Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TRP channels: a journey towards a molecular understanding of pain

Abstract

The perception of nociceptive signals, which are translated into pain, plays a fundamental role in the survival of organisms. Because pain is linked to a negative sensation, animals learn to avoid noxious signals. These signals are detected by receptors, which include some members of the transient receptor potential (TRP) family of ion channels that act as transducers of exogenous and endogenous noxious cues. These proteins have been in the focus of the field of physiology for several years, and much knowledge of how they regulate the function of the cell types and organs where they are expressed has been acquired. The last decade has been especially exciting because the ‘resolution revolution’ has allowed us to learn the molecular intimacies of TRP channels using cryogenic electron microscopy. These findings, in combination with functional studies, have provided insights into the role played by these channels in the generation and maintenance of pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pain and its molecular effectors.
Fig. 2: Electrophilic activation of TRPA1 and Ca2+ priming of TRPM2.
Fig. 3: Activation and sensitization of TRPV1 produces chest pain.
Fig. 4: A biophysical property of TRPV1 that can affect pain.
Fig. 5: Structural rearrangements in heat-activated TRPV1.

Similar content being viewed by others

References

  1. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997). This study provides the first description of the mammalian ion channel TRPV1, which established its role in the detection of heat and capsaicin.

    Article  CAS  PubMed  Google Scholar 

  2. Cao, E. Structural mechanisms of transient receptor potential ion channels. J. Gen. Physiol. 152, e201811998 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deng, Z. et al. Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat. Struct. Mol. Biol. 25, 252–260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, Y., Fliegert, R., Guse, A. H., Lü, W. & Du, J. A structural overview of the ion channels of the TRPM family. Cell Calcium 85, 102111 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Macpherson, L. J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Macpherson, L. J. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Salazar, H. et al. A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat. Neurosci. 11, 255 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heber, S. et al. A human TRPA1-specific pain model. J. Neurosci. 39, 3845–3855 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwarz, M. G., Namer, B., Reeh, P. W. & Fischer, M. J. M. TRPA1 and TRPV1 antagonists do not inhibit human acidosis-induced pain. J. Pain 18, 526–534 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Trevisan, G. et al. TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress. Brain 139, 1361–1377 (2016).

    Article  PubMed  Google Scholar 

  11. Suo, Y. et al. Structural insights into electrophile irritant sensing by the human TRPA1 channel. Neuron 105, 882–894.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, J., Lin King, J. V., Paulsen, C. E., Cheng, Y. & Julius, D. Irritant-evoked activation and calcium modulation of the TRPA1 receptor. Nature 585, 141–145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hynkova, A., Marsakova, L., Vaskova, J. & Vlachova, V. N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel. Sci. Rep. 6, 28700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Habgood, M., Seiferth, D., Zaki, A.-M., Alibay, I. & Biggin, P. Atomistic mechanisms of human TRPA1 activation by electrophile irritants through molecular dynamics simulation and mutual information analysis. Sci. Rep. 12, 4929 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Logu, F. et al. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat. Commun. 8, 1887 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shields, S. D. et al. Insensitivity to pain upon adult-onset deletion of Nav1.7 or its blockade with selective inhibitors. J. Neurosci. 38, 10180–10201 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bennett, D. L. H. & Woods, C. G. Painful and painless channelopathies. Lancet Neurol. 13, 587–599 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Dib-Hajj, S. D., Yang, Y., Black, J. A. & Waxman, S. G. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 14, 49–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Blesneac, I. et al. Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy. Pain 159, 469–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Gavva, N. R. et al. Reduced TRPM8 expression underpins reduced migraine risk and attenuated cold pain sensation in humans. Sci. Rep. 9, 19655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Contreras-Hernández, E. et al. Supraspinal modulation of neuronal synchronization by nociceptive stimulation induces an enduring reorganization of dorsal horn neuronal connectivity: supraspinal regulation of dorsal horn neuronal synchronization. J. Physiol. 596, 1747–1776 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Latremoliere, A. & Woolf, C. J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen, J. & Hackos, D. H. TRPA1 as a drug target — promise and challenges. Naunyn Schmiedebergs Arch. Pharmacol. 388, 451–463 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y. Y., Chang, R. B., Waters, H. N., McKemy, D. D. & Liman, E. R. The Nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem. 283, 32691–32703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McGaraughty, S. et al. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol. Pain 6, 14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kistner, K. et al. Systemic desensitization through TRPA1 channels by capsazepine and mustard oil-a novel strategy against inflammation and pain. Sci. Rep. 6, 28621 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waller, A. V. XX. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos. Trans. R. Soc. 140, 423–429 (1850).

