
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Technical Report
NREL/TP-5000-75959
June 2020

OLAF User’s Guide and Theory Manual
Kelsey Shaler, Emmanuel Branlard, and Andy Platt

National Renewable Energy Laboratory

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

Technical Report
NREL/TP-5000-75959
June 2020

OLAF User’s Guide and Theory Manual
Kelsey Shaler, Emmanuel Branlard, and Andy Platt

National Renewable Energy Laboratory

Suggested Citation
Shaler, Kelsey, Emmanuel Branlard, and Andy Platt. 2020. OLAF User’s Guide and
Theory Manual. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-
75959. https://www.nrel.gov/docs/fy20osti/75959.pdf

https://www.nrel.gov/docs/fy20osti/75959.pdf

NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding
provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy
Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S.
Government.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

Acknowledgments

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy,

LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by

the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office.

The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S.

Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government

retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work,

or allow others to do so, for U.S. Government purposes.

The authors are also grateful to the Big Adaptive Rotor program for supporting the development of this software.

iv

List of Symbols

BEM

blade-element momentum

CFD

computational fluid dynamics

DOE

U.S. Department of Energy

Fv

core radius factor

t

time

FVW

free vortex wake

N

number of rotor revolutions before wake cutoff condition

~ r

vector between point of interest and vortex segment

~ r (ψ , ζ)

position vector of Lagrangian markers

rc

core radius

rc 0

initial core radius

OLAF

cOnvecting LAgrangian Filaments

α

numerical constant = 1 . 25643

Γ

circulation strength

δ

measure of viscous diffusion

ε

measure of strain

∆ ψ

step size for blade rotation

Ω

rotational speed of wind turbine

ζ

vortex wake age

ζ0

vortex wake age offset

ν

kinematic viscosity

ψ

azimuth blade position

v

Table of Contents

1 Introduction . 3

2 Running OLAF . 6

3 Input Files . 7

3.1 Units . 7

3.2 OLAF Primary Input File . 7

3.2.1 General Options . 7

3.2.2 Circulation Specifications . 7

3.2.3 Wake Extent and Discretization Options . 8

3.2.4 Wake Regularization and Diffusion Options . 8

3.2.5 Wake Treatment Options . 8

3.2.6 Speedup Options . 9

3.2.7 Output Options . 9

3.3 AeroDyn15 Input File . 9

3.3.1 Input file modifications . 9

3.3.2 Relevant sections . 9

4 Output Files . 10

4.1 Results File . 10

5 OLAF Theory . 11

5.1 Introduction - Vorticity Formulation . 11

5.2 Discretization - Projection . 11

5.3 Lifting-Line Representation . 11

5.3.1 Lifting-Line Panels and Emitted Wake Panels . 12

5.3.2 Panelling . 13

5.3.3 Circulation Solving Methods . 13

5.3.3.1 Cl-Based Iterative Method . 13

5.3.3.2 No-flow-through Method . 14

5.3.3.3 Prescribed Circulation . 14

5.4 Free Vorticity Convection . 14

5.5 Free Vorticity Convection in Polar Coordinates . 14

5.6 Induced Velocity and Velocity Field . 15

5.7 Regularization . 15

5.7.1 Regularization and viscous diffusion . 15

5.7.2 Determination of the regularization parameter . 16

5.7.3 Implemented regularization functions . 16

5.7.3.1 Rankine . 16

5.7.3.2 Lamb-Oseen . 16

5.7.3.3 Vatistas . 16

5.7.3.4 Denominator Offset/Cut-Off . 16

5.7.4 Time Evolution of the Regularization Parameter—Core Spreading Method 17

5.7.4.1 Constant . 17

1

5.7.4.2 Stretching . 17

5.7.4.3 Wake Age / Core-Spreading . 17

5.7.4.4 Stretching and Wake Age . 17

5.8 Diffusion . 17

6 State-Space Representation and Integration with OpenFAST . 18

6.1 State, Constraint, Input, and Output Variables . 18

6.2 State, Constraint, and Output Equations . 19

6.3 Integration with AeroDyn15 . 19

7 Future Work . 21

A OLAF Primary Input File . 24

B Prescribed Circulation Input File . 25

C OLAF List of Output Channels . 26

List of Figures

Figure 1. OpenFAST overview schematic and OLAF integration . 4

Figure 2. Evolution of near-wake lattice, blade-tip vortex, and Lagrangian markers 5

Figure 3. Wake and lifting-line vorticity discretized into vortex ring panels. (a) Overview. (b) Cross-

sectional view, defining the leading-edge, trailing edge, and lifting-line. (c) Circulation of panels

and corresponding circulation for vorticity segments between panels. (d) Geometrical quantities for a

lifting-line panel. 12

Figure 4. OpenFAST-OLAF code integration workflow . 20

List of Tables

Table 1. Available OLAF Output Channels . 26

2

1 Introduction

Over the past few decades, substantial reductions in the cost of wind energy have come from large increases in rotor

size. One important consideration for such large turbines is increased blade flexibility. In particular, large blade de-

flections may lead to a swept area that deviates significantly from the rotor plane. Such deviations violate assumptions

used by common aerodynamic models, such as the blade element momentum (BEM) method. Such methods rely on

actuator-disk assumptions that are only valid for axisymmetric rotor loads contained in a plane. Large blade deflec-

tions may also cause near wake of the turbine to diverge from a uniform helical shape. Further, interactions between

turbine blades and the local near wake may increase, thus violating assumptions of models that do not account for

the position and dynamics of the near wake. Additionally, highly flexible blades will likely cause increased unsteadi-

ness and three-dimensionality of aerodynamic effects, increasing the importance of accurate and robust dynamic stall

models. There are many other complex wind turbine situations that violate simple engineering assumptions. Such

situations include obtaining accurate aerodynamic loads for nonstraight blade geometries (e.g., built-in curvature or

sweep); skewed flow caused by yawed inflow or turbine tilt; and large rotor motion as a result of placing the turbine

atop a compliant offshore floating platform.

Higher-fidelity aerodynamic models are necessary to account for the increased complexity of flexible and floating

rotors. Although computational fluid dynamics (CFD) methods are able to capture such features, their computational

cost limits the number of simulations that can be feasibly performed, which is an important consideration in load anal-

ysis for turbine design. FVW methods are less computationally expensive than CFD methods while modeling similarly

complex physics. As opposed to the BEM methods, FVW methods do not rely on ad-hoc engineering models to ac-

count for dynamic inflow, skewed wake, tip losses, or ground effects. These effects are inherently part of the model.

Numerous vorticity-based tools have been implemented, ranging from the early treatments by Rosenhead (

Rosen-

head

), the formulation of vortex particle methods by Winckelmans and Leonard (

Winckelmans and Leonard

), to the

recent mixed Eulerian-Lagrangian compressible formulations of Papadakis (

Papadakis

). Examples of long-standing

codes that have been applied in the field of wind energy are GENUVP (

Voutsinas

), using vortex particles methods, and

AWSM (

Garrel

), using vortex filament methods. Both tools have successfully been coupled to structural solvers. The

method was extended by Branlard et al. (

Branlard et al.

) to consistently use vortex methods to perform aero-elastic

simulations of wind turbines in sheared and turbulent inflow. Most formulations rely on a lifting-line representation of

the blades, but recently, a viscous-inviscid representation was used in combination with a structural solver (

Sessarego

et al.

).

cOnvecting LAgrangian Filaments (OLAF) is a free vortex wake (FVW) module used to compute the aerodynamic

forces on moving two- or three-bladed horizontal-axis wind turbines. This module has been incorporated into the

National Renewable Energy Laboratory physics-based engineering tool OpenFAST, which solves the aero-hydro-

servo-elastic dynamics of individual wind turbines. OLAF is incorporated into the OpenFAST module

AeroDyn15

as

an alternative to the traditional BEM option, as shown in Figure

1

.

