART3D/doc/COMMAND_SUMMARY.pdf – of –20 25

https:/github.com/admesh/admesh
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/surfaceModeling.html

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/trimCutPlanes NEW!

Uses new polygon types in Tecplot to produce pretty cut-planes that more accurately display the geome-
try actually being solved by flowCart. The standard cut planes.{dat,plt} do not make any attempt to accu-
rately represent the cut-cells in Cart3D. Instead, they simply show full (un-cut) quadrilaterals which often
contain misleading values — especially in cells split into multiple control volumes, or in cut cells in which
only a small fraction of the cell is actually in the flow. trimCutPlanes rectifies this by using a general polyg-
onal representation of the slice through the cut-cell.

 Usage: trimCutPlanes [argument list]
 e.g.: % trimCutPlanes -ckpt Restart.file
 Options:

-ckpt %s Checkpoint file name <Restart.file>
-v Verbose mode <FALSE>

 o Required files: (these should all exist in any flowCart run directory)
• Components.i.tri ==> surface triangulation
• Mesh.c3d.Info ==> Mesh info file from cubes
• Mesh.mg.c3d ==> Cart3D Mesh file
• check.##### ==> flowCart checkpoint file with solution
• input.cntl ==> flowCart input file

$CART3D/doc/COMMAND_SUMMARY.pdf – of –21 25

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/trix

 The Swiss army knife of triangulations: format converter, translations, and more. The default ac-
tion is to convert the input files to the Cart3D extended triangulation (VTK) format. Shape sensitivi-
ties (if present) are automatically adjusted to reflect any geometry manipulations. Trix can also be
used to move/rotate selected disconnected components with respect to others in the configuration.

 Usage: trix [OPTIONS] [file(s) ...]
Options:
 (options are listed in the order in which they are applied)

-select ... Select component(s) to mirror/scale/translate/rotate,
 e.g. -select 1 2 5, omit to select all
 Scale Geometry:
-mirror %c Mirror the X, Y or Z coordinate <none>
-sx %F Scale geometry in X <1.>
-sy %F Scale geometry in Y <1.>
-sz %F Scale geometry in Z <1.>
 Translate geometry:
-x %F Translate geometry in x-direction <0.>
-y %F Translate geometry in y-direction <0.>
-z %F Translate geometry in z-direction <0.>
 Rotate geometry (order rx-ry-rz):
-cx %F X center of rotation <0.>
-cy %F Y center of rotation <0.>
-cz %F Z center of rotation <0.>
-rx %F Rotate geometry around x-axis (deg) <0.>
-ry %F Rotate geometry around y-axis (deg) <0.>
-rz %F Rotate geometry around z-axis (deg) <0.>
-rg %F %F %F %F Rotate geometry around vector with tail <cx, cy, cz>
 and head < 0., 0., 0. > (deg) <0.>
 IO options:
-v Be verbose <FALSE>
-dp Use double precision vert-coordinates <FALSE>
-o %s Output filename prefix <Components> (in VTU format)
-T Output a Tecplot file for each component (.dat)
-tri Output all files as traditional Cart3D tri-files
-noVTK Do not write an extended triangulation (VTK) file <FALSE>
 Tag manipulations:
-comp2gmp Overwrite or create GMPtags from component tags
-tagRegion %F %F %F %F %F %F
 Tag rectangular region inside XMIN XMAX YMIN YMAX ZMIN ZMAX
-add2comp %d Increment or decrement component tags by this amount <0>
-add2gmp %d Increment or decrement GMPtags by this amount <0>
 Linearization:
-dx Linearize with respect to x translation <FALSE>
-dy Linearize with respect to y translation <FALSE>
-dz Linearize with respect to z translation <FALSE>
 Input file list:
 ... file1.tri file2.triq (extensions not important)

$CART3D/doc/COMMAND_SUMMARY.pdf – of –22 25

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/viscousDrag

Simple viscous drag calculator that can be run on a Cart3D *.triq file output from flowCart. The method
uses a single-pass boundary layer solution against the inviscid solution in the *.triq file.
On-line documentation:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/howto/viscousDrag/
Technical description and approach:
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/AIAA_2006-0652.pdf

 Usage: viscousDrag [argument list]
 Options:
 -- Runtime Options--
 -v verbose mode ON
 -flatPlate Use flat plate boundary layer profile
 -mem Report memory usage (auto on with -v)
 -i %s Input file name, default:<input.cntl>
 -clic %s Use CLiC file named (e.g. modelName.triq)
 -scale %F Number of feet per-unit-model length def:<1.0>
 -version Dump version info and exit

$CART3D/bin/wrl2c3d.pl

An input interface that converts a VRML (Virtual Reality Modeling Language) format triangulation files
into a Cart3D single component triangulation. VRML’s *.wrl files typically don’t include any component in-
formation, so each *wrl file is assumed to contain only one sold. If the input contains many topologically
separate objects, they may be separated with breakTris.