    Article  Google Scholar 

  28. Coleman, M. P. & Freeman, M. R. Wallerian degeneration, WldS, and Nmnat. Annu. Rev. Neurosci. 33, 245–267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perkins, N. M. & Tracey, D. J. Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience 101, 745–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. McGettrick, H. M. Bridging the gap — immune cells that can repair nerves. Cell Mol. Immunol. 18, 784–786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Z.-Q. et al. A newly identified role for superoxide in inflammatory pain. J. Pharmacol. Exp. Ther. 309, 869–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Sawada, Y., Hosokawa, H., Matsumura, K. & Kobayashi, S. Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur. J. Neurosci. 27, 1131–1142 (2008).

    Article  PubMed  Google Scholar 

  33. Sakaguchi, R. & Mori, Y. Transient receptor potential (TRP) channels: biosensors for redox environmental stimuli and cellular status. Free Radic. Biol. Med. 146, 36–44 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Souza Monteiro de Araujo, D., Nassini, R., Geppetti, P. & De Logu, F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin. Ther. Targets 24, 997–1008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sugiyama, D., Kang, S. & Brennan, T. J. Muscle reactive oxygen species (ROS) contribute to post-incisional guarding via the TRPA1 receptor. PLoS ONE 12, e0170410 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Koivisto, A. et al. TRPA1: a transducer and amplifier of pain and inflammation. Basic Clin. Pharmacol. Toxicol. 114, 50–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. François, A. et al. A brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and enkephalins. Neuron 93, 822–839.e6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yowtak, J. et al. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain 152, 844–852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bae, C. et al. Mitochondrial superoxide increases excitatory synaptic strength in spinal dorsal horn neurons of neuropathic mice. Mol. Pain 14, 174480691879703 (2018).

    Article  Google Scholar 

  40. Gradwell, M. A., Callister, R. J. & Graham, B. A. Reviewing the case for compromised spinal inhibition in neuropathic pain. J. Neural Transm. 127, 481–503 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Coull, J. A. M. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Kolisek, M., Beck, A., Fleig, A. & Penner, R. Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol. Cell 18, 61–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Perraud, A. L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001). This study provides the first evidence of gating of TRPM2 by ADPR.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, L. et al. Structures and gating mechanism of human TRPM2. Science 362, eaav4809 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Malko, P. & Jiang, L.-H. TRPM2 channel-mediated cell death: an important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol. 37, 101755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buelow, B., Song, Y. & Scharenberg, A. M. The poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J. Biol. Chem. 283, 24571–24583 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Voet, S., Prinz, M. & van Loo, G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol. Med. 25, 112–123 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Malko, P., Syed Mortadza, S. A., McWilliam, J. & Jiang, L.-H. TRPM2 channel in microglia as a new player in neuroinflammation associated with a spectrum of central nervous system pathologies. Front. Pharmacol. 10, 239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, H., Song, T., Wang, W. & Zhang, Z. TRPM2 participates the transformation of acute pain to chronic pain during injury-induced neuropathic pain. Synapse 73, e22117 (2019).