Incorporating the OLAF module within OpenFAST

allows for the modeling of highly flexible turbines along with the aero-hydro-servo-elastic response capabilities of

OpenFAST. The OLAF module follows the requirements of the OpenFAST modularization framework (

Sprague,

Jonkman, and Jonkman; Jonkman

).

The OLAF module uses a lifting-line representation of the blades, which is characterized by a distribution of bound

circulation. The spatial and time variation of the bound circulation results in free vorticity being emitted in the wake.

OLAF solves for the turbine wake in a time-accurate manner, which allows the vortices to convect, stretch, and

diffuse. The OLAF model is based on a Lagrangian approach, in which the turbine wake is discretized into Lagrangian

markers. There are many methods of representing the wake with Lagrangian markers (

Branlard

). In this work, a hybrid

lattice/filament method is used, as depicted in Figure

2

.

Here, the position of the Lagrangian markers is defined in

terms of wake age, ζ , and azimuthal position, ψ . A lattice method is used in the near wake of the blade. The near wake

spans over a user-specified angle or distance for nonrotating cases. Though past research has indicated that a near-

wake region of 30◦ is sufficient (

Leishman; Ananthan, Leishman, and Ramasamy

), it has been shown that a larger near

wake is required for high thrust and other challenging conditions. After the near wake region, the wake is assumed

to instantaneously roll up into a tip vortex and a root vortex, which are assumed to be the most dominant features

3

InflowWind

ElastoDyn

ServoDyn

MAP++, MoorDyn,
or FEAMooring

HydroDyn

AeroDyn

External
Conditions

Applied
Loads

Wind Turbine

Hydro-
dynamics

Aero-
dynamics

Waves &
Currents

Wind-Inflow Power
Generation

Rotor
Dynamics

Platform Dynamics

Mooring Dynamics

Drivetrain
Dynamics

Control System & Actuators

Nacelle Dynamics

Tower Dynamics

(a) OpenFAST schematic

BEM

OLAF
(Free Vortex Wake)

Blade positions
and velocities Induced blade

velocities

AeroDyn
BeamDyn

Blade forces,
moments,

and αeffWind inflow
velocities

InflowWind

(b) OLAF and BEM integration with

AeroDyn15

Figure 1. OpenFAST overview schematic and OLAF integration

for the remainder of the wake (

Leishman, Bhagwat, and Bagai

). Each Lagrangian marker is connected to adjacent

markers by straight-line vortex filaments, approximated to second-order accuracy (

Gupta and Leishman

). The wake is

discretized based on the spanwise location of the blade sections and a specified time step (dt), which may be different

from the time step of AeroDyn. After an optional initialization period, the wake is allowed to move and distort, thus

changing the wake structure as the markers are convected downstream. To limit computational expense, the root and

tip vortices are truncated after a specified distance (WakeLength) downstream from the turbine. The wake truncation

violates Helmholtz’s first law and hence introduces an erroneous boundary condition. To alleviate this, the wake is

"frozen" in a buffer zone between a specified buffer distance, FreeWakeLength , and WakeLength . In this buffer zone,

the markers convect at the average ambient velocity. In this way, truncation error is minimized (

Leishman, Bhagwat,

and Bagai

). The buffer zone is typically chosen as the convected distance over one rotor revolution.

As part of OpenFAST, induced velocities at the lifting line/blade are transferred to

AeroDyn15

and used to compute

the effective blade angle of attack at each blade section, which is then used to compute the aerodynamic forces on

the blades. The OLAF method returns the same information as the BEM method, but allows for more accurate

4

x

z

-yΩ

𝜁

ψ

𝚪

r(ψ, 𝜁)

Lagrangian
markers

Curved vortex
filament

Straight line vortex
approximation

Freestream

Velocity

Figure 2. Evolution of near-wake lattice, blade-tip vortex, and Lagrangian markers

calculations in areas where BEM assumptions are violated, such as those discussed above. As the OLAF method is

more computationally expensive than BEM, both methods remain available in OpenFAST, and the user may specify

in the

AeroDyn15

input file which method is used.

The OLAF input file defines the wake convection and circulation solution methods; wake size and length options; La-

grangian marker regularization (viscous core) method; and other simulation and output parameters. The extents of the

near and far wakes are specified by a nondimensional length in terms of rotor diameter. Different regularization func-

tions for the vortex elements are available. Additionally, different methods to compute the regularization parameters

of the bound and wake vorticity may be selected. In particular, viscous diffusion may be accounted for by dynamically

changing the regularization parameter. Wake visualization output options are also available.

This document is organized as follows. Section 2 covers downloading, compiling, and running OLAF. Section 3

describes the OLAF input file and modifications to the

AeroDyn15

input file. Section 4 details the OLAF output file.

Section 5 provides an overview of the OLAF theory, including the free vortex wake method as well as integration into

the

AeroDyn15

module. Section 6 presents future work. Example input files and a list of output channels are detailed

in Appendices A, B, and C.

5

2 Running OLAF

As OLAF is a module of OpenFAST, the process of downloading, compiling, and running OLAF is the same as that

for OpenFAST. These instructions are available in the

OpenFAST

documentation.

6

https://openfast.readthedocs.io/en/master/source/install/

3 Input Files

No lines should be added or removed from the input files, except in tables where the number of rows is specified.

3.1 Units

OLAF uses the International System of Units (e.g., kg, m, s, N). Angles are assumed to be in degrees unless otherwise

specified.

3.2 OLAF Primary Input File

The primary OLAF input file defines general free wake options, circulation model selection and specification, near-

and far-wake length, and wake visualization options. Each section within the file corresponds to an aspect of the OLAF

model. For most parameters, the user may specify the value "default" (with or without quotes), in which case a default

value, defined below, is used by the program.

See Appendix

A

for a sample OLAF primary input file.

3.2.1 General Options

IntMethod [switch] specifies which integration method will be used to convect the Lagrangian markers. There are four

options: 1) fourth-order Runge-Kutta [1] , 2) fourth-order Adams-Bashforth [2] , 3) fourth-order Adams-Bashforth-

Moulton [3] , and 4) first-order forward Euler [5] . The default option is [5] . These methods are specified in Section

5.4

.

DTfvw [sec] specifies the time interval at which the module will update the wake. The time interval must be a multiple

of the time step used by

AeroDyn15

. The blade circulation is updated at each intermediate time step based on the

intermediate blades positions and wind velocities. The default value is dtaero, where dtaero

is the time step used by

AeroDyn.

FreeWakeStart [sec] specifies at what time the wake evolution is classified as "free." Before this point, the Lagrangian

markers are simply convected with the freestream velocity. After this point, induced velocities are computed and

affect the marker convection. If a time less than or equal to zero is given, the wake is "free" from the beginning of the

simulation. The default value is 0.

FullCircStart [sec] specifies at what time the blade circulation reaches full strength. If this value is specified to be

> 0, the circulation is multiplied by a factor of 0 at t = 0 and linearly increasing to a factor of 1 for t > FullCircStart .

The default value is 0.

3.2.2 Circulation Specifications

CircSolvMethod [switch] specifies which circulation method is used. There are three options: 1) Cl-based iterative

procedure [1] , 2) no-flow through [2] , and 3) prescribed [3] . The default option is [1] . These methods are described in

Section

5.3

.

CircSolvConvCrit [-] specifies the dimensionless convergence criteria used for solving the circulation. This variable is

only used if CircSolvMethod = [1] . The default value is 0 . 001, corresponding to 0 . 1% error in the circulation between

two iterations.

CircSolvRelaxation [-] specifies the relaxation factor used to solve the circulation. This variable is only used if

CircSolvMethod = [1] . The default value is 0 . 1.

