
ИЗОЛАПРО

Гибкие теплоизолированные трубы ИЗОЛА.ПРО для сетей отопления и горячего водоснабжения

АЛЬБОМ ТИПОВЫХ РЕШЕНИЙ

ПО ПРИМЕНЕНИЮ ТРУБОПРОВОДОВ «ИЗОЛА-ТА95» ИЗ СШИТОГО ПОЛИЭТИЛЕНА С ТЕПЛОВОЙ ИЗОЛЯЦИЕЙ ИЗ ПЕНОПОЛИУРЕТАНА В ГОФРИРОВАННОЙ ПОЛИЭТИЛЕНОВОЙ ОБОЛОЧКЕ ПРИ ПРОЕКТИРОВАНИИ И РЕКОНСТРУКЦИИ ТЕПЛОВЫХ СЕТЕЙ, ТРУБОПРОВОДОВ СИСТЕМ ОТОПЛЕНИЯ И ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

TA95-12.2013

г. Санкт-Петербург, 2013 г.

ОГЛАВЛЕНИЕ

1. ВВОДНАЯ ЧАСТЬ		2	6. ВАРИАНТЫ УЗЛОВ ВВОДА	22
1.1. Область применения		2	6.1. Узел прохода трубопровода через стену	22
1.2. Преимущества системы		2	6.2. Узел ввода гибких трубопроводов в приямок с переходом	
2. ПРИМЕР СХЕМЫ СЕТИ		3	на стальную трубу и установкой неподвижной опоры	22
3. ПРОДУКЦИЯ 3.1. Труба «ИЗОЛА-ТА95» 3.2. Пресс фитинг под сварку (РЕХ-меза.3. Пресс-муфта соединительная равна.4. Пресс-отвод равнопроходный гнут	нопроходная (РЕХ-РЕХ)	4 4 5 6	 6.3. Узел ввода гибких трубопроводов над полом технического подполья здания 6.4. Узел расположения гибких трубопроводов в камере с переходом на стальную трубу и установкой опор 6.5. Узел сопряжения бесканальной прокладки с канальным участком 	23 23 24
3.5. Пресс-тройник (РЕХ-РЕХ)		7	7. ТРОЙНИКОВЫЕ ОТВЕТВЛЕНИЯ ТРУБОПРОВОДОВ	25
- 3.6. Монтажная гильза		8-	7.1. Тройниковое ответвление трубопроводов «ИЗОЛА-ТА95»	
3.7. Обрезка изоляции для соединений условным диаметрам стальных тру		9	при двухтрубной прокладке 7.2. Тройниковое ответвление трубопроводов «ИЗОЛА-ТА95»	25
3.8. Комплект для изоляции стыка		9	при четырехтрубной прокладке	25
3.9. Комплект для изоляции тройника		10	8. УЗЕЛ УСТАНОВКИ ЗАПОРНОЙ АРМАТУРЫ ПРИ	
3.10. Комплект для изоляции уголка	/	-11-	ВНЕКАМЕРНОЙ ВРЕЗКЕ ТРОЙНИКОВОГО	
3.11. Торцевая термоусаживаемая заг	лушка /	12	ОТВЕТВЛЕНИЯ	26
4. ПРОЕКТИРОВАНИЕ		13	9. ТРАНСПОРТИРОВКА И ХРАНЕНИЕ	27
4.1. Гидравлический расчет	X	13	9.1. Поставка труб	27
4.2. Неподвижные опоры, компенсацио	онные зоны	14	9.2. Хранение труб	28
4.3. Расчет тепловых потерь		15	9.3. Транспортировка	28
4.4. Прочностной расчет		15	9.4. Погрузочно-разгрузочные работы и размотка на объекте	28
4.5. Угол поворота		17	9.5. Размотка при отрицательных температурах	29
5. ВАРИАНТЫ ПРОКЛАДКИ ТРУ	Ъ	18	9.6. Трубы на металлических катушках	29
5.1. Прокладка в траншее		18	10. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ МОНТАЖЕ ТРУБ	
5.2. Прокладка в непроходных каналах		18	«ИЗОЛА-ТА95»	/30
5.3. Прокладка в футляре		20		
5.4. Технология горизонтального напра	авленного бурения	21		

1. ВВОДНАЯ ЧАСТЬ

ИЗОЛА,ПРО

Типовые решения разработаны для проектирования и строительства систем теплоснабжения с применением труб ИЗОЛА.ПРО, изготовленных из сшитого полиэтилена, армированных высокопрочным волокном «Kevlar», с теплоизоляцией из пенополиуретана в гофрированной полиэтиленовой оболочке, однотрубной конструкции. Трубы предназначены для подземной бесканальной прокладки, а также прокладки в проходных и непроходных каналах сетей горячего и холодного водоснабжения и теплоснабжения.

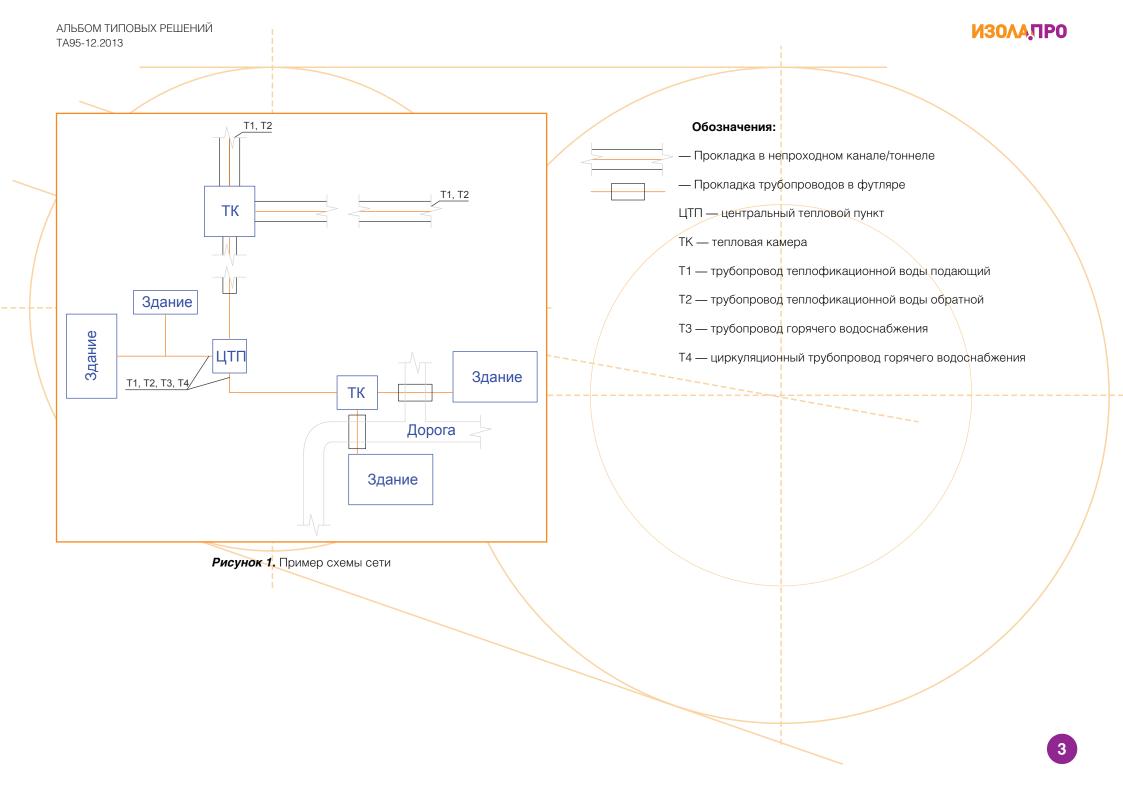
1.1. Область применения

Трубы «ИЗОЛА-ТА95» используют для внутриквартальных двухтрубных и четырехтрубных систем теплоснабжения с рабочей температурой до 95°С (с краткосрочным увеличением до 110°С) на максимальное рабочее давление 1,0 МПа.

1.2. Преимущества системы

Система «ИЗОЛА-ТА95»:

- неподверженность коррозии;
- химическая стойкость к агрессивным средам;
- неподверженность засорению осадками и примесью;
- низкий коэффициент шероховатости внутренней стенки, обеспечивающий превосходные гидравлические характеристики;
- способность компенсировать гидравлические удары;
- устойчивость к абразивному стиранию;
- герметичность и надёжность системы;
- высокая энергоэффективность;
- высокая скорость и лёгкость монтажа;
- минимальное количество стыков;
- низкий вес системы;
- трубы легко режутся и быстро соединяются;
- возможность прокладки методом горизонтально-направленного бурения;
- легко и плавно обходят углы и препятствия;
- любая конфигурация трассы;
- оптимальный маршрут прокладки;
- низкая стоимость монтажа;
- не требуется тяжёлая погрузо-разгрузочная техника;
- не требуется сварочное оборудование:
- не требуется гидроизоляция;
- не требуется электромеханическая защита;

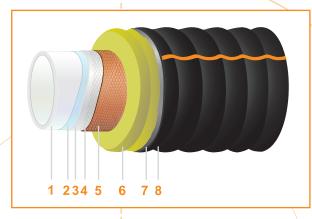

- монтаж длинномерными отрезками;
- снижение отходов за счёт поставки отрезков требуемой длины;
- снижение ширины траншеи в 2 раза;
- бесканальная прокладка трубопровода;
- укладка проводится без учёта линейного теплового расширения;
- не требуется петель расширения, компенсаторов отводов и неподвижных опор;
- уменьшение сроков строительства;
- низкие эксплуатационные издержки;
- высокий уровень безаварийности работы трубопровода;
- не требуется плановое отключение для испытаний в весенне-летний период;
- ремонт только в случаях механического повреждения.

В **таблице 1.1** представлены основные свойства трубопроводов «ИЗОЛА-ТА95».

Таблица 1.1.

Основные свойства трубопроводов «ИЗОЛА-ТА95»

Наименование показателя	Значение	Метод испытания
Средний коэффициент линейного теплового расширения 0–70°С полиэтилена РЕХ, °С-1;	1,5x10 ⁻⁴	ГОСТ 15173
Теплопроводность трубы PEX, Вт/м x K	0,38	ГОСТ 23630.2
Теплопроводность полиэтиленовой оболочки, Вт/м х К	0,43	ГОСТ 23630.2
Теплопроводность теплоизоляции при средней температуре 50°C, Вт/м х К	≤0,032	По ГОСТ 7076
Объемная доля закрытых пор пенополиуретана, %	≥90	По ГОСТ 30732
Степень сшивки полиэтилена РЕХ, %	≥70	TV 2248-001-56325719-2011
Коэффициент эквивалентной равномернозернистой шероховатости напорной трубы из полиэтилена РЕХ, см	0,0007	СП 42-101



3. ПРОДУКЦИЯ

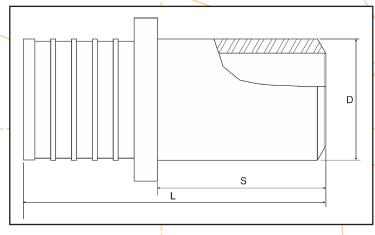
3.1. Труба «ИЗОЛА-ТА95»

Гибкие теплоизолированные трубы с повышенным рабочим давлением. Трубы «ИЗОЛА-ТА95» используют для внутриквартальных двухтрубных и четырехтрубных систем теплоснабжения с рабочей температурой до 95°С (с краткосрочным увеличением до 110°С) на максимальное рабочее давление 1,0 МПа.