    Article  PubMed  Google Scholar 

  50. Woolf, C. J. Evidence for a central component of post-injury pain hypersensitivity. Nature 306, 686–688 (1983).

    Article  CAS  PubMed  Google Scholar 

  51. Luo, C., Kuner, T. & Kuner, R. Synaptic plasticity in pathological pain. Trends Neurosci. 37, 343–355 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, G., Zhang, Y.-Q., Qadri, Y. J., Serhan, C. N. & Ji, R.-R. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron 100, 1292–1311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, C. R., Machold, R. P., Witkovsky, P. & Rice, M. E. TRPM2 channels are required for NMDA-induced burst firing and contribute to H2O2-dependent modulation in substantia nigra pars reticulata GABAergic neurons. J. Neurosci. 33, 1157–1168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nadezhdin, K. D. et al. Extracellular cap domain is an essential component of the TRPV1 gating mechanism. Nat. Commun. 12, 2154 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bohlen, C. J. et al. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141, 834–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bae, C. et al. Structural insights into the mechanism of activation of the TRPV1 channel by a membrane-bound tarantula toxin. eLife 5, e11273 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Geron, M. et al. TRPV1 pore turret dictates distinct DkTx and capsaicin gating. Proc. Natl Acad. Sci. USA 115, E11837–E11846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, K., Julius, D. & Cheng, Y. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell 184, 5138–5150.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Zahner, M. R., Li, D., Chen, S. & Pan, H. Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J. Physiol. 551, 515–523 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, B. & Qin, F. Identification of a helix–turn–helix motif for high temperature dependence of vanilloid receptor TRPV2. J. Physiol. 599, 4831–4844 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Schilling, J. M. et al. Cannabidiol as a treatment for chronic pain: a survey of patients’ perspectives and attitudes. J. Pain Res. 14, 1241–1250 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pumroy, R. A. et al. Molecular mechanism of TRPV2 channel modulation by cannabidiol. eLife 8, e48792 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Costa, B., Trovato, A. E., Comelli, F., Giagnoni, G. & Colleoni, M. The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain. Eur. J. Pharmacol. 556, 75–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Qin, N. et al. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J. Neurosci. 28, 6231–6238 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Engel, M. A. et al. Inhibitory CB1 and activating/desensitizing TRPV1-mediated cannabinoid actions on CGRP release in rodent skin. Neuropeptides 45, 229–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Galeotti, N., Di Cesare Mannelli, L., Mazzanti, G., Bartolini, A. & Ghelardini, C. Menthol: a natural analgesic compound. Neurosci. Lett. 322, 145–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Klein, A. H. et al. Topical application of l-menthol induces heat analgesia, mechanical allodynia, and a biphasic effect on cold sensitivity in rats. Behav. Brain Res. 212, 179–186 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pan, R. et al. Central mechanisms of menthol-induced analgesia. J. Pharmacol. Exp. Ther. 343, 661–672 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Proudfoot, C. J. et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol. 16, 1591–1605 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, B. et al. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain 154, 2169–2177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kühn, F. J. P., Kühn, C. & Lückhoff, A. Inhibition of TRPM8 by icilin distinct from desensitization induced by menthol and menthol derivatives. J. Biol. Chem. 284, 4102–4111 (2009).

    Article  PubMed  Google Scholar 

  73. Patapoutian, A., Tate, S. & Woolf, C. J. Transient receptor potential channels: targeting pain at the source. Nat. Rev. Drug Discov. 8, 55–68 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yin, Y. et al. Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359, 237–241 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013). Together with Cao et al. (2013), this study reveals a high-resolution structure for a thermosensitive TRP channel.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Andersson, D. A. TRPM8 activation by menthol, icilin, and cold is differentially modulated by intracellular pH. J. Neurosci. 24, 5364–5369 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nilius, B., Bíró, T. & Owsianik, G. TRPV3: time to decipher a poorly understood family member!: TRPV3. J. Physiol. 592, 295–304 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, B., Yao, J., Zhu, M. X. & Qin, F. Hysteresis of gating underlines sensitization of TRPV3 channels. J. Gen. Physiol. 138, 509–520 (2011). This study demonstrates the presence of irreversible transitions in gating of TRPV3 channels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zubcevic, L. et al. Conformational ensemble of the human TRPV3 ion channel. Nat. Commun. 9, 4773 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zubcevic, L. & Lee, S.-Y. The role of π-helices in TRP channel gating. Curr. Opin. Struct. Biol. 58, 314–323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McGoldrick, L. L. et al. Opening of the human epithelial calcium channel TRPV6. Nature 553, 233–237 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Diver, M. M., Cheng, Y. & Julius, D. Structural insights into TRPM8 inhibition and desensitization. Science 365, 1434–1440 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang, S. M., Li, X., Yu, Y., Wang, J. & Caterina, M. J. TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol. Pain 7, 37 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Vriens, J., Nilius, B. & Voets, T. Peripheral thermosensation in mammals. Nat. Rev. Neurosci. 15, 573–589 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Miyamoto, T., Petrus, M. J., Dubin, A. E. & Patapoutian, A. TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat. Commun. 2, 369 (2011).