CircSolvMaxIter [-] specifies the maximum number of iterations used to solve the circulation. This variable is only

used if CircSolvMethod = [1] . The default value is 30.

PrescribedCircFile [quoted string] specifies the file containing the prescribed blade circulation. This option is only

used if CircSolvMethod = [3] . The circulation file format is a delimited file with one header line and two columns.

The first column is the dimensionless radial position [r/R]; the second column is the bound circulation value in [m2/s].

7

The radial positions do not need to match the AeroDyn node locations. A sample prescribed circulation file is given

in Appendix

B

.

3.2.3 Wake Extent and Discretization Options

nNWPanel [-] specifies the number of FVW time steps (DTfvw) for which the near-wake lattice is computed. In the

future, this value will be defined as an azimuthal span in degrees or a downstream distance in rotor diameter.

WakeLength [D] specifies the length, in rotor diameters, of the far wake. The default value is 8.

1

FreeWakeLength [D] specifies the length, in rotor diameters, for which the turbine wake is convected as "free." If

FreeWakeLength is greater than WakeLength , then the entire wake is free. Otherwise, the Lagrangian markers located

within the buffer zone delimited by FreeWakeLength and WakeLength are convected with the average velocity. The

default value is 6.

2

FWShedVorticity [flag] specifies whether shed vorticity is included in the far wake. The default option is [False] ,

specifying that the far wake consists only of the trailed vorticity from the root and tip vortices.

3.2.4 Wake Regularization and Diffusion Options

DiffusionMethod [switch] specifies which diffusion method is used to account for viscous diffusion. There are two

options: 1) no diffusion [0] and 2) the core-spreading method [1] . The default option is [0] .

RegDetMethod [switch] specifies which method is used to determine the regularization parameters. There are two

options: 1) manual [0] and 2) optimized [1] . The manual option requires the user to specify the parameters listed in

this subsection. The optimized option determines the parameters for the user. The default option is [0] .

RegFunction [switch] specifies the regularization function used to remove the singularity of the vortex elements,

as specified in Section

5.4

. There are five options: 1) no correction [0] , 2) the Rankine method [1] , 3) the Lamb-

Oseen method [2] , 4) the Vatistas method [3] , and 5) the denominator offset method [4] . The functions are given in

Section

5.7.3

. The default option is [3] .

WakeRegMethod [switch] specifies the method of determining viscous core radius (i.e., the regularization parameter).

There are four options: 1) constant [1] , 2) stretching [2] , 3) age [3] , and 4) stretching and age [4] . The methods are

described in Section

5.7.4

. The default option is [1] .

WakeRegParam [m] specifies the wake regularization parameter, which is the regularization value used at the initial-

ization of a vortex element. If the regularization method is "constant", this value is used throughout the wake.

BladeRegParam [m] specifies the bound vorticity regularization parameter, which is the regularization value used for

the vorticity elements bound to the blades.

CoreSpreadEddyVisc [-] specifies the eddy viscosity parameter δ . The parameter is used for the core-spreading

method (DiffusionMethod = [1]) and the regularization method with age (WakeRegMethod = [3]). The variable δ is

described in Section

5.7.4

. The default value is 100.

3.2.5 Wake Treatment Options

TwrShadowOnWake [flag] specifies whether the tower potential flow and tower shadow have an influence on the wake

convection. The tower shadow model, when activated in AeroDyn, always has an influence on the lifting line, hence

the induction and loads on the blade. This option only concerns the wake. The default option is [False] .

ShearVorticityModel [switch] specifies whether shear vorticity is modeled in addition to the sheared inflow prescribed

by

InflowWind

. There are two options: 1) no treatment [0] and 2) mirrored vorticity [1] . The mirrored vorticity

accounts for the ground effect. Dedicated options to account for the shear vorticity will be implemented at a later time.

The shear velocity profile is handled by

InflowWind

irrespective of this input. The default option is [0] .

1At present, this variable is called nFWPanel and specified as the number of far wake panels. This will be changed soon.

2At present, this variable is called nFWPanelFree and specified as the number of free far wake panels. This will be changed soon.

8

3.2.6 Speedup Options

VelocityMethod [switch] specifies the method used to determine the velocity. There are two options: 1) Biot-Savart

law applied to the vortex segments [1] and 2) tree formulation using a particle representation [2] . The default option

is [1] .

TreeBranchFactor [-] specifies the dimensionless distance, in branch radius, above which a multipole calculation is

used instead of a direct evaluation. This option is only used in conjunction with the tree code (VelocityMethod = [2]).

PartPerSegment [-] specifies the number of particles that are used when a vortex segment is represented by vortex

particles. The default value is 1.

3.2.7 Output Options

WrVTK [flag] specifies if Visualization Toolkit (VTK) visualization files are to be written out. WrVTK = [0] does not

write out any VTK files. WrVTK = [1] outputs a VTK file at every time step. The outputs are written in the folder,

vtk_fvw . The parameters WrVTK , VTKCoord , and VTK_fps are independent of the glue code VTK output options.

VTKBlades [-] specifies how many blade VTK files are to be written out. VTKBlades = n outputs VTK files for n

blades, with 0 being an acceptable value. The default value is 1.

VTKCoord [switch] specifies the coordinate system in which the VTK files are written. There are two options: 1)

global coordinate system [1] and 2) hub coordinate system [2] . The default option is [1] .

VTK_fps [1/sec] specifies the output frequency of the VTK files. The provided value is rounded to the nearest allow-

able multiple of the time step. The default value is 1 / dtfvw. Specifying VTK_fps = [all] is equivalent to using the value

1 / dtaero.

3.3 AeroDyn15 Input File

3.3.1 Input file modifications

As OLAF is incorporated into the

AeroDyn15

module, a wake computation option has been added to the

AeroDyn15

input file and a line has been added. These additions are as follows:

WakeMod specifies the type of wake model that is used. WakeMod = [3] has been added to allow the user to switch

from the traditional BEM method to the OLAF method.

FVWFile [string] specifies the OLAF module file. The path is relative to the AeroDyn file, unless an absolute path is

provided.

3.3.2 Relevant sections

The BEM options (e.g. tip-loss, skew, and dynamic models) are read and discarded when WakeMod = [3] . The follow-

ing sections and parameters remain relevant and are used by the vortex code:

•

general options (e.g., airfoil and tower modeling);

•

environmental conditions;

•

dynamic stall model options;

•

airfoil and blade information;

•

tower aerodynamics; and

•

outputs.

9

4 Output Files

The OLAF module itself does not produce its own output file. However, additional output channels are made available

in

AeroDyn15

. As such, the

AeroDyn15

output file is briefly described as well as the outputs made available with

OLAF. Visualization files are generated by using the parameter WrVTK . This parameter is available in the OLAF

input file, in which case the VTK files are written to the folder vtk_fvw , or the primary .fst file, in which case the

VTK files are written to the folder vtk .

4.1 Results File

OpenFAST generates a master results file that includes the

AeroDyn15

results. The results are in table format, where

each column is a data channel, and each row corresponds to a simulation-output time step. The data channels are

specified in the OUTPUTS section in the

AeroDyn15

primary input file. The column format of the AeroDyn-generated

files is specified using the OutFmt parameter of the OpenFAST driver input file.

10

5 OLAF Theory

This section details the OLAF method and provides an overview of the computational method, followed by a brief

explanation of its integration with OpenFAST.

5.1 Introduction - Vorticity Formulation

The vorticity equation for incompressible homogeneous flows in the absence of non-conservative force is given by

Eq.