- 1. Напорная труба из сшитого полиэтилена РЕХ-В.
- 2. Полимерный кислородный барьер (по особому заказу).
- 3. Конструкционный слой из высокотемпературного полимера.
- 4. Армирующая система из высокопрочного волокна Kevlar®.
- 5. Конструкционный слой из высокотемпературного сополимера.
- 6. Теплоизоляционный слой из гибкого пенополиуретана.
- 7. Технологический слой из полиэтиленовой пленки.
- 8. Гофрированная защитная оболочка из полиэтилена.

Рисунок 2. Конструкция трубы «ИЗОЛА-ТА95»

В **таблице 2.1** представлены размеры труб «ИЗОЛА-ТА95».


Таблица 2.1. Размеры труб «ИЗОЛА-ТА95»

		Напорная труба «PEX-ARM»	Полиэтиленовая оболочка				Толщина слоя	Расчётная	
I	Гипоразмер трубы	Номинальные	Номинальные Наружны		Толщи	Толщина стенки е1		пенополиуретана, не менее мм	масса 1п/м трубы, кг
		наружный диаметр и толщина стенки dxe	Номинал, мм	Предельное отклонение, (+)мм	Номинал, мм	Предельное отклонение, (+)мм	Высота гофра h, мм		, , , , , , , , , , , , , , , , , , ,
	40/90	40x4,0	90		2,0		3,0	17	1,41
	40/110	40x4,0	108		2,4		3,0	25	1,62
	50/90	47,7x3,6	90		2,0		3,0	17	1,49
	50/110	47,7x3,6	108		2,4		3,0	25	1,71
	63/110	58,5x4,0	108	2,0	2,4	0,5	3,0	17	1,91
	75/125	69,5x4,6	122		2,7		3,5	17	2,51
	90/140	84,0x6,0	138		3,0		4,0	17	3,34
	110/160	101,0x6,5	158		3,2		4,0	17	4,21
	140/180	127,0x7,1	180		3,5		4,5	17	5,3
	160/200	144,0x7,5	200		3,5		4,5	17	6,16



3.2. Пресс фитинг под сварку (РЕХ-металл)

Пресс-фитинг под сварку (РЕХ-металл) предназначен для соединения труб «ИЗОЛА-ТА95» с металлическими трубами или арматурой методом электросварки. Материал исполнения пресс-фитингов под сварку: оцинкованная сталь или нержавеющая сталь. На *рисунках 3 и 4* представлены пресс-фитинги под сварку, *в таблице 3.1* приведены основные параметры.

Рисунок 3. Пресс-фитинг под сварку для труб 40/90, 40/110

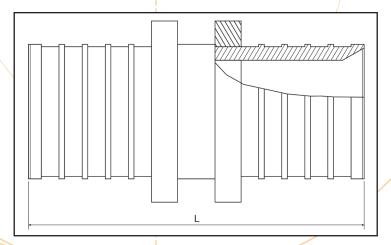
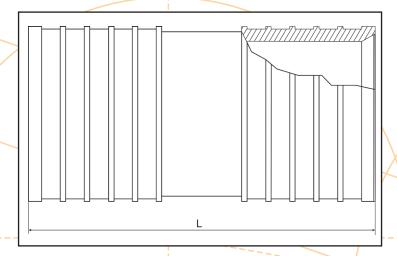

Рисунок 4. Пресс-фитинг под сварку для труб 50/90, 50/110, 63/110, 75/125, 90/140, 110/160, 140/180, 160/200

Таблица 3.1. Параметры пресс-фитинга под сварку


Типоразмер	L, мм	D, мм	Ѕ, мм
40	90	36,1	50
50	110	44,5	40
63	130	55,3	50
75	130	65,4	50
90	130	81	50
110	130	99,3	50
140	130	108,3	50
160	132	139,2	51

3.3. Пресс-муфта соединительная равнопроходная (РЕХ-РЕХ)

Пресс-муфта соединительная равнопроходная предназначена для соединения двух труб «ИЗОЛА-ТА95» одинаковых диаметров. Материал исполнения пресс-муфт соединительных равнопроходных: нержавеющая сталь. На *рисунках 5 и 6* представлены пресс-муфты соединительные равнопроходные. В *таблице 3.2* представлены основные параметры пресс-муфт соединительных равнопроходных.

Рисунок 5. Пресс-муфта соединительная равнопроходная для труб 40/90, 40/110

Рисунок 6. Пресс-муфта соединительная равнопроходная для труб 50/90, 50/110, 63/110, 75/125, 90/140, 110/160, 140/180, 160/200

Таблица 3.2. Параметры пресс-муфт соединительных равнопроходных

Типоразмер	L, мм
40	90
50	110
63	130
75	130
90	130
110	130
140	130
160	132

3.4. Пресс-отвод равнопроходный гнутый (РЕХ-РЕХ)

Пресс-отвод равнопроходный гнутый предназначен для поворота труб «ИЗОЛА-ТА95» с малым радиусом под углом 90°. Материал исполнения пресс-отводов равнопроходных гнутых: нержавеющая сталь. На *рисунке 7* представлен пресс-отвод равнопроходный гнутый. В *таблице 3.3* представлены основные параметры пресс-отводов равнопроходных гнутых.

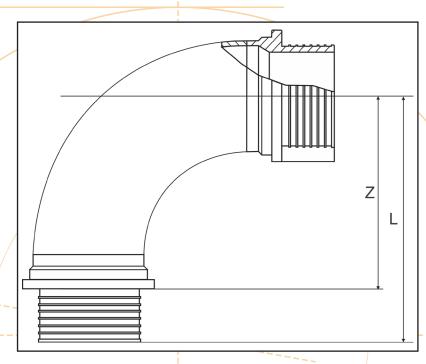
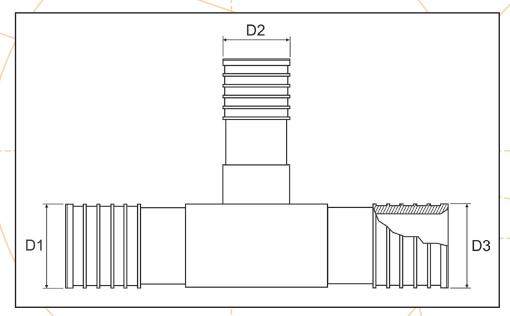


Рисунок 7. Пресс-отвод равнопроходный гнутый

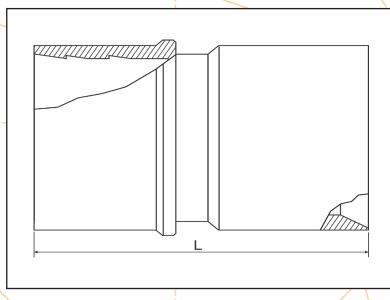

Таблица 3.3. Параметры пресс-отвода равнопроходного гнутого

Типоразмер	L, мм	Z, мм
40	80	48
50	87	48
63	106	80
75	116,5	66,5
90	125,5	75,5
110	136,5	86,5
140	149	99,5
160	164	115

3.5. Пресс-тройник (РЕХ-РЕХ-РЕХ)

Пресс-тройник предназначен для разветвления труб «ИЗОЛА-ТА95». Материал исполнения пресс-тройников: нержавеющая сталь. На *рисунке 8* представлен пресс-тройник. В *таблице 3.4.* представлены основные параметры пресс-тройников.

Рисунок 8. Пресс-тройник


Таблица 3.4. Параметры пресс-тройников

D1	D1 D2			D3					
וט	DZ	40	50	63	75	90	110	140	160
40	40	Х							
50	40	Χ	Χ						
50	50	Χ	Χ	į					
63	40	Χ	Χ	X					
63	50	X	Χ	Х					
63	63	X	Χ	Х					
75	40	Χ	Χ	X	Х				
75	50	Χ	Х	! X	Х				
75 /	63	Χ	Χ	X	Х				
75	75	Χ	Х	X	Х				
90	40	Х	Χ	X	Х	Х			
/90	50	Х	Χ	Х	Х	Х	`	\	
90	63	Х	Х	X	Х	Х			
90	75	Х	Х	X	Х	Х			
90	90	X	Х	X	Х	Х			
_110	_ 40	X	7775	X	X	X	X		
110	50	Х	Х	Х	X	X	Χ		
110	63	Х	Х	X	Х	Х	X		
110	75	Х	Х	X	Х	Х	Χ		
110	90	Х	Х	X	Х	Х	Χ		
110	110	Х	Х	X	Х	Х	Χ /		
140	40	Х	Х	X	Х	Х	X/	Х	
140	50	Х	Х	X	Х	Х	X	Х	
140	63	Х	Х	X	Х	Х	X	Х	
140	75	Х	Х	X	Х	X	Χ	Х	
140	90	Х	Х	X	Х	X	Х	Х	
140	110	X	Х	X	X	Х	Х	Х	
140	140	Х	Χ	X	Х	Х	Χ	Х	
160	40			i		Х	Χ	Х	X/
160	50		Х	X	Х	X	Χ	Х	X
160	63		Х	X	Х	Х	Χ	X	Х
160	75		Х	X	Х	Х	Χ	X	Х
160	90		Χ	Х	Х	Х	Х	X	Х
160	110		Х	Х	Х	Х	X	Х	Х
160	140		Х	X	Х	X	Χ	Х	Х
160	160		X	X	X	Х	Χ	Х	Χ

3.6. Монтажная гильза

Монтажные гильзы предназначены для соединения элементов трубопроводной арматуры с трубами «ИЗОЛА-ТА95» методом холодной запрессовки при помощи комплектов гидравлического инструмента. Материал исполнения монтажных гильз: оцинкованная сталь или нержавеющая сталь. На **рисунке 9** представлена монтажная гильза. В **таблице 3.5** представлены основные параметры монтажных гильз.

Рисунок 9. Монтажная гильза

Таблица 3.5. Параметры монтажных гильз

Типоразмер	L, мм
40	60
50	110
63	120
75	125
90	135
110	140
140	150
160	165

В зависимости от типоразмера труб «ИЗОЛА-ТА95» и вида соединений для надевания монтажной гильзы требуется съемное монтажное кольцо (дополнительный элемент комплекта гидравлического инструмента). В **таблице 3.6** представлена информация по соответствию монтажных колец типоразмерам соединений труб «ИЗОЛА-ТА95».

