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Abstract.

In this work, a hybrid Euler-Lagrangian solver for dense spray systems is developed specifically for

cases where film creation by accumulation of liquid droplets at the walls plays a crucial role. Euler-

Lagrangian solvers are commonly used to describe the spray with predefined spray characteristics. The

Lagrangian particles represent liquid drops moving along the continuous gaseous phase. This approach

assumes a small particle size compared to the cell size and it is unable to capture the breakup behavior

of liquid jets in the presence of instabilities. VOF methods, on the other hand, are not a computationally

feasible option when it comes to small droplet sizes as a result of liquid atomization because they have

to be fully resolved by the computational mesh. Hence, multiscale simulations are required to bridge

the gap between the two methods combining subgrid droplets in Lagrangian approaches and large liquid

structures in VOF methods.

In the present work, a multiscale approach is developed where Lagrangian particles representing small

droplets are tracked through the continuous phase until they hit a wall or a liquid-gas interface repre-

sented by a continuous VOF field. At the time of impact, the Lagrangian particles are removed and

the mass and momentum of these particles are transferred to the VOF field. This allows having a spray

consisting of subgrid droplets computed with a Lagrangian particle tracking (LPT) approach and liquid

films at the walls with VOF method. The method represents a one-way coupling, converting Lagrangian

particles to Eulerian liquid phase (VOF) and has been implemented into the open-source CFD code Open-

FOAM. Subsequently, the solver has been tested in different scenarios to ensure mass and momentum

conservation. Positive test results encouraged its use to gain insight on the fluid flow in a real cylindrical

compression-dissolution unit where the liquid is sprayed from the top while simultaneously the gas is

compressed from the bottom. Dynamic mesh technique is used to account for the compression with a

moving piston.

1



H. Heidarifatasmi, T. Zirwes, F. Zhang, P. Habisreuther and D. Trimis

1 INTRODUCTION

Increased amounts of worldwide CO2 emissions from different industries has drawn the attention of

researchers to devise cycles where this gas could be used again for production of added value chemical

products. In particular in Europe, a research and innovation challenge call (SPIRE-08-2017) was made on

using carbon dioxide as a raw material to exploit its utilization for reduction of greenhouse gas emissions.

The RECODE (Recycling carbon dioxide in the cement industry to produce added-value additives: a

step towards a CO2 circular economy) project [1] is dedicated to recycling carbon dioxide from the

cement industry to produce added value chemicals. In other words, the CO2 emissions coming from

flue and process gases in the cement production plant is going to be reused within the plant itself to

produce additives for production of cement-related products. Figure 1 shows the overall process scheme

of this idea in the framework of the RECODE project. In the current study, the focus is on numerical

simulations of a novel simultaneous compression-dissolution system, as pointed out in Fig. 1. A full

compression cycle of this cylindrical unit consists of spraying the solvent from the top while at the same

time compressing the gas from the bottom with the final aim of efficiently dissolving CO2 inside the

liquid.

Volume of fluid method (VOF) [6], level-set [11] and front-tracking [13] methods are the common ap-

proaches for modeling and simulation of multiphase flows involving topology change in liquid structures.

On the other hand, Lagrangian particle tracking (LPT) is used for systems involving both particle/droplets

within the flow of a continuous fluid [3]. Multi-scale methods allow utilizing benefits of the two per-

spectives combined in different applications. Tomar et. al. [12] have studied the primary atomization of

a turbulent liquid jet by extracting Lagrangian particles from VOF phase for systems with liquid to gas

density ratio of 100. A similar approach was used with reasonable success in numerical simulations of

Saeedipour et. al. [9] accompanied with their experiments in a setup with higher liquid to gas density

ratio (water-air jets). A thorough investigation on bubble dynamics within cavitation processes is also

described in Vallier’s thesis work [14] using similar strategies. In the present work, coupling of a VOF

algorithm with LPT is accomplished with its focus on the spray of liquid droplets, the formation of liq-

uid films on solid walls and its motion within a simultaneous compression-dissolution configuration as

shown in Fig. 1. Implementation is done in the open-source CFD code OpenFOAM and the solver is

named interLPTFoam catching the spirit of interFoam which is OpenFOAM’s original VOF solver and

the LPT method.