5.1

d

~ ω

dt

=

∂

~ ω

∂ t

+ (~ u · ∇)︸

︷︷

︸

convection

~ ω = (

~ ω · ∇) ~ u︸

︷︷

︸

strain

+ ν ∆

~ ω︸

︷︷

︸

diffusion

(5.1)

Here,

~ ω is the vorticity, ~ u is the velocity, and ν is the viscosity. In free vortex wake methods, the vorticity equation

is used to describe the evolution of the wake vorticity. Different approximations are introduced to ease its resolution,

such as projecting the vorticity onto a discrete number of vortex elements (here vortex filaments), and separately

treating the convection and diffusion steps, known as viscous-splitting. Several complications arise from the method;

in particular, the discretization requires a regularization of the vorticity field (or velocity field) to ensure a smooth

approximation.

The forces exerted by the blades onto the flow are expressed in vorticity formulation as well. This vorticity is bound

to the blade and has a circulation associated with the lift force. A lifting-line formulation is used here to model the

bound vorticity.

The different models of the implemented free vortex code are described in the following sections.

5.2 Discretization - Projection

The numerical method uses a finite number of states to model the continuous vorticity distribution. To achieve this,

the vorticity distribution is projected onto a basis function, which is referred to as vortex elements. Vortex filaments

are used as elements that represent the vorticity field. A vortex filament is delimited by two points and hence assumes

a direction formed by these two points. A vorticity tube is oriented along the unit vector ~ ex

of cross section dS and

length l . It can then be approximated by a vortex filament of length l oriented along the same direction. The total

vorticity of the tube and the vortex filaments are the same and related by:

~ ω dS =

~Γ (5.2)

where

~Γ is the circulation intensity of the vortex filament. If the vorticity tubes are complex and occupy a large volume,

projection onto vortex filaments is difficult and projection onto vortex particles is more appropriate. Assuming the

wake is confined to a thin vorticity layer defining a velocity jump of known direction, it is possible to approximate the

wake vorticity sheet as a mesh of vortex filaments. This is the basis of vortex filament wake methods. Vortex filaments

are a singular representation of the vorticity field, as they occupy a line instead of a volume. To better represent the

vorticity field, the filaments are "inflated", a process referred to as regularization (see Section

5.7

). The regularization

of the vorticity field also regularizes the velocity field and avoids the singularities that would otherwise occur.

5.3 Lifting-Line Representation

The code relies on a lifting-line formulation to model the blades. Lifting-line methods effectively lump the loads at

each cross-section of the blade onto the mean line of the blade and do not account for the geometry of each cross-

section. In the vorticity-based version of the lifting-line method, the blade is represented by a line of varying circula-

tion. The line follows the motion of the blade and is referred to as "bound" circulation. The bound circulation does

not follow the same dynamic equation as the free vorticity of the wake. Instead, the intensity is linked to airfoil lift via

the Kutta-Joukowski theorem. Spanwise variation of the bound circulation results in vorticity being emitted into the

11

wake. This is referred to as "trailed vorticity". Time changes of the bound circulation are also emitted in the wake and

referred to as "shed" vorticity. The remaining subsections describe the representation of the bound vorticity in greater

detail.

5.3.1 Lifting-Line Panels and Emitted Wake Panels

The lifting-line and wake representation is illustrated in Fig.

3

. The blade lifting-line is discretized into a finite number

of panels, each of them forming a four sided vortex ring. The spanwise discretization follows the discretization of the

AeroDyn blade input file. The number of spanwise panels, nLL, is one less than the total number of AeroDyn nodes,

NumBlNds . The sides of the panels coincide with the lifting-line and the trailing edge of the blade. The lifting-line is

currently defined as the 1/4 chord location from the leading edge (LE). More details on the panelling are provided in

Section

5.3.2

. At a given time step, the circulation of each lifting-line panel is determined according to one of the three

methods developed in Section

5.3.3

. At the end of the time step, the circulation of each lifting-line panel is emitted

into the wake, forming free vorticity panels. To satisfy the Kutta condition, the circulation of the first near wake

panel and the bound circulation are equivalent (see Fig.

3

b). The wake panels model the thin shear layer resulting

from the continuation of the blade boundary layer. This shear layer can be modeled using a continuous distribution of

vortex doublets. A constant doublet strength is assumed on each panel, which in turn is equivalent to a vortex ring of

constant circulation.

The current implementation stores the positions and circulations of the panel corner points. In

Lifting-line bound
circulation

Free
vorticity

Kutta condition

(b)

(a)

nLL panels

LE

TE

LL
--

-

-

=0

-

+

+

(d)(c)

-

TE

LE
TE

LE dl

N

T

c/4

c/4

x1

x2

x10

x6

x4

x8

x3
x9

x5

x7

Bound
vorticity

Emitted
vorticity

Figure 3. Wake and lifting-line vorticity discretized into vortex ring panels. (a) Overview. (b) Cross-sectional

view, defining the leading-edge, trailing edge, and lifting-line. (c) Circulation of panels and correspond-

ing circulation for vorticity segments between panels. (d) Geometrical quantities for a lifting-line panel.

the vortex ring formulation, the boundary between two panels corresponds to a vortex segment of intensity equal to

the difference of circulation between the two panels. The convention used to define the segment intensity based on the

panels intensity is shown in Fig.

3

c. Since the circulation of the bound panels and the first row of near wake panels

are equal, the vortex segments located on the trailing edge have no circulation.

12

5.3.2 Panelling

The definitions used for the panelling of the blade are given in Fig.

3

d, following the notations of van Garrel (

Garrel

).

The LE and trailing edge (TE) locations are directly obtained from the AeroDyn mesh. The LE and TE define the

corner points at two spanwise locations: ~ x1, ~ x2, ~ x3, and ~ x4. The current implementation assumes that the aerodynamic

center, the lifting-line, and the 1/4 chord location all coincide. For a given panel, the lifting-line is then delimited by

the points ~ x9

= 3 / 4 ~ x1 + 1 / 4 ~ x2

and ~ x10

= 3 / 4 ~ x4 + 1 / 4 ~ x3. The mid points of the four panel sides are noted ~ x5, ~ x6, ~ x7,

and ~ x8. The lifting-line vector (

~dl) as well as the vectors tangential (~T) and normal (~N) to the panel are defined as:

~dl = ~ x10

− ~ x9

,

~T =

~ x6

− ~ x8

| ~ x6

− ~ x8

|

,

~N =

~T ×

~dl

|~T ×

~dl |

(5.3)

The area of the panel is obtained as dA = | (~ x6

− ~ x8) × (~ x7

− ~ x5) | . For CircSolvMethod = [1] , the control points are

located on the lifting-line at the location ~ x9+ η j

~dl . The factor η j

is determined based on the full-cosine approximation

of van Garrel. This is based on the spanwise widths of the current panel, w j, and the neighboring panels w j − 1

and

w j + 1:

η j

=

1

4

[

w j − 1

w j − 1 + w j

+

w j

w j + w j + 1

+ 1

]

, j = 2 .. n − 1 , η1

=

w1

w1 + w2

, ηn

=

wn − 1

wn − 1 + wn

(5.4)

For an equidistant spacing, this discretization places the control points at the middle of the lifting-line (η = 0 . 5).

Theoretical circulation results for an elliptic wing with a cosine spacing are retrieved with such discretization since it

places the control points closer to stronger trailing segments at the wing extremities (e.g.,

Kerwin

).

5.3.3 Circulation Solving Methods

Three methods are implemented to determine the bound circulation strength. They are selected using the input Circ-

SolvMethod , and are presented in the following sections.

5.3.3.1 Cl-Based Iterative Method

The Cl-based iterative method determines the circulation within a nonlinear iterative solver that utilizes the polar data

at each control point on the lifting line. The algorithm ensures that the lift obtained using the angle of attack and

the polar data matches the lift obtained with the Kutta-Joukowski theorem. At present, it is the preferred method to

compute circulation along the blade span. It is selected with CircSolvMethod = [1] . The method is described in the

work from van Garrel (

Garrel

). The algorithm is implemented in an iterative approach using the following steps:

1.

The circulation distribution from the previous time step is used as a guessed circulation, Γprev.