Таблица 3.6. Соответствие монтажных колец типоразмерам соединений труб

Типоразмер		ого кольца необходимого ания гильзы
	пресс-фитинг под сварку, пресс-муфта, пресс-тройник	пресс-отвод равнопроходный гнутый
40 /	не требуется	
50	0 50	
63	O6 <mark>3</mark>	
/ 75	075	не требуется
90	090	`\ `
110	0 110	
140	0140	
160	O160	

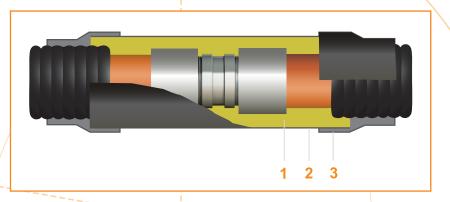
Монтажные гильзы для пресс-фитингов под сварку, пресс-муфт, пресс-отводов и пресстройников поставляются отдельно. Количество монтажных гильз, необходимых для монтажа различных соединений труб «ИЗОЛА-ТА95» приведены в **таблице 3.7**.

Таблица 3.7. Требуемое количество монтажных гильз

		Требуемое количество монтажных гильз			
Типоразмер	пресс-фитинг под сварку	пресс-муфта соединительная равнопроходная	пресс-отвод равнопроходный гнутый	пресс-тройник	
40					
50					
63					
75] 1	2	2	3	
90					
110]				
140					
160					

3.7. Обрезка изоляции для соединений труб и соответствие условным диаметрам стальных труб

В зависимости от типоразмера труб «ИЗОЛА-ТА95» для надевания гильз при монтаже соединений требуется обрезка изоляции от торца гибких теплоизолированных труб. В **таблице 3.8** представлены данные по расстояниям обрезки и соответствие условным диаметрам стальных труб.


Таблица 3.8. Расстояния обрезки изоляции и соответствие диаметрам стальных труб

Типоразмер	Расстояние обрезки изоляции от торца труб*, мм	Условный диаметр стального трубопровода, мм
40	110	32
50	170	40
63	183	50
75	190	65
90	202	80
110	209	100
140	227	125
160	239	150

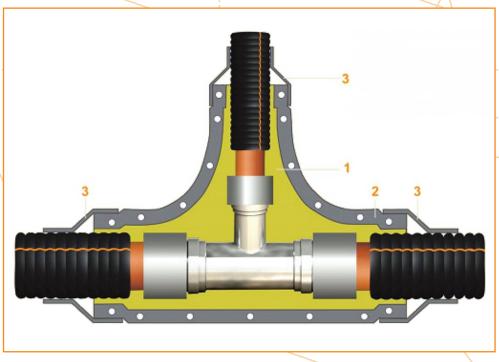
^{*}При монтаже пресс-фитингов под сварку, расстояние обрезки изоляции от торца труб, указанное в **таблице 3.8** необходимо увеличивать на 50 мм, необходимого для гидроизоляции открытого пенополиуретанового слоя торца трубы «ИЗОЛА-ТА95» с помощью торцевых термоусаживаемых заглушек.

3.8. Комплект для изоляции стыка

Комплект для изоляции стыка представлен на **рисунке 10** и предназначен для теплогидроизоляции стыка и состоит из термоусадочной муфты из полиэтилена, термоусаживаемой ленты, пенопакета, дренажной и вварной пробок. Тип комплекта для изоляции стыка выбирается исходя из размеров наружной оболочки соединяемых труб. Параметры комплекта для изоляции стыков приведены **в таблице 3.7.**

Рисунок 10. Комплект для изоляции стыков
1 — изоляция, 2 — термоусадочная муфта, 3 — термоусаживаемая лента

Таблица 3.9. Параметры комплекта для изоляции стыков


Тип комплекта	Типоразмер трубы
КИС-90	40/90, 50/90
КИС-110	40/110, 50/110, 63/110
КИС-125	75/125
КИС-140	90/140
KUC-160	110/160
КИС-180	140/180
КИС-200	160/200

3.9. Комплект для изоляции тройника

Комплект для изоляции тройника представлен на *рисунке 11* и предназначен для теплогидроизоляции тройникового соединения и состоит из двух половинок кожуха из полиэтилена низкого давления (ПНД), которые соединяются с помощью болтов с гайками и шайбами, а также термоусаживаемой ленты, пенопакета, дренажной и вварной пробок. Тип комплекта для изоляции тройникового соединения выбирается исходя из размеров наружной оболочки соединяемых труб, отводы кожуха обрезаются под требуемый размер наружной оболочки в соответствии с обозначением на кожухе.

Параметры комплекта для изоляции тройникового соединения приведены в таблице 3.10.

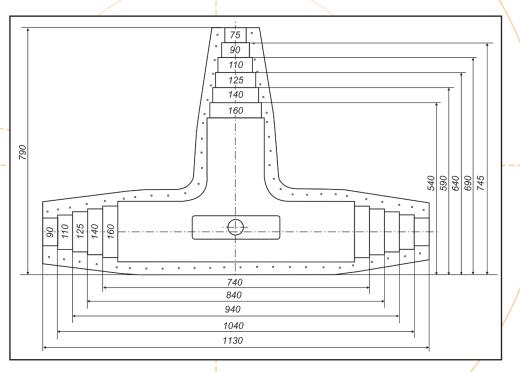
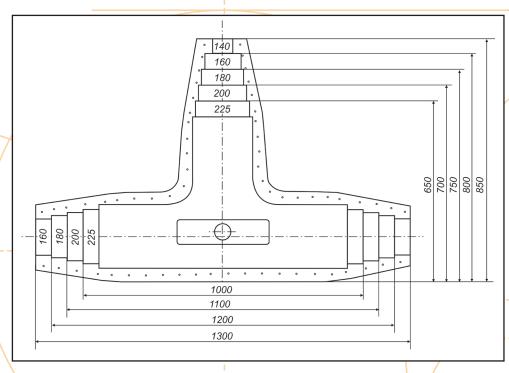


Рисунок 11. Комплект для изоляции тройника 1 — изоляция, 2 — кожух защитный, 3 — термоусаживаемая лента


Таблица 3.10. Параметры комплекта для изоляции тройника

Типоразмер	Типоразмер трубы
КИТ-2	160/90X160/75X160/90
КИТ-3	225/160x225/140x225/160

Размеры кожухов для изоляции тройникового соединения представлены на **рисунках 12, 13.**

Рисунок 12. Размеры кожуха комплекта КИТ-2

Рисунок 13. Размеры кожуха комплекта КИТ-3

3.10. Комплект для изоляции уголка

Комплект для изоляции уголка представлен на рисунке 14 и предназначен для теплогидроизоляции прямого углового соединения и состоит из двух половинок кожуха из полиэтилена низкого давления (ПНД), которые соединяются с помощью болтов с гайками и шайбами, а также термоусаживаемой ленты, пенопакета, дренажной и вварной пробок. Тип комплекта для изоляции прямого углового соединения выбирается исходя из размеров наружной оболочки соединяемых труб, отводы кожуха обрезаются под требуемый размер наружной оболочки в соответствии с обозначением на кожухе.

Параметры комплекта для изоляции уголка представлены в таблице 3.11.

Таблица 3.11. Параметры комплекта для изоляции уголка

Тип комплекта	Типоразмер трубы
КИУ-2	160/90x160/90
КИУ-3	225/160x225/160

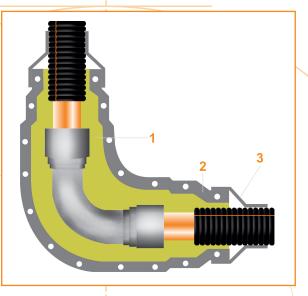


Рисунок 14. Комплект для изоляции уголка
1— изоляция из пенополиуретана (пенопакет), 2— кожух защитный,
3— термоусаживаемая лента

Размеры кожухов для изоляции углового соединения представлены на *рисунках 15, 16.*

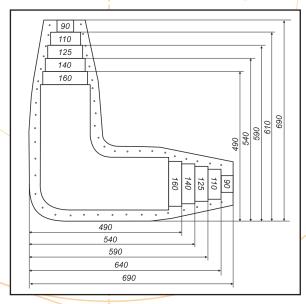
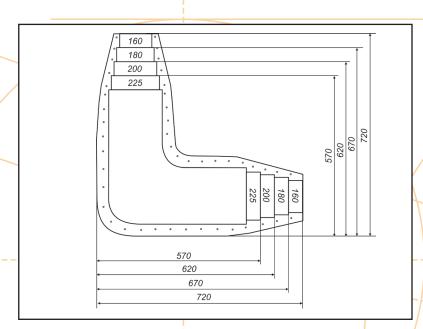



Рисунок 15. Размеры кожуха комплекта КИУ-2

Рисунок 16. Размеры кожуха комплекта КИУ-3

3.11. Торцевая термоусаживаемая заглушка

Торцевая термоусаживаемая заглушка представлена на **рисунке 17** и предназначена для гидроизоляции открытого пенополиуретанового слоя торца трубы ИТОЛА-ТА95.

Параметры торцевых термоусаживающих заглушек представлены в **таблице 3.12.**

Рисунок 17. Торцевая термоусаживаемая заглушка

Таблица 3.12. Параметры термоусаживаемых заглушек

Тип заглушки	Типоразмер трубы
TT3-1	40/90, 40/110, 50/90, 50/110
TT3-2	63/110, 75/125, 90/140, 110/160
TT3-3	140/180, 140/225, 160/225

4. ПРОЕКТИРОВАНИЕ

При проектировании и етроительстве данных трубопроводов должны соблюдаться следующие основные нормативные документы:

- СНиП 41-02-2003 Тепловые сети;
- СНиП 3.05.03.85 Тепловые сети;
- ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны;
- ГОСТ 12.1.044-89 ССБТ. Пожаровзрывоопасность вещества и материалов. Номенклатура показателей и методы их определения;
- ГОСТ 12.3.030-83 ССБТ. Переработка пластических масс. Требования безопасности;
- ГОСТ 17.2.3.02-78 Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями;
- ГОСТ 166-89 Штангенциркули. Технические условия;
- ГОСТ 409-77 Пластмассы ячеистые и резины губчатые. Метод определения кажушейся плотности:
- ГОСТ 6507-90 Микрометры. Технические условия;
- ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме:
- ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия;
- ГОСТ 12423-66 Пластмассы. Условия кондиционирования и испытания образцов (проб);
- ГОСТ 14192-96 Маркировка грузов;
- ГОСТ 15139-69 Пластмассы . Методы определения плотности (объемной массы);
- ГОСТ 15150-69 Машины, приборы и др технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды;
- ГОСТ 52134-2003 Трубы напорные из сшитого полиэтилена;
- СНиП 2.04.01-85 Внутренний водопровод и канализация зданий;
- СНиП 3.05.01-85 Внутренние санитарно-технические системы;
- СНиП 12-03-2001 Безопасность труда в строительстве:
- СНиП 21-01-97 Пожарная безопасность зданий и сооружений;
- СНиП 23-01-99 Строительная климатология;
- СП 40-102-2000 Проектирование и монтаж трубопроводов систем;
- СНиП 41-01-2003 Отопление, вентиляция и кондиционирование;
- СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов;
- СП 41-103-2000 Проектирование тепловой изоляции оборудования и трубопроводов:
- СП 42-101-2003 Общие положения по проектированию и строительству газораспределительных систем из металлических и полиэтиленовых труб;
- ГОСТ ИСО 3126-2007 Пластмассовые элементы трубопровода. Определение размеров;
- ГОСТ 15173-70 Пластмассы. Метод определения среднего коэффициента линейного теплового расширения;
- ГОСТ 16377-77 Полиэтилен высокого давления. Технические условия;
- ГОСТ 21650-76 Средства скрепления тарно-штучных грузов в транспортных пакетах. Общие требования;
- ГОСТ 22235-76 Вагоны грузовые магистральных железных дорог колеи 1520 мм. Общие требования по обеспечению сохранности при производстве погрузочно-

разгрузочных и маневровых работ;

- ГОСТ 23206-76 Пластмассы ячеистые жесткие. Метод испытания на сжатие;
- ГОСТ 23630.2-79 Пластмассы. Метод определения теплопроводности;
- ГОСТ 26653-90 Подготовка генеральных грузов к транспортированию и хранению;
- ГОСТ 29325-92 (ИСО 3126-74) Трубы из пластмасс. Измерение размеров;
- ГОСТ 30244-94 Материалы строительные. Метод испытания на горючесть;
- ГОСТ 30402-96 Материалы строительные. Метод испытания на воспламеняемость;
- ГОСТ 30732-2001 Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке;
- ТУ 2248-001-56325719-2011 Трубы из сшитого полиэтилена двухслойные.

