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1 Introduction

 

Over the past few decades, substantial reductions in the cost of wind energy have come from large increases in rotor 

size. One important consideration for such large turbines is increased blade flexibility. In particular, large blade de- 

flections may lead to a swept area that deviates significantly from the rotor plane. Such deviations violate assumptions 

used by common aerodynamic models, such as the blade element momentum (BEM) method. Such methods rely on 

actuator-disk assumptions that are only valid for axisymmetric rotor loads contained in a plane. Large blade deflec- 

tions may also cause near wake of the turbine to diverge from a uniform helical shape. Further, interactions between 

turbine blades and the local near wake may increase, thus violating assumptions of models that do not account for 

the position and dynamics of the near wake. Additionally, highly flexible blades will likely cause increased unsteadi- 

ness and three-dimensionality of aerodynamic effects, increasing the importance of accurate and robust dynamic stall 

models. There are many other complex wind turbine situations that violate simple engineering assumptions. Such 

situations include obtaining accurate aerodynamic loads for nonstraight blade geometries (e.g., built-in curvature or 

sweep); skewed flow caused by yawed inflow or turbine tilt; and large rotor motion as a result of placing the turbine 

atop a compliant offshore floating platform.

 

Higher-fidelity aerodynamic models are necessary to account for the increased complexity of flexible and floating 

rotors. Although computational fluid dynamics (CFD) methods are able to capture such features, their computational 

cost limits the number of simulations that can be feasibly performed, which is an important consideration in load anal- 

ysis for turbine design. FVW methods are less computationally expensive than CFD methods while modeling similarly 

complex physics. As opposed to the BEM methods, FVW methods do not rely on ad-hoc engineering models to ac- 

count for dynamic inflow, skewed wake, tip losses, or ground effects. These effects are inherently part of the model. 

Numerous vorticity-based tools have been implemented, ranging from the early treatments by Rosenhead (

 

Rosen- 

head

 

), the formulation of vortex particle methods by Winckelmans and Leonard (

 

Winckelmans and Leonard

 

), to the 

recent mixed Eulerian-Lagrangian compressible formulations of Papadakis (

 

Papadakis

 

). Examples of long-standing 

codes that have been applied in the field of wind energy are GENUVP (

 

Voutsinas

 

), using vortex particles methods, and 

AWSM (

 

Garrel

 

), using vortex filament methods. Both tools have successfully been coupled to structural solvers. The 

method was extended by Branlard et al. (

 

Branlard et al.

 

) to consistently use vortex methods to perform aero-elastic 

simulations of wind turbines in sheared and turbulent inflow. Most formulations rely on a lifting-line representation of 

the blades, but recently, a viscous-inviscid representation was used in combination with a structural solver (

 

Sessarego 

et al.

 

).

 

cOnvecting LAgrangian Filaments (OLAF) is a free vortex wake (FVW) module used to compute the aerodynamic 

forces on moving two- or three-bladed horizontal-axis wind turbines. This module has been incorporated into the 

National Renewable Energy Laboratory physics-based engineering tool OpenFAST, which solves the aero-hydro- 

servo-elastic dynamics of individual wind turbines. OLAF is incorporated into the OpenFAST module

 

AeroDyn15

 

as 

an alternative to the traditional BEM option, as shown in Figure

 

1

 

.

 

Incorporating the OLAF module within OpenFAST 

allows for the modeling of highly flexible turbines along with the aero-hydro-servo-elastic response capabilities of 

OpenFAST. The OLAF module follows the requirements of the OpenFAST modularization framework (

 

Sprague, 

Jonkman, and Jonkman; Jonkman

 

).

 

The OLAF module uses a lifting-line representation of the blades, which is characterized by a distribution of bound 

circulation. The spatial and time variation of the bound circulation results in free vorticity being emitted in the wake. 

OLAF solves for the turbine wake in a time-accurate manner, which allows the vortices to convect, stretch, and 

diffuse. The OLAF model is based on a Lagrangian approach, in which the turbine wake is discretized into Lagrangian 

markers. There are many methods of representing the wake with Lagrangian markers (

 

Branlard

 

). In this work, a hybrid 

lattice/filament method is used, as depicted in Figure

 

2

 

.

 

Here, the position of the Lagrangian markers is defined in 

terms of wake age, ζ , and azimuthal position, ψ . A lattice method is used in the near wake of the blade. The near wake 

spans over a user-specified angle or distance for nonrotating cases. Though past research has indicated that a near- 

wake region of 30◦ is sufficient (

 

Leishman; Ananthan, Leishman, and Ramasamy

 

), it has been shown that a larger near 

wake is required for high thrust and other challenging conditions. After the near wake region, the wake is assumed 

to instantaneously roll up into a tip vortex and a root vortex, which are assumed to be the most dominant features
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(b) OLAF and BEM integration with

 

AeroDyn15

 

Figure 1. OpenFAST overview schematic and OLAF integration

 

for the remainder of the wake (

 

Leishman, Bhagwat, and Bagai

 

). Each Lagrangian marker is connected to adjacent 

markers by straight-line vortex filaments, approximated to second-order accuracy (

 

Gupta and Leishman

 

). The wake is 

discretized based on the spanwise location of the blade sections and a specified time step ( dt ), which may be different 

from the time step of AeroDyn. After an optional initialization period, the wake is allowed to move and distort, thus 

changing the wake structure as the markers are convected downstream. To limit computational expense, the root and 

tip vortices are truncated after a specified distance ( WakeLength ) downstream from the turbine. The wake truncation 

violates Helmholtz’s first law and hence introduces an erroneous boundary condition. To alleviate this, the wake is 

"frozen" in a buffer zone between a specified buffer distance, FreeWakeLength , and WakeLength . In this buffer zone, 

the markers convect at the average ambient velocity. In this way, truncation error is minimized (

 

Leishman, Bhagwat, 

and Bagai

 

). The buffer zone is typically chosen as the convected distance over one rotor revolution.

 

As part of OpenFAST, induced velocities at the lifting line/blade are transferred to

 

AeroDyn15

 

and used to compute 

the effective blade angle of attack at each blade section, which is then used to compute the aerodynamic forces on 

the blades. The OLAF method returns the same information as the BEM method, but allows for more accurate
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Figure 2. Evolution of near-wake lattice, blade-tip vortex, and Lagrangian markers

 

calculations in areas where BEM assumptions are violated, such as those discussed above. As the OLAF method is 

more computationally expensive than BEM, both methods remain available in OpenFAST, and the user may specify 

in the

 

AeroDyn15

 

input file which method is used.

 

The OLAF input file defines the wake convection and circulation solution methods; wake size and length options; La- 

grangian marker regularization (viscous core) method; and other simulation and output parameters. The extents of the 

near and far wakes are specified by a nondimensional length in terms of rotor diameter. Different regularization func- 

tions for the vortex elements are available. Additionally, different methods to compute the regularization parameters 

of the bound and wake vorticity may be selected. In particular, viscous diffusion may be accounted for by dynamically 

changing the regularization parameter. Wake visualization output options are also available.