2.

The velocity at each control point j is computed as the sum of the wind velocity, the structural velocity, and the

velocity induced by all the vorticity in the domain, evaluated at the control point location.

~ v j

=

~V0

−

~Velast + ~ v ω , free + ~ vΓll

(5.5)

~ v ω , free

is the velocity induced by all free vortex filaments, as introduced in Eq.

5.16

. The contribution of ~ vΓll
comes from the lifting-line panels and the first row of near wake panels, for which the circulation is set to Γprev

3.

The circulation for all lifting-line panels j is obtained as follows.

Γll , j

=

1

2
Cl , j(α j)

[

(~ v j

·

~N)2 +(~ v j

·

~T)2

]2

dA

√

[

(~ v j

×

~dl) ·

~N

]2

+

[

(~ v j

×

~dl) ·

~T

]2

, with α j

= atan

(

~ v j

·

~N

~ v j

·

~T

)

(5.6)

The function Cl , j

is the lift coefficient obtained from the polar data of blade section j and α j

is the angle of

attack at the control point.

13

4.

The new circulation is set using the relaxation factor krelax

(CircSolvRelaxation):

Γnew

= Γprev + krelax∆Γ , ∆Γ = Γll

− Γprev

(5.7)

5.

Convergence is checked using the criterion kcrit

(CircSolvConvCrit):

max (| ∆Γ |

mean (| Γnew

|)

< kcrit

(5.8)

If convergence is not reached, steps 2-5 are repeated using Γnew

as the guessed circulation Γprev.

5.3.3.2 No-flow-through Method

A Weissinger-L-based representation (

Weissinger

) of the lifting surface is also available (

Bagai and Leishman; Gupta;

Ribera

). In this method, the circulation is solved by satisfying a no-flow through condition at the 1/4-chord points. It

is selected with CircSolvMethod = [2] .

5.3.3.3 Prescribed Circulation

The final available method prescribes a constant circulation. A user specified spanwise distribution of circulation is

prescribed onto the blades. It is selected with CircSolvMethod = [3] .

5.4 Free Vorticity Convection

The governing equation of motion for a vortex filament is given by the convection equation of a Lagrangian marker:

d ~ r

dt

=

~V (~ r , t) (5.9)

where ~ r is the position of a Lagrangian marker. The Lagrangian markers are the end points of the vortex filaments.

The Lagrangian convection of the filaments stretches the filaments and thus automatically accounts for strain in the

vorticity equation.

At present, a first-order forward Euler method is used to numerically solve the left-hand side of Eq.

5.9

for the vortex

filament location (IntMethod = [5]). This is an explicit method solved using Eq.

5.10

.

~ r = ~ r +

~V ∆ t (5.10)

5.5 Free Vorticity Convection in Polar Coordinates

The governing equation of motion for a vortex filament is given by:

d ~ r (ψ , ζ)

dt

=

~V [~ r (ψ , ζ) , t] (5.11)

Using the chain rule, Eq.

5.11

is rewritten as:

∂ ~ r (ψ , ζ)

∂ ψ

+

∂ ~ r (ψ , ζ)

∂ ζ

=

~V [~ r (ψ , ζ) , t]

Ω

(5.12)

where d ψ / dt = Ω and d ψ = d ζ (

Leishman, Bhagwat, and Bagai

). Here, ~ r (ψ , ζ) is the position vector of a Lagrangian

marker, and

~V [~ r (ψ , ζ)] is the velocity.

14

5.6 Induced Velocity and Velocity Field

The velocity term on the right-hand side of Eq.

5.9

is a nonlinear function of the vortex position, representing a

combination of the freestream and induced velocities (

Hansen

). The induced velocities at point ~ x , caused by each

straight-line filament, are computed using the Biot-Savart law, which considers the locations of the Lagrangian markers

and the intensity of the vortex elements (

Leishman, Bhagwat, and Bagai

):

d ~ v (~ x) =

Γ

4 π

d~l × ~ r

r3

(5.13)

Here, Γ is the circulation strength of the filament,

~dl is an elementary length along the filament, ~ r is the vector between

a point on the filament and the control point ~ x , and r = | ~ r | is the norm of the vector. The integration of the Biot-Savart

law along the filament length, delimited by the points ~ x1

and ~ x2

leads to:

~ v (~ x) = F ν

Γ

4 π

(r1 + r2)

r1r2(r1r2 + ~ r1

· ~ r2)
~ r1

× ~ r2

(5.14)

with ~ r1

= ~ x − ~ x1

and ~ r2

= ~ x − ~ x2. The factor F ν

is a regularization parameter, discussed in Section

5.7.3

. r0

is the

filament length, where ~ r0

= ~ x2

− ~ x1. The distance orthogonal to the filament is:

ρ =

| ~ r1

× ~ r2

|

r0

(5.15)

The velocity at any point of the domain is obtained by superposition of the velocity induced by all vortex filaments,

and by superposition of the primary flow,

~V0, (here assumed divergence free):

~V (~ x) =

~V0(~ x)+ ~ v ω(~ x) , with ~ v ω(~ x) = ∑

k

~ vk(~ x) (5.16)

where the sum is over all the vortex filaments, each of intensity Γk. The intensity of each filament is determined by

spanwise and time changes of the bound circulation, as discussed in Section

5.3

. In tree-based methods, the sum over

all vortex elements is reduced by lumping together the elements that are far away from the control points.

5.7 Regularization

5.7.1 Regularization and viscous diffusion

The singularity that occurs in Eq.

5.13

greatly affects the numerical accuracy of vortex methods. By regularizing the

"1-over-r" kernel of the Biot-Savart law, it is possible to obtain a numerical method that converges to the Navier-Stokes

equations. The regularization is used to improve the regularity of the discrete vorticity field, as compared to the "true"

continuous vorticity field. This regularization is usually obtained by convolution with a smooth function. In this case,

the regularization of the vorticity field and the velocity field are the same. Some engineering models also perform

regularization by directly introducing additional terms in the denominator of the Biot-Savart velocity kernel. The

factor, F ν , was introduced in Eq.

5.14

to account for this regularization.

In the convergence proofs of vortex methods, regularization and viscous diffusion are two distinct aspects. It is

common practice in vortex filament methods to blur the notion of regularization with the notion of viscous diffusion.

Indeed, for a physical vortex filament, viscous effects prevent the singularity from occurring and diffuse the vortex

strength with time. The circular zone where the velocity drops to zero around the vortex is referred to as the vortex

core. A length increase of the vortex segment will result in a vortex core radius decrease, and vice versa. Diffusion,

on the other hand, continually spreads the vortex radially.

Because of the previously mentioned analogy, practitioners of vortex filament methods often refer to regularization

as "viscous-core" models and regularization parameters as "core-radii." Additionally, viscous diffusion is often intro-

duced by modifying the regularization parameter in space and time instead of solving the diffusion from the vorticity

equation. The distinction is made explicit in this document when clarification is required, but a loose terminology is

used when the context is clear.

15

5.7.2 Determination of the regularization parameter

The regularization parameter is both a function of the physics being modeled (blade boundary layer and wake) and

the choice of discretization. Contributing factors are the chord length, the boundary layer height, and the volume

that each vortex filament is approximating. Currently the choice is left to the user (RegDetMethod = [0]). Empirical

results for a rotating blade are found in the work of Gupta (

Gupta

). As a guideline, the regularization parameter may

be chosen as twice the average spanwise discretization of the blade. This guideline is implemented when the user

chooses RegDetMethod = [1] . Further refinement of this option will be considered in the future.