4.1. Гидравлический расчет

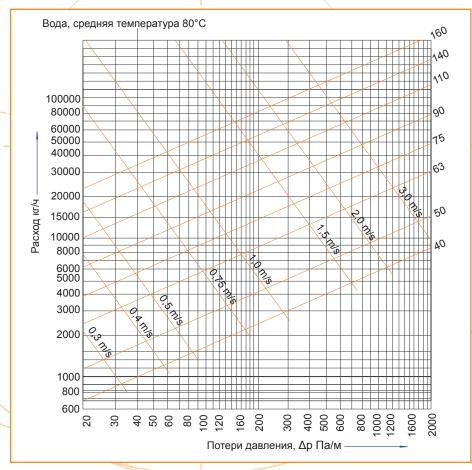


Рисунок 18. Номограмма для гидравлического расчета

Основные буквенные обозначения величин:

ДР — потери давления в трубопроводах на трение и в местных сопротивлениях, Па;

R — удельная потеря давления на трение, Па/м;

λ — коэффициент гидравлического трения;

 G_d — суммарный расчетный расход сетевой воды в двухтрубных тепловых сетях открытых и закрытых систем теплоснабжения, кг/ч:

I — приведенная длина трубопровода, м;

 \widetilde{I} — длина участка трубопровода по плану, м;

_ эквивалентная длина местных сопротивлений, м;

 k_{*} — эквивалентная шероховатосты внутренней поверхности труб, м;

Re — число Рейнольдса;

Re' — предельное число Рейнольдса;

 $\Sigma \xi$ — сумма коэффициентов местных сопротивлений на рассчитываемом участке;

D, — внутренний диаметр трубопровода;

ho — средняя плотность теплоносителя на расчетном участке.

Формулы для гидравлического расчета трубопроводов водяных тепловых сетей:

Суммарные потери давления в трубопроводах на трение и в местных сопротивлениях определяются по формуле:

 $\Delta P = R \cdot I_c$ (1)

Удельные потери давления на трение:

$$R = 6,27 \cdot 10^{-8} \lambda \frac{G_d^2}{D_s^5 \cdot \rho}$$
 (2)

Внутренний диаметр трубопровода:

$$D_{i} = \sqrt[5]{\frac{6,27 \cdot 10^{-8} \lambda G_{d}^{2}}{R \cdot \rho}}$$
 (3)

Приведенная длина трубопровода:

$$I_c = I + I_e \tag{4}$$

Эквивалентная длина местных сопротивлений:

$$I_{e} = \sum_{\xi} \frac{D_{i}}{\lambda} \tag{5}$$

Коэффициент гидравлического трения:

для области квадратичного закона (при Re≥Re'):

$$\lambda = \frac{1}{(1,14+2lg\frac{D_i}{k})^2}$$
 (6)

для любых значении числа Рейнольдса (приближенно):

$$\lambda = 0.11(\frac{k_e}{D} + \frac{68}{R}) \cdot 0.25$$
 (7)

Предельное число Рейнольдса, характеризующее границы областей: переходной и квадратичного закона

$$Re' = 560 \frac{D_i}{k_a}$$
 (8)

При отсутствии данных о характере и количестве местных сопротивлений на трубопроводах тепловых сетей суммарную эквивалентную длину местных сопротивлений на участке трубопроводов допускается определять умножением длины трубопровода на поправочный коэффициент a,=0,3.

Примечание: Суммарная эквивалентная длина местных сопротивлений на участке трубопровода $l_e = l \cdot a_1$.

4.2. Неподвижные опоры, компенсационные зоны

При проектировании внутриквартальных подземных сетей отопления и горячего водоснабжения с использованием труб «ИЗОЛА-ТА95» не требуется предусматривать специальных компенсаторов температурных расширений.

При бесканальной прокладке внутриквартальных сетей горячего водоснабжения гибкими трубопроводами «ИЗОЛА-ТА95» не требуется устройство промежуточных неподвижных опор.

Устройство неподвижных опор следует предусмотреть в местах присоединения гибких трубопроводов «ИЗОЛА-ТА95» к стальным трубопроводам на вводах в здания и сооружения со стороны стальных трубопроводов, чтобы вес стальных труб и арматуры не создавал дополнительные нагрузки на гибкие трубопроводы.

Установку спускников выполнять согласно СНиП 41-02-2003 «Тепловые сети».

В тепловых камерах при необходимости следует предусмотреть установку металлических подпорок или каркасов для предотвращения провисания трубопроводов и арматуры, находящихся в камере.

Осевая нагрузка Np, передаваемая в местах неподвижных креплений, определяется по формуле:

$$Np = \frac{P\pi}{4}(D-2s)^2 + \alpha \Delta TEF_{st}$$
, где

P — рабочее давление в трубопроводе, кгс;

D — наружный диаметр несущей трубы, см;

5 — толщина стенки, см;

 α коэффициент линейного расширения, 1/оС (α =2,05·10⁻⁴ 1/°C, при T=95°C);

E — модуль упругости, кгс/см 2 (E = 1900 кгс/ см 2 , при T = 95°C);

 $F_{\rm st}$ — площадь поперечного сечения стенки напорной трубы, см², где $F=\pi(D-s)s$;

4.3. Расчет тепловых потерь

Основным критерием выбора толщины тепловой изоляции должно быть соответствие действующим нормативам

СНиП 41-03-2003 «Тепловая изоляция оборудования и трубопроводов», устанавливающим допустимую величину тепловых потерь.

В соответствии с СП 41-103-2000 «Проектирование тепловой изоляции оборудования и трубопроводов», линейная плотность теплового потока через цилиндрическую теплоизолированную конструкцию (тепловые потери) **q** Вт/м, определяется по уравнению:

$$q = \frac{t_{_B} - t_{_H}}{R_{_{BH}} + R_{_{CT}} + R_{_{HS}} + R_{_H}}$$
 , где (9)

 $t_{\rm g}$ — температура среды внутри изолируемого оборудования, °C;

 t_{μ} — температура окружающей среды, °C;

 R_{BH} — термическое сопротивление теплоотдаче на внутренней поверхности стенки изолируемого объекта, м²х°С/Вт;

 R_{H} — термическое сопротивление теплоотдаче на наружной поверхности теплоизоляции, м²×°С/Вт;

 $R_{\rm CT}$ — термическое сопротивление кондуктивному переносу теплоты стенки изолируемого объекта, м²х°С/Вт;

 $R_{\rm {\scriptscriptstyle M3}}$ — термическое сопротивление кондуктивному переносу теплоты плоского слоя изоляции, м²×°С/Вт.

Величина:

$$K = \frac{1}{R_{BH} + R_{CT} + R_{M3} + R_{H}} \tag{10}$$

является линейным (на единицу длины трубопровода) коэффициентом теплопередачи K [BT/($M^2 \times C$)], и после ее определения тепловые потери определяются уравнением:

$$q=K(t_{\scriptscriptstyle B}-t_{\scriptscriptstyle H})$$
, где (11)

 $t_{\rm g}$ — температура среды внутри изолируемого оборудования, °C;

 $t_{\scriptscriptstyle H}$ — температура окружающей среды, °С.

В **таблице 4.1** приведены значения линейного (на единицу длинны трубопровода) коэффициента теплопередачи K [Bt/($M^2 \times ^{\circ}$ C)].

Таблица 4.1. Значения линейного коэффициента теплопередачи

Типоразмер труб	Коэффициент теплопередачи К, Вт/(м²х°С), для способа прокладки			
.,,,,	На воздухе	В канале	В грунте	
40/90	0,2 <mark>5</mark>	0,23	0,21	
50/90	0,31	0,29	0,26	
40/110	0,20	0,19	0,17	
50/110	0,25	0,24	0,21	
63/110	0,3 <mark>1</mark>	0,30	0,27	
75/125	0,34	0,33	0,29	
90/145	0,36	0,35	0,31	
110/160	0,44	0,42	0,36	
140/180	0,5 <mark></mark> 9	0,55	0,45	
160/200	0,68	0,63	0,51	

4.4. Прочностной расчет

Прочностной расчет трубопроводов из полимерных материалов, уложенных в земле, рекомендуется сводить к соблюдению неравенства:

для напорных трубопроводов:

$$\left| \frac{\varepsilon_p}{\varepsilon_{pp}} + \frac{\varepsilon - \varepsilon_c}{\varepsilon_{pp}} \right| \le 1,0$$
, где (12)

 ${\it E}_{\it p}$ — максимальное значение деформации растяжения материала в стенке трубы изза овальности поперечного сечения трубы под действием грунтов (${\it q}_{\it zp}$, МПа) и транспортных нагрузок (${\it q}_{\it m}$, МПа);

 ε — степень растяжения материала стенки трубы от внутреннего давления воды в трубопроводе;

 ε_c — степень сжатия материала стенки трубы от воздействия внешних нагрузок на трубопровод;

ерр предельно допустимое значение деформации растяжения материала в стенке трубы, происходящей в условиях релаксации напряжений;

 $oldsymbol{arepsilon}_{P\Pi}$ — предельно допустимая деформация растяжения материала в стенке трубы в условиях ползучести.

Значение ε_{p} может быть определено по формуле:

$$\varepsilon_p = 4,27 K_\sigma \frac{S}{D} \Psi K_{3\Psi}$$
, где (13)

 $K_{\rm g}$ — коэффициент постели грунта для изгибающих напряжений, учитывающий качество уплотнения, его можно принимать: при тщательном контроле — 0,75, при периодическом контроле — 1,0, при отсутствии контроля — 1,5;

 K_{au} — коэффициент запаса на овальность поперечного сечения трубы, принимается равным: 1,0 — для напорных и самотечных трубопроводов и 2,0 — для дренажных трубопроводов:

 Ψ — относительное укорочение вертикального диаметра трубы в грунте, устанавливается как предельно допустимое значение.

$$\Psi = K_{3W} + \Psi_T + \Psi_M$$
, где (14)

 $K_{,\psi}$ — относительное укорочение вертикального диаметра трубы под действием грунтовой нагрузки;

 $K_{3\psi}$ — то же, под действием транспортных нагрузок; ψ — относительное укорочение вертикального диаметра трубы, образовавшееся в процессе складирования, транспортировки и монтажа. Его можно приближенно принимать по таблице 4.2.