2 Methodology

Typical Euler-Lagrangian solvers deal with multiphase flows consisting of a dispersed phase (usually

spray of liquid) moving within the flow of a continuous phase (typically gas flows). Representation of

the discrete phase and its motion is considered by Lagrangian particles and solution of Newton’s second

law of motion, respectively. The flow pattern of the continuous phase is described by solving the Navier-

Stokes equations. This method is unable to deal with accumulation of droplets in a confined space and

the creation of liquid films.

2.1 Continuous phase

A single field formulation approach of the VOF method is used to model the multiphase flow and com-

pressible Navier-Stokes equations are solved for the continuous phase. Conservation equations of mass,
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Figure 1: Overall process scheme of the RECODE [1]. Simultaneous compression-dissolution unit is

shown in color within the dashed lines.

momentum and energy are

∂ρ

∂t
+∇ · (ρU) = Sm (1)

∂(ρU)

∂t
+∇ · (ρUU) =−∇P+∇ · (µ(∇U+(∇U)⊺)−

2

3
µ(∇ ·U)I)+ρg+Sσ +SU (2)

∂(ρCpT )

∂t
+∇ · (ρUCpT ) = ∇ · (k∇T )+U ·∇P+ τ ..∇U+

∂P

∂t
(3)

where P is pressure and U is the velocity vector while ρ, µ, Cp and k are density, dynamic viscosity,

specific heat capacity and thermal conductivity, respectively. g is the gravitational acceleration and τ

represents the viscous stress tensor. Source terms in the above-mentioned equations are formulated as

following

Sm = (ρl −ρg)Sα (4)

SU = (ρl −ρg)SαUp +
1

Vcell∆t
∑mp((Up)tout

− (Up)tin) (5)

Sσ = σ ·κ ·∇α where κ = ∇ ·

(

∇α

|∇α|

)

(6)

where Sm, SU and Sσ are the mass and momentum source terms due to conversion of Lagrangian particles

to VOF and surface tension force[2], respectively. The momentum source term consists of the first term
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Figure 2: Conversion of Lagrangian particles representing liquid droplets to the continuous multiphase

field described by VOF: (a) Impact of a Lagrangian particle with a liquid film and its conversion to

continuous liquid phase. Initial liquid film will be generated by impact of the first Lagrangian parti-

cles to the walls of the confined medium. Dark blue shows Lagrangian particles and light blue shows

VOF-represented droplet after conversion. (b) Flowchart of the conversion routine running at each com-

putational timestep for each individual particle.

due to conversion and the second term showing the effect of discrete particles on the continuous phase. It

is worth noting that (Up)tout
and (Up)tin are the velocity of Lagrangian particles while they leave and enter

a computational cell. σ and κ are the surface tension coefficient and curvature, respectively. Two-way

coupling is considered for this study as classified in [4] meaning both, discrete and continuous phases,

are influencing each other’s motion. Motion of the interface between phases is being determined by

solving the advection equation as described in eq. 7.

∂α

∂t
+∇.(αU)+∇.((1−α)αUr) = Sα (7)

In this equation, α is the liquid volume fraction in the mixture and Ur is a suitable velocity field to

compress the interface region. The last term on the left hand side of eq. 7 is an artificial compression

term [8] which only acts on the computational cells containing the interface to achieve a sharper interface.

The term on the right hand side of this equation shows the source term due to conversion of Lagrangian

particles to VOF (Sα =
Vp

Vcell∆t
). CompressibleInterFoam [5] is used as the basic solver for solution of the

above-mentioned conservation equations. This solver is designed for non-isothermal multiphase flows

where the involving phases are assumed to be immiscible.
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2.2 Discrete phase

Lagrangian point-like particles are used to take into account the motion of sub-grid sprayed droplets.