See the on-line documentation for info on surface modeling and file formats.
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/surfaceModeling.html

 Usage: wrl2c3d.pl infile.wrl outfile.tri

$CART3D/doc/COMMAND_SUMMARY.pdf – of –23 25

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/howto/viscousDrag/index.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/AIAA_2006-0652.pdf
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/surfaceModeling.html

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/ws_builder.csh

This automation script builds and populates a 3 dimensional “windspace” for parameter studies over a
range of Mach numbers, incidence angles (alpha), and side slip angles (beta) based upon a single template
directory. Windspace directories use the naming convention M*A*B* and can then be traversed by ws_run-
ner.sh, and post-processed with do_compAvgs.csh and mk_aeroTables.csh. The contents of the tem-
plate directory are copied into each and the input files are modified for each individual case. ws_builder.c-
sh does not run the cases, it simply sets up the directories. To use, make a copy of the script in your local
directory and edit the top few lines of the script to set your range of Mach, alpha and beta. To run, put all
required top-level aero.csh files in a directory called “template” within the launch directory.

 Usage: ./ws_builder.csh

$CART3D/bin/ws_runner.csh

Unsophisticated automation utility for running an windspace parameter study setup by ws_builder.csh.
This script simply runs cases one after the other on the local hardware. Set the desired number of threads
at the top of the script. More sophisticated versions of this script are available from the Cart3D development
team including versions developed for systems using the Portable Batch System (PBS). This script is also a
good starting point for automation of post-processing tasks.

To run, launch this script from the top-level windspace directory with the M*A*B* directories created by
ws_builder.csh all visible at the current level.

Usage: ws_runner.csh

$CART3D/doc/COMMAND_SUMMARY.pdf – of –24 25

Cart3D v1.5.9 – Cart3D Command Summary – 2022.11

$CART3D/bin/$CART3D_ARCH/xsensit

Computes the sensitivity of the objective function (in input.cntl or Functionals.xml) to changes in the flow
state -- frequently referred to as dObj/dQ or dJ/dQ. This code is not usually invoked by hand and is usually
run either by aero.csh (for error estimation) or by the Cart3D design framework. The code runs in parallel
on the number of cores set by the $OMP_NUM_THREADS environment variable. Execution requires about
the same time as one or two fine-grid iterations on the current mesh. Memory usage is approximately the
same as the flow solver.

 Usage: xsensit [argument list]
 e.g.: % xsensit -dQ -limiter 1
 Options:

 -- Runtime Options--
-tm %f cut-cell Grad mod (1stOrd=0. -> 1.0=2ndOrd) def: 1.0
-limiter %d 0=None, 1=BJ, 2=VanLeer, 3=SinLim, 4=VanAlbada, 5=MinLim
-buffLim Buffer vol hex limiters default: <false>
-buffLimCC Buffer cut-cell limiters, default: <false>
-flux %d Flux function (0=VanLeer, 1=Colella, 2=HLLC)
-subcell Use subcell resolution on finest mesh
-nPart %d Number of Sub Domains for partitioning
-order %d SubDomain ordering, 0=No Reordering, 1=RCM, 2=MLD
-y_is_spanwise Default assumes z_is_spanwise direction

 -- I/O Options --
-v verbose mode ON
-mem Report memory usage (auto on with -v)
-i %s Input file name, default:<input.cntl>
-T Dump surf triangulation in Tecplot format <surfName.dat>
-clic Dump surf triangulation in Clic format <surfName.triq>
-binaryIO Write post-processing data in binary (plotfiles etc.) <FALSE>
-Xcut %d Num of X=const cut planes <disjointCutPlanesLIN.dat>
-Ycut %d Num of Y=const cut planes <disjointCutPlanesLIN.dat>
-Zcut %d Num of Z=const cut planes <disjointCutPlanesLIN.dat>
-version Dump version info and exit
-Dmatrix Dump i,j formatted connectivity Matrices
-Dcut Dump tecplottable file <cutcells.dat>
-no_ckpt Suppress checkPointing

 -- Sensitivities --
-dMach Compute dR/dMinf and dJ/dMinf
-dAlpha Compute dR/dAlpha and dJ/dAlpha
-dBeta Compute dR/dBeta and dJ/dBeta
-dRoll Compute dR/dRoll and dJ/dRoll
-dRhoinf Compute dR/dRhoinf and dJ/dRhoinf
-dShape Compute dR/dShape and dJ/dShape
-dBackPressureBC %d Compute dR/dInletPressureRatioBC and dJ/dInletPressureRatioBC
 for a specified component
-dVelocityBC %d Compute dR/dInletVelocityBC and dJ/dInletVelocityBC
 for a specified component
-dQ Compute dJ/dQ
-objGrad Evaluate objective function gradient

 o Required files:
• Flow.file => converged flow solution check-point file
• dResdX.q => R.H.S. of linear system
• dObjdQ.q => Objective function sensitivity (optional)

$CART3D/doc/COMMAND_SUMMARY.pdf – of –25 25