    Article  PubMed  Google Scholar 

  88. Peier, A. M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Kittaka, H. & Tominaga, M. The molecular and cellular mechanisms of itch and the involvement of TRP channels in the peripheral sensory nervous system and skin. Allergol. Int. 66, 22–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Huang, S. M. et al. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J. Neurosci. 28, 13727–13737 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Neuberger, A., Nadezhdin, K. D., Zakharian, E. & Sobolevsky, A. I. Structural mechanism of TRPV3 channel inhibition by the plant-derived coumarin osthole. EMBO Rep. 22, e53233 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Morales-Lázaro, S. L. et al. Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch. Nat. Commun. 7, 13092 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nieto-Posadas, A. et al. Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site. Nat. Chem. Biol. 8, 78 (2012). This study shows that LPA directly interacts with TRPV1 to produce pain.

    Article  CAS  Google Scholar 

  94. Canul-Sánchez, J. A. et al. Different agonists induce distinct single-channel conductance states in TRPV1 channels. J. Gen. Physiol. 150, 1735–1746 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bernal, L. et al. Odontoblast TRPC5 channels signal cold pain in teeth. Sci. Adv. 7, eabf5567 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zimmermann, K. et al. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc. Natl Acad. Sci. USA 108, 18114–18119 (2011). This study shows that TRPC5 is also a cold sensor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Richter, J. M., Schaefer, M. & Hill, K. Clemizole hydrochloride is a novel and potent inhibitor of transient receptor potential channel TRPC5. Mol. Pharmacol. 86, 514–521 (2014).

    Article  PubMed  Google Scholar 

  98. Zhou, Y. et al. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358, 1332–1336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, H. et al. TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol. Ther. 209, 107497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sadler, K. E. et al. Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice. Sci. Transl Med. 13, eabd7702 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Duan, J. et al. Cryo-EM structure of TRPC5 at 2.8-Å resolution reveals unique and conserved structural elements essential for channel function. Sci. Adv. 5, eaaw7935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yoshida, T. et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat. Chem. Biol. 2, 596–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Song, K. et al. Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. eLife 10, e63429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sánchez-Moreno, A. et al. Irreversible temperature gating in trpv1 sheds light on channel activation. eLife 7, e36372 (2018). This study provides the first description of TRPV1 opening in response to heat causing irreversible inactivation.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kwon, D. H. et al. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 28, 554–563 (2021). The study provides the first structures of TRPV1 in the presence of heat and a ligand.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Singh, A. K. et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26, 994–998 (2019). This study provides the first structures of TRPV3 in the presence of heat.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nadezhdin, K. D. et al. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nat. Struct. Mol. Biol. 28, 564–572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ufret-Vincenty, C. A., Klein, R. M., Hua, L., Angueyra, J. & Gordon, S. E. Localization of the PIP2 sensor of TRPV1 ion channels. J. Biol. Chem. 286, 9688–9698 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brauchi, S. et al. Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc. Natl Acad. Sci. USA 104, 10246–10251 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Stein, A. T., Ufret-Vincenty, C. A., Hua, L., Santana, L. F. & Gordon, S. E. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J. Gen. Physiol. 128, 509–522 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lukacs, V. et al. Dual regulation of TRPV1 by phosphoinositides. J. Neurosci. 27, 7070–7080 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Klein, R. M., Ufret-Vincenty, C. A., Hua, L. & Gordon, S. E. Determinants of molecular specificity in phosphoinositide regulation. J. Biol. Chem. 283, 26208–26216 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lukacs, V., Rives, J.-M., Sun, X., Zakharian, E. & Rohacs, T. Promiscuous activation of transient receptor potential vanilloid 1 (TRPV1) channels by negatively charged intracellular lipids. J. Biol. Chem. 288, 35003–35013 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Poblete, H. et al. Molecular determinants of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) binding to transient receptor potential V1 (TRPV1) channels. J. Biol. Chem. 290, 2086–2098 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Chung, M.-K., Güler, A. D. & Caterina, M. J. TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat. Neurosci. 11, 555–564 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Li, M., Toombes, G. E. S., Silberberg, S. D. & Swartz, K. J. Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nat. Neurosci. 18, 1577–1583 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66, 671–680 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Koivisto, A.-P., Belvisi, M. G., Gaudet, R. & Szallasi, A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug Discov. 21, 41–59 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Chen, J. et al. Species differences and molecular determinant of TRPA1 cold sensitivity. Nat. Commun. 4, 2501 (2013).