A collection of identical particles constructs a parcel which itself can be considered as a computational

particle. Position and velocity of these parcels are calculated through solution of the Newton’s second

law of motion for each individual particle.

dXp

dt
= Up (8)

mp

dUp

dt
= ∑F (9)

In the equations above, Xp, Up and mp denote the position, velocity and mass of the Lagrangian particle.

The right hand side term in eq. 9 shows the representative forces acting on the particles in a flow. Drag,

gravity and buoyancy forces are considered in this study while other forces (added mass, pressure forces,

etc.) are considered negligible for simplicity and brevity. In other words, eq. 9 can be expanded as

mp

dUp

dt
=

πd2

8
ρCD(U−Up)|U−Up|+

πd3

6
(ρp −ρg)g (10)

where ρp is the particle density and CD denotes the drag coefficient calculated from the following relation.

CD =















24
Rep

, Rep < 0.1

24
Rep

(1+ 1
6
Re

2
3
p ), 0 < Rep < 1000

0.44, Rep > 1000

(11)

In the above equation, Rep =
ρ(|U−Up|)Dp

µ
is the particle Reynolds number [10].

2.3 Conversion of Lagrangian particles into VOF (LPtoVOF)

Lagrangian particles are tracked within the fluid flow until either they hit the walls of the container

or VOF-represented liquid films. Upon impact, their mass and momentum are transferred into VOF

representation and the particles are going to be removed. A possible impact scenario of a Lagrangian

droplet and a liquid film is sketched in Figure 2a. In the current approach, presence of solid walls or

liquid films is checked at a certain distance from the particle depending on the size of particle and the

cell size which the particle resides in. Transmission of mass and momentum takes place through an

iterative process. At first, a spherical region of computational cells with its center lying at particle’s

position is selected. The volume of the liquid-free content of those cells are to be checked against the

volume of the Lagrangian particle. If the mass content of the particle does not fit, the selected cells are

filled with liquid (α = 1) and the leftover mass is going to be checked within a spherical region with

larger radius than the starting one. This iterative process happens until inner layers are filled with liquid
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(α = 1) and only a small portion is distributed based on their distance to the center of the Lagrangian

particle on the outer layer of the droplet. As a result, a sharp VOF-represented droplet at its core and a

thin smeared outer layer will be produced. This process happens for each parcel and these steps could be

followed as shown in Figure 2b.

3 Validation

Two preliminary validation test cases on ensuring mass and momentum conservation during a conver-

sion of Lagrangian parcels into VOF are presented. At each instance of conversion, relative mass and

momentum errors were calculated from their values before and after the impact. Introduced mass in

VOF can easily be calculated by multiplication of the volume integration of α values multiplied by the

density of the liquid. Hence, relative mass transfer error can be defined with respect to this value and

mass of the Lagrangian parcel for each individual conversion. Likewise, the same approach can be taken

for calculation of the momentum transfer error upon conversion.

3.1 Mass conservation

A specific volume (6 ·10−9 m3) of Lagrangian parcels (water droplets) is sprayed within a 2cm×2cm×
10cm rectangular container with a pre-existing thin liquid film (see Figure 3a) of 5mm. After that,

enough time (8ms) is given to the sprayed parcels to get converted into the VOF α-field either by hitting

the walls of the container or the thin liquid pool resting at the bottom of the container. During this time

period, mass content of the VOF phase is tracked in time to ensure that the final mass of Lagrangian

particles is delivered to the continuous phase.

(a) (b)

Figure 3: (a) Computational domain and (b) Liquid volume content of the computational domain while

conversion of Lagrangian particles into VOF α-field takes place.

Conversion of Lagrangian particles to VOF can get tricky when parcels are getting converted at places

where the particles have to be transferred between domains associated with different computing proces-

sors, because the transfer of mass and momentum requires data from neighbouring processors.
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Table 1: Impact conditions for the liquid droplet impact onto hydrophobic solid surface [7].