 

This document is organized as follows. Section 2 covers downloading, compiling, and running OLAF. Section 3 

describes the OLAF input file and modifications to the

 

AeroDyn15

 

input file. Section 4 details the OLAF output file. 

Section 5 provides an overview of the OLAF theory, including the free vortex wake method as well as integration into 

the

 

AeroDyn15

 

module. Section 6 presents future work. Example input files and a list of output channels are detailed 

in Appendices A, B, and C.
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2 Running OLAF

 

As OLAF is a module of OpenFAST, the process of downloading, compiling, and running OLAF is the same as that 

for OpenFAST. These instructions are available in the

 

OpenFAST

 

documentation.

 

6

https://openfast.readthedocs.io/en/master/source/install/


 

3 Input Files

 

No lines should be added or removed from the input files, except in tables where the number of rows is specified.

 

3.1 Units

 

OLAF uses the International System of Units (e.g., kg, m, s, N). Angles are assumed to be in degrees unless otherwise 

specified.

 

3.2 OLAF Primary Input File

 

The primary OLAF input file defines general free wake options, circulation model selection and specification, near- 

and far-wake length, and wake visualization options. Each section within the file corresponds to an aspect of the OLAF 

model. For most parameters, the user may specify the value "default" (with or without quotes), in which case a default 

value, defined below, is used by the program.

 

See Appendix

 

A

 

for a sample OLAF primary input file.

 

3.2.1 General Options

 

IntMethod [switch] specifies which integration method will be used to convect the Lagrangian markers. There are four 

options: 1) fourth-order Runge-Kutta [1] , 2) fourth-order Adams-Bashforth [2] , 3) fourth-order Adams-Bashforth- 

Moulton [3] , and 4) first-order forward Euler [5] . The default option is [5] . These methods are specified in Section

 

5.4

 

.

 

DTfvw [sec] specifies the time interval at which the module will update the wake. The time interval must be a multiple 

of the time step used by

 

AeroDyn15

 

. The blade circulation is updated at each intermediate time step based on the 

intermediate blades positions and wind velocities. The default value is dtaero, where dtaero 

is the time step used by 

AeroDyn.

 

FreeWakeStart [sec] specifies at what time the wake evolution is classified as "free." Before this point, the Lagrangian 

markers are simply convected with the freestream velocity. After this point, induced velocities are computed and 

affect the marker convection. If a time less than or equal to zero is given, the wake is "free" from the beginning of the 

simulation. The default value is 0.

 

FullCircStart [sec] specifies at what time the blade circulation reaches full strength. If this value is specified to be 

> 0, the circulation is multiplied by a factor of 0 at t = 0 and linearly increasing to a factor of 1 for t > FullCircStart . 

The default value is 0.

 

3.2.2 Circulation Specifications

 

CircSolvMethod [switch] specifies which circulation method is used. There are three options: 1) Cl-based iterative 

procedure [1] , 2) no-flow through [2] , and 3) prescribed [3] . The default option is [1] . These methods are described in 

Section

 

5.3

 

.

 

CircSolvConvCrit [-] specifies the dimensionless convergence criteria used for solving the circulation. This variable is 

only used if CircSolvMethod = [1] . The default value is 0 . 001, corresponding to 0 . 1% error in the circulation between 

two iterations.

 

CircSolvRelaxation [-] specifies the relaxation factor used to solve the circulation. This variable is only used if 

CircSolvMethod = [1] . The default value is 0 . 1.

 

CircSolvMaxIter [-] specifies the maximum number of iterations used to solve the circulation. This variable is only 

used if CircSolvMethod = [1] . The default value is 30.

 

PrescribedCircFile [quoted string] specifies the file containing the prescribed blade circulation. This option is only 

used if CircSolvMethod = [3] . The circulation file format is a delimited file with one header line and two columns. 

The first column is the dimensionless radial position [r/R]; the second column is the bound circulation value in [m2/s].
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The radial positions do not need to match the AeroDyn node locations. A sample prescribed circulation file is given 

in Appendix

 

B

 

.

 

3.2.3 Wake Extent and Discretization Options

 

nNWPanel [-] specifies the number of FVW time steps ( DTfvw ) for which the near-wake lattice is computed. In the 

future, this value will be defined as an azimuthal span in degrees or a downstream distance in rotor diameter.

 

WakeLength [D] specifies the length, in rotor diameters, of the far wake. The default value is 8.

 

1

 

FreeWakeLength [D] specifies the length, in rotor diameters, for which the turbine wake is convected as "free." If 

FreeWakeLength is greater than WakeLength , then the entire wake is free. Otherwise, the Lagrangian markers located 

within the buffer zone delimited by FreeWakeLength and WakeLength are convected with the average velocity. The 

default value is 6.

 

2

 

FWShedVorticity [flag] specifies whether shed vorticity is included in the far wake. The default option is [False] , 

specifying that the far wake consists only of the trailed vorticity from the root and tip vortices.

 

3.2.4 Wake Regularization and Diffusion Options

 

DiffusionMethod [switch] specifies which diffusion method is used to account for viscous diffusion. There are two 

options: 1) no diffusion [0] and 2) the core-spreading method [1] . The default option is [0] .

 

RegDetMethod [switch] specifies which method is used to determine the regularization parameters. There are two 

options: 1) manual [0] and 2) optimized [1] . The manual option requires the user to specify the parameters listed in 

this subsection. The optimized option determines the parameters for the user. The default option is [0] .

 

RegFunction [switch] specifies the regularization function used to remove the singularity of the vortex elements, 

as specified in Section

 

5.4

 

. There are five options: 1) no correction [0] , 2) the Rankine method [1] , 3) the Lamb- 

Oseen method [2] , 4) the Vatistas method [3] , and 5) the denominator offset method [4] . The functions are given in 

Section

 

5.7.3

 

. The default option is [3] .

 

WakeRegMethod [switch] specifies the method of determining viscous core radius (i.e., the regularization parameter). 

There are four options: 1) constant [1] , 2) stretching [2] , 3) age [3] , and 4) stretching and age [4] . The methods are 

described in Section

 

5.7.4

 

. The default option is [1] .

 

WakeRegParam [m] specifies the wake regularization parameter, which is the regularization value used at the initial- 

ization of a vortex element. If the regularization method is "constant", this value is used throughout the wake.

 

BladeRegParam [m] specifies the bound vorticity regularization parameter, which is the regularization value used for 

the vorticity elements bound to the blades.

 

CoreSpreadEddyVisc [-] specifies the eddy viscosity parameter δ . The parameter is used for the core-spreading 

method ( DiffusionMethod = [1] ) and the regularization method with age ( WakeRegMethod = [3] ). The variable δ is 

described in Section

 

5.7.4

 

. The default value is 100.

 

3.2.5 Wake Treatment Options

 

TwrShadowOnWake [flag] specifies whether the tower potential flow and tower shadow have an influence on the wake 

convection. The tower shadow model, when activated in AeroDyn, always has an influence on the lifting line, hence 

the induction and loads on the blade. This option only concerns the wake. The default option is [False] .