Таблица 4.2. Относительное укорочение вертикального диаметра трубы

Кольцевая жесткость G_{o}	$\Psi_{_{ m M}}$ при степени уплотнения грунта				
оболочек трубы, Па	до 0,85	0,85–0,95	более 0,95		
До 276 000	0,06	0,04	0,03		
276 000–290 000	0,04	0,03	0,02		
Больше 290 000	0,02	0,02	0,01		

где G_{a} — кратковременная кольцевая жесткость оболочки трубы, МПа;

Значение Ψ_{rp} может быть определено по формуле:

$$\Psi_{pp} = K_{ok} \frac{K_{r}K_{w}q_{pp}}{K_{w}G_{o} + K_{pp}E_{pp}}$$
, где (15)

 $K_{\underline{\ }}$ — коэффициент, учитывающий запаздывание овальности поперечного сечения трубы во времени и зависящий от типа грунта, степени его уплотнения, гидрогеологических условий, геометрии траншеи, может принимать значения от 1 до 1,5;

 $K_{\!\scriptscriptstyle W}$ — коэффициент прогиба, учитывающий качество подготовки ложа и уплотнения, можно принимать: при тщательном контроле — 0,09, при периодическом — 0,11, при бесконтрольном ведении работ — 0,13;

 $K_{\!\scriptscriptstyle {\it \Gamma \it P}}$ — коэффициент, учитывающий влияние грунта засыпки на овальность поперечного сечения трубопровода, можно принять равным 0,06;

 E_{rp} — модуль деформации грунта в пазухах траншеи, МПа;

 $\mathcal{K}_{\mathbf{x}}^{\prime}$ — коэффициент, учитывающий влияние кольцевой жесткости оболочки трубы на овальность поперечного сечения трубопровода, можно принимать равным 0,15.

$$q_{rp} = \gamma H_{mp}$$
, где (16)

 γ — удельный вес грунта, H/m^3 ; H_{mp} — глубина засыпки трубопровода, считая от поверхности земли до уровня горизонтального диаметра, м.

 G_{0} — кратковременная кольцевая жесткость оболочки трубы, МПа;

$$G_o = 53.7 \frac{E_o l}{(1-\mu^2)(D-s)^3}$$
, где (17)

 E_a \rightarrow кратковременный модуль упругости при растяжении материала трубы, МПа; $\mu \not$ коэффициент Пуассона материала трубы (коэффициент Пуассона материала труб может быть принят равным μ =0,43);

I - M момент инерции сечения трубы на единицу длины, определяемый по формуле нормативной документации;

$$J = \frac{S^3}{12}$$
, где (18)

5 — толщина стенки, м;

$$\Psi = K_{ok} \frac{K_{y} q_{\tau}}{K_{x} G_{o} + K_{rp} n E_{rp}},$$
 где (19)

 K_{ν} коэффициент уплотнения грунта;

 Q_{τ} транспортная нагрузка, принимаемая по справочным данным для гусеничного, колесного и другого транспорта, МПа;

n — коэффициент, учитывающий глубину заложения трубопровода, при H<1n=0,5; K_{ab} — коэффициент, учитывающий процесс округления овализованной трубы под действием внутреннего давления воды в водопроводе (Р, МПа);

$$K_{ok} = \frac{1}{1 + 2P/q_c \Psi}$$
 где (20)

 q_c — суммарная внешняя нагрузка на трубопровод, МПа;

Р— максимальное рабочее давление (для трубопроводов «ИЗОЛА-ТА95» принять 1МПа). МПа:

$$q_{c} = q_{rp} + q_{T} \tag{21}$$

$$\varepsilon = \frac{P}{2E_o} \cdot \frac{D}{s} \tag{22}$$

$$\varepsilon_{c} = \frac{q_{c}}{2E_{c}} \cdot \frac{D}{s} \tag{23}$$

$$\varepsilon_{pp} = \frac{\sigma_0}{E_{\tau} K_3},$$
 где (24)

 σ_{0} — кратковременная расчетная прочность при растяжении материала трубы, МПа; E_{0} , E_{t} — кратко- и долговременное значения модуля упругости при растяжении материала трубы на конец срока службы эксплуатации трубопровода, МПа;

 q_{rs} — нагрузка от грунта, МПа.

$$\varepsilon_{P\Pi} = \frac{\sigma_0}{E_0 K_2},$$
где (25)

К, — коэффициент запаса, должен приводиться в нормативных документах.

Если в результате расчетов значение левой части выражения будет больше 1, то следует повторить расчеты при других характеристиках материала труб или укладки трубопровода.

Далее проверяют устойчивость оболочки трубы против действия сочетания нагрузок: для напорных сетей — грунтовые и транспортные q_{C} от грунтовых вод, $Q_{r_{B}}$, а также возможного возникновения вакуума Q_{BAK} в трубопроводе, для самотечных сетей — $q_{r_{P}}+Q_{r_{B}}$, для дренажных сетей с использованием выражения:

$$\frac{K_{yz}K_{os}\sqrt{nE_{zp}G_{\tau}}}{K_{3y}} \ge (q_C + Q_{FB} + Q_{BAK})$$
, где (26)

 $K_{_{\!N^2}}$ — коэффициент, учитывающий влияние засыпки грунта на устойчивость оболочки, можно принять 0,5, а для соотношения $Q_{_{\!T\!B}}$: $q_{_{\!T\!P}}$ =4:1 — равным 0,07; $K_{_{\!O\!B}}$ — коэффициент, учитывающий овальность поперечного сечения трубопровода, при $0 \! \leq \! \Psi \! \leq \! 0,05$ $K_{_{\!O\!B}}$ =1-0,7 Ψ ;

 $K_{_{\! 3V}}$ — коэффициент запаса на устойчивость оболочки на действие внешних нагрузок, можно принять равным 3;

G. – длительная кольцевая жесткость оболочки трубы, МПа, определяется по формуле:

$$G_{\tau} = \frac{4,475E_{\tau}}{(1-u^2)} \left(\frac{S}{(D-s)}\right)^3$$
 (27)

4.5. Угол поворота

Угол поворота трубы «ИЗОЛА-ТА95» на 90 градусов осуществляется при помощи прессотвода см. п.3.4.

Минимальные радиусы изгиба труб из полиэтилена в зависимости от типа труб приведены **в таблице 4.3.**

Таблица 4.3. Минимальный радиус изгиба трубы

Типоразмер трубы	Минимальный радиус изгиба
40/90; 40/110	0,8
50/90; 50/110	0,8
63/110	0,9
75/125	1,1
90/140	1,1
110/160	1,2
140/180	1,3
160/200	1,4

ИЗОЛАПРО

5. ВАРИАНТЫ ПРОКЛАДКИ ТРУБ

Трубопроводы «ИЗОЛА-ТА95» предназначены для подземной бесканальной, канальной и футлярной прокладки.

5.1. Прокладка в траншее

Размеры траншеи для укладки труб «ИЗОЛА-ТА95» приведены на **рисунке 19.** Крутизна откоса траншеи принимается по СНиП 12-04-2002 «Безопасность труда в строительстве. Часть 2 Строительное производство» в зависимости от вида грунта и глубины выемки. Согласно СНиП 41-02-2003 «Тепловые сети» (прим.1 (в) к табл. Б.1) минимальное расстояние от поверхности земли до верха оболочки трубопровода при подземной бесканальной прокладке должно составлять не менее 700 мм.

Земляные работы, согласно СП 41-107-2004, при строительстве подземных трубопроводов следует производить в соответствии с требованиями СНиП 3.02.01, требованиями и инструкциями заводов-изготовителей.

При бесканальной прокладке в траншее рекомендуется расстояние между осями соседних труб:

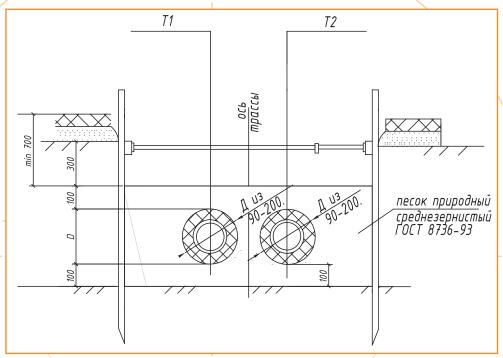
- при диаметре оболочки до 140 мм включительно 280 мм;
- при диаметре 160 мм 320 мм;
- при диаметре 180 мм 360 мм;
- при диаметре 200 мм 400 мм.

Минимальная ширина траншей по дну принимается в зависимости от диаметра оболочек труб и количества трубопроводов, укладываемых совместно в одной траншее.

При твердых грунтах на дне траншеи перед укладкой труб необходимо устраивать основание из песчаного фунта толщиной не менее 100 мм с коэффициентом фильтрации не менее 5 м/сут, песчаное основание не должно содержать кусков, кирпича, камня, щебня и других твердых включений.

Для выполнения работ по соединению и теплоизоляции стыков теплоизолированных труб на дне траншей необходимо устраивать приямки размером:

- ширина (2D+a+1,0) мм,
- длина 1,0 м,
- глубина 0,5 м,


где D — наружный диаметр оболочки, а - расстояние в свету между оболочками.

При выполнении обратной засыпки трубопровода в траншее устраивается защитный слой над верхом трубопровода и обсыпка из грунта толщиной не менее 200 мм сверху и не менее 100 мм сбоку, не содержащие твердых включений (щебня, камней и пр.).

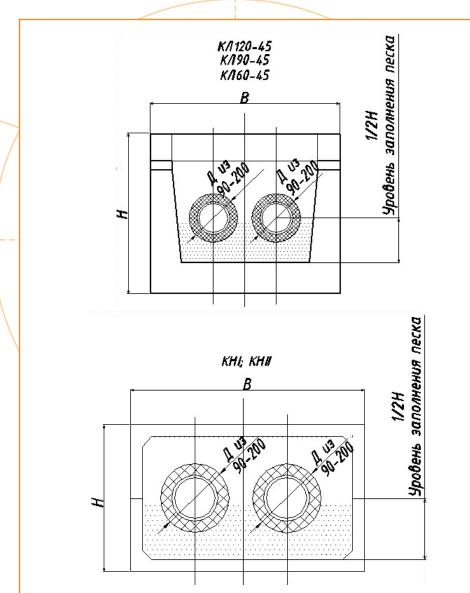
Грунт в приямках уплотняется трамбовкой или поливом водой для обеспечения коэффициента уплотнения — 0.95.

Не допускается уплотнение грунта трамбовками не посредственно над трубопроводом.

Засыпка траншей поверх защитного слоя производится строительными машинами, механизмами. В ходе устройства защитного слоя из грунта над трубопроводом после отсыпки и трамбовки на защитный слой укладывается маркировочная лента по всей длине трассы трубопровода.