5.7.3 Implemented regularization functions

Several regularization functions have been developed (

Rankine; Scully; Vatistas, Koezel, and Mih

). At present, five

options are available: 1) No correction, 2) the Rankine method, 3) the Lamb-Oseen method, 4) the Vatistas method,

and 5) the denominator offset method. If no correction method is used, (RegFunction = [0]), F ν

= 1. The remaining

methods are detailed in the following sections. Here, rc

is the regularization parameter (WakeRegParam) and ρ is the

distance to the filament. Both variables are expressed in meters.

5.7.3.1 Rankine

The Rankine method (

Rankine

) is the simplest regularization model. With this method, the Rankine vortex has a finite

core with a solid body rotation near the vortex center and a potential vortex away from the center. If this method is

used (RegFunction = [1]), the viscous core correction is given by Eq.

5.17

.

F ν

=

{

ρ2 / r2
c

0 < ρ < 1

1 ρ > 1

(5.17)

Here, rc

is the viscous core radius of a vortex filament, detailed in Section

5.7.4

.

5.7.3.2 Lamb-Oseen

If the Lamb-Oseen method is used (RegFunction = [2]), the viscous core correction is given by Eq.

5.18

.

F ν

=

[

1 − exp (−

ρ2

r2
c

)

]

(5.18)

5.7.3.3 Vatistas

If the Vatistas method is used (RegFunction = [3]), the viscous core correction is given by Eq.

5.19

.

F ν

=

ρ2

(ρ2 n + r2 n
c

)1 / n

=

(ρ / rc)
2

(1 +(ρ / rc)2 n)1 / n

(5.19)

Here, ρ is the distance from a vortex segment to an arbitrary point (

Abedi

). Research from rotorcraft applications

suggests a value of n = 2, which is used in this work (

Bagai and Leishman

).

5.7.3.4 Denominator Offset/Cut-Off

If the denominator offfset method is used (RegFunction = [4]), the viscous core correction is given by Eq.

5.20

~ v (~ x) =

Γ

4 π

(r1 + r2)

r1r2(r1r2 + ~ r1

· ~ r2)+ r2
c r2

0

~ r1

× ~ r2

(5.20)

Here, the singularity is removed by introducing an additive factor in the denominator of Eq.

5.14

, proportional to the

filament length r0. In this case, F ν

= 1. This method is found in the work of van Garrel (

Garrel

).

16

5.7.4 Time Evolution of the Regularization Parameter—Core Spreading Method

There are four available methods by which the regularization parameter may evolve with time: 1) constant value, 2)

stretching, 3) wake age, and 4) stretching and wake age. The three latter methods blend the notions of viscous diffusion

and regularization. The notation rc 0

used in this section corresponds to input file parameter value WakeRegParam .

5.7.4.1 Constant

If a constant value is selected (WakeRegMethod = [1]), the value of rc

remains unchanged for all Lagrangian markers

throughout the simulation and is taken as the value given with the parameter WakeRegParam in meters.

rc(ζ) = rc 0

(5.21)

Here, ζ is the vortex wake age, measured from its emission time.

5.7.4.2 Stretching

If the stretching method is selected (WakeRegMethod = [2]), the viscous core radius is modeled by Eq.

5.22

.

rc(ζ , ε) = rc 0(1 + ε)− 1 (5.22)

ε =

∆ l

l

(5.23)

Here, ε is the vortex-filament strain, l is the filament length, and ∆ l is the change of length between two time steps.

The integral in Eq.

5.22

represents strain effects.

5.7.4.3 Wake Age / Core-Spreading

If the wake age method is selected (WakeRegMethod = [3]), the viscous core radius is modeled by Eq.

5.24

.

rc(ζ) =

√

r2

c 0 + 4 α δ ν ζ (5.24)

where α = 1 . 25643, ν is kinematic viscosity, and δ is a viscous diffusion parameter (typically between 1 and 1 , 000).

The parameter δ is provided in the input file as CoreSpreadEddyVisc . Here, the term 4 α δ ν ζ accounts for viscous

effects as the wake propagates downstream. The higher the background turbulence, the more diffusion of the vorticity

with time, and the higher the value of δ should be. This method partially accounts for viscous diffusion of the vorticity

while neglecting the interaction between the wake vorticity itself or between the wake vorticity and the background

flow. It is often referred to as the core-spreading method. Setting DiffusionMethod = [1] is the same as using the wake

age method (WakeRegMethod = [3]).

5.7.4.4 Stretching and Wake Age

If the stretching and wake-age method is selected (WakeRegMethod = [4]), the viscous core radius is modeled by

Eq.

5.25

.

rc(ζ , ε) =

√

r2

c 0 + 4 α δ ν ζ

(
1 + ε

)− 1 (5.25)

5.8 Diffusion

The viscous-splitting assumption is used to solve for the convection and diffusion of the vorticity separately. The

diffusion term ν ∆

~ ω represents molecular diffusion. This term allows for viscous connection of vorticity lines. Also,

turbulent flows will diffuse the vorticity in a similar manner based on a turbulent eddy viscosity.

The parameter DiffusionMethod is used to switch between viscous diffusion methods. Currently, only the core-

spreading method is implemented. The method is described in Section

5.7.4

since it is equivalent to the increase of

the regularization parameter with the wake age.

17

6 State-Space Representation and Integration with OpenFAST

6.1 State, Constraint, Input, and Output Variables

The OLAF module has been integrated into the latest version of OpenFAST via AeroDyn15 , following the OpenFAST

modularization framework (

Jonkman; Sprague, Jonkman, and Jonkman

). To follow the OpenFAST framework, the

vortex code is written as a module, and its formulation comprises state, constraint, and output equations. The data

manipulated by the module include the following vectors: constant parameters, ~ p ; inputs, ~ u ; constraint states, ~ z ; states,

~ x ; and outputs, ~ y . The vectors are defined as follows:

•

Parameters, ~ p — a set of internal system values that are independent of the states and inputs. The parameters

can be fully defined at initialization and characterize the system state and output equations.

•

Inputs, ~ u — a set of values supplied to the module that, along with the states, are needed to calculate future

states and the system output.

•

Constraint states, ~ z — algebraic variables that are calculated using a nonlinear solver, based on values from the

current time step.

•

States, ~ x — a set of internal values of the module. They are influenced by the inputs and used to calculate future

state values and output. Continuous states are employed, meaning that the states are differentiable in time and

characterized by continuous time-differential equations.

•

Outputs, ~ y — a set of values calculated and returned by the module that depend on the states, inputs, and/or

parameters through output equations.

The parameters of the vortex code include:

•

Fluid characteristics: kinematic viscosity, ν .

•

Airfoil characteristics: chord c and polar data— Cl(α) , Cd(α) , Cm(α) .

•

Algorithmic methods and parameters for, e.g., regularization, viscous diffusion, discretization, wake geometry,

and acceleration.

The inputs of the vortex code are:

•

Position, orientation, translational velocity, and rotational velocity of the different nodes of the lifting lines (~ rll ,

Λll ,

~̇
 rll , and

~ ωll , respectively), gathered into the vector, ~ xelast , ll , for conciseness. These quantities are handled

using the mesh-mapping functionality and data structure of OpenFAST.

•

Disturbed velocity field at requested locations, written

~V0

= [~V0 , ll

,

~V0 , m] . Locations are requested for lifting-line

points, ~ rll , and Lagrangian markers, ~ rm. Based on the parameters, this disturbed velocity field may contain the

following influences: freestream, shear, veer, turbulence, tower, and nacelle disturbance. The locations where

the velocity field is requested are typically the location of the Lagrangian markers.

The constraint state is:

•

The circulation intensity along the lifting lines, Γll .

The continuous states are:

•

The position of the Lagrangian markers, ~ rm

•

The vorticity associated with each vortex element,

~ ωe. For a projection of the vorticity onto vortex segments,

this corresponds to the circulation,

~Γe. For each segment,

~Γe

= Γe

~dle

=

~ ωedVe, were

~dle

and dVe

are the vortex

segment length and its equivalent vortex volume, respectively.