 

ShearVorticityModel [switch] specifies whether shear vorticity is modeled in addition to the sheared inflow prescribed 

by

 

InflowWind

 

. There are two options: 1) no treatment [0] and 2) mirrored vorticity [1] . The mirrored vorticity 

accounts for the ground effect. Dedicated options to account for the shear vorticity will be implemented at a later time. 

The shear velocity profile is handled by

 

InflowWind

 

irrespective of this input. The default option is [0] .

 

1At present, this variable is called nFWPanel and specified as the number of far wake panels. This will be changed soon.

 

2At present, this variable is called nFWPanelFree and specified as the number of free far wake panels. This will be changed soon.
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3.2.6 Speedup Options

 

VelocityMethod [switch] specifies the method used to determine the velocity. There are two options: 1) Biot-Savart 

law applied to the vortex segments [1] and 2) tree formulation using a particle representation [2] . The default option 

is [1] .

 

TreeBranchFactor [-] specifies the dimensionless distance, in branch radius, above which a multipole calculation is 

used instead of a direct evaluation. This option is only used in conjunction with the tree code ( VelocityMethod = [2] ).

 

PartPerSegment [-] specifies the number of particles that are used when a vortex segment is represented by vortex 

particles. The default value is 1.

 

3.2.7 Output Options

 

WrVTK [flag] specifies if Visualization Toolkit (VTK) visualization files are to be written out. WrVTK = [0] does not 

write out any VTK files. WrVTK = [1] outputs a VTK file at every time step. The outputs are written in the folder, 

vtk_fvw . The parameters WrVTK , VTKCoord , and VTK_fps are independent of the glue code VTK output options.

 

VTKBlades [-] specifies how many blade VTK files are to be written out. VTKBlades = n outputs VTK files for n 

blades, with 0 being an acceptable value. The default value is 1.

 

VTKCoord [switch] specifies the coordinate system in which the VTK files are written. There are two options: 1) 

global coordinate system [1] and 2) hub coordinate system [2] . The default option is [1] .

 

VTK_fps [1/sec] specifies the output frequency of the VTK files. The provided value is rounded to the nearest allow- 

able multiple of the time step. The default value is 1 / dtfvw. Specifying VTK_fps = [all] is equivalent to using the value 

1 / dtaero.

 

3.3 AeroDyn15 Input File

 

3.3.1 Input file modifications

 

As OLAF is incorporated into the

 

AeroDyn15

 

module, a wake computation option has been added to the

 

AeroDyn15

 

input file and a line has been added. These additions are as follows:

 

WakeMod specifies the type of wake model that is used. WakeMod = [3] has been added to allow the user to switch 

from the traditional BEM method to the OLAF method.

 

FVWFile [string] specifies the OLAF module file. The path is relative to the AeroDyn file, unless an absolute path is 

provided.

 

3.3.2 Relevant sections

 

The BEM options (e.g. tip-loss, skew, and dynamic models) are read and discarded when WakeMod = [3] . The follow- 

ing sections and parameters remain relevant and are used by the vortex code:

 

•

 

general options (e.g., airfoil and tower modeling);

 

•

 

environmental conditions;

 

•

 

dynamic stall model options;

 

•

 

airfoil and blade information;

 

•

 

tower aerodynamics; and

 

•

 

outputs.
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4 Output Files

 

The OLAF module itself does not produce its own output file. However, additional output channels are made available 

in

 

AeroDyn15

 

. As such, the

 

AeroDyn15

 

output file is briefly described as well as the outputs made available with 

OLAF. Visualization files are generated by using the parameter WrVTK . This parameter is available in the OLAF 

input file, in which case the VTK files are written to the folder vtk_fvw , or the primary .fst file, in which case the 

VTK files are written to the folder vtk .

 

4.1 Results File

 

OpenFAST generates a master results file that includes the

 

AeroDyn15

 

results. The results are in table format, where 

each column is a data channel, and each row corresponds to a simulation-output time step. The data channels are 

specified in the OUTPUTS section in the

 

AeroDyn15

 

primary input file. The column format of the AeroDyn-generated 

files is specified using the OutFmt parameter of the OpenFAST driver input file.
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5 OLAF Theory

 

This section details the OLAF method and provides an overview of the computational method, followed by a brief 

explanation of its integration with OpenFAST.

 

5.1 Introduction - Vorticity Formulation

 

The vorticity equation for incompressible homogeneous flows in the absence of non-conservative force is given by 

Eq.

 

5.1

 

d 

~ ω

 

dt 

= 

∂ 

~ ω

 

∂ t 

+ ( ~ u · ∇ )︸

 

︷︷

 

︸ 

convection 

~ ω = ( 

~ ω · ∇ ) ~ u︸

 

︷︷

 

︸ 

strain 

+ ν ∆ 

~ ω︸

 

︷︷

 

︸ 

diffusion 

(5.1) 

Here, 

~ ω is the vorticity, ~ u is the velocity, and ν is the viscosity. In free vortex wake methods, the vorticity equation 

is used to describe the evolution of the wake vorticity. Different approximations are introduced to ease its resolution, 

such as projecting the vorticity onto a discrete number of vortex elements (here vortex filaments), and separately 

treating the convection and diffusion steps, known as viscous-splitting. Several complications arise from the method; 

in particular, the discretization requires a regularization of the vorticity field (or velocity field) to ensure a smooth 

approximation.

 

The forces exerted by the blades onto the flow are expressed in vorticity formulation as well. This vorticity is bound 

to the blade and has a circulation associated with the lift force. A lifting-line formulation is used here to model the 

bound vorticity.

 

The different models of the implemented free vortex code are described in the following sections.

 

5.2 Discretization - Projection

 

The numerical method uses a finite number of states to model the continuous vorticity distribution. To achieve this, 

the vorticity distribution is projected onto a basis function, which is referred to as vortex elements. Vortex filaments 

are used as elements that represent the vorticity field. A vortex filament is delimited by two points and hence assumes 

a direction formed by these two points. A vorticity tube is oriented along the unit vector ~ ex 

of cross section dS and 

length l . It can then be approximated by a vortex filament of length l oriented along the same direction. The total 

vorticity of the tube and the vortex filaments are the same and related by: 

~ ω dS = 

~Γ (5.2) 

where 

~Γ is the circulation intensity of the vortex filament. If the vorticity tubes are complex and occupy a large volume, 

projection onto vortex filaments is difficult and projection onto vortex particles is more appropriate. Assuming the 

wake is confined to a thin vorticity layer defining a velocity jump of known direction, it is possible to approximate the 

wake vorticity sheet as a mesh of vortex filaments. This is the basis of vortex filament wake methods. Vortex filaments 

are a singular representation of the vorticity field, as they occupy a line instead of a volume. To better represent the 

vorticity field, the filaments are "inflated", a process referred to as regularization (see Section

 

5.7

 

). The regularization 

of the vorticity field also regularizes the velocity field and avoids the singularities that would otherwise occur.