Рисунок 19. Схема прокладки в траншее

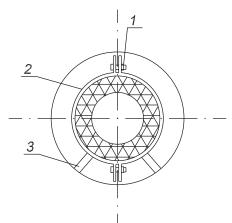
5.2. Прокладка в непроходных каналах


Прокладка двухтрубной системы труб «ИЗОЛА-ТА95» в непроходных каналах марки КН, КЛ приведена на **рисунке 20**. Прокладку «ИЗОЛА-ТА95» в непроходных каналах следует предусматривать в соответствии с требованиями СНиП 41-02-2003 «Тепловые сети» обязательное приложение В (таблица В.1)

Согласно СНиП 41-02-2003 «Тепловые сети» минимальное расстояние от поверхности земли до верха перекрытия канала при подземной прокладке должно составлять не менее 500 мм. Схемы разрезов приведены ниже на **рисунке 20.**

Таблица 5.1. Характеристики непроходимых каналов

Диаметр, D	Тип канала	Габариты,мм				
диамотр, В	Triit Kartasta	Длина, L	Ширина, В	Высота, 1/2Н / Н		
40/90	КН-I/ КЛ60-45	1990/2990	890/580	280/460		
50/90	КН-I/ КЛ60-45	1990/2990	890/580	280/460		
40/110	КН-I/ КЛ90-45	1990/2990	890/900	280/460		
50/110	КН-1/ КЛ90-45	1990/2990	890/900	280/460		
40/110	КН-I/ КЛ90-45	1990/2990	890/900	280/460		
50/110	КН-I/ КЛ90-45	1990/2990	890/900	280/460		
63 <mark>/1</mark> 10	КН-I/ КЛ90-45	1990/2990	890/900	280/460		
75/125	КН-I/ КЛ90-45	1990/2990	890/900	280/460		
90/140	/90/140 KH-I/ КЛ90-45		890/900	280/460		
110/160	КН-I/ КЛ90-45	1990/2990	890/900	280/460		
140/180	КН-II/КЛ120-45	1990/2990	1140/1180	340/460		
160/200	КН-II/КЛ120-45	1990/2990	1140/1180	340/460		


Рисунок 20. Схема разреза прокладки в непроходных каналах типа КН-I и КЛ

Характеристики непроходимых каналов приведены в таблице 5.1.

5.3. Прокладка в футляре

Прокладка в футляре представлена на рисунке 21.

- 1- Гайка с болтом;
- 2- Полухомут (по альбому типовых решений серии 4.903-10/5.903-13);
- 3- Стойка.

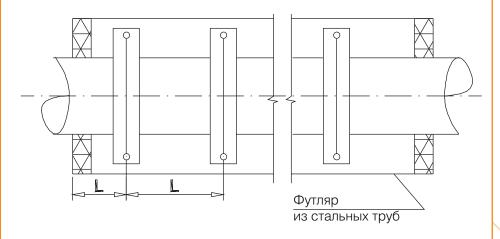


Рисунок 21. Прокладка в футляре

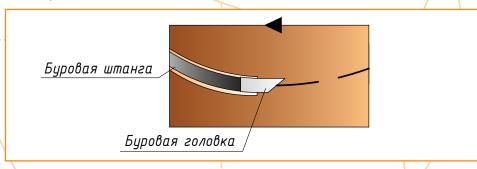
Диаметры футляров представлены в таблице 5.2.

Таблица 5.2. Диаметры футляров

D _н трубопровода, мм	D _н футляра, мм	
40/90	325x7	
50/90	325x7	
40/110	325x7	
50/110	325x7	
63/110	325x7	
75/125	325x7	
90/140	325x7	
110/160	325x7	
140/180	377x8	
160/20 <mark>0</mark>	377x8	

Примечания:

- 1. Торцы футляра следует зачеканить смоленым канатом, цементом и залить битумной мастикой.
- 2. Перед установкой на трубопровод детали хомутовой опоры очистить от пластовой ржавчины и покрыть кремнеорганической эмалью в 3 слоя.
- 3. Стальные футляры использовать в изоляции типа ВУС.
- 4. В целях уменьшения трения между полухомутами и трубопроводом в месте расположения креплений возможно предусматривать резиновые.



5.4. Технология горизонтального направленного бурения

Одним из способов прокладки является метод горизонтального направленного бурения. Такой вид бурения осуществляется в 3 этапа:

1 ЭТАП

Бурение осуществляется при помощи породоразрушающего инструмента — буровой головки со скосом в передней части и встроенным излучателем. Контроль за местоположением буровой головки осуществляется с помощью приемного устройства локатора, который принимает и обрабатывает сигналы встроенного в корпус буровой головки передатчика. На мониторе локатора отображается визуальная информация о местоположении, уклоне, азимуте буровой головки. Также эта информация отображается на дисплее оператора буровой головки. Эти данные являются определяющими для контроля соответствия траектории строящегося трубопровода проектной, и минимизирует риски излома рабочей нити.

Рисунок 22. 1 ЭТАП горизонтального направленного бурения

2 ЭТАП

Расширение осуществляется после завершения пилотного бурения. При этом буровая головка отсоединяется от буровых штанг и вместо нее присоединяется расширитель обратного действия. Приложением тягового усилия с одновременным вращением расширитель протягивается через створ скважины в направлении буровой установки, расширяя пилотную скважину до необходимого для протаскивания трубопровода диаметра. Для обеспечения беспрепятственного протягивания трубопровода через расширенную скважину ее диаметр должен на 20-30% превышать диаметр трубопровода.

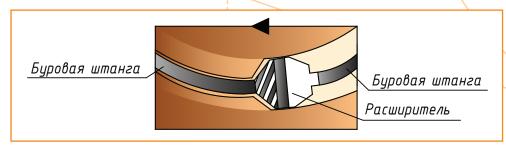
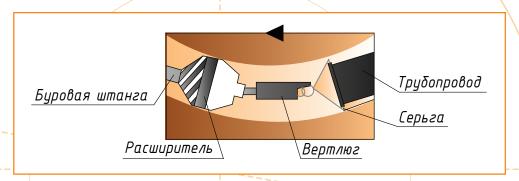



Рисунок 23. 2 ЭТАП горизонтального направленного бурения

3 ЭТАП

На противоположной от буровой установки стороне скважины располагается готовая к протягиванию плеть трубопровода. К переднему концу плети крепится оголовок с воспринимающим тяговое усилие шарниром (вертлюгом) и расширителем. Шарнир позволяет вращаться буровой колонне и расширителю, и в тоже время не передает вращательное движение на затягиваемый трубопровод. Таким образом, буровая установка затягивает в скважину плеть трубопровода до проектных отметок. Во избежание повреждения покровного слоя теплопровода, в скважину сначала затягивается футляр, а затем в футляр затаскивается трубопровод тепловой сети. Материал и диаметр футляра определяется проектом.

Рисунок 24. 3 ЭТАП горизонтального направленного бурения

4 ЭТАП

Протягивание трубы «ИЗОЛА-ТА95» внутри футляра.

Рисунок 25. 4 ЭТАП горизонтального направленного бурения

6. ВАРИАНТЫ УЗЛОВ ВВОДА

6.1. Узел прохода трубопровода через стену

На **рисунке 26** приведен узел прохода трубопровода через стену. В **таблице 6.1** приведены диаметры стенового уплотнителя.

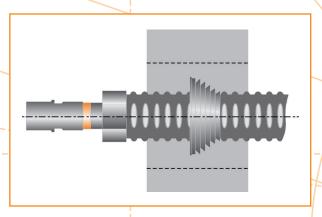
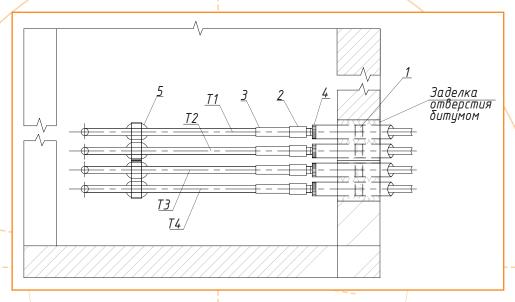



Рисунок 26. Узел прохода трубопровода через стену

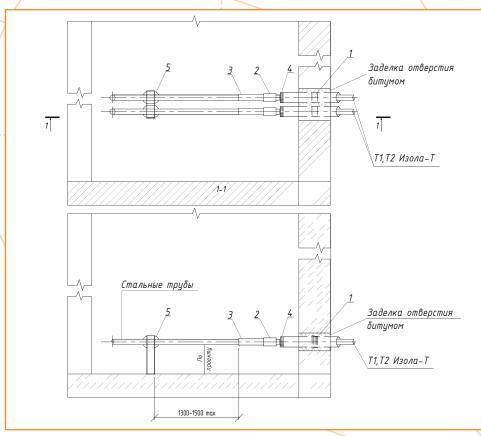
Таблица 6.1. Диаметры стенового уплотнителя

	етр стенов тнителя D,	
	90	
	110	
	125	
	140	
	160	
	180	
	200	

6.2. Узел ввода гибких трубопроводов в приямок с переходом на стальную трубу и установкой неподвижной опоры

Рисунок 27. Узел ввода гибких трубопроводов в приямок с переходом на стальную трубу и установкой неподвижной опоры

Обозначения:


- Т1 трубопровод теплофикационной воды подающий;
- Т2 трубопровод теплофикационной воды обратный;
- Т3 трубопровод ГВС подающий;
- T4 трубопровод ГВС циркуляционный;
- 1 стеновой уплотнитель;
- 2 неразъёмный фитинг;
- 3 стальной патрубок привариваемый к неразъёмному фитингу;
- 4 термоусаживаемый концевой предохранитель;
- 5 неподвижная опора.

Необходимость установки в стесненных условиях (отсутствие подвала, насыщенность коммуникациями и т.д.) определяется проектом.

6.3. Узел ввода гибких трубопроводов над полом технического подполья здания

На **рисунке 28** представлен Разрез 1-1 узла ввода гибких трубопроводов над полом технического подполья здания.



Рисунок 28. Разрез 1-1 узла ввода гибких трубопроводов над полом технического подполья здания

- Т1 трубопровод теплофикационной воды подающий;
- Т2 трубопровод теплофикационной воды обратный;
- 1 стеновой уплотнитель;
- 2 неразъёмный фитинг;
- 3 стальной патрубок привариваемый к неразъёмному фитингу;
- 4 термоусаживаемый концевой предохранитель;
- 5 неподвижная опора.

6.4. Узел расположения гибких трубопроводов в камере с переходом на стальную трубу и установкой опор

На **рисунке 29** представлен Разрез 1-1 узла расположения гибких трубопроводов с переходом на стальную трубу и установкой опор.

Рисунок 29. Разрез 1-1 узла расположения гибких трубопроводов с переходом на стальную трубу и установкой опор

При устройстве опор следует учитывать, что на магистральный трубопровод устанавливается неподвижная опора, на ответвлении — скользящая поддерживающая опора.