    Article  PubMed  Google Scholar 

  120. Meseguer, V. et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 5, 3125 (2014).

    Article  PubMed  Google Scholar 

  121. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003). This study identifies TRPA1 as a cold sensor.

    Article  CAS  PubMed  Google Scholar 

  122. Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Petrus, M. et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wei, H. et al. Roles of cutaneous versus spinal TRPA1 channels in mechanical hypersensitivity in the diabetic or mustard oil-treated non-diabetic rat. Neuropharmacology 58, 578–584 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Obata, K. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest. 115, 2393–2401 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kim, S. & Hwang, S. W. Emerging roles of TRPA1 in sensation of oxidative stress and its implications in defense and danger. Arch. Pharm. Res. 36, 783–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Huang, K. et al. TRPA1 contributed to the neuropathic pain induced by docetaxel treatment. Cell Biochem. Funct. 35, 141–143 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Akopian, A. N., Ruparel, N. B., Jeske, N. A. & Hargreaves, K. M. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J. Physiol. 583, 175–193 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wood, H. New familial pain syndrome caused by TRPA1 mutation. Nat. Rev. Neurol. 6, 412–412 (2010).

    Article  PubMed  Google Scholar 

  130. Logashina, Y. A., Korolkova, Y. V., Kozlov, S. A. & Andreev, Y. A. TRPA1 channel as a regulator of neurogenic inflammation and pain: structure, function, role in pathophysiology, and therapeutic potential of ligands. Biochem. Mosc. 84, 101–118 (2019).

    Article  CAS  Google Scholar 

  131. Talavera, K. et al. Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol. Rev. 100, 725–803 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Chen, H. & Terrett, J. A. Transient receptor potential ankyrin 1 (TRPA1) antagonists: a patent review (2015–2019). Expert Opin. Ther. Pat. 30, 643–657 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Vetter, I. & Lewis, R. J. in Transient Receptor Potential Channels vol. 704 (ed. Islam, S.) 41–85 (Springer, 2011).

  134. Ningoo, M., Plant, L. D., Greka, A. & Logothetis, D. E. PIP2 regulation of TRPC5 channel activation and desensitization. J. Biol. Chem. 296, 100726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhu, M. H. et al. Desensitization of canonical transient receptor potential channel 5 by protein kinase C. Am. J. Physiol. Cell Physiol. 289, C591–C600 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Hara, Y. et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell 9, 163–173 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Haraguchi, K. et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J. Neurosci. 32, 3931–3941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chung, M.-K. et al. The role of TRPM2 in hydrogen peroxide-induced expression of inflammatory cytokine and chemokine in rat trigeminal ganglia. Neuroscience 297, 160–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Yamamoto, S. et al. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat. Med. 14, 738–747 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tan, C.-H. & McNaughton, P. A. The TRPM2 ion channel is required for sensitivity to warmth. Nature 536, 460–463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vilar, B., Tan, C.-H. & McNaughton, P. A. Heat detection by the TRPM2 ion channel. Nature 584, E5–E12 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Mulier, M., Vandewauw, I., Vriens, J. & Voets, T. Reply to: heat detection by the TRPM2 ion channel. Nature 584, E13–E15 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, H. et al. Medicinal chemistry perspective of TRPM2 channel inhibitors: where we are and where we might be heading? Drug Discov. Today 25, 2326–2334 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Vriens, J. et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70, 482–494 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Mulier, M. et al. Upregulation of TRPM3 in nociceptors innervating inflamed tissue. eLife 9, e61103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vandewauw, I. et al. A TRP channel trio mediates acute noxious heat sensing. Nature 555, 662–666 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Vriens, J. et al. Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nat. Chem. Biol. 10, 188–195 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Held, K. et al. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. Proc. Natl Acad. Sci. USA 112, E1363–E1372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Quallo, T., Alkhatib, O., Gentry, C., Andersson, D. A. & Bevan, S. G protein βγ subunits inhibit TRPM3 ion channels in sensory neurons. eLife 6, e26138 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Straub, I. et al. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol. Pharmacol. 84, 736–750 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Krügel, U., Straub, I., Beckmann, H. & Schaefer, M. Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. Pain 158, 856–867 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Straub, I. et al. Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3: identification of novel TRPM3 blockers. Br. J. Pharmacol. 168, 1835–1850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Vriens, J. & Voets, T. Sensing the heat with TRPM3. Pflug. Arch. Eur. J. Physiol. 470, 799–807 (2018).