 

5.3 Lifting-Line Representation

 

The code relies on a lifting-line formulation to model the blades. Lifting-line methods effectively lump the loads at 

each cross-section of the blade onto the mean line of the blade and do not account for the geometry of each cross- 

section. In the vorticity-based version of the lifting-line method, the blade is represented by a line of varying circula- 

tion. The line follows the motion of the blade and is referred to as "bound" circulation. The bound circulation does 

not follow the same dynamic equation as the free vorticity of the wake. Instead, the intensity is linked to airfoil lift via 

the Kutta-Joukowski theorem. Spanwise variation of the bound circulation results in vorticity being emitted into the
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wake. This is referred to as "trailed vorticity". Time changes of the bound circulation are also emitted in the wake and 

referred to as "shed" vorticity. The remaining subsections describe the representation of the bound vorticity in greater 

detail.

 

5.3.1 Lifting-Line Panels and Emitted Wake Panels

 

The lifting-line and wake representation is illustrated in Fig.

 

3

 

. The blade lifting-line is discretized into a finite number 

of panels, each of them forming a four sided vortex ring. The spanwise discretization follows the discretization of the 

AeroDyn blade input file. The number of spanwise panels, nLL, is one less than the total number of AeroDyn nodes, 

NumBlNds . The sides of the panels coincide with the lifting-line and the trailing edge of the blade. The lifting-line is 

currently defined as the 1/4 chord location from the leading edge (LE). More details on the panelling are provided in 

Section

 

5.3.2

 

. At a given time step, the circulation of each lifting-line panel is determined according to one of the three 

methods developed in Section

 

5.3.3

 

. At the end of the time step, the circulation of each lifting-line panel is emitted 

into the wake, forming free vorticity panels. To satisfy the Kutta condition, the circulation of the first near wake 

panel and the bound circulation are equivalent (see Fig.

 

3

 

b). The wake panels model the thin shear layer resulting 

from the continuation of the blade boundary layer. This shear layer can be modeled using a continuous distribution of 

vortex doublets. A constant doublet strength is assumed on each panel, which in turn is equivalent to a vortex ring of 

constant circulation.

 

The current implementation stores the positions and circulations of the panel corner points. In
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circulation

Free 
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Kutta condition
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Figure 3. Wake and lifting-line vorticity discretized into vortex ring panels. (a) Overview. (b) Cross-sectional 

view, defining the leading-edge, trailing edge, and lifting-line. (c) Circulation of panels and correspond- 

ing circulation for vorticity segments between panels. (d) Geometrical quantities for a lifting-line panel.

 

the vortex ring formulation, the boundary between two panels corresponds to a vortex segment of intensity equal to 

the difference of circulation between the two panels. The convention used to define the segment intensity based on the 

panels intensity is shown in Fig.

 

3

 

c. Since the circulation of the bound panels and the first row of near wake panels 

are equal, the vortex segments located on the trailing edge have no circulation.
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5.3.2 Panelling

 

The definitions used for the panelling of the blade are given in Fig.

 

3

 

d, following the notations of van Garrel (

 

Garrel

 

). 

The LE and trailing edge (TE) locations are directly obtained from the AeroDyn mesh. The LE and TE define the 

corner points at two spanwise locations: ~ x1, ~ x2, ~ x3, and ~ x4. The current implementation assumes that the aerodynamic 

center, the lifting-line, and the 1/4 chord location all coincide. For a given panel, the lifting-line is then delimited by 

the points ~ x9 

= 3 / 4 ~ x1 + 1 / 4 ~ x2 

and ~ x10 

= 3 / 4 ~ x4 + 1 / 4 ~ x3. The mid points of the four panel sides are noted ~ x5, ~ x6, ~ x7, 

and ~ x8. The lifting-line vector ( 

~dl ) as well as the vectors tangential (~T ) and normal (~N ) to the panel are defined as: 

~dl = ~ x10 

− ~ x9 

, 

~T = 

~ x6 

− ~ x8

 

| ~ x6 

− ~ x8 

| 

, 

~N = 

~T × 

~dl

 

|~T × 

~dl | 

(5.3) 

The area of the panel is obtained as dA = | ( ~ x6 

− ~ x8) × ( ~ x7 

− ~ x5) | . For CircSolvMethod = [1] , the control points are 

located on the lifting-line at the location ~ x9+ η j 

~dl . The factor η j 

is determined based on the full-cosine approximation 

of van Garrel. This is based on the spanwise widths of the current panel, w j, and the neighboring panels w j − 1 

and 

w j + 1: 

η j 

= 

1

 

4 

[ 

w j − 1

 

w j − 1 + w j 

+ 

w j

 

w j + w j + 1 

+ 1 

] 

, j = 2 .. n − 1 , η1 

= 

w1

 

w1 + w2 

, ηn 

= 

wn − 1

 

wn − 1 + wn 

(5.4) 

For an equidistant spacing, this discretization places the control points at the middle of the lifting-line ( η = 0 . 5). 

Theoretical circulation results for an elliptic wing with a cosine spacing are retrieved with such discretization since it 

places the control points closer to stronger trailing segments at the wing extremities (e.g.,

 

Kerwin

 

).

 

5.3.3 Circulation Solving Methods

 

Three methods are implemented to determine the bound circulation strength. They are selected using the input Circ- 

SolvMethod , and are presented in the following sections.

 

5.3.3.1 Cl-Based Iterative Method

 

The Cl-based iterative method determines the circulation within a nonlinear iterative solver that utilizes the polar data 

at each control point on the lifting line. The algorithm ensures that the lift obtained using the angle of attack and 

the polar data matches the lift obtained with the Kutta-Joukowski theorem. At present, it is the preferred method to 

compute circulation along the blade span. It is selected with CircSolvMethod = [1] . The method is described in the 

work from van Garrel (

 

Garrel

 

). The algorithm is implemented in an iterative approach using the following steps:

 

1.

 

The circulation distribution from the previous time step is used as a guessed circulation, Γprev.

 

2.

 

The velocity at each control point j is computed as the sum of the wind velocity, the structural velocity, and the 

velocity induced by all the vorticity in the domain, evaluated at the control point location. 

~ v j 

= 

~V0 

− 

~Velast + ~ v ω , free + ~ vΓll 

(5.5) 

~ v ω , free 

is the velocity induced by all free vortex filaments, as introduced in Eq.

 

5.16

 

. The contribution of ~ vΓll
comes from the lifting-line panels and the first row of near wake panels, for which the circulation is set to Γprev

 

3.

 

The circulation for all lifting-line panels j is obtained as follows. 

Γll , j 

= 

1

 

2
Cl , j( α j) 

[ 

( ~ v j 

· 

~N )2 +( ~ v j 

· 

~T )2 

]2 

dA

 

√

 

[ 

( ~ v j 

× 

~dl ) · 

~N 

]2 

+ 

[ 

( ~ v j 

× 

~dl ) · 

~T 

]2 

, with α j 

= atan 

( 

~ v j 

· 

~N

 

~ v j 

· 

~T 

) 

(5.6) 

The function Cl , j 

is the lift coefficient obtained from the polar data of blade section j and α j 

is the angle of 

attack at the control point.
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4.