The outputs are

1

:

18

•

The induced velocity at the lifting-line nodes, ~ vi , ll

•

The locations where the undisturbed wind is computed, ~ rr

(typically ~ rr

= [~ rll

,~ rm]).

6.2 State, Constraint, and Output Equations

An overview of the states, constraints, and output equations is given here. More details are provided in Section

5

.

The constraint equation is used to determine the circulation distribution along the span of each lifting line. For the

van Garrel method, this circulation is a function of the angle of attack along the blade and the airfoil coefficients. The

angle of attack at a given lifting-line node is a function of the undisturbed velocity, ~ v0 , ll , and the vorticity-induced

velocity, ~ vi , ll , at that point. Part of the induced velocity is caused by the vorticity being shed and trailed at the current

time step, which in turn is a function of the circulation distribution along the lifting line. This constraint equation may

be written as:

~Z =

~0 =

~Γll

−

~Γp

(

~ α (~ x , ~ u) , ~ p

)

(6.1)

where

~Γp

is the function that returns the circulation along the blade span, according to one of the methods presented

in Section

5.3

.

The state equation specifies the time evolution of the vorticity and the convection of the Lagrangian markers.

d

~ ωe

dt

=

[

(

~ ω · ∇) ~ v + ν ∇
2 ~ ω

]

e

(6.2)

d ~ rm

dt

=

~V (~ rm) =

~V0(~ rm)+ ~ v ω(~ rm) =

~V0(~ rm)+

~V ω(~ rm

,~ rm

,

~ ω) (6.3)

Here,

•

~ v ω

is the velocity induced by the vorticity in the domain;

•

~V ω(~ r ,~ rm

,

~ ω) is the function that computes this induced velocity at a given point, ~ r , based on the location of the

Lagrangian markers and the intensity of the vortex elements;

•

the subscript e indicates that a quantity is applied to an element; and

•

the vorticity,

~ ω , is recovered from the vorticity of the vortex elements by means of discrete convolutions.

For vortex-segment simulations, the viscous-splitting algorithm is used, and the convection step (Eq.

6.3

) is the primary

state equation being solved for. Vorticity stretching is automatically accounted for and the diffusion is performed a

posteriori . The velocity function,

~V ω , uses the Biot-Savart law. The output equation is:

~ y1

= ~ vi , ll

=

~V ω(~ rll

,~ rm

,

~ ω) (6.4)

~ y2

= ~ rr

(6.5)

6.3 Integration with AeroDyn15

The vortex code has been integrated as a submodule of the aerodynamic module of OpenFAST, AeroDyn15 . The data

workflow between the different modules and submodules of OpenFAST is illustrated in Figure

4

.

AeroDyn inputs

such as BEM options (e.g., tip-loss factor), skew model, and dynamic inflow are discarded when the vortex code

is used. The environmental conditions, tower shadow, and dynamic stall model options are used. This integration

required a restructuring of the

AeroDyn15

module to isolate the parts of the code related to tower shadow modeling,

induction computation, lifting-line-forces computations, and dynamic stall. The dynamic stall model is adapted when

used in conjunction with the vortex code to ensure the effect of shed vorticity is not accounted for twice. The interface

between

AeroDyn15

and the inflow module,

InflowWind

, was accommodated to include the additionally requested

points by the vortex code.

1The loads on the lifting line are not an output of the vortex code; their calculation is handled by a separate submodule of AeroDyn .

19

~ vi , ll

, (~ rr)

Vortex code

~ r ,~Γv

1. Tower shadow model

(update of

~V0)

2. Induction computation

3. Quasi steady forces on the lifting lines

4. Dynamic stall model

AeroDyn15

~fll

~ rr

InflowWind

BEM

~V0

=

[~V0 , ll

,

~V0 , m]

~ xelast , ll

=

[~ rll

,

~Λll

,~̇ rll

,

~ ωll]

ElastoDyn

~ relast , ll

~V0

Figure 4. OpenFAST-OLAF code integration workflow

20

7 Future Work

This first implementation phase focused on single-turbine capabilities, fulfilling the basic requirements for the design

of large and novel rotor concepts. Future development will focus on the implementation of features enabling multiple-

turbine simulations on medium-to-large-scale computational clusters, as well as the reduction of computational time.

This may be achieved using tree techniques such as the fast multipole method. Further algorithmic options, such as

vortex amalgamation in the far wake, will be considered to speed up the simulation. The framework presented in this

manual is compatible with grid-free or grid-based vortex particle formulations. Such particle-based implementations

will also be envisaged in the future. Further validation of the code against measurements and higher-order tools will

be pursued. Applications to cases known to be challenging for the BEM algorithm will also be investigated, such as

highly flexible rotors, offshore floating turbines, small-scale wind farms, multiple-rotor turbines, or kites.

The following list contains future work on OLAF software:

•

Lagrangian particles

•

Multiple turbines, integration into FAST.Farm

•

Code speed-up

•

Dedicated dynamic stall model

21

Bibliography

Abedi, H.

Development of Vortex Filament Method for Wind Power Aerodynamics

. PhD thesis, Chalmers University

of Technology, 2016.

Ananthan, S., J. G. Leishman, and M. Ramasamy. “The Role of Filament Stretching in the Free-Vortex Modeling of

Rotor Wakes”. In

58th Annual Forum and Technology Display of the American Helicopter Society International

.

Montreal, Canada, 2002.

Bagai, A., and J. G. Leishman. “Flow Visualization of Compressible Vortex Structures Using Density Gradient Tech-

niques”.

Experiments in Fluids

15, no. 6 (1993): 431–442.

– . “Rotor Free-Wake Modeling using a Pseudo-Implicit Technique Including Comparisons with Experimental Data”.

In

50th Annual Forum of the American Helicopter Society

. Washington, D.C., 1994.

Branlard, E.

Wind Turbine Aerodynamics and Vorticity-Based Methods: Fundamentals and Recent Applications

.

Springer International Publishing, 2017. ISBN : 978-3-319-55163-0.

https://doi.org/10.1007/978-

3-319-55164-7

.

Branlard, E., et al. “Aeroelastic large eddy simulations using vortex methods: unfrozen turbulent and sheared inflow”.

Journal of Physics: Conference Series (Online)

625 (2015). ISSN : 1742-6596.

https://doi.org/10.1088/

1742-6596/625/1/012019

.

Garrel, A. van.

Development of a Wind Turbine Aerodynamics Simulation Module

. Tech. rep. ECN-C–03-079. ECN,

2003.

Gupta, S.

Development of a Time-Accurate Viscous Lagrangian Vortex Wake Model for Wind Turbine Applications

.

PhD thesis, Univeristy of Maryland, 2006.

Gupta, S., and J. G. Leishman. “Free-Vortex Filament Methods for the Analysis of Helicopter Rotor Wakes”.

Journal

of Aircraft

39, no. 5 (2002): 759–775.

Hansen, M. O. L.

Aerodynamics of Wind Turbines

. London; Sterling, VA: Earthscan, 2008.

Jonkman, J.

The New Modularization Framework for the FAST Wind Turbine CAE Tool

. Technical report NREL/CP-

5000-57228. National Renewable Energy Laboratory, 2013.

Kerwin, J.

Lecture Notes Hydrofoil and propellers

. Tech. rep. M.I.T., 2000.

Leishman, J.

Principles of Helicopter Aerodynamics

. Cambridge, MA: Cambridge Univ. Press, 2006.

Leishman, J. G., M. J. Bhagwat, and A. Bagai. “Free-Vortex Filament Methods for the Analysis of Helicopter Rotor

Wakes”.

Journal of Aircraft

39, no. 5 (2002): 759–775.

Papadakis, G.

Development of a hybrid compressible vortex particle method and application to external problems

including helicopter flows

. PhD thesis, National Technical University of Athens, 2014.