Material θadv θrec θeq D (mm) Vimpact (m/s) We Outcome

Wax 105◦ 95◦ 100◦ 2.75 1.18 52 partial rebound

Hence, simulations are performed in both serial and multiple processors in order to ensure a flawless

conversion. Figure 3b shows the results of simulations running on serial and multi-core configurations.

It can be seen from Fig. 3b that in the beginning, 2 · 10−6 m3 of water is present in VOF at the bottom

of the domain. Then, injection begins, injecting a total of 6 · 10−9 m3 of water inside the container.

After 2ms, all of the Lagrangian parcels have been converted to the Eulerian phase, increasing the mass

content to 2.006 ·10−6 m3 in total.

3.2 Momentum conservation

As mentioned above, additionally to relative error in mass transfer upon conversion of LPs to VOF, the

code was tested for a practical test case to ensure momentum conservation. One of the areas where

the momentum transfer plays a key role is the impact of droplets on stationary solid surfaces [7]. In

particular, the impact of a spherical water drop with 2.75mm diameter, onto hydrophobic wax surface

is chosen. The outcome of such an impact is the so-called partial rebound in which the droplet hits the

surface, spreads over it, starts to recede and then a part of the droplet is detached from the surface while

the other part is still attached. The conditions of this impact case are given in table 1.

In order to accurately compute the extent of spreading and receding of the impacting droplet, the empir-

ical correlation of Kistler [15] for calculation of dynamic contact angle is used. This correlation uses the

following equations for calculation of the dynamic contact angle

θk = fHo f f

(

Ca+ f−1
Ho f f (θs)

)

(12)

fHo f f (x) = cos−1

(

1−2tanh

(

5.16

(

x

1+1.31x0.99

)0.706
))

(13)

where Ca =V µ/σ,θk,θs are the capillary number, dynamic kistler and static contact angles while fHo f f

and f−1
Ho f f are the Hoffman function (with x being the independent variable in eq. 13) and the inverse

function of the Hoffman function. Static contact angle is going to be substituted based on the sign of the

capillary number and its value is either the static advancing or receding contact angle. The calculated

dynamic contact angle at this stage is imposed as a boundary condition at the contact line which affects

the curvature calculation (see eq. 6) for computation of surface tension force.

Two-dimensional axisymmetric simulations of this impact scenario is performed with the hybrid VOF-

LPT solver (interLPTFoam) within a 5◦ wedge-shape geometry of size 1cm× 1cm. A uniform com-

putational mesh (350 × 350) which results in almost 100 cells across the diameter of the droplet, is

constructed to account for a sharp gas/liquid interface. For the sake of comparison, the same simulation

case is run with the original VOF solver (interFoam) of OpenFOAM. Figure 4 shows reasonable agree-

ment of the developed approach with respect to VOF simulation and experimental data by comparing

the time evolution of the so-called spread factor. The spread factor (s) is defined by the ratio of the
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spreading/contracting droplet diameter at specific instances of time to the initial diameter of the droplet.

Likewise, non-dimensional time (T ) is derived with impact velocity and initial droplet diameter. It can

be noted in Fig. 4 that the dynamics of the evolving contact line is computed with reasonable accuracy

in both spreading (0 < T < 2.5) and receding (2.5 < T < 12.5) phases of droplet impact showing the

potential of the current solver.

Figure 4: Time evolution of the water droplet impact on wax surface.

Figure 5: Qualitative view of the spray injection, computational grid and film creation over the walls in

the simultaneous compression-dissolution unit
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4 Results and discussion

The newly developed interLPTFoam solver is used for hydrodynamic simulations of a simultaneous

compression-dissolution unit. It consists of a cylindrical container with a nozzle at its top introducing

the spray of liquid droplets, and a moving piston at its bottom, in order to simultaneously compress the

gaseous phase during injection. Figure 5 shows a qualitative view of the spray injection, computational

grid and film creation over the walls, where liquid film is represented by the iso-surface of α = 0.5.