 

The new circulation is set using the relaxation factor krelax 

( CircSolvRelaxation ): 

Γnew 

= Γprev + krelax∆Γ , ∆Γ = Γll 

− Γprev 

(5.7)

 

5.

 

Convergence is checked using the criterion kcrit 

( CircSolvConvCrit ): 

max ( | ∆Γ |

 

mean ( | Γnew 

| ) 

< kcrit 

(5.8) 

If convergence is not reached, steps 2-5 are repeated using Γnew 

as the guessed circulation Γprev.

 

5.3.3.2 No-flow-through Method

 

A Weissinger-L-based representation (

 

Weissinger

 

) of the lifting surface is also available (

 

Bagai and Leishman; Gupta; 

Ribera

 

). In this method, the circulation is solved by satisfying a no-flow through condition at the 1/4-chord points. It 

is selected with CircSolvMethod = [2] .

 

5.3.3.3 Prescribed Circulation

 

The final available method prescribes a constant circulation. A user specified spanwise distribution of circulation is 

prescribed onto the blades. It is selected with CircSolvMethod = [3] .

 

5.4 Free Vorticity Convection

 

The governing equation of motion for a vortex filament is given by the convection equation of a Lagrangian marker:

 

d ~ r

 

dt 

= 

~V ( ~ r , t ) (5.9) 

where ~ r is the position of a Lagrangian marker. The Lagrangian markers are the end points of the vortex filaments. 

The Lagrangian convection of the filaments stretches the filaments and thus automatically accounts for strain in the 

vorticity equation.

 

At present, a first-order forward Euler method is used to numerically solve the left-hand side of Eq.

 

5.9

 

for the vortex 

filament location ( IntMethod = [5] ). This is an explicit method solved using Eq.

 

5.10

 

.

 

~ r = ~ r + 

~V ∆ t (5.10)

 

5.5 Free Vorticity Convection in Polar Coordinates

 

The governing equation of motion for a vortex filament is given by:

 

d ~ r ( ψ , ζ )

 

dt 

= 

~V [ ~ r ( ψ , ζ ) , t ] (5.11) 

Using the chain rule, Eq.

 

5.11

 

is rewritten as: 

∂ ~ r ( ψ , ζ )

 

∂ ψ 

+ 

∂ ~ r ( ψ , ζ )

 

∂ ζ 

= 

~V [ ~ r ( ψ , ζ ) , t ]

 

Ω

 

(5.12) 

where d ψ / dt = Ω and d ψ = d ζ (

 

Leishman, Bhagwat, and Bagai

 

). Here, ~ r ( ψ , ζ ) is the position vector of a Lagrangian 

marker, and 

~V [ ~ r ( ψ , ζ )] is the velocity.
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5.6 Induced Velocity and Velocity Field

 

The velocity term on the right-hand side of Eq.

 

5.9

 

is a nonlinear function of the vortex position, representing a 

combination of the freestream and induced velocities (

 

Hansen

 

). The induced velocities at point ~ x , caused by each 

straight-line filament, are computed using the Biot-Savart law, which considers the locations of the Lagrangian markers 

and the intensity of the vortex elements (

 

Leishman, Bhagwat, and Bagai

 

):

 

d ~ v ( ~ x ) = 

Γ

 

4 π 

d~l × ~ r

 

r3 

(5.13) 

Here, Γ is the circulation strength of the filament, 

~dl is an elementary length along the filament, ~ r is the vector between 

a point on the filament and the control point ~ x , and r = | ~ r | is the norm of the vector. The integration of the Biot-Savart 

law along the filament length, delimited by the points ~ x1 

and ~ x2 

leads to: 

~ v ( ~ x ) = F ν 

Γ

 

4 π 

( r1 + r2)

 

r1r2( r1r2 + ~ r1 

· ~ r2)
~ r1 

× ~ r2 

(5.14) 

with ~ r1 

= ~ x − ~ x1 

and ~ r2 

= ~ x − ~ x2. The factor F ν 

is a regularization parameter, discussed in Section

 

5.7.3

 

. r0 

is the 

filament length, where ~ r0 

= ~ x2 

− ~ x1. The distance orthogonal to the filament is: 

ρ = 

| ~ r1 

× ~ r2 

|

 

r0 

(5.15) 

The velocity at any point of the domain is obtained by superposition of the velocity induced by all vortex filaments, 

and by superposition of the primary flow, 

~V0, (here assumed divergence free): 

~V ( ~ x ) = 

~V0( ~ x )+ ~ v ω( ~ x ) , with ~ v ω( ~ x ) = ∑ 

k 

~ vk( ~ x ) (5.16) 

where the sum is over all the vortex filaments, each of intensity Γk. The intensity of each filament is determined by 

spanwise and time changes of the bound circulation, as discussed in Section

 

5.3

 

. In tree-based methods, the sum over 

all vortex elements is reduced by lumping together the elements that are far away from the control points.

 

5.7 Regularization

 

5.7.1 Regularization and viscous diffusion

 

The singularity that occurs in Eq.

 

5.13

 

greatly affects the numerical accuracy of vortex methods. By regularizing the 

"1-over-r" kernel of the Biot-Savart law, it is possible to obtain a numerical method that converges to the Navier-Stokes 

equations. The regularization is used to improve the regularity of the discrete vorticity field, as compared to the "true" 

continuous vorticity field. This regularization is usually obtained by convolution with a smooth function. In this case, 

the regularization of the vorticity field and the velocity field are the same. Some engineering models also perform 

regularization by directly introducing additional terms in the denominator of the Biot-Savart velocity kernel. The 

factor, F ν , was introduced in Eq.

 

5.14

 

to account for this regularization.

 

In the convergence proofs of vortex methods, regularization and viscous diffusion are two distinct aspects. It is 

common practice in vortex filament methods to blur the notion of regularization with the notion of viscous diffusion. 

Indeed, for a physical vortex filament, viscous effects prevent the singularity from occurring and diffuse the vortex 

strength with time. The circular zone where the velocity drops to zero around the vortex is referred to as the vortex 

core. A length increase of the vortex segment will result in a vortex core radius decrease, and vice versa. Diffusion, 

on the other hand, continually spreads the vortex radially.

 

Because of the previously mentioned analogy, practitioners of vortex filament methods often refer to regularization 

as "viscous-core" models and regularization parameters as "core-radii." Additionally, viscous diffusion is often intro- 

duced by modifying the regularization parameter in space and time instead of solving the diffusion from the vorticity 

equation. The distinction is made explicit in this document when clarification is required, but a loose terminology is 

used when the context is clear.
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5.7.2 Determination of the regularization parameter

 

The regularization parameter is both a function of the physics being modeled (blade boundary layer and wake) and 

the choice of discretization. Contributing factors are the chord length, the boundary layer height, and the volume 

that each vortex filament is approximating. Currently the choice is left to the user ( RegDetMethod = [0] ). Empirical 

results for a rotating blade are found in the work of Gupta (

 

Gupta

 

). As a guideline, the regularization parameter may 

be chosen as twice the average spanwise discretization of the blade. This guideline is implemented when the user 

chooses RegDetMethod = [1] . Further refinement of this option will be considered in the future.