Rankine, W. J. M.

Manual of Applied Mechanics

. London: Griffen Co., 1858.

Ribera, M.

Helicopter Flight Dynamics Simulation with a Time-Accurate Free-Vortex Wake Model

. PhD thesis, Uni-

versity of Maryland, 2007.

Rosenhead, L. “The Formation of Vortices from a Surface of Discontinuity”.

Proceedings of the Royal Society of

London. Series A, Containing Papers of a Mathematical and Physical Character

134, no. 823 (1931): 170–192.

ISSN : 09501207.

http://www.jstor.org/stable/95835

.

Scully, M. P.

Computation of Helicopter Rotor Wake Geometry and Its Influence on Rotor Harmonic Airloads

. PhD

thesis, Massachusetts Institute of Technology, 1975.

Sessarego, M., et al. “Development of an aeroelastic code based on three-dimensional viscous-inviscid method for

wind turbine computations”.

Wind Energy

20, no. 7 (2017): 1145–1170.

https://doi.org/10.1002/we.

2085

.

Sprague, Michael A., Jason M. Jonkman, and Bonnie J. Jonkman.

FAST Modular Framework for Wind Turbine Simu-

lation: New Algorithms and Numerical Examples

. Tech. rep. NREL/CP-2C00-63203. National Renewable Energy

Laboratory, 2015.

Vatistas, G. H., V. Koezel, and W. C. Mih. “A Simpler Model for Concentrated Vortices”.

Experiments in Fluids

11,

no. 1 (1991): 73–76.

Voutsinas, S. G. “Vortex methods in aeronautics: how to make things work”.

International Journal of Computational

Fluid Dynamics

(2006).

22

https://doi.org/10.1007/978-3-319-55164-7
https://doi.org/10.1007/978-3-319-55164-7
https://doi.org/10.1007/978-3-319-55164-7
https://doi.org/10.1088/1742-6596/625/1/012019
https://doi.org/10.1088/1742-6596/625/1/012019
https://doi.org/10.1088/1742-6596/625/1/012019
http://www.jstor.org/stable/95835
https://doi.org/10.1002/we.2085
https://doi.org/10.1002/we.2085
https://doi.org/10.1002/we.2085

Weissinger, J.

The Lift Distribution of Swept-Back Wings

. Technical report TM 1120. NACA, 1947.

Winckelmans, G. S., and A. Leonard. “Contributions to vortex particle methods for the computation of 3-dimensional

incompressible unsteady flows”.

Journal Of Computational Physics

109, no. 2 (1993): 247–273. ISSN : 00219991,

10902716.

23

A OLAF Primary Input File

The symbol ↪ → in the following text indicates a continuation of the previous line, it should not be implemented as a

new line in the actual input file. When a default value is available, default may be used instead of the value.

--------------------------- FREE WAKE INPUT FILE --

Free wake input file for the BAR turbine

--------------------------- GENERAL OPTIONS ---

5 IntMethod Integration method {5: Forward Euler 1st order, default: 5} (switch)

0.2 DTfvw Time interval for wake propagation. {default: dtaero} (s)

5 FreeWakeStart Time when wake is free. (-) value = always free. {default: 0.0} (s)

2.0 FullCircStart Time at which full circulation is reached. {default: 0.0} (s)

--------------------------- CIRCULATION SPECIFICATIONS --

1 CircSolvingMethod Circulation solving method {1: Cl-Based, 2: No-Flow Through, 3:

↪ → Prescribed, default: 1 }(switch)

0.01 CircSolvConvCrit Convergence criteria {default: 0.001} [only if CircSolvingMethod=1] (-)

0.1 CircSolvRelaxation Relaxation factor {default: 0.1} [only if CircSolvingMethod=1] (-)

30 CircSolvMaxIter Maximum number of iterations for circulation solving {default: 30} (-)

"NA" PrescribedCircFile File containing prescribed circulation [only if CircSolvingMethod=3]

↪ → (quoted string)

===

--------------------------- WAKE OPTIONS --

------------------- WAKE EXTENT AND DISCRETIZATION --

50 nNWPanel Number of near-wake panels (-)

500 WakeLength Total wake distance [integer] (number of time steps)

400 FreeWakeLength Wake length that is free [integer] (number of time steps) {default:

↪ → WakeLength}

False FWShedVorticity Include shed vorticity in the far wake {default: False}

------------------- WAKE REGULARIZATIONS AND DIFFUSION ---

0 DiffusionMethod Diffusion method to account for viscous effects {0: None, 1: Core

↪ → Spreading, "default": 0}

0 RegDeterMethod Method to determine the regularization parameters {0: Manual, 1:

↪ → Optimized, default: 0 }

2 RegFunction Viscous diffusion function {0: None, 1: Rankine, 2: LambOseen, 3:

↪ → Vatistas, 4: Denominator, "default": 3} (switch)

0 WakeRegMethod Wake regularization method {1: Constant, 2: Stretching, 3: Age,

↪ → default: 1} (switch)

2.0 WakeRegFactor Wake regularization factor (m)

2.0 WingRegFactor Wing regularization factor (m)

100 CoreSpreadEddyVisc Eddy viscosity in core spreading methods, typical values 1-1000

------------------- WAKE TREATMENT OPTIONS ---

False TwrShadowOnWake Include tower flow disturbance effects on wake convection

↪ → {default:false} [only if TwrPotent or TwrShadow]

0 ShearModel Shear Model {0: No treatment, 1: Mirrored vorticity, default: 0}

------------------- SPEEDUP OPTIONS ---

2 VelocityMethod Method to determine the velocity {1:Biot-Savart Segment, 2:Particle

↪ → tree, default: 1}

1.5 TreeBranchFactor Branch radius fraction above which a multipole calculation is used

↪ → {default: 2.0} [only if VelocityMethod=2]

1 PartPerSegment Number of particles per segment [only if VelocityMethod=2]

===

--------------------------- OUTPUT OPTIONS ---

1 WrVTk Outputs Visualization Toolkit (VTK) (independent of .fst option) {0:

↪ → NoVTK, 1: Write VTK}

1 nVTKBlades Number of blades for which VTK files are exported {0: No VTK per blade,

↪ → n: VTK for blade 1 to n} (-)

2 VTKCoord Coordinate system used for VTK export. {1: Global, 2: Hub, "default": 1}

default VTK_fps Frame rate for VTK output (frames per second) {"all" for all glue code

↪ → timesteps, "default" for all FVW timesteps} [used only if WrVTK=1]

--

24

B Prescribed Circulation Input File

r/R [-],

Gamma [m2/s]

0.048488,

0.000000

0.087326,

0.442312

0.126163,

6.909277

0.165000,

23.678557

0.203837,

55.650700

0.242674,

74.091529

0.281512,

84.205843

0.320349,

88.740429

0.359186,

89.730814

0.398023,

88.568114

0.436860,

87.114743

0.475698,

86.110557

0.514535,

85.705529

0.553372,

85.215829

0.592209,

84.547371

0.631047,

83.774329

0.669884,

82.889157

0.708721,

81.635600

0.747558,

79.788700

0.786395,

77.195200

0.825233,

73.765100

0.864070,

69.275900

0.902907,

62.965400

0.941744,

53.603300

0.980581,

39.854000

25

C OLAF List of Output Channels

This is a list of all possible output parameters from the OLAF module. The names are grouped by meaning, but can be
ordered in the OUTPUTS section of the AeroDyn15 primary input file, as the user sees fit. N β refers to output node,
β , where β is a number in the range [1,9], corresponding to entry, β , in the OutNd list. B α is prefixed to each output

name, where α is a number in the range [1,3], corresponding to the blade number.

Table 1. Available OLAF Output Channels

Channel Name(s) Units Description

B α N β Gam m2 / s Circulation along the blade

26