Dynamic mesh capability in OpenFOAM is employed to capture the domain modification in the com-

pression phase. Table 2 describes the operating conditions for this configuration.

Table 2: Operating conditions in a simultaneous compression-dissolution cycle.

Size (cm) Pstart (bar) Pend (bar) Sprayed liquid (lit.) Vpiston (m/s) tprocess (s) tin jection (s)

d = 12.5, h = 60 1 10 0.8603 0.0643 8 7.5

The size distribution of the initial liquid spray follows a Rosin-Rammler distribution function. This

function is implemented as

dp = dmin +d · (− ln(1− yK))
1
n (14)

K = 1− exp(dmax −dmin)
d
n (15)

where d, dmax, dmin and dp are the mean, maximum, minimum and output particle diameters. In this study

mean, maximum and minimum allowable diameters are selected to be 100, 150 and 1µm, respectively.

The degree of the spread will be affected by n while y is generated by a random number generator (RNG)

within [0,1]. A continuous constant rate of injection is selected during the injection period within the

simulation.

Figure 6 shows the spray of Lagrangian particles along with the free surface of liquid film at different

instances of the compression-dissolution unit in one compression cycle. It can be observed that the spray

of Lagrangian parcels immediately forms liquid films over the walls of the cylinder leading to short

lifetime of the discrete droplets. Once this film starts to grow, it will disturb the spray of droplets by its

agitating motion within the cylindrical container. And as the time passes, especially towards the end of

the process these droplets instantly merge with the agitating liquid pool.

Active surface area between liquid and gas is a key factor in the dissolution process. This surface area

can be calculated from the results of the simulation for Lagrangian particles and VOF-represented liquid

film separately. Figure 7 shows the comparison of this surface area for discrete and continuous liquid

structures. Although the sprayed droplets are creating huge surface areas, it can be seen that the liquid

flow and presence of small bubbles could result even in higher active surface in favour of dissolution.
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(a) t = 0 (b) t = 1 s (c) t = 2 s (d) t = 3 s

(e) t = 4 s (f) t = 5 s (g) t = 6 s (h) t = 7 s

Figure 6: Time evolution of the compression-dissolution unit

Figure 7: Time evolution of the free surface area between liquid and gaseous phases calculated for

Lagrangian particles and VOF-represented liquid structures in one cycle of simultaneous compression-

dissolution.

10



H. Heidarifatasmi, T. Zirwes, F. Zhang, P. Habisreuther and D. Trimis

5 CONCLUSIONS

A multiscale Eulerian-Lagrangian solver is developed within the framework of OpenFOAM, specifically

for dense spray systems in confined spaces where film creation over the walls plays an important role.

Spray of liquid droplets are represented by discrete Lagrangian particles while liquid films are expressed

with the help of the liquid volume fraction in VOF. Several validation cases with positive results were

performed to ensure mass and momentum conservation upon impact of Lagrangian parcels to the walls

and liquid films. The method has been applied to CFD analysis of the hydrodynamics in a compression-

dissolution unit to give insight on the internal multiphase flow. In particular, time evolution of the free

surface area of the liquid film and spray of droplets are tracked. As a result it was observed that, not only

these two surface areas are of the same order of magnitude showing the important role of the internal

flow in enhancing the contact area between the liquid and gaseous phases but also that dynamics of the

liquid film and the presence of small bubbles lead to even more enhanced surface between phases. This

in turn emphasize the large influence of the dissolution process acting through the extended interface

area between phases as a key for enhanced dissolution.

Moreover, it has been observed that the agitating liquid film continuously disturbs the incoming droplets.

This effect is more pronounced towards the end of the compression cycle as the lifetime of the incoming

droplets is too short since they are merging into the liquid film shortly after injection. This implies

that the dissolution process would be more dominant by the surface area created from the fluid flow

inside in addition to presence of small bubbles. In the future, we will add concentration equation for

the continuous phase and assuming equilibrium condition for Lagrangian droplets to take into account

dissolution of gas inside the liquid alongside the multiphase flow.
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