 

5.7.3 Implemented regularization functions

 

Several regularization functions have been developed (

 

Rankine; Scully; Vatistas, Koezel, and Mih

 

). At present, five 

options are available: 1) No correction, 2) the Rankine method, 3) the Lamb-Oseen method, 4) the Vatistas method, 

and 5) the denominator offset method. If no correction method is used, ( RegFunction = [0] ), F ν 

= 1. The remaining 

methods are detailed in the following sections. Here, rc 

is the regularization parameter ( WakeRegParam ) and ρ is the 

distance to the filament. Both variables are expressed in meters.

 

5.7.3.1 Rankine

 

The Rankine method (

 

Rankine

 

) is the simplest regularization model. With this method, the Rankine vortex has a finite 

core with a solid body rotation near the vortex center and a potential vortex away from the center. If this method is 

used ( RegFunction = [1] ), the viscous core correction is given by Eq.

 

5.17

 

.

 

F ν 

= 

{ 

ρ2 / r2
c 

0 < ρ < 1

 

1 ρ > 1

 

(5.17) 

Here, rc 

is the viscous core radius of a vortex filament, detailed in Section

 

5.7.4

 

.

 

5.7.3.2 Lamb-Oseen

 

If the Lamb-Oseen method is used ( RegFunction = [2] ), the viscous core correction is given by Eq.

 

5.18

 

.

 

F ν 

= 

[ 

1 − exp ( − 

ρ2

 

r2
c 

) 

] 

(5.18)

 

5.7.3.3 Vatistas

 

If the Vatistas method is used ( RegFunction = [3] ), the viscous core correction is given by Eq.

 

5.19

 

.

 

F ν 

= 

ρ2

 

( ρ2 n + r2 n
c 

)1 / n 

= 

( ρ / rc)
2

 

( 1 +( ρ / rc)2 n)1 / n 

(5.19) 

Here, ρ is the distance from a vortex segment to an arbitrary point (

 

Abedi

 

). Research from rotorcraft applications 

suggests a value of n = 2, which is used in this work (

 

Bagai and Leishman

 

).

 

5.7.3.4 Denominator Offset/Cut-Off

 

If the denominator offfset method is used ( RegFunction = [4] ), the viscous core correction is given by Eq.

 

5.20

 

~ v ( ~ x ) = 

Γ

 

4 π 

( r1 + r2)

 

r1r2( r1r2 + ~ r1 

· ~ r2)+ r2
c r2

0 

~ r1 

× ~ r2 

(5.20) 

Here, the singularity is removed by introducing an additive factor in the denominator of Eq.

 

5.14

 

, proportional to the 

filament length r0. In this case, F ν 

= 1. This method is found in the work of van Garrel (

 

Garrel

 

).

 

16



 

5.7.4 Time Evolution of the Regularization Parameter—Core Spreading Method

 

There are four available methods by which the regularization parameter may evolve with time: 1) constant value, 2) 

stretching, 3) wake age, and 4) stretching and wake age. The three latter methods blend the notions of viscous diffusion 

and regularization. The notation rc 0 

used in this section corresponds to input file parameter value WakeRegParam .

 

5.7.4.1 Constant

 

If a constant value is selected ( WakeRegMethod = [1] ), the value of rc 

remains unchanged for all Lagrangian markers 

throughout the simulation and is taken as the value given with the parameter WakeRegParam in meters.

 

rc( ζ ) = rc 0 

(5.21) 

Here, ζ is the vortex wake age, measured from its emission time.

 

5.7.4.2 Stretching

 

If the stretching method is selected ( WakeRegMethod = [2] ), the viscous core radius is modeled by Eq.

 

5.22

 

.

 

rc( ζ , ε ) = rc 0( 1 + ε )− 1 (5.22) 

ε = 

∆ l

 

l 

(5.23) 

Here, ε is the vortex-filament strain, l is the filament length, and ∆ l is the change of length between two time steps. 

The integral in Eq.

 

5.22

 

represents strain effects.

 

5.7.4.3 Wake Age / Core-Spreading

 

If the wake age method is selected ( WakeRegMethod = [3] ), the viscous core radius is modeled by Eq.

 

5.24

 

.

 

rc( ζ ) = 

√

 

r2 

c 0 + 4 α δ ν ζ (5.24) 

where α = 1 . 25643, ν is kinematic viscosity, and δ is a viscous diffusion parameter (typically between 1 and 1 , 000). 

The parameter δ is provided in the input file as CoreSpreadEddyVisc . Here, the term 4 α δ ν ζ accounts for viscous 

effects as the wake propagates downstream. The higher the background turbulence, the more diffusion of the vorticity 

with time, and the higher the value of δ should be. This method partially accounts for viscous diffusion of the vorticity 

while neglecting the interaction between the wake vorticity itself or between the wake vorticity and the background 

flow. It is often referred to as the core-spreading method. Setting DiffusionMethod = [1] is the same as using the wake 

age method ( WakeRegMethod = [3] ).

 

5.7.4.4 Stretching and Wake Age

 

If the stretching and wake-age method is selected ( WakeRegMethod = [4] ), the viscous core radius is modeled by 

Eq.

 

5.25

 

.

 

rc( ζ , ε ) = 

√

 

r2 

c 0 + 4 α δ ν ζ 

(
1 + ε 

)− 1 (5.25)

 

5.8 Diffusion

 

The viscous-splitting assumption is used to solve for the convection and diffusion of the vorticity separately. The 

diffusion term ν ∆ 

~ ω represents molecular diffusion. This term allows for viscous connection of vorticity lines. Also, 

turbulent flows will diffuse the vorticity in a similar manner based on a turbulent eddy viscosity.

 

The parameter DiffusionMethod is used to switch between viscous diffusion methods. Currently, only the core- 

spreading method is implemented. The method is described in Section

 

5.7.4

 

since it is equivalent to the increase of 

the regularization parameter with the wake age.
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6 State-Space Representation and Integration with OpenFAST

 

6.1 State, Constraint, Input, and Output Variables

 

The OLAF module has been integrated into the latest version of OpenFAST via AeroDyn15 , following the OpenFAST 

modularization framework (

 

Jonkman; Sprague, Jonkman, and Jonkman

 

). To follow the OpenFAST framework, the 

vortex code is written as a module, and its formulation comprises state, constraint, and output equations. The data 

manipulated by the module include the following vectors: constant parameters, ~ p ; inputs, ~ u ; constraint states, ~ z ; states, 

~ x ; and outputs, ~ y . The vectors are defined as follows:

 

•

 

Parameters, ~ p — a set of internal system values that are independent of the states and inputs. The parameters 

can be fully defined at initialization and characterize the system state and output equations.