    Article  CAS  Google Scholar 

  154. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002). Together with Peier et al. (2002), this study shows that TRPM8 is a cool temperature sensor.

    Article  CAS  PubMed  Google Scholar 

  156. Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Lippoldt, E. K., Elmes, R. R., McCoy, D. D., Knowlton, W. M. & McKemy, D. D. Artemin, a glial cell line-derived neurotrophic factor family member, induces TRPM8-dependent cold pain. J. Neurosci. 33, 12543–12552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Xing, H., Chen, M., Ling, J., Tan, W. & Gu, J. G. TRPM8 mechanism of cold allodynia after chronic nerve injury. J. Neurosci. 27, 13680–13690 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Asuthkar, S. et al. The TRPM8 protein is a testosterone receptor. J. Biol. Chem. 290, 2670–2688 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. González-Muñiz, R., Bonache, M. A., Martín-Escura, C. & Gómez-Monterrey, I. Recent progress in TRPM8 modulation: an update. Int. J. Mol. Sci. 20, 2618 (2019).

    Article  PubMed Central  Google Scholar 

  161. De Petrocellis, L. et al. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J. Pharmacol. Exp. Ther. 325, 1007–1015 (2008).

    Article  PubMed  Google Scholar 

  162. Jara-Oseguera, A., Simon, S. A. & Rosenbaum, T. TRPV1: on the road to pain relief. Curr. Mol. Pharmacol. 1, 255–269 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rosenbaum, T., Gordon-Shaag, A., Munari, M. & Gordon, S. E. Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J. Gen. Physiol. 123, 53–62 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Numazaki, M. et al. Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc. Natl Acad. Sci. USA 100, 8002–8006 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sanz-Salvador, L., Andrés-Borderia, A., Ferrer-Montiel, A. & Planells-Cases, R. Agonist- and Ca2+-dependent desensitization of TRPV1 channel targets the receptor to lysosomes for degradation. J. Biol. Chem. 287, 19462–19471 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Szallasi, A., Cruz, F. & Geppetti, P. TRPV1: a therapeutic target for novel analgesic drugs? Trends Mol. Med. 12, 545–554 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29, 355–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Tékus, V. et al. Effect of transient receptor potential vanilloid 1 (TRPV1) receptor antagonist compounds SB705498, BCTC and AMG9810 in rat models of thermal hyperalgesia measured with an increasing-temperature water bath. Eur. J. Pharmacol. 641, 135–141 (2010).

    Article  PubMed  Google Scholar 

  169. Jordt, S.-E., Tominaga, M. & Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl Acad. Sci. USA 97, 8134–8139 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pabbidi, M. R. & Premkumar, L. S. Role of transient receptor potential channels Trpv1 and Trpm8 in diabetic peripheral neuropathy. J. Diabetes Treat. 2017, 029 (2017).

    PubMed  PubMed Central  Google Scholar 

  171. Marrone, M. C. et al. TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat. Commun. 8, 15292 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999). This study describes TRPV2 as a noxious heat sensor.