6.5. Узел сопряжения бесканальной прокладки с канальным участком

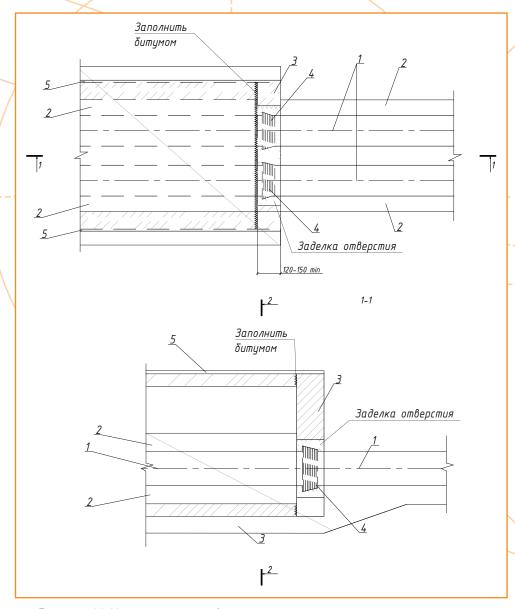
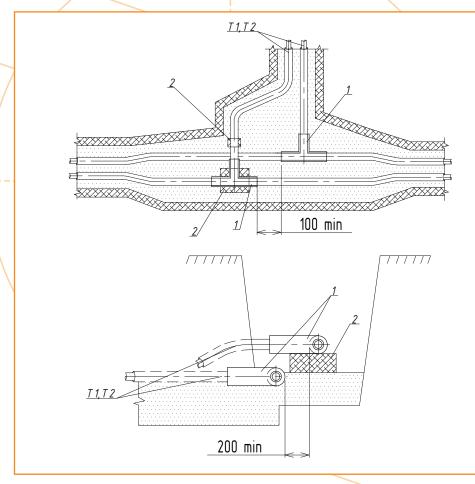


Рисунок 30. Узел сопряжения бесканальной прокладки с канальным участком

Условные обозначения:


- 1 трубопровод теплофикационной воды;
- 2 песок;
- 3 железобетонная или кирпичная плита;
- 4 стеновой уплотнитель;
- 5 гидроизоляционный материал.

Примечания:

- 1. Установить плиту из железобетона минимальной толщиной 120–150 мм или кирпича минимальной толщиной в 0,5 кирпича (120 мм). Армирование железобетонной плиты выполняется арматурой и/или сетками в зависимости от её габаритных размеров и условий эксплуатации.
- 2. Зазор в месте примыкания плиты к каналу заполнить битумом, сверху покрыть гидроизоляционным материалом.
- 3. Заделка отверстия в плите в месте прохода трубопроводов производится монтажной пеной/герметиком с оштукатуриванием 2-3 см глубины с каждой стороны цементно-песчаным раствором или другими материалами по выбору проектировщика.

7. ТРОЙНИКОВЫЕ ОТВЕТВЛЕНИЯ ТРУБОПРОВОДОВ

7.1. Тройниковое ответвление трубопроводов «ИЗОЛА-ТА95» при двухтрубной прокладке

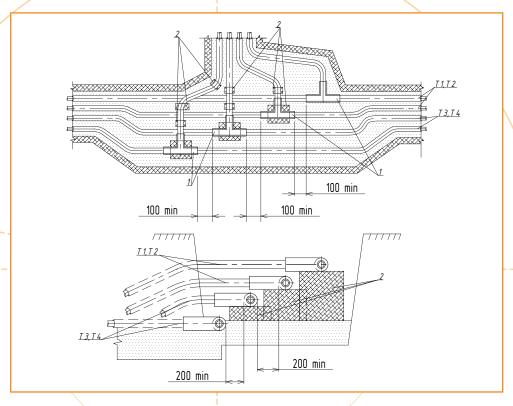


Рисунок 31. Тройниковое ответвление трубопроводов при двухтрубной прокладке

Обозначения:

- Т1 трубопровод теплофикационной воды подающий;
- Т2 трубопровод теплофикационной воды обратный;
- 1 кожух для изоляции тройника;
- 2 подпорка из негрубого материала (например, деревянный брусок). Перед окончательной засыпкой деревянные бруски заменить мешками с песком.

7.2. Тройниковое ответвление трубопроводов «ИЗОЛА-ТА95» при четырехтрубной прокладке

Рисунок 32. Тройниковое ответвление трубопроводов при четырехтрубной прокладке

- Т1 трубопровод теплофикационной воды подающий;
- Т2 трубопровод теплофикационной воды обратный;
- 1 кожух для изоляции тройника;
- 2 подпорка из негрубого материала (например, деревянный брусок). Перед окончательной засыпкой деревянные бруски заменить мешками с песком.

Примечания:

- 1. Приподнимание трубопроводов друг относительно друга.
- 2. Заглубление трубопровода, находящегося ближе к ответвлению, с целью уменьшения высоты поднятия последующих трубопроводов. В этом случае предусматривается уклон в сторону ответвления во избежание застойной зоны.
- 3. Второй трубопровод поднимается относительно первого. Третий трубопровод поднимается для протягивания между первым и вторым.

8.УЗЕЛ УСТАНОВКИ ЗАПОРНОЙ АРМАТУРЫ ПРИ ВНЕКАМЕРНОЙ ВРЕЗКЕ ТРОЙНИКОВОГО ОТВЕТВЛЕНИЯ

При устройстве внекамерных врезок для вывода штока арматуры используют ковера газовые стальные, предназначенные для осуществления доступа и защиты, выходящих на поверхность земли, контрольных узлов, водоотводящих трубок конденсатосборников гидрозатворов и арматуры подземных газопроводов инженерных городских коммуникаций. Основные характеристики ковера представлены в **таблице 8.1.**

Таблица 8.1. Основные характеристики ковера

Основные характеристики ковера				
Габаритные размеры, мм (в сборе) Ø420х370хØ32				
Диаметр трубы внутренний, мм	310			
Максимальная нагрузка, т	25			

Примечание: Высота коверов может быть любая.

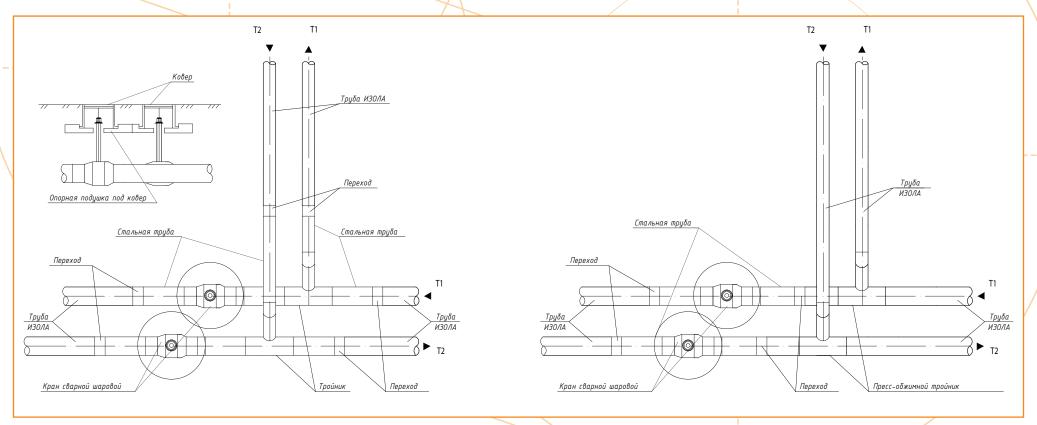


Рисунок 33. Узел установки запорной арматуры при внекамерной врезке тройникового ответвления.

ИЗОЛА,ПРО

9. ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

Транспортирование и хранение труб «ИЗОЛА-ТА95» должны осуществляться согласно СП 40-102-2000:

- Полимерные трубы и соединительные детали могут транспортироваться любым видом транспорта в соответствии с правилами перевозки грузов, техническими условиями погрузки и крепления грузов, действующими на данном виде транспорта, и техническими требованиями поставщика при условии обеспечения мер по предупреждению механических повреждений груза. Все работы, связанные с транспортировкой, следует проводить при температуре окружающего воздуха не ниже указанной в соответствующих нормативных документах;
- Трубы из полимерных материалов рекомендуется хранить и перевозить намотанными в бухты или на катушки, отдельными упаковками в пачки или отдельными трубами большого диаметра в соответствии с нормативными документами на их изготовление:
- При погрузке и разгрузке труб и деталей, особенно при отрицательных температурах воздуха и температурах, близких к нулю, необходимо соблюдать осторожность для исключения ударов и механических повреждений;
- При хранении труб на складах должны соблюдаться условия, указанные в нормативных документах, при этом высота штабеля труб не должна превышать 3 м;
- Хранение труб, намотанных на катушки, допускается только в вертикальном положении;
- Хранение соединительных деталей должно осуществляться только в упакованном виде;
- Необходимо обеспечить сохранность труб и соединительных деталей от механических повреждений, деформаций, попадания на них нефтепродуктов и жиров, засорения внутренних поверхностей, облучения солнечными лучами;
- В период монтажа срок хранения труб и деталей на строительной площадке должен быть минимальным.

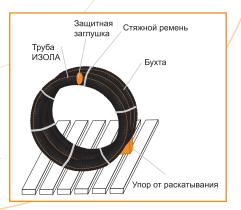
Транспортировка труб «ИЗОЛА-ТА95» показана на **рисунке 34.**

Рисунок 34. Транспортировка

В таблице 9.1 показаны параметры бухт.

Таблица 9.1. Параметры бухт и барабанов

Типо- размер трубы	Напорная труба, диаметр и толщина стенки, мм	Диаметр защитной оболочки, мм	Макси- мальная длина в бухте*, м	Макси- мальные габаритные размеры бухты (диаметр/ ширина)*, мм	Макси- мальная длина на катушке, м	Габарит- ные размеры катушки (диаметр/ ширина), мм	Мини- мальный радиус изгиба, м	Вес, кг/м
40/90	40 x 4,0	90	300	2440/2350	900	3000/2550	0,8	1,41
40/110	40 x 4,0	110	300	2440/2350	600	3000/2550	0,8	1,62
50/90	47,7 x 3,6	90	300	2440/2350	900	3000/2550	0,8	1,49
50/110	47,7 x 3,6	110	300	2440/2350	600	3000/2550	0,8	1,71
63/110	58,5 x 4,0	110	300	2440/2350	600	3000/2550	0,9	1,94
75/125	69,5 x 4,6	125	250	2450/2350	500	3000/2550	1	2,51
90/140	_84 x 6,0	140	250	2500/2350	400	3000/2550	1,1	3,38
110/160	101 x 6,5	160	200	2550/2350	300	3000/2550	1,2	4,27
140/180	127,0 x 7,1	180	120 *	2950/2200*	180	3600/2550	1,3	5,3
160/200	144,0 x 7,5	200	80*	2950/2200*	120	3600/2550	1,4	6,16


^{*} на деревянных катушках

9.1. Поставка труб

Способ поставки труб «ИЗОЛА-ТА95» осуществляются следующим образом:

- Трубы «ИЗОЛА-ТА95» поставляются длинномерными отрезками в бухтах или на металлических катушках требуемой длины;
- Трубы зафиксированы специальными стяжными ремнями;
- Торцы трубы закрыты термоусаживаемыми защитными заглушками, предохраняющими от повреждений, от попадания загрязнений и воды на теплоизоляцию.

На **рисунке 35** представлена бухта.

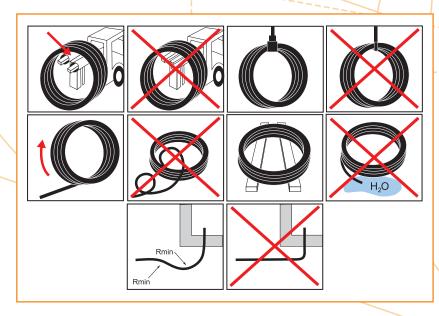


Рисунок 35. Бухта

9.2. Хранение труб

- Срок хранения труб на складе 3 года с даты изготовления.
- Труба может храниться на открытом воздухе, упакованная в полиэтиленовую пленку.
 Комплектующие должны храниться в закрытых помещениях. Пенопакеты для изоляции стыков должны храниться в закрытых, отапливаемых помещениях.
- В отапливаемых помещениях трубы и другие элементы необходимо хранить на расстоянии не менее 1 метра от отопительных приборов.
- При длительном хранении труб необходимо обеспечить отсутствие длительного прямого воздействия ультрафиолетовых лучей и атмосферных осадков.
- Трубы в бухтах должны храниться на ровных площадках, свободных от выступов, камней и пр.
- Не следует располагать места хранения там, где возможно скопление воды.
- При длительном хранении торцы труб должны быть защищены пластиковыми заглушками или полиэтиленовой пленкой, которая снимается непосредственно перед монтажом.
- Недопустимо загрязнение внутренней поверхности труб.

9.3. Транспортировка

- Транспортировка труб и соединительных деталей должна выполняться в соответствии с требованиями ТУ 2248-003-56325719-2012.
- Перевозка труб в бухтах осуществляется любым видом транспорта, обеспечивающим

- сохранность целостности трубы и изоляции, в соответствии с правилами перевозки грузов, действующими на этом транспорте.
- При транспортировании трубы укладываются на ровную поверхность транспортных средств, без острых выступов и неровностей.
- Для транспортировки используют приспособления, которые не дают бухте перемешаться.
- Для завязывания бухт при транспортировке необходимо использовать ремни из нейлона и ткани.

9.4. Погрузочно-разгрузочные работы и размотка на объекте

- Перевозку и погрузочно-разгрузочные работы труб «ИЗОЛА-ТА95» следует производить при температуре наружного воздуха не ниже минус 18°C.
- Погрузочно-разгрузочные работы труб в бухтах должна производиться ручным или механизированным способом с применением специальных приспособлений (мягких полотенец, пеньковых и синтетических ремней шириной не менее 50 мм), исключающих повреждение оболочки трубы и тепловой изоляции. Запрещается использовать металлические тросы, цепи и проволоку; Вилы погрузчиков должны быть оборудованы мягкими прокладками, например, из полиэтиленовых труб.
- Запрещается сбрасывать бухты с машины при разгрузке и разгружать опрокидыванием.
- Запрещается перемещать трубу волоком по асфальту и по другим грубым поверхностям, чтобы не повредить полиэтиленовую оболочку трубы.
- При перемещении бухт вручную допускается катить бухту по земле, оберегая наружную оболочку от повреждений о камни.
- Перед размоткой и укладкой трубопровода доставленные трубы разгружаются с помощью автокрана или вручную и укладывают на бровке траншеи.
- Трубы в бухтах могут складироваться на трассе в отдельном месте.
- Разматывать трубу рекомендуется перекатыванием непосредственно в траншее или вдоль траншеи по бровке вручную.
- Запрещается снимать стяжные ремни со всех участков бухты одновременно. Нельзя одновременно освобождать конец и начало.
- Труба скрученная в бухту, она представляет собой «пружину», освобожденная, она резко увеличится в диаметре, что затруднит дальнейшее проведение размотки. Стяжные монтажные ремни снимаются последовательно по мере размотки трубы.
- Натягивать трубу в траншее категорически запрещено. Трубопроводы должны лежать в траншее свободно, повторяя рельеф дна и конфигурацию стенок траншеи, что позволяет избежать напряжений в трубопроводе, могущих возникать при засыпке траншеи грунтом.
- Радиус изгиба трубы должен быть не меньше минимально допустимого радиуса изгиба.
- При проведении подготовительных работ и развозке труб по трассе следует избегать перетаскивания труб через дороги, по каменистой земле, чтобы избежать образования царапин и порезов. Для предупреждения возможных повреждений труб следует использовать подставки или другие защитные приспособления.
- Для размотки бухт из труб большого диаметра (≥110 мм) необходимое минимальное

количество рабочих должно составлять 5-6 человек.

• Для выравнивания труб большого диаметра необходимо, чтобы трубопровод находился в размотанном состоянии не менее 4-5 часов, без дополнительного прогрева. В случае прогрева, необходимое время для выравнивания труб, значительно уменьшается.

9.5. Размотка при отрицательных температурах

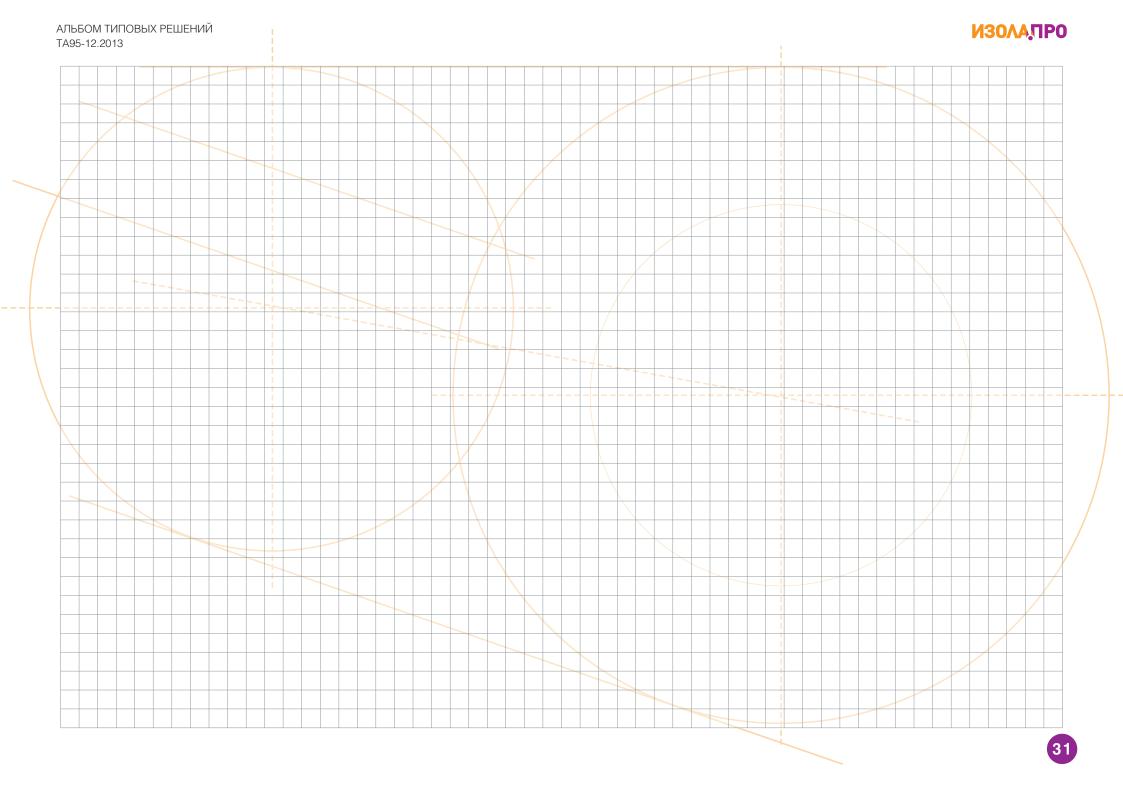
- При температурах ниже 0 °С желательно проведение специальных мероприятий по обеспечению требуемых условий работы с трубами, особенно при размотке и укладке в траншею.
- При низких температурах пластические материалы становятся более жесткими и более чувствительными к внешним воздействиям. Соответственно, при отрицательных температурах материал оболочки не должен подвергаться резким воздействиям ударам, толчкам и т.п.
- Перед размоткой бухт их рекомендуется выдержать в теплом помещении не менее 8-10 часов. При хранении труб на открытом воздухе необходимо прогреть бухту тепловой пушкой в специальной палатке (допускается накрыть бухту брезентом). Прогревать трубу необходимо изнутри и снаружи во избежание возникновения трещин в полиэтиленовой оболочке во время размотки бухты.
- Прогрев труб, доставляемых на специальном прицепе, осуществляется с помощью установленного на нем оборудования (тент, тепловые пушки для внутреннего и внешнего прогрева труб).
- Размотку и укладку трубы в траншею, при отрицательных температурах рекомендуется производить после предварительного прогрева.

9.6. Трубы на металлических катушках

- Трубы на катушках транспортируются на специальных платформах (полуприцепах), рассчитанных на одну или две катушки.
- При транспортировании на катушке концы трубы должны быть закреплены.
- Трубы с катушек сматываются непосредственно в траншею или рядом на бровку.
- Запрещается сматывать трубу с катушки с использованием строительной техники, лебедок.
- Необходимо обеспечить удобный подъезд платформы с катушками к месту укладки с учетом максимальной высоты платформы с барабанами — 4 м.
- Габариты катушек: диаметр до 3,6 м, ширина— до 2,5 м.

Максимальные длины в катушках труб «ИЗОЛА-ТА95» представлены **в таблице 9.1.**

Техника безопасности при монтаже труб «ИЗОЛА-ТА95» должна осуществляться в соответствии с СП 40-102-2000:


- Необходимо проводить осмотр и контроль сварочного оборудования, а также изоляции электропроводок, работы устройств для механической обработки концов и торцов труб. Результаты проверки должны соответствовать паспортным данным на оборудование.
- Технический осмотр следует производить не реже, чем один раз в месяц с регистрацией результатов проверки в журнале производства работ.
- Значения параметров режимов сварки должны отвечать требованиям технологических норм для каждого вида полимера.
- К производству сварочно-монтажных работ при строительстве трубопроводов из полимерных материалов допускаются сварщики, прошедшие теоретическое и практическое обучение по специальной программе и сварившие контрольные стыки по специальной программе.

Трубы в процессе хранения и монтажа не выделяют в окружающую среду токсичных веществ и не оказывают влияния на организм человека при непосредственном контакте.

Работа с трубами не требует особых мер безопасности.

- При работе с трубами следует соблюдать правила пожарной безопасности. В случае возникновения пожара и загорания труб их следует тушить любыми средствами пожаротушения. При тушении огня от загорания труб в складских помещениях следует применять противогазы с фильтром марки "В" или фильтрующие противогазы.
- Гидравлические и пневматические испытания трубопроводов следует производить после их надежного закрепления и устройства упоров по их концам и на поворотах.

При монтаже и испытаниях трубопроводов запрещается прислонять к ним лестницы и стремянки, ходить по трубопроводу. Запрещается обстукивать трубы молотком или оттягивать их от стенок траншеи или строительных конструкций.