 

•

 

Inputs, ~ u — a set of values supplied to the module that, along with the states, are needed to calculate future 

states and the system output.

 

•

 

Constraint states, ~ z — algebraic variables that are calculated using a nonlinear solver, based on values from the 

current time step.

 

•

 

States, ~ x — a set of internal values of the module. They are influenced by the inputs and used to calculate future 

state values and output. Continuous states are employed, meaning that the states are differentiable in time and 

characterized by continuous time-differential equations.

 

•

 

Outputs, ~ y — a set of values calculated and returned by the module that depend on the states, inputs, and/or 

parameters through output equations.

 

The parameters of the vortex code include:

 

•

 

Fluid characteristics: kinematic viscosity, ν .

 

•

 

Airfoil characteristics: chord c and polar data— Cl( α ) , Cd( α ) , Cm( α ) .

 

•

 

Algorithmic methods and parameters for, e.g., regularization, viscous diffusion, discretization, wake geometry, 

and acceleration.

 

The inputs of the vortex code are:

 

•

 

Position, orientation, translational velocity, and rotational velocity of the different nodes of the lifting lines ( ~ rll , 

Λll , 

~̇
 rll , and 

~ ωll , respectively), gathered into the vector, ~ xelast , ll , for conciseness. These quantities are handled 

using the mesh-mapping functionality and data structure of OpenFAST.

 

•

 

Disturbed velocity field at requested locations, written 

~V0 

= [~V0 , ll 

, 

~V0 , m] . Locations are requested for lifting-line 

points, ~ rll , and Lagrangian markers, ~ rm. Based on the parameters, this disturbed velocity field may contain the 

following influences: freestream, shear, veer, turbulence, tower, and nacelle disturbance. The locations where 

the velocity field is requested are typically the location of the Lagrangian markers.

 

The constraint state is:

 

•

 

The circulation intensity along the lifting lines, Γll .

 

The continuous states are:

 

•

 

The position of the Lagrangian markers, ~ rm

 

•

 

The vorticity associated with each vortex element, 

~ ωe. For a projection of the vorticity onto vortex segments, 

this corresponds to the circulation, 

~Γe. For each segment, 

~Γe 

= Γe 

~dle 

= 

~ ωedVe, were 

~dle 

and dVe 

are the vortex 

segment length and its equivalent vortex volume, respectively.

 

The outputs are

 

1

 

:
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•

 

The induced velocity at the lifting-line nodes, ~ vi , ll

 

•

 

The locations where the undisturbed wind is computed, ~ rr 

(typically ~ rr 

= [ ~ rll 

,~ rm] ).

 

6.2 State, Constraint, and Output Equations

 

An overview of the states, constraints, and output equations is given here. More details are provided in Section

 

5

 

. 

The constraint equation is used to determine the circulation distribution along the span of each lifting line. For the 

van Garrel method, this circulation is a function of the angle of attack along the blade and the airfoil coefficients. The 

angle of attack at a given lifting-line node is a function of the undisturbed velocity, ~ v0 , ll , and the vorticity-induced 

velocity, ~ vi , ll , at that point. Part of the induced velocity is caused by the vorticity being shed and trailed at the current 

time step, which in turn is a function of the circulation distribution along the lifting line. This constraint equation may 

be written as:

 

~Z = 

~0 = 

~Γll 

− 

~Γp 

( 

~ α ( ~ x , ~ u ) , ~ p 

) 

(6.1) 

where 

~Γp 

is the function that returns the circulation along the blade span, according to one of the methods presented 

in Section

 

5.3

 

.

 

The state equation specifies the time evolution of the vorticity and the convection of the Lagrangian markers. 

d 

~ ωe

 

dt 

= 

[ 

( 

~ ω · ∇ ) ~ v + ν ∇
2 ~ ω 

] 

e 

(6.2) 

d ~ rm

 

dt 

= 

~V ( ~ rm) = 

~V0( ~ rm)+ ~ v ω( ~ rm) = 

~V0( ~ rm)+ 

~V ω( ~ rm 

,~ rm 

, 

~ ω ) (6.3) 

Here,

 

•

 

~ v ω 

is the velocity induced by the vorticity in the domain;

 

•

 

~V ω( ~ r ,~ rm 

, 

~ ω ) is the function that computes this induced velocity at a given point, ~ r , based on the location of the 

Lagrangian markers and the intensity of the vortex elements;

 

•

 

the subscript e indicates that a quantity is applied to an element; and

 

•

 

the vorticity, 

~ ω , is recovered from the vorticity of the vortex elements by means of discrete convolutions.

 

For vortex-segment simulations, the viscous-splitting algorithm is used, and the convection step (Eq.

 

6.3

 

) is the primary 

state equation being solved for. Vorticity stretching is automatically accounted for and the diffusion is performed a 

posteriori . The velocity function, 

~V ω , uses the Biot-Savart law. The output equation is: 

~ y1 

= ~ vi , ll 

= 

~V ω( ~ rll 

,~ rm 

, 

~ ω ) (6.4) 

~ y2 

= ~ rr 

(6.5)

 

6.3 Integration with AeroDyn15

 

The vortex code has been integrated as a submodule of the aerodynamic module of OpenFAST, AeroDyn15 . The data 

workflow between the different modules and submodules of OpenFAST is illustrated in Figure

 

4

 

.

 

AeroDyn inputs 

such as BEM options (e.g., tip-loss factor), skew model, and dynamic inflow are discarded when the vortex code 

is used. The environmental conditions, tower shadow, and dynamic stall model options are used. This integration 

required a restructuring of the

 

AeroDyn15

 

module to isolate the parts of the code related to tower shadow modeling, 

induction computation, lifting-line-forces computations, and dynamic stall. The dynamic stall model is adapted when 

used in conjunction with the vortex code to ensure the effect of shed vorticity is not accounted for twice. The interface 

between

 

AeroDyn15

 

and the inflow module,

 

InflowWind

 

, was accommodated to include the additionally requested 

points by the vortex code.

 

1The loads on the lifting line are not an output of the vortex code; their calculation is handled by a separate submodule of AeroDyn .
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~ vi , ll 

, ( ~ rr)

 

Vortex code

 

~ r ,~Γv

 

1. Tower shadow model

 

(update of 

~V0)

 

2. Induction computation

 

3. Quasi steady forces on the lifting lines

 

4. Dynamic stall model

 

AeroDyn15

 

~fll

 

~ rr

 

InflowWind

 

BEM

 

~V0 

=

 

[~V0 , ll 

, 

~V0 , m]

 

~ xelast , ll 

=

 

[ ~ rll 

, 

~Λll 

,~̇  rll 

, 

~ ωll ]

 

ElastoDyn

 

~ relast , ll

 

~V0

 

Figure 4. OpenFAST-OLAF code integration workflow
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7 Future Work

 

This first implementation phase focused on single-turbine capabilities, fulfilling the basic requirements for the design 

of large and novel rotor concepts. Future development will focus on the implementation of features enabling multiple- 

turbine simulations on medium-to-large-scale computational clusters, as well as the reduction of computational time. 

This may be achieved using tree techniques such as the fast multipole method. Further algorithmic options, such as 

vortex amalgamation in the far wake, will be considered to speed up the simulation. The framework presented in this 

manual is compatible with grid-free or grid-based vortex particle formulations. Such particle-based implementations 

will also be envisaged in the future. Further validation of the code against measurements and higher-order tools will 

be pursued. Applications to cases known to be challenging for the BEM algorithm will also be investigated, such as 

highly flexible rotors, offshore floating turbines, small-scale wind farms, multiple-rotor turbines, or kites.

 

The following list contains future work on OLAF software:

 

•

 

Lagrangian particles

 

•

 

Multiple turbines, integration into FAST.Farm

 

•

 

Code speed-up

 

•

 

Dedicated dynamic stall model
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A OLAF Primary Input File

 

The symbol ↪ → in the following text indicates a continuation of the previous line, it should not be implemented as a 

new line in the actual input file. When a default value is available, default may be used instead of the value.

 

--------------------------- FREE WAKE INPUT FILE ----------------------------------------------

 

Free wake input file for the BAR turbine

 

--------------------------- GENERAL OPTIONS ---------------------------------------------------

 

5 IntMethod Integration method {5: Forward Euler 1st order, default: 5} (switch)

 

0.2 DTfvw Time interval for wake propagation. {default: dtaero} (s)

 

5 FreeWakeStart Time when wake is free. (-) value = always free. {default: 0.0} (s)

 

2.0 FullCircStart Time at which full circulation is reached. {default: 0.0} (s)

 

--------------------------- CIRCULATION SPECIFICATIONS ----------------------------------------

 

1 CircSolvingMethod Circulation solving method {1: Cl-Based, 2: No-Flow Through, 3:

 

↪ → Prescribed, default: 1 }(switch)

 

0.01 CircSolvConvCrit Convergence criteria {default: 0.001} [only if CircSolvingMethod=1] (-)

 

0.1 CircSolvRelaxation Relaxation factor {default: 0.1} [only if CircSolvingMethod=1] (-)

 

30 CircSolvMaxIter Maximum number of iterations for circulation solving {default: 30} (-)

 

"NA" PrescribedCircFile File containing prescribed circulation [only if CircSolvingMethod=3]

 

↪ → (quoted string)

 

===============================================================================================

 

--------------------------- WAKE OPTIONS ------------------------------------------------------

 

------------------- WAKE EXTENT AND DISCRETIZATION --------------------------------------------

 

50 nNWPanel Number of near-wake panels (-)

 

500 WakeLength Total wake distance [integer] (number of time steps)

 

400 FreeWakeLength Wake length that is free [integer] (number of time steps) {default:

 

↪ → WakeLength}

 

False FWShedVorticity Include shed vorticity in the far wake {default: False}

 

------------------- WAKE REGULARIZATIONS AND DIFFUSION -----------------------------------------

 

0 DiffusionMethod Diffusion method to account for viscous effects {0: None, 1: Core

 

↪ → Spreading, "default": 0}

 

0 RegDeterMethod Method to determine the regularization parameters {0: Manual, 1:

 

↪ → Optimized, default: 0 }

 

2 RegFunction Viscous diffusion function {0: None, 1: Rankine, 2: LambOseen, 3:

 

↪ → Vatistas, 4: Denominator, "default": 3} (switch)

 

0 WakeRegMethod Wake regularization method {1: Constant, 2: Stretching, 3: Age,

 

↪ → default: 1} (switch)

 

2.0 WakeRegFactor Wake regularization factor (m)

 

2.0 WingRegFactor Wing regularization factor (m)

 

100 CoreSpreadEddyVisc Eddy viscosity in core spreading methods, typical values 1-1000

 

------------------- WAKE TREATMENT OPTIONS ---------------------------------------------------

 

False TwrShadowOnWake Include tower flow disturbance effects on wake convection

 

↪ → {default:false} [only if TwrPotent or TwrShadow]

 

0 ShearModel Shear Model {0: No treatment, 1: Mirrored vorticity, default: 0}

 

------------------- SPEEDUP OPTIONS -----------------------------------------------------------

 

2 VelocityMethod Method to determine the velocity {1:Biot-Savart Segment, 2:Particle

 

↪ → tree, default: 1}

 

1.5 TreeBranchFactor Branch radius fraction above which a multipole calculation is used

 

↪ → {default: 2.0} [only if VelocityMethod=2]

 

1 PartPerSegment Number of particles per segment [only if VelocityMethod=2]

 

===============================================================================================

 

--------------------------- OUTPUT OPTIONS ---------------------------------------------------

 

1 WrVTk Outputs Visualization Toolkit (VTK) (independent of .fst option) {0:

 

↪ → NoVTK, 1: Write VTK}

 

1 nVTKBlades Number of blades for which VTK files are exported {0: No VTK per blade,

 

↪ → n: VTK for blade 1 to n} (-)

 

2 VTKCoord Coordinate system used for VTK export. {1: Global, 2: Hub, "default": 1}

 

default VTK_fps Frame rate for VTK output (frames per second) {"all" for all glue code

 

↪ → timesteps, "default" for all FVW timesteps} [used only if WrVTK=1]

 

------------------------------------------------------------------------------------------------
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B Prescribed Circulation Input File

 

r/R [-],

 

Gamma [m2/s]

 

0.048488,

 

0.000000

 

0.087326,

 

0.442312

 

0.126163,

 

6.909277

 

0.165000,

 

23.678557

 

0.203837,

 

55.650700

 

0.242674,

 

74.091529

 

0.281512,

 

84.205843

 

0.320349,

 

88.740429

 

0.359186,

 

89.730814

 

0.398023,

 

88.568114

 

0.436860,

 

87.114743

 

0.475698,

 

86.110557

 

0.514535,

 

85.705529

 

0.553372,

 

85.215829

 

0.592209,

 

84.547371

 

0.631047,

 

83.774329

 

0.669884,

 

82.889157

 

0.708721,

 

81.635600

 

0.747558,

 

79.788700

 

0.786395,

 

77.195200

 

0.825233,

 

73.765100

 

0.864070,

 

69.275900

 

0.902907,

 

62.965400

 

0.941744,

 

53.603300

 

0.980581,

 

39.854000
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C OLAF List of Output Channels

This is a list of all possible output parameters from the OLAF module. The names are grouped by meaning, but can be
ordered in the OUTPUTS section of the AeroDyn15 primary input file, as the user sees fit. N β refers to output node,
β , where β is a number in the range [1,9], corresponding to entry, β , in the OutNd list. B α is prefixed to each output 

name, where α is a number in the range [1,3], corresponding to the blade number.

Table 1. Available OLAF Output Channels

Channel Name(s) Units Description

B α N β Gam m2 / s Circulation along the blade
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