    Article  CAS  PubMed  Google Scholar 

  173. Katanosaka, K., Takatsu, S., Mizumura, K., Naruse, K. & Katanosaka, Y. TRPV2 is required for mechanical nociception and the stretch-evoked response of primary sensory neurons. Sci. Rep. 8, 16782 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Mercado, J., Gordon-Shaag, A., Zagotta, W. N. & Gordon, S. E. Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 30, 13338–13347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kanzaki, M. et al. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat. Cell Biol. 1, 165–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. Shimosato, G. et al. Peripheral inflammation induces up-regulation of TRPV2 expression in rat DRG. Pain 119, 225–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Frederick, J., Buck, M. E., Matson, D. J. & Cortright, D. N. Increased TRPA1, TRPM8, and TRPV2 expression in dorsal root ganglia by nerve injury. Biochem. Biophys. Res. Commun. 358, 1058–1064 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Cheng, X. et al. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141, 331–343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Smith, G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Facer, P. et al. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol. 7, 11 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Gopinath, P. et al. Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain. BMC Womens Health 5, 2 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Hu, H.-Z. et al. Potentiation of TRPV3 channel function by unsaturated fatty acids. J. Cell. Physiol. 208, 201–212 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liedtke, W. et al. Vanilloid receptor–related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000). This study provides the first description of TRPV4 as an osmoreceptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Alessandri-Haber, N. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J. Neurosci. 24, 4444–4452 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Alessandri-Haber, N. et al. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39, 497–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Chen, Y. et al. Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion. Pain 154, 1295–1304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. O’Conor, C. J., Leddy, H. A., Benefield, H. C., Liedtke, W. B. & Guilak, F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc. Natl Acad. Sci. USA 111, 1316–1321 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Moore, C. et al. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc. Natl Acad. Sci. USA 110, E3225–E3234 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chen, Y. et al. Epithelia-sensory neuron cross talk underlies cholestatic itch induced by lysophosphatidylcholine. Gastroenterology 161, 301–317.e16 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Brierley, S. M. et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134, 2059–2069 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Fujii, N. et al. TRPV4 channel blockade does not modulate skin vasodilation and sweating during hyperthermia or cutaneous postocclusive reactive and thermal hyperemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 320, R563–R573 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Ludbrook, V. J. et al. Adaptive study design to assess effect of TRPV4 inhibition in patients with chronic cough. ERJ Open Res. 7, 00269–02021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Yam, M. et al. General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int. J. Mol. Sci. 19, 2164 (2018).

    Article  PubMed Central  Google Scholar 

  194. Woolf, C. J. et al. Towards a mechanism-based classification of pain? Pain 77, 227–229 (1998).

    Article  PubMed  Google Scholar 

  195. Jensen, T. S. & Finnerup, N. B. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 13, 924–935 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica of the Dirección General de Asuntos del Personal Académico (IN200720 to T.R. and IN215621 to L.D.I.), the Consejo Nacional de Ciencia y Tecnología (A1-S-8760 to T.R) and the Secretaría de Educación, Ciencia, Tecnología e Innovación del Gobierno de la Ciudad de México (SECTEI/208/2019 to T.R). The authors thank A. Llorente for help in the production of the figures.

Author information

Authors and Affiliations

Authors

Contributions

T.R., S.L.M-L. and L.I. researched data for and wrote the article. T.R and L.I made substantial contributions to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Tamara Rosenbaum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks D. McKemy, T. Voets, and the other anonymous reviewers, for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pain

An unpleasant sensation that can compromise the quality of life of an individual. It is a widely prevalent condition that, in several ways, remains elusive to diagnosis and treatment.

Polymodal

The ability to respond to different types of stimulus or sensory information, such as touch, heat and chemicals.

Melastatin homology regions

Sequences shared by ion channels of the transient receptor potential melastatin (TRPM) family that are present in their amino termini instead of the ankyrin repeats found in canonical (TRPC) and vanilloid (TRPV) TRP channels.

Electrophilic compounds

Compounds that form covalent bonds with nucleophiles such as cysteine residues by accepting an electron pair.

Allodynia

Pain in response to a stimulus that does not usually produce pain.

Hyperalgesia

Increased sensitivity to a painful stimulus. Both hyperalgesia and analgesia (the inhibition of pain) can be present in some individuals with neuropathic pain.

Hysteretic properties

Ion channel behaviour where reversal of the activating stimulus does not result in a return to the initial state following the same pathway and implies the presence of memory, which is generally associated with irreversible gating steps.

Odontoblasts

Columnar cells localized to the periphery of the dental pulp that form dentine by controlling mineralization processes in teeth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenbaum, T., Morales-Lázaro, S.L. & Islas, L.D. TRP channels: a journey towards a molecular understanding of pain. Nat Rev Neurosci 23, 596–610 (2022). https://doi.org/10.1038/s41583-022-00611-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00611-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing