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Learningflbjectives f 1 ‘ 1
At the and of this chapter the students will be able to:
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1. Understand Whatis*Physics. '7 Y ' . _ . l 4 .
2-. Understandthat all physical quantities consist of a numerical magnitude and a unit.

1 . 3. Recall the following base quantifies and their units; mass (kg). lerigih (m), time (s), '
current (A), temperature (-K), luminous intensity (cd) and amountofsubstance (moi).

4. Describe and use basoéunits, supplementary units, and derived units. A i
5. Understand and use the -sclentificnotation; l .
6. Use the standard prefixes and their symbols to indicate decimal subunultiples or -

multiptes to both base and derived units. t ~ . " -— ' *
~ 7. Understand and use the conventions forindicating units. ' ' ' ‘ '

' _8. Understand the distinction between systematic errors and rjandemcrrors. _
1 " 9. Understand ~nd use the significant figures. l .
Y c 10. Understand the distinction between precision andiaccuracyrr g Q
1 11. Assess the uncertainty in a derived quantity bysimple addition -of actual, fractional

or percentage uncertainties. p I _
12. Quote answers‘ with correct scientific notation, number of-significant figures and

units in all numerical and practical work. . . - - 1
. .

13. Use dimensionality to check the homogeneity of tphysicalequatlons. ' .
14. Derive formulae in simple cases using dimensions. Q ~

Iversince man has started to observe, think and reason he has been wondering e about
theworld around him. He tried to find ways to organize the disorder prevailing in the observed

- facts about the natural phenomena and material things in an orderly manner. His attempts
» resulted in the birth of a single discipline of science, called natural philosophy. There was a
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. I

.1' ‘



huge increase in the volume of scientific knowledge up till the
beginning of nineteenthcentury and it was found necessary
to classify the study of nature into two branches, the
biological sciences which deal with living things and physical
sciences which concern with non-living things. Physics is an
important and basic part of physical sciences besides its
other disciplines such as chemistry, astronomy, geology etc.
Physics is an experimental science and the scientific method
emphasizes the need of accurate measurement of various
measurable features of different phenomena or of man made
objects. This chapter emphasizes the need of thorough
understanding and practice of measuring techniques and
recording skills; ' '

fundamental science. First, the world of the extremely large,
the universe itself, Radio telescopes now gather information
from the far side of the universe and have recently detected,
as radio waves, the “firelight” of the big bang whichprobably
started off the expanding universe nearly 20 billion ‘years
ago‘. Second, the world of the extremely small, that of the
particles such as, electrons, protons, neutrons, mesons and
others. The third frontieris the world of complex matter; lt is
also the World of "middle-sized" things, from molecules at
one extreme to‘ the Earth at the other. This is all
fundamental physics, which is the heart of science. " V
But what is physics? According to one definition, physics
deals with the study of matter .and energy and the
relationship between them. The study of physics involves
investigating such things as the laws of motion, the structure
of space and time, the nature and type of forces that hold
different materials together, the interaction between different
particles, the interaction of electromagnetic radiation with
matter and soon. _ - _

By the end of 19“‘_ century many physicists started believing
that every thing about physics has been discovered.
However, about the beginning of the twentieth century many
new experimental facts revealed that the laws formulated by
the previous investigators need modifications. Further
researches gave birth to many new disciplines in physics
such as nuclear physics which deals with atomic nuclei,
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At the present time, there are three main frontiers of
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4 _ The measurement of a base q.uantity involves two stepszfirst,
the choice of a standard, and second, the establishment of a

~ the standard so that a number and a unit are determined as
the measure of that quantity. , _ ' 1
An ideal standard has two principal characteristics-:'it“ is

, accessible and it is invariable. These two requirements are
often incompatible and a compromise has to -be made

‘ betweenthem. ' ' , /_ . A '

In 1960, an international committee agreed on a set of
definitions and [standard to describe the . physical
quantities. The system that was established is called the

- System International (SI). “ A n _ ~ _
Due to the simplicity and convenience with which the units
in this system‘ are amenable toarithmetical manipulation, it
is in universal use by the world's scientific community and

' by most nations. The system international (Sl)~is built up
from‘ three kinds of units: base units, supplementary units
and derived units.- - - ~

; Base Units _ _ _ ' - ‘
l ‘ -

j , ‘ There are sevenbase units for various physical‘ quantities
_ i fnamely: "length, mass, time, temperature, electric current,

- ii ’lu_m'indus'i‘nt'ensity and amountof a substance (with special
reference tothe number of particles). _' .' ' ,

.n The ‘names of base units for these physical quantities
, i together with symbols. are listed _ln Table 1.1. Their

standard definitions are given in the Appendix 1. A

r Y SuplementaryUnits ~ A _
The General Conference on Weights and Measures has not
yet classified certain units of the SI under either base units
or derived units. These Si units are called supplementary
units. For the time being this class contains-only two'units of _
purely geometrical quantities, which are plane angle and the
solid angle (Table1.2)., - ‘

.- . t
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particle physics which is concerned with the ultimate particles
of which the matter is composed, relativistic mechanics which
deals with velocities approaching that of light and solid state
physics which is concerned with the structure and properties
of solids, but this list is by no means exhaustive".
Physics is most fundamental of all sciences and provides
other branches of science, basic principles and fundamental
laws. This overlapping of physics and other fields gave birth
to new branches such as physical chemistry, biophysics,
astrophysics, health physics etc. Physics also plays an
important ,role.in -the development of technology and
engineering. ‘
Science and technology are a potent force for change in
the-outlookof mankind. Theninformation media and fast
means of communications have brought all parts of the
world in close contact with one another. Events in one part
of the world immediately reverberate round the globe.

We are living in the age of information technology. The
computer networks are products of chips developed from
the basic ideas of physics. The chips are made of silicon.
Silicon can be obtained from sand. It is upto us whether we
make asandcastle or a computer out of it.

i -e
10—iu—%The foundation of physics rests upon physical quantities in

terms of which the laws of physics are expressed.
Therefore, these quantities have to be measured accurately.
Among these are mass, length, time, velocity, force, density,
temperature, electric current, and numerous others. '
Physical quantities are often divided into two categories:
base quantities and derived quantities. Derived quantities
are those whose definitions are based on other physical
quantities. Velocity, acceleration and force etc. are usually
viewed as derived quantities. Base quantities are not
defined in terms of other physical quantities. The base
quantities are the minimum number of those physical
quantities in terms of which other physical quantities can
be defined. Typical examples of base quantities are length,
mass and time. -

' 3

. 101° -‘

Diameter of a
nucleus
Diameter
of an atom

Height of a
person -

Diameter ‘
of the earth
Distance to thesun .
Distance to the
nearest star
Diameter of the
Milky Way Galaxy
Distance to the
nearest galaxy
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Radhm"‘ ' A. ..- - .
The radian is the plane angle between two radii of a circle —§

.w‘hich' cut off on the circumference an arc, equal in length
to the radius, as shown in Fig. 1.1_(a). .

Shumman 1, ' I
The steradian is the solid angle (three-dimensional angle)
subtended at the centre of a sphere by, an area of itssurface
equal-to the square of radius of the sphere. (Fig. 1.1 b). »
De.-rivr=ciUnits ‘ _, ’_ H A 4 l

SI units for__ measuring all other physical quantities are
derived from the base and supplementary units.» Some of
the derived units are given in’Table. 1.3. f . -

lumiers are expressegin standard form called scientific
notation, which employs powers of ten. The intemationally
accepted practice is that there should be only one non-
zero- digit left of decimal. Thus, the number 134.7 should
be writtenas 1.347 x 102 and 0.0023 should be expressed
aszsxiot as 1 t""*"
Convenlioiisior lntiir.;itinr Units ._ ' A -J

Use of SI units requires special care,.more particularly in
writing prefixes. - ~ . __ ~ '
Following points should be kept in mind while using units.
(I) Full name of" the unit does not begin with a capital

. letter even if named after a scientist e.9-..newton.

HQ. 1.‘l(I)_

HQ. 1.1(b)

\_ .5 5 \
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ref, A

(ii) The symbol of unit named after a scientist has
initial capital letter suchas N for newton. . -

(iii) The prefix should be written before the unit without
any space, such as 1 x 10° mis written as 1 mm.
‘Standard prefixes are given in table 1.4.

(iv) A combination of base units is written each with
one space apart. For example, newton metre is
(written as N m. »

(v) Compound prefixes are notallowed. For example,
1ppF may be written as 1pF. . '

(vi) A number such as 5.0 x 104 cm may be expressed
in scientific notation as 5.0 x 102 m.

(vii) When a multiple of a base unit is raised to a power,
the power applies to the whole multiple and not the
base unit alone. Thus, 1 k_m2 = 1 (km)2 = 1 x 105 m2.

(viii) Measurement in practical work should be recorded
immediately in the most convenient unit, e;g.,
micrometer screw gauge measurement in mm,'and
the mass of calorimeter in grams (g). But before
calculation for theresult, all measurements must be
converted to the appropriate SI base units.

All physical measurements are uncertain or imprecise to
some extent. It is very difficult to eliminate all possible errors
or uncertainties in a measurement. The error may occur due
to» (1) negligence or inexperience of a person (2) the faulty
apparatus (3) inappropriate method or technique. The
uncertainty may occur due to inadequacy or limitation of- an
instrument, natural variations of the object being measured
or natural imperfections of a person's senses. -However, the
uncertainty is also usually described as an error in a
measurement. There are two major types of errors.

(ilkandoun error (ii) Systemic error
Random error is said to occur when repeated
measurements of the quantity, give different values under

6



the same conditions. It is due to some unknown causes.
Repeating the measurement several times and taking an
average can reduce theneffect of random errors. .

4

Systematic error refers -to an effect that influences all
measurements of a particular quantity equally. It produces
a consistent difference in readings. It occurs to some
definite rule. It may occur due to zero error of instruments,
poor calibration of instruments or incorrect markings etc.
Systematic error can be reduced by comparing the
instruments with another which is known to be more
accurate. Thus for systematic error, a correction factor can
be.applied. ‘ 1 r 3

As stated earlier physics is based on measurements. But
unfortunately whenever a physical quantity is measured,
there is inevitably some uncertainty about its determined
value. -This uncertainty may be. due to a number of
reasons. One reason is the type of instrument, being used.
We know that every measuring instrument is calibrated to
a certain smallest division and this fact put a limit to the
degree of accuracy which may be achieved’ while
measuring with it. Suppose that we want to -measure the
length of'a straight line with the help of a metre rod
calibrated in millimetres. Let the end point of the line lies
between 10.3 and 10.4 cm marks. By convention, if the end
of the line does not touch or cross the midpoint of the
smallest division, the reading is confined to the previous
division. In case the end of the line seems to be touching
or have crossed the midpoint, the reading is extended to

-the next division. -. -
By applying the above rule the position of the edge of a line
recorded as 12.7 cm with the help of a metre rod calibrated
in millimetres may lie between 12.65 cm and 12.75 cm.
Thus in this examplethe maximum uncertainty is 1 0.05 cm.
it is, in fact, equivalent to an uncertainty of 0.1 cm equal to
the least count of the instrument divided into two parts, half
above and half belowethe recorded reading. \ -
The uncertainty or accuracy in the value of a "measured
quantity can be indicated conveniently by using significant

1-figures. The recorded value of the length of the straight line

' 7
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i.e. 12.7 cm contains three digits (1, 2, 7) out of which two
digits (1 and 2) are accurately. known while the thirddigit
i.e. 7 is a doubtful one. As a rule: i

V O

in other words, a significant figure is the onewhich is
known to be reasonably reliable.- if. the above mentioned
measurement is taken by a better measuring instrument
which is exact upto a hundredth of a centimetre, it would
have been recorded as 12.70 cm. in this case, the number
of -significant figures is four. Thus, we can say that as we
improve the quality of our measuring instrument and
techniques, we extend the measured result to more and
more significant figures and correspondingly improve the
experimental accuracy of the result. While calculating a
-result from the measurements, it is important to give due
attention to significant figures and we mu-st know the
following rules in deciding how many “significant figures
are to be retained in.the final result. ‘ ' ' '

(ii 1 1All digits 1,2,3,4,5,6,7,8,9 are significant. However,
zeros may or may not be significant. lncase of

. zeros, the following rules may be adopted.
I) A zero between two significant figures is itself

‘significant. - ~ 4
5) Zeros to the left of significant figures are not

significant. For example, none of the zeros in
0.00467 or 02.59 is significant. ‘

- 1;) Zeros to the right of a significant figure.,may or
- may not be significant. In decimal fraction,

zeros to the right of a significant figure are
significant. For example, all the zeros in 3.570
or 7.4000 are significant. However, in integers
such as 8,000 kg, the. number of significant-
zeros is determined by the accuracy'_of the
measuring instrument. if the measuring scale

1 has a lea-stjcount of 1 kg then there are.four
1 significant figures written in scientific notation

8 .



as 8.000 x 103 kg. if the least count of the scale
is 10 kg, then the number of significant figures
will be 3 written in scientific notation as
V8.00 x 103 kg and so on. "

d) When a measurement is recorded in scientific
notation or standard form, the figures other than
the powers of ten are significant figures.
For example, a measurement recorded as

. 8.70 x 104 kg has three significant figures.

(ii). In multiplying or dividing numbers, keepa number
of significantfigures in the productor quotient not
more than that contained in the least accurate
factor i.e., the factor containing_the least number of
significant figures. For example, the computation of
the following using a calculator, gives

.538 f1°1'23§§~64 " 1°‘ = 1.451ssss2 x 10*‘

Asthe factor 3.64 x 10‘, the least accurate in the above
calculation has three significant figures, the answer should
be written to three significant figures only. The other
figures are insignificant and should be deleted. While
deleting the figures, the last significant figure to be tetained
is rounded off for which the following rules are followed.
g) If the first digit dropped is less than 5, the last digit

retained should remain unchanged. ' _
5) If the first digit dropped is more than 5, the digit to be

retainedjs increased by one. _ p
Q) if the digit to be dropped is 5, the previous digit which
‘ is to be retained, is increased by one if'it is-odd and

retained as such if it is even. For example, _~ the
following numbers are rounded off to three significant
figures as follows. The digits are deleted one by one.

_ 43.75 is rounded off as .7 43.8
56.8546 is rounded off as 56.8l

73.650 . is rounded-off as 73.6
64.350 is rounded off as 64.4

9 .



Following this rule, the correct answer of the computation
given in section (ii) is 1.46 x 103.

(iii) in adding or subtracting numbers, the number of
decimal places retained in the answer should equal
the smallest number of decimal places in any of the
quantities being added or subtracted. In this case,
the number of significant figures is not important. It
is the position of decimal that matters. For example,
suppose we _wish to add the following quantities
expressed in metres. V

i) 72.1 ii) 2.7543
- 3.42 4.10

0.003 1.273
75.523 8.1273

Correct answer: 75.5 m A ‘ 8.13 m

In case (i) the number 72.1 has the smallest number of
decimal places, thus the answer is rounded off to the same
position which is then 75.5 m. In case (ii),the number4.10 has
the smallestnumberof decimal places and hence,the -answer
is rounded off to the same decimal positions which is
then 8.13m.

and accuracy are _ frequently used. They should be
distinguished clearly. The precision of a measurement is
determined by the instrument or device being used and the
accuracy ofta measurement depends on the fractional or
percentage uncertainty in thatlmeasurement.

For example, when the length of an object is recorded as
25.5 cm by using a metre rod having smallest division in
millimetre, it is’, the difference of two readings of the initial
and final positions. The uncertaintyin the single reading as
discussed before is taken as i 0.05 cm which is now
doubled and is called absolute uncertainty equalvto
:O.1cm. Absolute uncertainty, in fact, is equal to the least
count of the measuring instrument. 1
Precision or absolute uncertainty (least count) = 1 0.1 cm

10,

In measurements made in physics, the terms precision



Fractional uncertainty = -2'1l—=0.00425.5 cm

Percentage uncertainty = ii . 100 = @__4,@,,, _25.5cm

Another measurement taken by vernier callipers with least
count as 0.01 cm is recorded as 0.45 cm. it has
Precision or absolute uncertainty (least count) = i 0.01 cm

Fractional uncertainty =  =0.02

Percentage "uncertainty = Qigl . 190 = 2_O@,.-to0.45cm

Thus the reading 25.5 cm taken by metre rule is although
less precise but is more accurate having less percentage
uncertainty or error. _

‘ \

Whereas the reading 0.45 cm taken by vernier callipers
is more precise but is less accurate. In fact, it is the
relative measurement which is important. The smalle‘r a
physical quantity, the more precise instrument should be
used. Here the measurement 0.45 cm demands that at
more precise instrument, such as micrometre screw
gauge, with least count 0.001 cm, should have been
used. Hence,_we can conclude that:

To assess the total uncertainty or error, it is necessary to
evaluate the likely uncertainties in all the factors involved in
that calculation. The maximum possible uncertainty or
error in the final result can be found as follows. The proofs
of these rules are given in Appendix 2.

ll.



..- For addition and subtraction
Absolute uncertainties are added: For'example,~ the
distance x determined by the difference between two
separate position measurements -

x1=10.5 1 0.1 cm and x2 = 26.8 1 0.1 cm is recorded as
~x=x2-x,=16.3i0.2 cm A

2. For multiplication and division V
Percentage uncertainties are added. For example the
maximum possible uncertainty in the value of resistance R
of a conductor determined from the measurements of
potential difference V and resulting current flow I by using
R = V/I is found as follows: . i

D V=~5.2 i 0.1 V
1 = 0.84 i 0.05A '

The %age uncertaintyfor Vis = % x. 100 ’= about 2%.

»

The %age uncertaintyforlis = %% xv 100 = about 6%.
I

Hence total uncertainty in the value of resistance R when V
is divided by I is 8%. The result is thus quoted as

R = (3% = 6.19 VA"1= 6.19 ohms with a % age
' - uncertainty of 8%

that is ' R = 6.2 1* 0.5 ohms 3
The result is rounded off to two significant digits because
both V and R have two significant figures and uncertainty,
being an estimate only, is recorded by one significant
figure. ' '

3. For power factor .
Multiply the percentage uncertainty by that power. For
example, in the calculation of the volume of a sphere using

12
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%age uncertaintyin V= 3 x % age uncertainty in radius r. - '
As uncertainty is multiplied by power factor, it increases the
precision demand of measurement. If the radius of a small
sphere is measured as 2.25 cm by a vernier callipers with
least count 0.01 cm, then
the radius r is recorded as r

1 r= 2.25 1 0.01 cm

Absolute uncertainty = Least count = 1 0.01 cm "

%age uncertainty in r= x- 100 = 0.4% ‘

Total percentage uncertainty in V = 3 x 0.4 = 1.2%

Thus volume 1 V= % 1tr3 '

=% X 3.14 X ( 2.25 cm)3

~ = 47.689 cma with 1.2% uncertainty
Thus the result should be recorded as

1 c ‘ v=i47.71,o.e cma -1

(I) Find the average value of measured values.
(ll) Find deviation of each measured value from the

average value. ' * ‘
(ill) The mean deviation is the uncertainty in the

average value. A
. For example, the six readings .of,thFe micrometer

screw gauge to measure the diameter of a wire in
mmam . 1

4 1'.20,1.22,1.23,1.19,1.22,1.21.
A.
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: 'l.20+1.22+1.23+1.19+1.22+1.21
6

Then ' Average

r = 1.21 mm

The deviation of the readings, which are the difference
without regards to the sign, between each reading and
average value are 0.01, 0.01,-0.02, 0.02, 0.01, 0,

Mean of deviations = 0.01 +0.01 +0.026+0.02 +0.01+ 0

’ = 0.01 mm ' 1
Thus, likely uncertainty in the mean diametre 1.21 mm is
0.01 mm recorded as 1.21 1 0.01 mm.

5 For the uncertainty in a timing experiment
The uncertainty in the time period of a vibrating body is

5 found by dividing the- least count of timing device by the
number of vibrations. For example, the time of 30

. vibrations of a simple pendulum recorded by a stopwatch
., ‘ accurate upto one tenth of a second is 54.6 s, the period

W . . @.i._ 4_-..;3-._; ..._.,.;.,,1 n T - —3T — 1.82 s with uncertainty T- 0.003 s
._ ~ -. '71. -:; r . . , 1 .

Thus, period T is quoted as T 1.82 1 0.003 s
u A ' Hence, it is advisable to count large number of swings to

reduce timing uncertainty. - -
<
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As the factor 1.05 cm has minimum number of significant
figures equal to three, therefore,volume is recorded upto 3

= 714573825 X 102 m3

significant figures, hence,V = 7.15x10"m“ ‘ -

Example 1.2: The mass of a metal box measured by a
lever balance is 2.2 kg. Two silver coins of masses 10.01 g
and 10.02 g measured by a beam balance are added to it.
What is now the total mass of theybox correct upto the
appropriate precision.

Solution: Total mass when silver coins are added to box

Since least precise is 2.2 kg, having one decimal place,
hence total mass should be to one decimal place which is

_ = 2.2 kg + 0.01001 kg + 0.01002 kg
» = 2.22003 kg

the appropriate precision. Thus the total mass = 2.2 kg. _

Example 1.3: The diameter and length of 'a metal
cylinder measured with the help of vernier callipers of least
count 0.01 cm are 1.22 cm and 5.35 cm. Calculate the "
volume Vof the cylinder and uncertainty in it.

SOlLltiOn: Given data‘ is

- Diameter d = 1.22 cm with least count 0.01 cm
Length l = 5.35 cm with least count 0.01 cm

Absolute uncertainty in length = 0.01 cm

%age uncertainty in length = x1100 = 0.2%5.35 cm

Absolute uncertainty in diameter = 0.01 cm-
001cm

%age uncertaintyin diameter= 4- x 100 é 0.8%

As volume is

1.22 cm

_ 1td2l
V" T

1"" i ~41 ,1i.~1;v-~-;._=*~'1

Atomic Clock
The cesium atomic frequency
standard at the National Institute
of Standards and Technology in
Colorado (USA). It is the primary
standardforthc unitoftime. _
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Each base quantity is co.nsid_ere_d a dimension denoted by
a specific symbol written within square brackets. it stands
for the qualitative nature of the.physic'al quantity. For
example, different -quantities such as length, breadth,‘
diameter, light year which are measured in metre denote
the same dimension and has the dimension Iof length [ L_.].
_SirnilarIy‘t_he' mass and time 'di_mensions1are denotedyby
[M ] and-. [ALT ], respectively. _O_ther quantifies that we
measure have dimension which are combinations o1',thes_e
dimensions. For example. speed. is measured in‘; metres
per secoind. This will obviously have thedimensions of
length divided by time. Hence we can write. Y

Dimensionsof speed = —————i-—Di':“ensi°n°.He,h9th A '~ 1 2 Dimensionoftime, " -

» ‘ " iv1=%=i1-1ir"?1i=iH*‘1 1
Similarly the dimensions ofacoeleration are ' 1

1 r .l.al=lL:1lT'2]=,lLT'2l 0
- 4

and that of force are 1 A ' .

2 iF1=imiia1=iM1iLr"’1=iMLr"’1 f.
, .

Using‘ the method of dimensions called the dimensional
analysisjwe cancheck the correctness of 'ai givenformula

_ for an equation and can also derive" it. Dimensional analysis

.16 “ “ ' ’



makes use of the fact that expression of the dimensions
can be manipulated as algebraic quantities. "

(i) Checking the homogeneity of physical equation

In order to check the correctness of an equation, we are to
show that the dimensions of the quantities on both sides of
the equation are the same, irrespective of the form of the
formula. This is called the principle of homogeneity of
dimensions. "

Example 1.4: Check the correctness of the relation

v fllirg wherev is the speed of transverse wave on a

stretched string of tension F, length I and mass m.

Solution: ~
Dimensions of L.H.S. of the equation = [v] = [LT'1]

Dimensions of R.H.S. of the equation = ([F ] ‘x [I] x [m"])”2

= ([MLT_2] x[L]x[M‘1])"2= [L2T'2]”2=[LT-1]
Since the dimensions of both sides» of the equation are the
same, equation is dimensionally correct.

(ii) Deriving a possible formula
The success of thismethod for deriving a relation for a
physical quantity depends on the correct guessing of
various factors on which the physical quantity depends. _

Example 1.52 Derive a relation for the time period of a
simple pendulum (Fig. 1.2) using dimensional analysis. The
various possible factors on which the time period T may
depend are 1 0 '

i) Length of the pendulum (I)
ii) Mass of the bob (m)
iii) Angle 9 which the thread makes with the vertical
iv) Acceleration due to gravity (g)
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Solution: T ' ~
The relation for the time period Twill be of the form

Txn1aXlbX9°4Xgd 1

or T=constantm"l"(-)°g" 1 (1.1)
where we have to find the values of powers a, b, c and d. '
Writing the dimensions of both sides we get

1 A [T]=constantx[M]a[L]'°[LL"]°[LT'2]"
Comparing the dimensionsron-both sides we have

'iri=iri‘?° T 2
[M]°=[M]a

_ [ = ]b+d+c-c A

Equiatingi powers on both the sides we get
1 .' -2 =1 1 d=--d or 2

a=,0 and b+d"=0

or_ b=-d=_%_ and 9=[LL"]°=[L°]°=1
Substituting -the values of a, b, B andd in Eq. 1.1

" T=constantxm°xl"“x1xg"/"

Or T=constant ‘ ' , V

The numerical value of the constant cannot be determined
by dimensional analysis, however, it can be found by
experiments} _

O

Example 1.6: Find the dimensions and hence, the Sl
units of coefficient of viscosity 11 in the relation of Stokes’
law for the drag force F for a spherical object of radius r
moving with velocity v given as F = 6-1m r v ,

Solution: 61tiS a number having no dimensions. It is not
accounted in dimensional analysis. Then .
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‘ QUESTIONS T _ b ,
Name several -repetitive phenomenon occurring .in nature which could serve as
reasonable time standards.
Give the drawbacks to use the period of a pendulum as a time standard.
Why do we find it useful to have two units fortheg amount of substance, the
kilogram and the mole? ~ _ _
Three students measuredthe length of a needle with a» scale on which minimum
division is 1mm and recorded as (i) 0.2145 m,(ii) 0.21 m (iii) O.214m.Which record
is correct and why’? ~ , ~ _ .
An old saying is that “A chain is only as strong as its weakest -link".‘What
analogous statement can you make regarding" experimental data used in a
computation? 0 ' _ .~ ’ ’ t
The period of simple pendulum is measured by a stop watch. What type of_errors
are_possible in the time period? -
Does a dimensional analysis give any information on constant of_ proportionality
that may appear in an algebraic expression? Explain. A
Write the dimensions of (i) Pressure (ii) Density
The wavelength A of a wave depends on the speed v of the wave_and its frequency
f. Knowing that , . _ '

[7~]=[ I-1» - \ [V]=[ 1- T4] and l'°]=[T'1]
Decide which of the following is correct, f= v)t or f =

.1

a .

NUMERICAL PROBLEMS

A light year isthe distance light travels in one year. ‘How many metres are there in
one light year: (speed of light = 3.0 x 108 ms"). h 1

g ' (Ans: 9.5 x 10l5m)
a) How many seconds are there in 1 year?
b) How many nanoseconds in 1 year? ' _
c) How many years in 1 second? r 1 » '

A . [Ans.(a)3.153_6x 1O7s,(b) 3.1536x 1O'6ns(c) 3.1 x 10‘8 yr]
The length and width of a rectangular plate are measured to be 15.3 cm and 12.80 cm,
respectively. Find the area of the plate. h .

. (Ans: 196 cm’)
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. A

1.4 Add the following masses given in kg upto appropriate precision. 2.18& 0.089, F
11.8 and 5.32; ' ’ ’

— V L _ . ' . " ' (Ans: 19.4—kg)-——

1.5 Find the valueof ‘g’ and its uncertainty using T =21:\[; from the following

measurements made during an experiment L l
Length of simple pendulum I = 100 cm. g
Time for 20 vibrations = 40.2 s ' .
Length was measured by a metre scale of accuracy upto 1 mm and time by stop’
watch of accuracy upto 0.1 s. . ‘ ’

V ~ 4 (Ans: 9.76 i 0.06 ms'2)
1.6 What are the dimensions and units of gravitational constant G in the formula
. ‘F: G m1m2 V .

r2

- ' (Ans: [ M'1L3 r-2], Nm2 kg")
1.7 Show that the expression vf=v,- +at is dimensionally correct, where v,- is the velocity
4 at i.“=0, a is ‘acceleration and vf is the velocity _at time t.

0 .

' 1.8 The speed v of sound waves through a medium may be assumed to depend on
(a) the density p of the medium and (b) its modulus of elasticity _E which isthe ratio

. -of stress to strain. Deduce by the method of dimensions, the formula for the speed
of sound.

g - (Ans: v= Constant lg) . _

1.9 Show that the famous “Einstein equation" E = mi? is dimensionally consistent. -
1.1-0 Suppose, we are told that the acceleration of a particle moving in a circle of radius ..

rwith uniform speed v is proportional to some power of r, say r", and somepower
. of v,say v"‘, determine the powers ofrand v? _ .

' A (Ans:n=-1,m=2)
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hysicalquantities that have both numerical and directional properties are called
vectors. This chapter is concerned with the vector algebra and its applications in problems
of equilibrium of forces and equilibrium of torques. -

As we have studied in school physics, there‘ are some‘ physical quantities which require
both magnitude and direction for their complete description, such as velocity, acceleration

'22 .



and force. They are called vectors. In books, vectors are
usually denoted by bold face characters such as A, dr, r and
v while in handwriting, we put an arrowhead over the letter

Y

e.g. Kitwe wishtto refer only to the magnitude of a vector 6
we use light face type such as d. T
A vector is represented graphically by a directed, line
segment with an arrowhead. The length of' the line
segment, according to a chosen scale, corresponds to
the magnitude of the vector. - V

(ii) Rectangular coordinate system _

Two reference lines drawn at right angles to each other
as shown in Fig. 2.1 (a) are known as coordinate axes and
their point of intersection is known as origin. This system
of coordinate axes is called Cartesian ’or rectangular
coordinate ‘system. .

'One of the lines is named as x-axis, and the other the y-
axis. Usually thex-axis is taken as the horizontal axis, with
the positive direction to the right, and the y-axis as the
vertical axis with the positive direction upward. V
The direction of a vector in a plane is denoted by the angle
which the representative line of the vector makes with
positive x-axis in the anti-clockwise direction, as shown in'
Fig 2.1 (b). The point P shown in Fig 2.1 (b) has
coordinates (a,b). This notation means that ifwe start at
the origin, we can reach P by moving ‘a’ units along the
positive x=axis and then ‘b’ units along the positive y-axis.
The direction of ‘a vector in space requires another axis
which is at right angle to both .x and y~axes, as shown in
Fig 2.2 (a). The third axis is called z-axis. .
The direction of a vector in space is specified by the three
angleswhich the representative line of the vector makes
with x, y and z axes respectively as shown in Fig 2.2 (b).
The point P of a vector A is thus denoted by three
coordinates (a, b, c). ,

(iii) Addition of Vectors -

Given two vectors A and B as shown in Fig 2.3 (a), their sum
is obtained by drawing their representative lines in such a
way that tail of vector B coincides with the head of the vector
A. Now if we join the tail of A to the head of B, as shown in
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the Fig. 2.3(b)_, thelline joining the tail oflA to the head of B will
represent» the vector sum (A4-B) in magnitude and direction.
The vector sum is also called resultant-and is indicated by R.
Thus R = A+B.This is known as head to tail rule of vector
addition. This rule can be extended to find the sum of any
number of vectors; Similarly the sum B + A is illustrated by
black lines in Fig 2.3 (c). The answer is same resultant R as
indicated by the red line. Therefore, we can say that

“-‘;'i1*'-. »_i;"- T: T "\i!1?i'1"$-lit. 2 ,~ “‘.?'B B*“‘v.~.%r*r"§:~.%.~rrl?:1?-
So the vector addition is said to be commutative. lt means .
that when vectors are added, the resultis the same for any’
order of addition.

saw’ T A (iv Re-sultantector H ' . . t .

'1 F50 3-3(¢l

4.8 A

\

\ ‘ '

-B .

Fltl- 1-3l¢l

The_resultant of a number of vectorsof the same kind -force
i=tg.2.:i(b) _ i vectors for example, is that single’vector which would have

the same effect as all the original vectors taken tog-ether.
(v) Vector Subtraction _ .

The subtraction of a" vector is equivalent to the addition, of
A the same vector with its direction reversed. Thus, to
subtract vector B from vector~A, reverse the direction of B

' and add it to A, as shown in Fig. 2.-3 (d). 4
, ’ A - = A + (-B) where (-B_) is negative vector of B

(vi) Multiplicatin of a Vector by a Scalar
The product of a vector A‘ and a number n > O is defined‘
to be a new vector nA having the same direction as A
but a magnitude. n times the magnitude _o_f A as
illustrated int Fig. 2.4. "lf the vector is. multiplied by a
negative number, then its direction is reversed.
ln the event that n represents a scalar quantity, the product
nA will correspond ‘to a new physical _quantity and the
dimensions of the resulting vector will be the product of the
dimensions of the two quantities which were multiplied
-together. For example, when velocity is multiplied by scalar
mass m, the product is a new vector quantity called momentum
having the dimensions as those of mass and velocity.
(vii) Unitector l - V, - i

A A unit vector in a given direction is a vector with magnitude
i one in that direction. It is used to represent the directioncf

Flo“, - a vector. * ‘

F" 24



A unit vector in the direction of A is written as A , which we
read as ‘A hat‘, thus"

/\

A=AA

r *= A  A A ........ .. (2.2)

The direction along x, y and z axes are generally
represented by unit vectors i, j and k respectively
(Fig. 2.5 a). The use of unit vectors is not restricted to
Cartesian coordinate system only. Unit vectors may be
defined for any direction. Two of the more frequently
used unit vectors are the vector r which represents the
direction of the vector r(Fig. 2.5 b) and the vector n
which represents the direction of a normal drawn on a
specified surface as shown in,Fig 2.5 (c). - '

(viii) Null Vector
Null vector is a vector of zero magnitude and arbitrary
direction. Forexample, the sum of a vector and its negative
vector is a null vector. ‘

I
»

~ A+(-At)= o ........ .. (2.3)

(ix) Equal Vectors
‘Two vectors A and B are said to be equal if they have the
same magnitude and direction, regardless of the position
of their initial points. ‘ Y
This means that parallel vectors of the same magnitude
are equal to each other.

(x) Rectangu
A component of a vector is its effective value in a given
direction. A vector may be considered as, the resultant of
its component vectors along the specified directions, It is
usually convenient to resolve a vector into components
along mutually perpendicular directions. Such components
are called rectangular components.

A 25
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- Fig. 2.6

K

Let there be a vector A represented, by OP makingangle .8.
with the x-axis. Draw projection OM of vector OP on x-axis
and projection ON of vector» OP on y-axis as shown in
Fig.2.6.Projection OM being along x-direction is represented

by A,,iand projection on = MP ralongi y-direction is
represented by Av}. By head and tail rule _ '

_ 1 i>-4il-=».A,..i’+A;j..- i ........ (2.4)
" 1

K‘ A _ -

Thus Axi and Ayjare the components of vector A. Since
these are at right angle to each ‘other, hence, they are called
rectangular components of A. Considering the right angled

. A ‘

triangle OMP, the magnitude of A, i or x-component of A is

F .=;A <><>s9 . T ((2.5)

And that of A, or y-component of A is

. A, ='A sin 9 .... (2.6).

If the rectangular components of a ve'otor, as shown in
Fig. 2.6, are given, we canfind out the magnitude of the
vector by-using Pythagorean theorem.

In the right angled A OMP, '

T OP2 = OM2 + MP2
on . " - .’ »=Ax2.+, _______ N V‘ .

or i A = ,lAf+Ay2

. -. ‘ .' . __ _Ayand direction 9 is given by _ tan6 OM_ K
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Let A and B be two vectors which are‘ represented by two
directed lines OM and ON respectively. The vectorB is added
to A by the head to tail rule of vector addition (Fig 2.9). Thus
the ‘resultant vector R = A + B is given. in direction and
magnitude, bythe vector OP. '

I . ‘ - '

In the Fig 2.9 Ax, B, and R, are the x components of the-
vectors A. B and R and their magnitudes are given by the
lines OQ, MS. and OR respectively, But . V _

OR=OQ+QR
or ‘OR = OQ + MS

which means th-at the sum of the magnitudes of
x-components of two-vectors which are to ‘be added,is
equal to the x-component of the resultant. Similarly the
sum of the magnitudes of y-components of two vectors is
equal to the magnitude of y-component of the resultant,
that is .

e=a+ers - QQQWJ
Since R, and R, are the rectangular components of the
resultant vector R. hence

~ A

R=F\’,,i+Ry_j .

or _ . R=rA.+B.ii+rA,.+B.)i
The magnitude of the resultant vector R is -thus given as

. I ' ,

 
and_the direction of the resultant vector is determined from

S 3



6 = tan'1& = tan" a-(A’+B’) .
RX BX)

and z e =@n'1. ........ .. T (2.14)
' , ~ x x .

Similarly for any number of coplanar vectors A, B, we
can write

R = ,/(A, _+ s,,+. 0,, + ..,.)?+ (A, + _e,+ c,+ ...)*’ .... .. (2.15)

= ;;‘(A,"+-B',+o,+....)i ._ i A 'a_nd6 tan4(Ax+Bx+c_x+M) ..... A (2.16)

The vector addition by rectangular components consists of
the following steps. _

i) Find x and y components of alligiven vectors.

ii) Find x-component R, of the resultant vector by
adding the x-components of all the vectors.

iii) Find y-component ‘R, of the resultant vector by
adding the y-components of all the vectors.

iv) Find the magnitude of resultant vector R using

iR= ,lR,,2+ Ry’ H

v) Find the direction of resultant vector R by using

R9 = tan" —”Rx

where 9 is the angle, which the resultant vector makes with
positive x-axis. The signs of R, and Ry determine the
quadrant in which resultant vector lies. ,For that purpose
proceed as given below. '

Irrespective of the sign of R, and Ry, determine the value
R

of tan'1E”~ = ¢ from the calculator or by consulting
X

trigonometric tables. Knowing the value of<i>, angle 9 is
determined as follows.

29
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X’ ° xe + -
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I . . Y’

-" a-

, .

3) .lf both R, and R, are positive, then the resultant lies
in the first quadrant and its direction is 6 = rt».

b) if R, is -ive and Ry is +ive, the resultagit lies in the
second quadrantand its direction is.6=180-¢. - ~

cji If both R, and R, are -ive, the resuoltant lies in the third
quadrant and its direction is 9 = 180+ ti)‘. _

d) lf R, is positive and Ry is negative, the resultant lies in
thefouith quadrant and its direction is 9 = 360-ii» .

Example 2.2: Twoforces of magnitude 10 N and 20 N
-acton a body in directions making angles 30° and 60°
respectively with x-axis. Find the resultant force. .

Solution: - _ _
Step (I) x-components ‘
The x-component of the first force = F1, = F1 cos 30° _

Y 1 =10Nx0.866=8.66N
The x-component of second force = F2, = F; cos 60°)

. A =‘20Nx0.5=10N
y-components -

The y-componentof the first force = F1, = F1 sin 30° -
- = 10 N x 0.5 = 5 N
The y-component of second force = F2, = F2 sin 60°

' ‘ = 20 N x 0.866 = 17.32 N
Step (ii) _ . ' _
The magnitude of x component F, of the resultant force F

' Fx = F1x + F2x ’

‘ - F,,=8.66_N+10N=18.66N
Stontliil 2 i . . A
The magnitude of y component Fy of the resultant force F

Fy=F1y"'F2y Us l
Fy=5N+17.32N=22_.32N

30
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Scalar or Dot Product A A 4 .
The scalar product of two vectors A and B_ is written as
A .B and is defined asg _, _ _ H

e~ ...... A <2Y:~111)'"1 1 5,-1;.-‘ ,1i‘_,,(iiIiirs.\;,,.F=>,»..‘.;?F0" .~ . ‘ I - 'l'1'I ,_,_..-

where A and B are the magnitudes of vectors A and B and
9 is the angle between them. , ' 1
For physical interpretation of dot product of two‘ vectors A and
B, these are firstlbrought to a common origin (Fig. 2.10 a),
then, .A.B = (A) (projection of B on A) .

- ' u

A.B = A (magnitude of component of B in the direction of A)
=A(Bcos9)=ABcosO A - _

Similarly . , B.A = B (A cos 0) = BA _cos9_ c '
We-come across this type of product when we consider the
work done by a force F whose point of application moves a
distance d in a direction making an angle 6 with the line of
action of F, as shown in Fig. 2.11. .

1 Work done = (effective component of force in the direction
of motion) x distance moved _
=(Fcos9)d=Fdcos0

Using vector notation
F.d = Fd cos 0 = work done h

Characteristics of Scalar Product _

1- Since A.B=AB cos9 and B.A = BA cost) = AB cos 6.
hence, A.B = B.A. The order of multiplication is
irrelevant. In other words, scalar product is
commutative. -

2. Y The scalar product of two mutgially perpendicular
vectors is zero. A.B = AB cos90 = 0 .

- ~ _ It I\ A -

ln,case of unit vectors i,jj and k, since they are
h mutually perpendicular, therefore, _ .

' - I

-32_



'-._, :4.-‘if? »‘ V - *,=i;*1-1 _ i,.‘.*?='_- ‘ "‘—:_r-‘"1--ix.‘“ii-185é
3. The scalar product of two parallel vectors is. equal

to the product of their magnitudes. Thus for parallel-
vectors (9= 0°) _ "

" A.B =ABcos0°= AB
In case of unit vectors A

§

i;-Z._ . 131- ti,- - -4‘W '1 4. ‘ J v H27‘. * 2'.f.‘;;-,$- 1- ~31 -'-- i-' . 1 , —

and for antiparallel vectors» (e=1eo°)
A.B = AB cos180° = -AB

4. ‘ The self product pl‘ a vector A is equal to square of
itsmagnitude. " .

A.A=AAoos0°=A2
5. Scalar product of two vectors A and B in terms of

their rectangular components
vlt ' A ii A' A A_. A.B=(A, I +A,. j +A,k).(B,, I +B,,1+B, It)

or A.B = A,,B,, + A,B,, + /1,5, A ........ .. (2.20)
Equation 2.17 can be used to find the anle betweentwo
vectors: Since, _ .

T A.B = AB cost-). = A,,B,, + A,,B,, + A,B,

~ .v - , »» _ ,- ',.-,._,' - . .; 31 . _1:_,»'r1.—. _; _ 1
~ in— " .11 ' 14 - 'I :3‘-'1"-O ~»'l_r'*N» ' .;i 1‘ ' " -- .

A .33‘

‘ifs.-it-:1."-i=ii * ' T
'7
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' A A It A
Disp1acementd=r9-r,t=(5-1) i~+(7-3) j=4i +4]

Workdone=F.d = (2? +si).(4i +4})
~ =a+-12=2o units

Example 2.5: Find the projection of vector A=2l-8l+lAt

in the direction of the vector B = 3l - 4) - 12k.

Solution: lf Bis the angle between A and B, then A cost-J
is the required projection.
By definition A.B = AB cos 6

Acos9 =%-B~=A. B

Where é is the unit vector in the direction of B

Now B = (/32 +(4)2%~ (-12) 2 e13

Therefore, B = --———-(3i ' 41212 K)
A A A

The projection ofA on B = (2l-8) -Ht). _-—-——(3i'41g12k) -

= (2) (a)+(-e.).(-4)+1 (-12) = 2s = 2
13 13

AXB 'Vector or Cross Product
The vector product of two vectors A and B, is a vector
which is defined as

‘w--1‘ .. -- i~ --‘-'.- "'r"‘ f/it--".4'i*-.11 »'~“7'-“ - :95 .7 J-'1» ~ " " ‘ " l V” "'1'" r:’:".'}:1’ of

A ' T 77 7'1 7‘ i Y

where n is a unit vector perpendicular to the plane‘
containing A and B as shown in Fig. 2.12 (a). its direction
can be determined by right hand rule. For that purpose,
place together the tails of vectors A and B to define the
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plane of vectors A and B. The direction of the product
vector is perpendicular to this plane. Rotate the first vector

_+.A.intoB through tlieo.smailer-ofethetwoipessibleangles»and
curl the fingers of the right hand in the direction of
rotation, keeping the thumb erect. The direction of the
product vector will be along the erect thumb, as shown
in the Fig 2.12 (b). Because of this direction nile, B x A
is a vector opposite in sign to A x B. Hence,
‘ ".7-‘ .3“ "mi,-. - ' ...'. - . ‘I 1.1’I 1 . -'_‘,"‘ ‘ .-'i2 la“ .~.". ' '""'.'~ .-' ‘ ‘ ‘." . 7"‘ - at "W,- -rt“ ‘--.<='¥i.- A 1 .<;.."=-=, '1 1-1»~<.;~» -- ii .»-=".-~-' ' -.2‘..-'.- ~e'-3‘ . -.l""7' -'.". ‘ l‘-1? ""‘i" 7 ..‘;,',“ ‘,7 "- ~‘ ‘aw " '17:? '-_-_J"-‘"3 1' '1‘-': »C7 ‘ 1 11‘ “s.‘- 5‘7l'¢=I.”'?l5t'€:§i“T‘l*'5 '"?§»-'* 9' v‘ ?’<<?.-_‘. 1 A ' -‘*7 "~‘.=‘-‘J ' ~' WaltE21?!‘-#lm§*.'c§cr‘? '

Characteristics Cross Product - H9 MM
1- Since AxB is not the same as BxA, the '

cross product is non commutative.
2- The cross product of two perpendicular vectors has

maximum ‘magnitude A x B = sin90° fi= AB 5
in case of unit vectors, since they formla-right
handed system and are mutually perpendicular
Fig. 2.5 (a) - ‘

1 l><i=_i2,}xi2=l,i2xi=3

\ .

- 3- The cross product of two parallel vectors is null
' vector, because for such vectors 0 = 0° -or 180°.

Hence '
S A X e = AB sin0‘-’rAi sin 1-ao°_fi =-o 1

- - . - ex A' As a consequence A x A = 0 , , F A212‘ )
. _ ig. . c

, _ . _ ri"i'=" .5-=17 '-' ‘-2:, ' -'-¢r.’*l'.‘l-1"" :'- t-;»was .,~,,.- ,. ~.~' . '=~-~' P4 ', ,, .. _ , - -_ 1 .2-.. .» . -. . .- ».;. .,-1,,-,1-r-.5,_ ,..--:1 hip . ;k‘,'-1'1!” -iijléw = (:1; _ z ((-L-.' .511». - 1- ‘ft ii -34- --,1-~'_~5'_> 11l.'l
-1‘ "i-|1~‘“¢?5‘~"§ :;:}_¢ :'-.~‘.'!.\ ».-‘ _ '. 4 =,- __ 7 ‘rm ~ -i~' '.J|| E H_,g:i1;'_L',l‘,l" -fl".~“_,.--'. 1:? -"-1'1

*5 =*-of-ll"-» I -..-_:-antit? '7: -ii‘<“i~1-rt-i~.ll5‘~'-1"

4- . Cross product of two vectors Aand B in terms of
their rectangular components is : ’

AxB=<A.i+A,i+A.i?)x<B..i+B,i+B.i§)
' -.7; :.-tr-. -is-.1 ‘A1 ~-»i--.;>-.-. - ' ~ ~ .iiltiéw »1l~’li’ii- .- -11»; .- A -.1 r; 2 ~ . . - .I";1J‘.'.1»‘ iv"; '-r;-.-1-Y1 la’-1' —. :1--1--t-w-ii: "-~1 1 =. 1*-11-. ~i -

1
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The nut is easy to tum with a spanner.

F|I- 1-13110

turning
point

it is easier still if the spanner has a
long handle.

Hg. 2.13

The result obtained can be expressed for memory in
determinant form as below: .

A A A

F AXB = A, Ay A,

Bx By B, ‘

5, _ The magnitude of A "x B is equal to the area of the
' parallelogram formed with A and B as two adjacent

sides (Fig. 2.12 d). .

Examples of Vector Product .
i. When a force F is applied on a rigid body at a

" point whose position vector is r from any point
. of the axis about which the body rotates, then

the turning effect of the force, called the torque
A 1: is given by the vector_product of r and F. ll

~ "¢=rxF
t I ,

The force on a “ particle of charge q and
- velocity v in a magnetic field of strength B is
given by vector product.

F=lq(vxB-)

We have already in so oo p ysics a a urning
effect is produced when a nut is tightened with a
spanner (Fig. 2.13). The turning effect increases when you
push harder on the spanner. It also depends on the length
of the spanner: the longer the handle of the spanner, the
greater is the turning effect of an applied force. The
turning effect ofa force is called its moment or torque and
its magnitude is defined as the product of force F and
the perpendicular distance from its line of action to. the
pivot which is the point O around which the body
(SPGQHGT) rotates. This distance OP is called moment
arm 1.Thus the magnitude of torque representedbyr is
~ " -‘ "/>' . . - - .,. ' — ‘c. 1--* -.-,-~; -*= ~-.",; , vi ---,1,~. ,;-. ;-._.- H-— v -...._-.-,2 .~,.,_-1 .. -.. ¢»,.,, .~m-:~-1‘ z, 1 ,1“. .1-,~‘,;-'._.-~).»~:<

:~ T . , iv, : . jg~- -~§,,{j1.‘i.Ii(¢”“".--'-=J? :¢.'-,-;~"=',_, _~r= .5“1“E'fW-ll“-‘~,,§
‘ ‘if-' " -1,. r ‘ ‘l ZC"i>‘.' ‘. 1_' i' - " ~ I 171-) . 7‘-',‘..."_L_'-fig. A‘ _'i'_,‘-_,"-;_‘_;,‘i_1i1“ ,'l ‘iw... . . 1,. , , __,__ . ..
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When the line of action of the applied force passes through
the pivot point, the value of moment arm! = 0, so in this case
torque is zero. __ A A _
We now consider the torque due to a force F acting on
a rigid body. Let the force F acts on rigid body at point-
P whose position vector relative to pivot O is r. The
force F" can be resolved into two rectangular
components, F sin 0 perpendicular to r and F cos6
along the direction of r (Fig. 2.14 a). The torque due to
F cos eabout pivot O is zero as its line of action passes
through point O. Therefore, the magnitude of torque due
to F is, equal to the torque due to F sine only about O.
l_is iven AA _ - A -

Alternatively the momentarm I‘ is equal to the magnitude of
the component of r perpendicular to the line of action of F
as illustrated-in Fig. 2.14 (b). Thus * -

. “F - -~~.—-i-\.= -=.*-1 --7’-—--:1‘ -. 1' " ‘ ‘-"-'*- 1 .1 - -. -
'- >4-' ,:r_ 3."' ‘f '-iil"il1‘sn1l"“‘_§.‘,-"“ .',-' —. .. "' 11‘ \ l l- ;~.'1'

where Q is the angle between r,and F
-~

From Eq. 2.27 and Eq. 2.28 it can be seen that the torque
can be _defin_ed by the vector product of position vector r_
and the force F, so 1' - - A

- , 'T=rxF

Whe .(rF sint-)) is he magnitude of the’ torque. The is
It .

direction of thegforque represented by n is perpendicular
to the plane containing r and F given by right hand rule for
the vector product of two vectors.
The SI unit for torque is newton metre (N m).\ .__ -

' i xJust as force determines the linear acceleration produced
in a body, the torque acting on aA body determineflts angular.
acceleration. Torque is the analogous of force for rotational
motion. If the body is at _rest or -rotating with uniform
angular velocity, the angular acceleration will be zero. In this
case the torque acting’ on the body will be zero. ‘
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Do youthlnlt the riderln the above
flgurels reatly T in danger? What if
people below removed? -
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Example 2£6:“The. litre of action of a force--F ,i>a.sses-
through‘ a ‘ point .'P. of a bod-‘y ‘whose -position
vectorinmetreisl¥A2i'l-+|t..lfAAF= }2¥_i~ -3 l +141? (in nevndn).
determi-ne the torque .ab'out;the point ‘A‘who;se position
vector-('in metre)-is2 _++ 1 A ' ' A l

Solution: - , -, '- ~_

The‘po_s§itlon vector of point A = r1‘-_‘A= AN.-"> it'll. .9_A_> +. I'>

The position‘ vector of point P=r;A=l -2i + r,elat_ive;to'0,

'TI'i"'§"j5i5§iti5on 'v§a5r*-or*rrarsrvo.iio(A1131  - -
-. . -AP=r1'=r';=-r1 N A

1 ' '

AP=(1il-Zli+k')--(Z\l+_i+k)=-
rriotorquo about1A,=r'xF . A  _ . 1

> > > ‘I D >
-ii,I.00 hi’

‘A . _.
- _ _ A -A- A A ItA-- -T - A, -=.(.-i-31-1)x(2i-3]'+4.i:)t -

. A =-12i+4i»+9i1 Nlm -'

We have studied in school physics that if a body, under the
action of a number of forces, is at rest or moving with
uniform velocity, itis said to be in equilibrium.

First Condition of Equilibrium l
A body at rest or moving with uniform velocity has zero
acceleration. From -Newton's Law of, motion the vector sum-
of all forces acting on it must be zero.-
This is known as the. first .condition of equilibrium. Using
the mathematical symbol ZF for the sum of all forces we
can write

H ,A .;A. - -1 _ , u ;, -. ,. .. .-J‘,-_ ,<- ..-_t .
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' Fig.2.17-

- ">6" (M,-<1» 7"» In-' ' .1 - is .
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- .-

1

A Second Condition of Equilibrium
Let two equal and opposite forces act on a rigid

Abody as shown in Fig. 2.17. Although the first condition of
equilibrium is satisfied, yet it may rotate having clockwise
turning effect. As discussed earlier, for angular acceleration
to be zero, the net torque acting on the body should be
zero. Thus for a body in equilibrium, the vector sum of all
the torques acting on it about any arbitrary axis should be
zero. This is known as second condition of equilibrium.

- Mathematically it is written as
3, ;‘ t" ,-1 ‘ ‘ ' ",- - _'-‘ - ‘ My ‘ " out; ' __-'- - ‘ A. - l .' '

. ",='lliH" "cu " »"‘I"' 1:": . 1'? l . .' 4 “f"'Y"'R°'\ L‘? ',A;i. .A 1 . , A .y _ ; ._ _ A _

By convention, the counter clockwise torques are taken as
positive and clockwise torques as negative. An axis is
chosen for calculating the torques. The position of the axis
is quite arbitrary. Axis can be chosen anywhere which is
convenient in applying the torque equation. A most helpful
point of rotation is the one through which lines of action of
several forces pass. 1
We are nowina position to state the complete requirements
for a body to be in equilibrium, which are
(1) “21F=0 i.e zi=,=0 and zi=,,=o
(2) 2I= 0

For a body to be in complete equilibrium, both conditions‘
should be satisfied, i.e., both linear acceleration and
angular acceleration should be zero.

l . _

. We will restrict the applications of above mentioned
conditions .of equilibrium to situations in which all the forces
lie" in, a common plane. Such forces are said to be
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coplanar. We will also assume that these forces lie in the
xy-plane. - _ ,
lf there are morethan one objectin equilibrium in a given
problem, one object is selected at a -time to apply the
conditionsof equilibrium. ' T

, " . s

Example 2.8: A uniform beam of 200N is supported
horizontally as shown.Al'f the breaking tension of the rope is
400N, how far can the man of weight 400 N walk-from
point A on the beam as shown in Fig. 2.18?
Solution: Let breaking point beat a distance d from the pivot
A. The force diagram of the situation is given‘ in "Fig. 2.19.
By applying 2nd condition of equilibrium about pointA

' Z1: = 0 -
400Nx6m- 400Nxd -200 Nx3m=~0l

or 400 N X d= 2400 Nm — 600 Nm = 1800 Nm "
‘ d=A5m

Example 2.9:.A boy weighing 300 N is standing at the edge
of a uniform diving board 4.0m in length. The weight of the
board is 200. N (Fig. 2.20 a). Find the forces exerted by
pedestals on the board. _
Solution: We isolate the diving board which is in-
equilibrium under the action of forces shown in the force
-diagram (Fig. 2.20 b)". Note that the weight 200 N of the
"uniform diving board is shown to act at point C, the centre
of gravity which is taken as the mid-pointof the board, R1
and R2 are the reaction forces-exerted by the pedestals on
the board. A little consideration will showthat R1 is in the
wrong direction, because the board must be actually
pressed down in order to keep -it in .equilibrium. We shall
see that this assumption will be automatically corrected
by calculations. 1 . A
Let us now apply conditions of equilibrium

A 2 F,,= 0 (No x-directed forces)
ZFy=0 2 R1+R;—300—-200.=0

2 R1+R2=500 -N ...(i) F
Zr =10 (pivot at point D)
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-R'1XAD—3O0NX.DB—200NXDC=0
-R1x1m-300Nx3m-200Nx1m=0

R, = -1100 N = -1.1kN
Substituting the value of R1 in Eq. (i). we have

-1100 + R2 = 500
A R2=16OON =1.6KN

The negative sign of R, shows that it is directed downward.
' Thus the result has corrected the mistake of our initial

assumption. .
_ i’ M, l .

The arrangement of mutually perpendicular axes is called rectangular or Cartesian
coordinate system. 7

A scalar is a quantity that has magnitude only, whereas a vector is a quantity that
has both direction and magnitude. .
The sum vector of two or more vectors is called resultant vector. ‘
Graphically the vectors are added by drawing them to a common scale and
placing them head to tail. the vector connecting the tail of the first to the head of
the last vector is the resultant vector. g
Vector addition can be carried out by using rectangular components of vectors. If
A, and A, are therectangular components of A and B, and B, are that of vector
B, then the sum R = A + Bis given by

R,=A,+B, _ R,==A,+~B,

where R =,iR,2 +Ry2 and direction 9 =tan"g:-

Unit vectors describe directions inspace. A unit vector has a magnitude of 1 with
no units. . -‘
A vector of magnitude zero without any specific direction is called null vector.
The vector that describes the location of a particle with respect to the origin of
coordinate system is known as position vector. -
The scalar product of two vectors A and B is a scalar quantity, defined as :-

‘ A.B = AB cos 9
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V The vector product of two vectors A and B is another vector C whose magnitude is
givenby: . ' C =ABsin9 < .

its direction is perpendicular to the plane of the two vectors being multiplied, as given
by the right hand rule. T A
A body is said to be in equilibrium under the action of several forces if the body has
zero translational acceleration and no angular acceleration.

A For a body to be in translational equilibrium the vector sum of all the forces acting on
the body must be zero. .

The torque is defined as the product of the force and the moment arm.
e The moment rmis the perpendicular distance from the axis of rotation to the

direction of line of action of the force.
- For a body to be in rotational equilibrium,the sum of torques on the body about any axis

must be equal to zero. _ '

I blip)? if i§_‘~/!;".‘j/-" / _ i

13¢ Define the terms .(=} unit vector (ii) Position vector and (sf) Components of a vector.

.1->,_:1; The vector sum of three vectors gives a _zero resultant. What can be the orientation
of the vectors?

;;;,;; Vector A lies in the xy plane. For what orientation will both of its rectangular
components be negative ? Forwhat orientation will its components have opposite signs?

12,4 If one of the rectangular components of a vector is not zero, can its magnitudebe
zero ? Explain. »

Can a vector have a component greater than the vector's magnitude?
2.5 Can the magnitude ofa vector have a negative value? '
2.1’ lf A + B = 0,What can you say about the components of the two vectors’?
1-1:3. Under what circumstances would a vector have components that are equal in

magnitude? - .
>19 ls it possible to add a vector quantity to a scalar quantity? Explain.
5» ;‘ 1') Can you add zero to a null vector?

11'. l "i Two vectors have unequal magnitudes-. Can their sum be zero? Explain.

T1. '1 :1 Show that the sum and difference of two perpendicular vectors of equal lengths are
also perpendicular and of the same length.
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2.13

2.14

$2.15

2.16

" Q

How would the two vectors of the same magnitude have to be oriented, if they
were to be combined to give a resultant equal to a vector of the same magnitude?

The two vectors to be combined have magnitudes 60 N and 35 N.Pick the
correct answer from those given below and tell why is it the only one of the three
that is correct. - ' - ..

i) 100 N ii) 10 N , iii) 20 N i j
Suppose the sides of a closed polygon represent vector arranged head to tail.
What is the sum of these vectors?

Identify the correct answer. ' ‘ '
i) Two ships X and Y saretravelling in different directions at equal speeds. The actual

direction of motion of X is due north but to an observer on Y, the apparent direction of
motion ofX is north-east. The actual direction of motion of Y as observed from the
shore will be .
(A) East (B) West (C) south-east (D) south-west

ii) A horizontal force F is applied to a' small object P of mass m at rest on a smooth
plane inclined at an angle 0 to the horizontal as shown in Fig. 2.22. The magnitude of
the resultant force acting up and along the surface of the plane, on the object is

al
bl
C)
dl
0)

F cost) —mg sin 0 _ _ T A
F sin 9 -m g cos 9 - F
Fcost-)+mgcos0 *
Fsin6+mgsin6 _ If

. 1 e
mgtane ‘mu

2.17 if all the components of the vectors, A1 and A2 were reversed, how would this alter

2.18

2.19

A1XA2? _ "

Name the three differentconditions that could make A1 x A; =0.
Identify true or false statements and explain the reasgi. -

a) A body in equilibrium impliesbat it is not moving nor rotating. ~

b) If coplanar forces acting on a body form a closed polygon, then the body is said
to be in equilibrium. .

2.20 A picture is suspended from a wall by two strings. Show by diagram the »

2.21
configuration of the strings for which the tension in the strings will be minimum.
Can a body rotate about its centre of gravity under the action of its weight?
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Suppose, in a rectangular coordinate system, a vector A has its tail at the point
P (-2, -3) and its tip at Q (3,9).Deterrnine the distance between these two points.

, >

(Ans: 13 Units)
A certain corner of a room is selected as" the origin of a rectangular coordinate
system. If an insect is sitting on an adjacent wall at'a point having coordinates
(2,1), where the units are in metres,.what is the distance of the insect from this
corner of the room? ~ .

4 _ A (Ans: 2.2~m)

What is the unit vector in the direction of the vector A=4 i+3 ?

A (Ans: Li £31) )

A A It A '

Two particlesare located at r1 =3 l+ 7 j and r2=-2i + 3] respectively. Find both the
magnitude of the vector(r2.r1) and its orientation with respect to the x-axis. "

, ' [Ans: 6.4,219°].

lf a vector B is added tovector A, the result is Si + If B is subtracted from A,
A A ’

the result is -4 i +7 j. What 'is“the‘ magnitude of vector A? '

, - (Ans: 4.1)
A A A A Y

Given that A =2 l+3j and B =3 i-4 j, find the magnitude and angle of
(a)C=A+B,and (b) D=3A-2B. T

(Ans: 5.1, 349°} 17,90°)

Find the angle between the two vectors, A =5 i+ E and B =2.i + 4 E. 2
i . (Ansi 52°)

Find the work done when the point of application of the force 3i +2} moves in a
straight line from the point (2,-1)to the point (6,4). " F _

. ' . _ (Ans: 22units)
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2.9.

2.10

2.11.

"2.12

2.13.

2.14.

2.15

\t'l

r 1- ‘.

l

It A I\ It _ A A , A A fl _

Show that the three vecto(rsi+j+k,,2i -3j ~+ k and 4i+j-5k are mutually
perpendicular. -- ~» »

_A _,A _A A A '

Given .that A = i-2j+3k and B=3 i-4 k, find the projection of
A on B. '

I (Ans: -2 ),

Vectors A,B and C are 4 units north, 3 units west and 8 units east, respectively.
Describe carefully (3) A x B (b) A x C (¢;) B x C .
g [Ans: (a)12 units vertically up (b) 32 units verticallydown (c) Zero}
The torque or turning effect of force about a given point is given by r x F where r is the
vector from the given point to the point of application of F. Consider a force

F = -3l+i+5k (newton) acting on the point 7l+3}+k (m). What is the torque
in N m about the origin? A

I\ I\ A '

V t X [Ans: 14i-38j+16k Nm]
A A "

The line of action of force, F = i -2 j, passes through a point whose position

vector is (-}+k ). Find (a) the-moment of Fabout the origin, (b) the moment of F
- A A

about the point of which the position vector is i +k.

. . [Ans: (a)2l+}+k,(b)3k]
The magnitude of dot and cross products of two vectors are 6\/§ and 6
respectively. Find the angle between the vectors ' '

1 ' 1 (Ans: 30°)
A load of 10.0 N is suspended from a clothes line. This distorts the line so that it
makes an angle of 15° with the horizontal at each end. Find the tension in the
clothes line. _ .

[Ans: 19.3N]
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Leaming Objectives
At the end of this chapter the students will be ableto:

. Understand displacement from its definition and illustration. 1
Understand velocity, average velocity and instantaneous velocity. t >
Understand acceleration, average acceleration and instantaneous acceleration.

S1":>$-°!°"
Understand the significance of area under velocity-time graph. ' 1
Recall and use equations, which represent uniformly accelerated motion in a

l straightllneincluding falling in a uniform gravitational field withoutair resistance. .
Recall Newton’s Laws of-motion. 1 A . W V‘

$°°°"F”

. Describe Nevvton’s second law of motion as rate of change of momentum.-
. . Define impulse as a product of impulsive force and time. _ _ n

Describe law of conservation ofmomentuml." . 1 '
10. Use the law of conservation of momentum in simple applications including elastic

collisions between two bodies in one dimension. ‘ i
_ 11. Describe the force produced due to flow of water.

12. Understand the process of rocket propulsion (simple treatment).
13. Understand projectile motion in a non-resistive medium. 1

v ' .

14-. Derive time of-flight, maximum height and horizontal range of projectile motion.
15. Appreciate the motion of ballistic missiles as projectile motion. I ~

. 1

-e live in a universe of continual motion. In every piece of» matter, the atoms are in a
state of never ending motion. We move around the Earth's surface, while the Earth moves in
its orbit around the Sun. The Sun and the stars, too, are in motion, Everything in the vastness
ofspace is in a state of perpetual motion. ' . .

A -A 4s
:~~‘,‘ [- .1‘!



_?it_islogical-that~we-shouldgiveeue attentiorHo—the—study

Every physical process involves motion of some sort.
Because of its importance in the physical world around us,

of motion. A 2 ‘ "

We already know that motion and rest are relative. Here, in
this chapter, we shall discuss other related topics in some
more details. ' '

-‘ I ' i . g, - em ,

-Whenever a body moves from-one position to another,
the change in its position is called displacement. The
displacement can be represented as a vector that
describes how far and in what direction the body has been
displaced from its .original position. The tail of the
displacement vector islocated at the position where the
displacement started, and its tip or arrowhead is located at
the final position where the displacement ended. For
example, if a body is moving along a curve as shown in
Fig. 3.1 with A as its initial position and B as its final
position then the displacement d of the body is
represented by AB. Note’ that although the body is moving
along a curve, the displacement is different from the pathi
of motion. ' f
If rt is the position vector of A‘and r2 that of point B then by
head and tail rule it can be seen from thefigure that V

d=|'2-T1

Ft

iii“?=‘i=.i,;l.lj;:<-J,‘.i‘itux:'_‘-. —.-.\-"_~ 'f- _. s . 1),~ Q »’t»~‘1iii i-.-.,-(.;,;, ,@,,, 4-1,1,,._1. 1' : ».J(_ T. ‘V. ‘Mi —,",‘ 1511,,” 15i\‘7h'. J ~?“i,.i'-1é',l|t( if

its magnitude isthe straight line distance between the
initial position and the final position of the body. i

When a body moves along a straight line,_ the. displacement
coincides with the path of motion as shown in Fig. 3.2._(a)

"is-'. ‘:'!A)3“-J: j Y -3,

We have studied in school physics that time rate of change
of displacement is known as velocity. its direction. is along

Jil‘"~‘i’-‘~*.'

t‘ I

Q B

rt .

X0
Fig.3.‘l

A d B

'3

the direction of displacement. So if d is the total ' "'°'3'2‘“l
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\ I

displacement of the body in time t, then its average velocity
during the interval tis defined as g - , 0

. ( . .
' 0- . -- N‘ ----~'-V; ts..- : .=':.=i" 1" -=>.-sat.» i. ~ Y .. .~3 - ,| ..i W _ ; . =1!»-1 ,, _ _, ,1‘; >- - df _,- .

. . i..-':J:'.~:i»_~:; :2-I, u {"='-2‘? ,. .._';_ =1», ,- _ ,. iii‘-‘ -.;_~1‘~_‘;*
' i". _ "i ' ‘ 3 "'wiiv‘=—_,~'3"-l>».§"‘a 2~=;,7"‘ ,'.3<V'-"~“.'i7.""_: ',i_i'»v "‘-'~".,~;‘! *1." ,, ~‘ ...e -. "

‘ ._ ~ - -L ~r i..\i _-_-: L is i" yr"--i;e,;,., I 5:»-_1-_*.,._:, ,4 n _ _» .i,r . ~ i . ' * - W Y —

Average velocity does not tell us about the motion between
A and B. The path may be straight or curved and the

/

motion may be steady or variable. For example if a squash.
ball comes backto its starting point after bouncing off the
wall several times, its total displacement is zero and so
also is its" average velocity. T

_ __ X _ In such cases the motion is described by the
Spieed,ms_": , . ltiiiouun ‘ 1. instantaneous velocity. , ' .

if , Llght,,r'ad"jlp waves, . 1 _
300000000 X-revs,.micr<>wevesi In order to understand the concept of instantaneous

A £10000 ave.s - velocity, 'c'onsider,a body moving) along a path_;ABC in xy
g 7 aroundtl'ie'ga|a>;-y~ plane. At any time t, let the body be at point A F|g_.3.2(b).lts

° 29 600 Earth arvundthe Sun position is given by position vector r1". After a. short time
,-.

3 . .

1000 a'°"“d\i“° g interval Al‘ following the instant t, the body reaches the
1 Q80. SR-71 T r r point B which is described by the position vector T2. The‘ . rssvnflaissénseiet displacement of the body during this short time interval is

- 2 = r - r.» 62 Cotmmegfi(a|( a . ' 2 1
' BU omo 8 H1 X. . . '37 Faicomnadive The notation A (delta) is used to represent a very (small
29 Running cheetah -_ °ha"9e; '

(.‘,1‘;;‘.;,'_’l°"‘*’*"”"' The instantaneous velocity at a point A, can be found by
iP<>rp<>ise swimming making At smaller and smaller. in this case Ad will also
W09 06° . become smaller and point B will approach A. If we continue
Humafi "”!"‘“9_ this process, letting B approach A, thus, allowing At and Ad

F s;"'?‘m‘"9~ to decrease“ but never disappear completely, the ratio
i 9 '1 Ad/At approaches a definite limiting value which is the’

instantaneous 1 velocity. Although At and Ad become
Y ,1 _ extremely small in this process, yet their ratio is not

F’ 0.. -\t\>-l=~'U1c03

A :- 0 necessarily a small quantity. Moreover, while‘ decreasing
B the displacement vector, Ad approaches a limiting direction

s r along the tangent at A. Therefore, f

, X g

. O r .

r Fig.3.2(b) - '"' , _ g
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Using the mathematical language, the definition‘ of
instantaneous velocity vms is expressed as

. g ‘_ V A V) s v..,.,- 5150 M. (3.2)

read as limiting value of Ad/At as At approaches zero.
If the instantaneous velocity does not change, the body is
said to be moving with uniform velocity.

_ i .

If the velocity of-an object changes,it is said to be moving
with an acceleration. _ '2

As velocity is a vector so'any change in velocity may be
due to change in its magnitude or a change in its direction-
or both. - - T - _
Considera body whose velocity vi at any instant t changes to
v2 in further small time interval At. The tvvovelocity vectors v1
and v2 and the change in velocity, v2 — v1 = A v, are
represented in Fig: 3.3. The average acceleration aav during
time interval At is given by _ " 1 F .

‘ 2 ' V -v Av '
‘ - ' _ i » aay= ’ - ~ - - . - ¢ - u

' . 1 .

As a,,, is the difference of two vectors divided by a scalar
At,"a,,, must also be a vector. Its direction is the same as
that of AV. Acceleration of a body at a particular instant is
known as instantaneous acceleration and it is the value
obtained from the average acceleration as Af is made
smaller and smaller till it approaches zero. Mathematically,
it is expressed as _

Instantaneous acceleration =»a §Lim . -41.‘ (3-4)
. , insAt_)p.Af M " .
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If the velocity of a body is increasing, its acceleration is
positive but if the velocity is decreasing the (acceleration is
negative. if the velocity of the body changes by equal amount
in equal intervals of time, the body is said to have uniform
acceleration. For a body moving with uniform acceleration, its
average acceleration is equal to instantaneous acceleration.

— \\ “' 1?" \\‘"“ *' z . ' . ' ’ . -. i . '-= -.~;.~, , _.,' ~\e‘4~1" rt; =* ' “ ‘ i .]?"l'!‘i”'%t*;i‘§"i' in . i i1:» i"
5;, l ":1 1'»-" ‘ ‘J““_"‘“""s><$J%%;““ "c .':'r"“"'== -Y.--I Yitifi(1?5;~.¢i’1%€»3§5¥a=1T{@=1'3‘-(lib .hi-I -"‘5"-“»:l‘:\‘____ .. . .. ._-. . i _ ,_ ‘ .>. _. _ ..t . ., .. . M.”

i‘ 5 Graphs may be used to illustrate the variation of velocity of
an object with time. Such graphs are called velocity-time
graphs. The velocity.time graphs of an objectmaking three
different journeys along a straight road are shown in
figures 3,4 to 3.6. When the velocity of the car is constant,
its velocity-time graph is a horizontal straight line (Fig 3.4).
When the car moves with constant acceleration, the
velocity-time graph is a straight line which rises the same
height for equal intervals of time (Fig 3.5). t

.
,~ 5' ,, .--. £1 ii-\.;-_ *-l» “1":' ,. -I - " -4 e l

1’

bi tn ' * L » as -. .i .. ..,,. _,._. . .. .. ,, = .4 '1 _. -.
if-“‘l~?"i"€:‘li ?~?:ei71l 2"? 'T ‘71”n“t-“'3. Y "'“m ti 3?‘"ZN" in' ‘”he stniii ntq», <*:t:f~:5:ii.’r5:- l.1.'~,‘(',I,l"‘f3-.‘ 2?“ _,?t;:‘.,".~=r:',I 1 ,:‘i-;‘~‘-.1511.’-=5? ~15 1.,
~ iii " éjg u.15~_M ’-.‘1j'e}i"i|f(| ii‘-‘-"_,, 3;: h '~ 1- -ii-2]
nu“~i~ .4.-I - - .,~» ,_»...; - -_;' “.1 1-‘. .- - l- ir-it -' ‘. ‘ ti. .1.-s». -it pt,-" . _>'»h~_..,~,,,,"~t._t2i.~.t”<,,.Ji.t1=t-~n,..—_' in gs, 5 -. ‘~ 1,

When the car moveswith increasing acceleration, the
velocity-time graph is a curve (Fig 3.6). The point A on the
graph corresponds to time t._ The magnitude of the
instantaneous acceleration at this instant is numerically
equal to the slope of the tangent at the point _A on the
velocity-time graph of the object as shown in Fig 3.6.
The distance moved by an object can also be determined
by using its velocity-time graph. For example, Fig 3.4
shows that the object moves at constant velocity v for time it.
The‘ distance covered: by the object given by Eq. 3.1 is
v x t. This distance. can also be found by calculating the
area under thevelocity-time graph. This area is shown
shaded in Fig 3.4 and is equal to v x t. We now give
another example shown in Fig 3.5. Here the velocity of the
object increases uniformly from 0 to v in time t. The
magnitude of its average velocity is giveneby

i ~ §0+v 1
Vav=i2--=5-V

’ .
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' How thedisplacementofa vertically
L. thrown bail varies with time? .

tymsverlcaldispacernenm

AOU1T5um‘8 O i

2C

A ~ n 2 4 lim9(5)
V9OC

-10

_.i. '2o

How the velocity of a vertically
thrown ball varies with time?
Velocity is upwards positive. -»

At the surface of the Earth, in
situations where air friction is
negligible,¢ob]ects fall with the

, same acceleration regardless of
theirweights. "

V ‘n ‘ i ‘ _ ‘ . I t - ‘ 3'1.‘ will

In school physics we have studied some useful equations
for objects moving at constant acceleration.
Suppose an object is moving with uniform acceleration a
along a straight line. if its initial velocity is v,~ and final
velocity after a time interva_l t is vi. Let the distance
covered during this interval be 3 then we have

vi =v,-+at ........ ‘ (3.5)

_ s =:i("";"")><i1 ........ .. (3.6)

8 = v,~t+ g at’ 1 ........ .. (3.1)
, v,=2= v,2+'2a,_s~ _ ........ (3.8)

These equations are useful only for linear motion with
uniform acceleration. When the object moves along a
straight line, the direction of motion does not change. ln
this case all the vectors can be manipulated like scalars. In
such problems, the direction of initial velocity is taken as
positive. A negative sign is assigned to quantities where
direction is opposite‘ to that of initial velocity.
In the absence of air resistance, all objects in free fall near
the surface of the Earth, move towards the Earth with a
uniform acceleration. This acceleration, known as
acceleration due to gravity, is denoted by the letter g and
its average value near the Earth surface is taken as
9.8 ms'2 in the downward direction.
The equations for uniformly accelerated motion can also be
applied to free fall motion of the objects by replacing a by g.

. ., (t i _ ; _ A . . i ‘

Newton's laws are empirical laws, deduced from
experiments. They were clearly stated for the first time by
Sir lsaac Newton, who published them in 1687 in his
famous ‘book called “Principia”. Newton’s laws are adequate
for speeds that are low compared with the speed of light.

54



4- -

Distance covered = average velocity x time = gv xt

Now we calculate the area under velocity-time graph which
is equal to the area of the triangle shaded in Fig 3.5. Its
value is equal to 1/2 base x height _= 1/2 v x t. T
Considering the above two examples it is‘ a general
conclusion that

‘ ; them: between the velocity-timegraphl A
- and the, ails is numefically to

' ‘ the distance covered by the object. . _ W

Example 3.1: The velocity-time graph of a car moving '
ona straight road is shown in Fig 3.7. Describe the motion
of the car and find the distance covered. Y

Solution: The graph tells us that the car starts from rest, _
and its velocity increases uniformly to‘ 20 ms" in 5 B C
seconds. Its average acceleration is given by 1‘ 20

Al 58 o 5 10 15 20x

-1 ' "V-11

a=—=li=4ms A

h t(s)——>The graph further tells us that the velocity of the car
remains constant from 5”‘ to 15"‘ second and.it then - Fig.3.7
decreases uniformly to zero from 15"‘ to 19"‘ seconds. The A
acceleration of the car during last 4 seconds is T

3: .9_\i=ii'2oms-1=-5n-ls"?
Af 4s

The negative sign indicates that the velocity of the car
decreases during these 4 seconds. '
The distance covered by the car is equal to the area
between the velocity-time graph and the time-axis. Thus Z
Distance travelled = Area of AABF + Area of rectangle BCEF

+ Area of ACDE

=%x20ms“x5s+20ms“x10s+%x20ms"x4s

=50m+200m+40m=290m
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For very fast moving objects, such as atomic particles in an
accelerator, relativistic mechanics developed by Albert
Einstein is applicable. _ _
Yo'u have already studied these laws in your secondary
school Physics. However a summarized review is given
below. . ‘ ,

- 1 , ‘ '

Newton's First Law of Motion ' E _
A body at rest will remain at rest, and a body moving with
uniform velocity will continue to do so, unless acted upon by
some unbalanced externalforce. This is also known as law
of inertia. The ‘property of an object tending to maintain the
state of rest or state of uniform motion is referred to as. the
object's inertia. The more inertia, the stronger is this
tendency in the presence ofaforce. Thus, . r. -A

4

Theframe of reference in which Newton’s first law of motion’
holds, is known as inertial frame of reference. A frame of
reference stationed on Earth is approximately an inertial
frame of reference. s ' ~

Newton’s Second Law of Motion A '
A force applied on'a body produces acceleration in its own
direction. The acceleration produced varies directly with
the applied force and inversely with the mass of the body.
Mathematically, it is expressed as .

l, I - 1 ti‘.-2 r er3, Q21. .‘i€;tY’i_7’ll“§<21@,'~!’|1~'j;"?.1lIE§1'|ir:l;:;t

ti.“ M4“..':*-ad-:;-iifi _"L;.:Y1;m.._=~ his Ia-

Newton‘s Third Law of Motion . _
Action and reaction» are equal and opposite. For example,

' whenever an interaction occurs between two objects, each
object exerts the same force on the other, but in the
opposite direction and for the same length of time. Each
force in action-reaction pair acts only on one of the two
bodies, the action. and reaction forces never act on the
same body. , ' .
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Interesting Information

Throwing a package onto shore from
a boat that was previously at rest
causes the boat to move out-ward
from shore (Newton sthird law)

as I1
1%?

, _ ' _-__»;»,; -' -\'.v.t'!~.~_‘~. .»;e\ __
. . . - ' “ . ~ .. i :i:‘:+“:‘~:"T
We are aware of the fact that moving object possesses a
quality by virtue of which it exerts a force on anything that
tries to stop it. The faster the object is travelling, the harder is
to stop it. Similarly, if two objects move with the same
velocity, then it is more difficult to stop the massive of the two.
This quality of the moving body was called the quantity of
motion of the body, by Newton. This term is now called
linear momentum of the body and is defined by the relation.

~ Linear momentum = p = my i (3.10)
ln this expression v is the velocity of the mass m. Linear
momentum is, therefore, a vector quantity and has the
direction of velocity. ,

The SI unit of momentum _-is kilogram metre - per second
(kg m s"). It can also be expressed as newton second" (N s).
Momentum and Newton’s Second Law of Motion

.Consider a body of mass m moving with an initial velocity v,.

5'-__-an

bulletor
bullet of the same8

Suppose an external foroe F acts upon it for time t after which
velocity becomes v1. The accelerationa produced by this force
is given by

v -v-
, a=.L._'. .

t .

By Newton's second law, the acceleration is given as

- j Fa=_

Equating the two expressions of acceleration, we have

£_Vr"'i
m t

or 1 FXt=mvf -mvr - .... .. (3.11)
where mv, is the initial momentum and mvris the final
‘momentum of the body
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The equation 3.11 shows that change in momentum is
equal to the product of force and the time for which force is
appl' This form of the second law is more general thanred.

'fl"ie“fornT'F"=f 711'a,_5€c2iise"i?c§2\nTa'ésiW“5?efiended'E”
account for changes as the body accelerates when its
mass also changes. For example, as a rocket accelerates,
it loses mass because its fuel is burnt and ejected to
provide greater thrust.

From Eq. 3.11. F = i-my‘gm‘

Thus, second law of motion can also be stated in terms of
momentum as follows _

*1 _,Time rate. of.changef'of momentum . -
1 _ l of a ‘body equals -the applied- force. , T

impulse
Sometimes we wish to apply the concept of momentum to
cases where the applied force is not constant, it acts for very
short time. For example, when a bat hits a cricket ball, the
force certainly varies from instant to instant during the
collision. In such cases, it is more convenient to deal with the
product of force and time (F x t) instead of either quantity
alone. The quantity F X tis called the impulse of the force,
where F can be regarded as the average force that acts
during the time t. -From Eq. 3.11 '

_ . lmpulse=F xt=mvg-mvi ........ .. (3.12)

Example3.2: A11500-~kg_ carhas us velocity reduced from‘
2Q ms?" to 15 ms" in 3.0js-. How'large'was'the’av'erage
ietaiding=foroe?g .- . _ . . . T

\.., - -.

Solution: Using the Eq 3.11 ‘ j ' 3
A A,

* F x 3.0sdd=1500'kg x 15 ms"150t1kg x 20.ms"
w or F =-2500 kg ms-1": -zsoo N1‘ -2.5 RN .1:

- ' . '1‘ - __

(The negative sign indicates that the-force is retarding one.
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Fig. 3.8

Law of Conservation of Momentum
Let us consideran isolated system. It is a system on which

, no external agency exerts any force. For example, the
molecules of a gas enclosed in a glass vessel at constant
temperature constitute an isolated system. The molecules
can collide with one another because of their random
motion but, being enclosed by glass vessel, no external
agency can exert a force on them. _ V

' Consider an isolated system of two smooth hard interacting
balls of masses m1 and mg, moving along the same straight
line, in the same "direction, with velocities vi and v2
respectively. Both the balls collide and after collision, ball of
mass mi moves with velocity v'1 and mg moves with velocity
v'2 in the same direction as shown in Fig 3.8. ;
To find thechange in momentum of mass mi, using Eq 3.11
we have, , '

F'xt=m1vj—m,v1 1. L L

Similariy for the ball of mass mg, we have

' rFxt=m2v§—m2v2

Adding these two expressions, we get - _

(F+ F’)t=(m1vi-m1v1)+(m2v§—m2v2)

Since the action force F is equal and opposite to the
reaction force F', we have F'= - F, so the left hand side of
the equation is zero. Hence,

O=(m1vl -m1v1)+(m2v'2-_m2v2)

In other words, change in momentum of 1st ball + change
in momentum of the 2"“ ball = 0 L

' i ’ " ’]' * 1 >--.~='» ; " V --= "; 3‘ -=4 2' ,-‘ i_»._.. ..,t1—~-**‘-.‘:: ','=_.1¢>-:3, ii._ i - “ 1

Which means that total initial momentum of the system
before collision is equal to the total final momentum of the
system after collision. Consequently, the total change in
momentum of the isolated two ball system is zero.

' For such a group of objects, if one object within the group
experiences a force, there must "exist an equal but
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opposite reaction force on some other object in the same
group. As a result, the change in momentum of the group
of objects as a whole is always zero. This can be .
expressed in the form of law of conservation of momentum
which states that L

. -The total linear‘ momentum of an
, i , isolated system"-lemains constant. .

In applying the conservation law, we must notice that the V
momentum of a body is a vector quantity. (WW1 B

Example 3.32 Two spherical balls of 2.0 kg and 3.0 kg 33?: rm-Q93 (0;
masses are moving towards each other with velocities of 19"»/<@>nt' the Passenger? fret“
6.0 ms“ and 4 ms“ respectively. liVhat must be the velocity of_ °l‘?l'°° °f “My ls
the smaller ball after collision, if the velocity of the bigger
ball is 3.0 ms"? "

Solution: As both the balls are moving towards one
another, so their velocities are" of opposite sign. Let us
suppose that the direction of motion of 2 kg ball is positive and i
that of the 3 kg is negative.
The momentum of the system before collision = m1 v1 + m 2 v2

= 2 kg ‘X e ms" + 3 kg X (4 ms'1)=12 _kgms'1-— 12 kg m s" = 0'
Momentum of the system aftercollision= m1 v'1+m 2 v’;

L =2kgx .\/1+3 kgx (-3)ms"
From the law of conservation of momentum F

Momentum of the system Z_ Momentum of the system V A ‘
before collision. after collision €ad'g§;°[_§";'§ fa 23:32’,

. ' F anycollision to prevent serious injury,
" ~ 0=2kg.\;v'1~9kgms'1

2kg.\-v'1=9kgms" ~
v‘, = 4.5 m s"
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mi ma

Before collision

_ V.‘ v.2
——> —-v

Q
m, ma

1 After collision
Fig. 3.9
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When two tennis balls collide then,_after collision, they will
rebound with velocities less than the velocities before the
impact. During this process, a portion of K.E is lost, partly
due to friction as the molecules in the ball move past one
another when the balls distort and partly due to its change
into heat and sound energies. ~ .

Under certain special conditions no kinetic energy is lost in
the collision.

'$

1 *=1',i1; .= .'-“_liE’,i:.l','-."”"--‘_‘ ;-,:i,,~l‘ij

For example, when a hard ball is dropped onto a marble
floor, it.rebounds to very nearly the initial height. lt looses
negligible amount of energy in the collision with the floor.
It is to be noted that momentum and total energy are
consent/ed in all- types of collisions. However,,the K.E. is
conserved only in elastic collisions.

Elastic Collision in One Dimension
Consider two smooth, non-rotating balls of masses m, and
mg, moving initially with velocities v1 and v2 respectively, in
the same direction. They collide and after collision, they
move along the same straight line without rotation. Let their
velocities after the collision be v1’ and v5 respectively, as
shown in Fig. 3.9. ‘

We take the positive direction of the velocity and momentum
to the right. By applying the law of conservation of
momentum we have T ~ . ’

. m1v1+m2vz=m1vi+m2v’z T
_ .m1(v, - v1’)=m2(v§- v2). ........ .. (3.14)

6.0
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As the collision is elastic,‘ so the K.E is also conserved.
From the conservation of K.E we have _

\ .

¢

1- 1 1 1
C -mi V121’ -1772 V_22= -m1V'12'* —m2 V'22

2 2 2 2

Or " m1(V12— V/12) = mg (l/g2- V22) -

or m1(v1+t'/'1) (V1-'-V'1)=mg(V§+Vgl (vi-v2) (3.15)
Dividing equation 3.15 by 3.14 ' -

i.,,(v_1+_v’1)=(v’g+v2) » ........ .. (3.16)
or (v,-v2)=(v’2-v’,)=-(v;-v5) ,
We note that, before. collision (vi - v Z) is the velocity of
first ball relative to the second ball. Similarly (vi - vg) is the
velocity of the first ball relative, to the second ball after
collision. It means that relative velocities before and after
the collision has the same magnitude but are reversed
after the collision. In other words, the magnitudeof relative
velocity of approach is equal to the magnitude of relative
velocity of separation. -
In equations 3.14 and 3.16, mi, mg, v1 and v2 are known
quantities. We solve these equations to find the values of
v'1 and v’2, which are unknown. The results are

-3 - ' Z .v'1=.—”-'l—i”—'l.v, +. -”-iv, ........ (3.17)
' "1-|+ I712 l ‘V

t3 __av»'2= -L"!-V, + --—--—-V2 . ........ .. . (3.18)m.+m2., imi.+r"=». i F ~
There are some cases
discussed below:

W118" _ m1 = mg

From equations 3.17 and ‘3.18 we find that

of special interest, which are

V'1=V2 '
and V’; = v1 1 as shown in Fig 3.10
(ii) When m1 = m, and v,= 0

In this case the mass mg be at rest, then v 2"= 0 the
equations 3.17 and 3.18 give
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case .(i)
VI V2

Q @
mi ma

Before collision

v§= v, v;= v,
ii ii

ml. _ ma
After collision

Fig. 3.10



case (ii) 1 '
v, v, = 0emt. _ mg

Before collision

. ' v', i= 0 v',= v,
ii? e

'_m1 _ ma

T After collision

_ Fig. 3.11 i -

case(ili)\ " 4
I =0 .

.v1 .' V2.

. "11 mg

Before "collision

. I ' ‘

y1=-y1 y2=0

e  Om.
ma

After collision

- Fig. 3.12

" case (iv)

* _.‘<_sfl so

yzfifl .

1 .

Beforecollislon

\/?=2v,_ .

..m‘l

- After collision ;

- _ Fig‘. a,.1a _ i

1» ,/,1: 1 ,,;="'_%'.=1~_..,,. 1 ~ I . 1
I111-l-[T72 - . . m1+m2 .

When m1 = mg then ball of mass m1 after collision will come
to a stop and mg will take off with the velocity that m1
originally has, as shown in Fig 3.11. Thus when a billiard
ball 'm1, moving on 81 table collides with exactly similar ball
mg attest, the ball m1 stops while mg begins to move with
the same velocity-, with’wh_ich 'm1 was moving initially.

(iii)Wh'e,na:li_9'h.t i>»dii¢.<.>iiiiie;wi*in a massiiie bedy at rest
in this case initial velocity Vg=,0i and mg >> mi. Under these
conditions m1 can be neglected as compared to mg. From
equ.ations~3.1-7 and 3.18 we have _v'1 =_ - vi and v’g = 0
The result is "shown in Fig 3.12. This means that mirwiil
bounce back with thesame velocity while mg will remain
stationary. This fact is made used of by the squash player.

(iv) When -" a massive body‘ collides -with T light
stationary b.od.y ~- _ " 1 A " ' 4' ~

in this case m, >> mg and vg = 0 so mg can be negleded in
equations 3.17 and 3.18. This gives v’, = vi and v’g = 2 vi.
Thusafter the collision, there is practically no change in the
velocity of the massive body, ‘but the lighter one bounces off
in"t_he_ fonivard direction with approximatelyjtwice the velocity
of the incident body, as shown in Fig. 3.13. -5 _ , - 1
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.= l°ii°&x9 ms" =-3 ms"
. - 70g+140g

I l/'2: .l/1 i
n'l=}'l' H12

= -__i2x7o9 x9 ms" = 6ims"
' g 70g+140g

Example 3.5: A 100 g golf ball is moving to the right with
a velocity of 20°ms". It makes a head on collision with an
8' kg steel ball, initially at rest. Compute velocities of the balls
after collision. i , ' - g _

Solution: We knowthat' \

._ , m -m ' ', . A 2mv, = -‘—Z-v, , and T i/g. =‘ —i.‘v,
m1+!Tl2 "~ m1+!n2 .

Hence . -

, Q.’ll( -‘BK - ..v.,=  x20 ms’=- 19.5 ms‘

_ . k ~ ' ~g v’g; i-——-2X019 x20 ms“= 0.5 ms‘
.0.1kg+8kg _ .

/ .

When water from a horizontal pipe strikes awall normally, a ,.
force is exerted on the wall. (Suppose the water strikes the
wall normally with velocity v and comes to rest on striking
the wall, the change in velocity is then 0 4 v = — v. From
second law, the force equals the momentum change per
second of water. if mass m of the water strikes the wall in
time tthen force F on the water is _ '

F = - If-7-7 v = - mass per second x changein velocity (3.19)

From third law of motion, the reaction force exerted by the
water on the wall is equal but opposite ~

Hence, 'F=-(-%7v)={'v .
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if anothercar crashes into back of
yours, the head~rest_,0f the car seat;
can save you from serious neck
injuiy. it helps to accelerate your
head forward with the same rate as
the restofyour body. »

Point to Ponder

In thrill machine. rides at
amusement parks, there nbe an
acceleration of 3g or more. But
without ,head rests, acceleration
like this would not be safe. Think
why not’? F 1
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Thus force can be calculated from the product of mass of
water striking normally per second and change in velocity.
Suppose the water flows out from a pipe at 3 kgs“ and its
velocity changes from 5 ms" to zero on striking the ball, then,

Force = 3 kgs” X (5 ms‘ - 0) = 15kgms'2 = 15 N
Example 3.6: A hose pipe ejects water at a speed of
0.3 ms" through a hole of area 50 cm? lf the water strikes a
wall normally, calculate the force on the wall, assuming the
velocity of the watervnomlal to the wall is zerq after striking.
Solution: j ' " ‘. - 4

Thevolumeofwategrgper e 245013 s =~do’0'15 “ T
lisecond strikingthe.wall:l CD05 X ' ’ mp

Mass per second striking the wall = volume x density T '
* T , =i0.0015m3x1000kg_m'3=1.5kg-it" '

Velocity change of wateronstriking thewall=e0.3ms'1=0 =.o.3ms"
_ F_orce = Momentum change per seco'nd~ .

u .
:> A = 1.5 ~kgs" x 0.3 ms" »= 0.45 kgms'2 = (11.45, N

,-

There are many examples where momentum changes are
produced by explosive forces within an isolated system
For example, when a shell explodes in mid-air, its
fragments fly off in different - directions." The total
momentum of all its fragments equals the initial momentum
of the ‘shell. Suppose a falling bomb explodes into two
pieces as shown in Fig. 3.14. The momenta of the bomb
fragments combine by vector addition equal to the original
momentum of the falling. bomb. _ T

Consider another example of bullet of mass m fired from a
rifle of mass M with a velocity v. Initially, _the total
momentum of the bullet and rifle is zero. From the principle
of conservation of linear momentum, when the bullet is
fired, the totalmomentum of bullet and rifle still remains
zero, since no external force has acted on them. Thus if v’
is the velocity of the rifle then 4
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mv (bullet) + Mv’ .(rifle) = 0

The momentum of the rifle is thus equal and opposite to
that of the bullet. Since mass of rifle is much greater than
the bullet, it follows that the rifle moves back or recoils with
only a fraction of the velocity of the bullet. . -

Rockets move by expelling burning gas through engines at
their rear. The ignited fuel turns to a high pressure gas
which is expelled with extremely high velocity from the
rocket engines (Fig. 3.15). The rocket gains momentum
equal to the momentum ofthe gas expelled from the engine
but in opposite direction. The rocket engines .continue to
expel gases after the rocket has begun moving and hence
rocket continues to gain more and more momentum. So
instead of travelling at steady speed the rocket gets faster
and faster so long;,the engines are operating.
A rocket carries its own fuel in the form of a liquid or solid
hydrogen and oxygen. _lt_can, therefore work at great heights

"Zi2Z§§%'I§"ir°'t2° Z"; ”’fi§"‘¢'“£l“e';° i’°l£§‘;i “’£‘§;l?éiu us v co ~ra y, _yp .
consumes about 1.0000 kgs". of fuel and ejects the burnt
gases at speeds of over"4000 ms". In fact, more than
g0% of the laun.ch masshof a rglcket cfonsists of fuel. only.

ne way to overcome t e pro em 0 mass o ue is to
make the rocket from several rockets linked together. »

When one rocket has done its job, itis discarded leaving
others to carry the space craft further up at ever greaterspeed.
If m is the mass of the gases ejected per second with_ velocity-
v relative to the rocket, the change in momentum per second
of the ejecting gases is mv. This equals the thrust produced
by the engine on the body of the ‘rocket. So, the acceleration
‘a' of the rocket is ' V

re

E '

fuel
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where M is- the mass_of the rocket. When the fuel in the
rocket is burned and ejected, the mass M of rocket
decreases and hence the acceleration increases.-

v 

Uptill now we have been studying the motion of a particle
along a straight line i.e. motion in one dimension. Now we
consider the motion of a ball, when it is thrown horizontally
from certain height. It is observed that the ball travels forward
as well as falls downwards; until it strikes something.
Suppose that the ball leaves the hand of the thrower at point
A (Fig 3.16 a) and that its velocity at that instant is completely
horizontal. Let this velocity be vx. According to Newton's first
law of motion, there will be no acceleration in horizontal
direction, unless a horizontally directed force acts on the ball.
Ignoring the air friction, only force acting on the ball during
flight is the force of gravity. There is no horizontal force acting
on it. So its horizontal velocity will remain unchanged and will
be vx, until the ball hits something. The horizontal motion of
ball is simple. The ball moves with constant horizontal
velocity component. Hence horizontal distance x is given by

l ~ '_ r ‘x=v,~,xt' (3.22)
The vertical motion of the ballis also not complicated. it
will accelerate downward under the force of gravity and
hence a = g. This vertical motion is the same as for a
freely falling body. Since initial vertical velocity is zero,
hence, vertical distance y, using Eq. 3.7, is given by

1 2.=—fY 29

lt is not necessary that an object should be thrown with
some initial velocity in the horizontal direction. A football
kicked off by a player; a ball thrown by a cricketer and a
missile fired from a launching pad, all projected at some
angles with the horizontal, are called projectiles.
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In such cases, the motion of a projectile can be studied
easily by resolving it into horizontal and vertical
components which are -independents of each "other.
Suppose that a projectile is fired in a direction angle 6 with
the horizontal by velocity v,- as shown in Fig. 3.16 (b). Let
components of velocity v,- along the horizontal and vertical
directions be v, cos 6 and v,- sin 9 respectively. The horizontal
acceleration is ax = 0 because we have neglected air
resistance and no other force is acting along this direction
whereas vertical acceleration ay = g. Hence, the horizontal
component v,-X remains constant and at any time t, we have

Vb; = ‘Vi; = . . . . . . . . ..

Now we consider the vertical motion. The initial vertical
component of the velocity is VrSin9 in the upward direction.
Using Eq. 3.5 the vertical component Vfy of the velocity at any
instant t is given by

. Vfy = v,- sin 9- gt ........ .. (3.24)

The magnitude of velocity at any instant is

v= ,/v,§ + 1/,3, ........ .. A (3.25)
The angle <11 which this resultant velocity makes with the
horizontal can be found from

tan 4. = lg (3.26)
ln projectile motion one may wish to determine the height
to which the projectile rises, the time of flight and horizontal
range. These are described below.’

Height of the Projectile r
In order to determine the maximum height the projectile
attains, we use_the equation of motion

6 " 2aS=Vf2—Vi2 ‘

As body moves upward, so a = - g, the initial vertical
velocity vi, = v,- sine and Vfy = 0 because the body comes to
rest after reaching the highest point. Since i
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l
dA photograph of two ballsirelease

simultaneously from a mechanism
that allows one ball to dpgplfifeely
while the other is projected
horizontally. At any time the two
balls are at the same level, i.e., their
vertical displacements are equal.



_ - S=height=h
So - 2 gh = O-v,’sin’6

or" g ......... .. ¢

Time of Flight i .
The time taken by the bodyto cover the distance from the
place of its projection to the place where it hits the ground
at the same level is called the time of flight.
This can be obtained by taking S = h = 0, because the
body goes up and comes back to same level, thus
covering no vertical distance. If the body is projecting with
velocity v making angle 6 with a horizontal, then its vertical
component will be v,sin9. Hence the equation is '

S= v,t+‘/2gt2 -

0'= v,-Sin(:>t—‘/igtz A .

3 _ ~ i=i-_--"Z_"*:““" ........ .. (3.28)

where t is the time of flight of the projectile when it is
projected from the ground as shown in Fig. 3.16 (b).

Range of the Projectile .
Maximum distance which a projectile coversin, __ the
horizontal direction is called the range of the projectile.

To determine the range R of the projectile, we multiply the
horizontal component of the velocity of projection with total
time taken by the body after leaving the point of projection.
Thus _ ,

A R = v ix xt using Eq. 3.28
R: v,- cos9x2_v,- sint)

. Q

R= -‘is;-2sin6 cost) 1
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But, 2 sin 6 cost) = sin2 6, thus the range of the projectile
depends upon the velocity of projection and the angle of

a?-projection. . . _
2 .Therefore, R = V?‘sin 2 e ...... .. (3.29)

For the range R to be maximum, the factor sin29 should
have maximum value which is 1 when 2 B=3 90° or 6= 45° .

Application to Ballistic Missiles - _
A ballistic flight is that in which a projectile is given an initial‘
push and is then -allowed to movejfreely due to inertia and
under the action of gravity. An un-powered and un-guided
missile is called a ballistic missile and the path followed by
it is called ballistic trajectory. 4 .
As discussed before, _a ballistic‘ missile moves in a way that is
the result of the superposition of two independent motions: a
straight line inertial flight in the direction of the launch and a
vertical gravity fall. By law of inertia, an object should sail
straight off in the direction thrown, at constant speed equal to
its initial speed particularly in empty space. But the downward
force of gravity will alter straight path into a curved trajectory.
For short ranges and flat Earth approximation, the trajectory
is parabolic but the dragless ballistic trajectory for spherical
Earth should actually be "elliptical. At high speed and for long
trajectoriesthe air friction is not negligible and some times the
force of air friction is more than gravity. lt affects both
horizontal as well as vertical motions. Therefore, it is
completely unrealistic to neglect the aerodynamic forces.
The shooting of a missile on a selected distant spot is a
major element of warfare. It undergoes complicated
motions due to air friction and wind etc. Consequently the
angle of projection can not be found by the geometry of the
situation at the moment of launching. The actual flights of
missiles are worked out to high degrees of precision and
the result were contained in tabular form. The modified
equation of trajectory is too complicated to be discussed
here. The ballistic missiles are useful only for short ranges.
For long ranges‘ and greater precision, powered and
remote control guided missiles are used.
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Ideal Path

Actual Path

ln the presence of air friction the
trajectory of a high speed projectile
fall shortiof a parabolic path.

.-

Example 3.7:‘) A ball is thrown with a speed of so ms"
in a- direction 30 above the horizon. Determinelthe height
to which it rises, the time of flight and the horizontal range.

Solution: Initially

' ~ vi, = vi cos6= 30 ms“x cos30°'= 25.98 ms"
vi, = vi sin6 = 30 ms"xsin30° = 15 ms"

As the time of flight

1 l‘t=-ggi sin9
g .

in ‘1

So _ 2 _i=--—2"5'“f =3.1s <9.8ms'

Height h = ___"’2s"‘29

so h Z <30 ms“? X (0-5)2
2x9.8 ms"

- h = 11.5 m
' 2

Range R = sin 2 0

S6 R _ (so ms")2 X case _
" 9.8 ms"

80m ‘

Example 3.8: ln example 3.7 calculate themaximum
range and the height reached by the ball if the angles of
projection are (i) 45° (ii) 60°. i

Solution: .
(i) Using the equation for height and range we have

29

" . 7’so h: (30ms X0713)
" . 2x9.8ms' -

h=23m
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instantaneous acceleration is the acceleration at a particular instant of time. it is the
value obtained from the average acceleration as time il1tel"‘»1"8l‘Af is madeismaller
and smaller. approaching zero. » , ' y

\ . '

. Av1 "lii"L>o 2?  l
The slope of vetocity-tirne graph 1 at any instant represents the instantaneous
acceleration at that time. ~ - ' i W A .
The area between velocity-time graph and the time axis is numerically equal to the
distance covered by the object. _ ' .
Freely falling is a body moving under the influenceof gravity alone.
Acceleration due to gravity nearthe Earth surface is 9.8 ms'2 if air friction is ignored.
Equations of uniformly accelerated motion are . ' 1 -

Vfzyi-{-at

N S7-'V,',t+ fgatz i" \(f2 =V,-2 +288

Newton's laws of motion . A A
1*“ Law:'The velocity of an object will be constant if net force on -it is zero.
2"“ Law: An object gains momentum in the direction of applied force, and the rate of

change of momentum is proportionalto the magnitude of the force. ‘
3'“ Law: When two objects interact, they exert equal and opposite force on each

other for the length of time, and_so receive equal and opposite impulses.
The momentum of an object is the product of its mass and velocity. ' ,
The impulse provided by a force is the product of force and time‘ for which it acts. it
equals change in momentum of the object. 1
For any isolated system, the total momentum remains constant. The momentum of
all bodies in a system add upto the same totalmomentum at all time;
Elastic collisions conserve both momentum and kinetic energy. in inelastic collision,
some of the energy is transferred by heating and dissipative forces such as friction,
air resistance and viscosity, soincreasing the intemal energyiof nearby objects.
Projectile motion is the motion of paificle that is thrown with an initial velocity and then
moves under the action of gravity. , .
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3.1

J7 —J Q1 I Q3

What is the difierence between uniform and variable velocity? From the

3.2

3.3

3.4

3.5

3.6

3.7

34;‘.

3.9
3.10

3.11

3.12

3.13

explanation or variable velocity, define acceleration. Give Sly units of velocity and
acceleration.
An object is thrown vertically upward. Discuss the sign of acceleration due to
gravity, relative to velocity; while the object is in air.
Can the velocity of an object reverse the direction when acceleration is constant?
If so, give an example. _ '
Specify the correct statements: '
a. An object can have a constant velocity even its speed is changing.
b. An object can have a constant speed even its velocity is changing.

4

c. An object can have a zero velocity even its acceleration is not zero.
d. An object subjected to a constant acceleration can reverse its velocity.
A man standing on the top of a tower throws a ball straight up with initial
velocity v,- and at the same time throws a second ball straight downward with the
same speed. Which ball will have larger speed when it strikes the ground? Ignore
air friction. ~
Explain the circumstances in which the velocity v and acceleration a of a car are
(l)'Parallel (il)Anti-parallel (iii) Perpendicular to one another
(iv)v is zero but a is not zero (v) a is zero but v is not zero
Motion with constant velocity is a special case of motion with constant acceleration.
ls this statement true? Discuss. ,
Find the change in momentum for an object subjected to a given force for a given
time and state law of motion in terms of momentum. -
Define impulse and show that how it is related to linear momentum?
State the law of conservation of linear mo’m'entum, pointing out the importance of
isolated system. Explain, why under certain conditions, the law is useful even
though the system is not completely isolated? _
Explain the difference between elastic and inelastic collisions. Explain how would
a bouncing ball behave in each case? Give plausible reasons for the factthat K.E
is not conserved in most cases? t
Explain what is‘ meant by projectile motion. Derive expressions for
a. the timeof flight b. the range of projectile.

Show that the range of projectile is maximum when projectile is thrown at an
angle of 45° with the horizontal. _
At what point or points in its path does a projectile have its minimum speed, its
maximum speed? .
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3-14 Each of the following questions is followed by four answers, one of which is
correct answer. Identify that answer. '
i- What is meant by a ballistic trajectory? ~

8- The paths followed by an un-powered and unguided projectile. -
b.- The path followed by the powered and unguided projectile.
6- The path followed by un-powered but guided projectile. A
d- The-path followed by powered and guided. projectile. '

li- What happens when a system of two bodies undergoes an elastic collision?
- 3- The momentum of the system changes.

b- The momentum of the system does not change. A
- The bodies come to rest after collision.

' - The energy conservation law is violated.

\_‘.l:\'.'-°.. *'"§.':1_:l»l$ '

3.1 A helicopter is ascending vertically at the rate of 19.6 ms". When it is
at a height of 156.8 m above the ground, a stone is dropped. How long does the
stone take to reach the ground? .

. ' (Ans: 8.0s)
3-2 Using the following data, draw a velocity,-time graph for a short journey on a

straight road of a motorbike. "

QO

Velocity (ms'1) 0 10 20 20 ' ~20 20 0

Use the graph to calculate

(3) the initial acceleration ’

(b) the final acceleration and
;_(C) the total distancetravelled by the motorc':yclist._ ‘

' [Ans:(8) 0.33 ms‘? ( b) -0 .67m 5-2. (c) 2.7k m]
3.3 A proton moving with speed of 1.0 x 107 ms" passes through a0.020 cm thick

sheet of paper and emerges with a speed. of 2.0 X 10° ms“. Assuming uniform
deceleration, find retardation and time taken to pass through the paper.

' l (Ans:- 2.4x10" ms'2,3.3X10'“ S)
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3.4 Two masses m1 and m2 are initially at rest with a spring compressed between
them. What is the ratio of the magnitude of their velocities after the spring has
been released? A .

—' (Ans; h =
. E » v2 m,

3.5 An amoeba of mass 1.0 X 10'" kg propels itself through water by blowing a jet of
water through a tiny orifice. The amoeba ejects water with a speed. of
1.0x10“ms" and at a rate of 1.0 X1043 kgs". Assume that the water is being
continuously replenished so that the mass of the amoeba remains the same.
a. If there were no force on amoeba other than the reaction force caused by

1 the emerging jet, what would be the acceleration of the amoeba?
- b. If amoeba moves with constantvelocity through water, what is force of

surrounding water (exclusively of jet) on the amoeba? ~ A
i , [Ans:(8) 1.0 x 10* ms'2 (bl 1.0 x 10'"N]

3.6 A boy places a fire cracker of negligible mass in an empty can of 40 g mass. He
plugs the end with a wooden block of mass 200 g. After igniting the firecracker, he
throws the can straight up. It explodes at the top of its path. If the block shoots out
with a speed of 3.0 ms‘, how fast will the can be going? - "

H l (Ans: 15 ms“)
1 l3.7 ’ An elec‘tron(m =9 .1 x 10'” kg) travelling at 2.0 x 107. ms‘ undergoes a head on

- collision with a hydrogen atom (m =1 .67 x 10'” kg) which is initially at rest.
Assuming the collision to be perfectly elastic and a motion to be along a straight
line, find the velocity of hydrogen atom.

' (Ans: 2.2 x 10‘ ms")

3.8 A truck weighing 2500 kg and moving with a velocity of 21 ms‘ collides with
stationary car weighing 1000 kg. The truck and the car move together after the
impact. Calculate their common velocity_ .

- (Ans: 15 ms")

3.9 Two blocks of masses 2.0 kg and 0.50 kg are attached at the two ends of a
' compressed spring. The elastic potential energy stored in the spring is 10 J. Find the

velocities of the blocks if the spring delivers its energy to the blocks when released.
- (Ans: 1.4 ms", -5.6 ms“)

3.10 A foot ball is thrown upward with an angle of 30° with respect to the horizontal.
To*throw a 40 m pass whatmust be the initial speed of the ball?

(Ans: 21 ms")
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3.11

3.12

3.13

3.14

3.15

A ball is thrown horizontally from a height of 10 m with velocity of 21 ms". How
far off it hit the-ground and with what velocity? 1

(Ans:30m,25 ms")

A bomber dropped a bomb at a height of 490 m when its velocity along the
horizontal was 300 kmh"i. ‘
(a) How long was it in air? 1 .
(b) At what distance from the point vertically below the bomber at the instant the

bomb was dropped, did it strike the ground? I (Ans:.|0s,:833 m)

Find the angle of projection of a projectile for which its maximum height and
horizontal range are equal. A (Ans: 76°)
Prove that for angles of projection, which exceed or fall short of 45° by equal
amounts, the ranges are equal. -
A SLBM (submarine launched ballistic missile) is fired from a distance of 3000km.
lf the Earth is considered flat and theangle of launch is 45° with horizontal, find the
velocity with which the missile is fired and the time taken by SLBM to hit the
target. 1

F (Ans: 5 .42_kms‘1,13 min)‘
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Learning Objectives ~ ~ 1 i
1. i .

Understand‘ of‘ "ins jterins the product of .a and
,displacai1nent»in.ths direction_cttjlaa_force. a_ s v 1

2. Understand and d6riV8~,.11't6‘ ~;=" s=: mgh for wort; 1.6 in ,a.
1 igravitational field __ _ 1 _ _

l Understandthat'wbrkicambe from area"under the force-displasenent graph.
1Rela¥teTpowertowork1'°‘dene'"‘ A 1' i r . " 1)

1.

9°\Ii@$-".4=f§->

Define power as the product of force and velocity. '
. (Quote examplesoff everyday -life. , ,

- Explainith.é1 , 1' ‘ 1 1
Urtdwstand the miriciple. 1 A ~ .
Derivean-expression ‘absoluteienergy. .1 A. .7 A s9-. .

»1o._
11.

A  . ¢-
, A _ ., ‘ _ \ , s , . .

_Unclerstand in 1a iresistivemadium loss of potentials energy of a body is equal
to gain 1kinetic energy of body bythe body against, friction. 1

12. Give examples of conservation of energies. from everyday life. A .1 i
1 13. some non-conventional sources of energy. 7 A 1

is often thought in terms of physical or mental effort._ ln Physics, however, the tenn
work involves two things (i) force (ii) displacement. We shall begin with a simple situation in
which work is.done by a constant force. - ~

 I \ .7

Let us consider an object which is being pulled by a constant force F at an angle 9 to the
direction of motion. The force displaces the object from position A to B through a
displacement d (Fig. 4.1). ‘
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Aziia B,,¢

We define work W done by the force F as the scalar
product of F and d. I

S *0 - E A F.d — Fd 008.9 - ........ .. 4 (4.1) .,

_"-i-'-PH‘‘1 = (F cos0) d

 -
_ _ Fig. 42(3)

F.
--—v

4.
Fig. 4.2(b)

P1 on
\

I. 5

I

e
O distance - R
<_—-i d —————>

Fig. 4.3

The -__qui-iintity (F cos9) is the component of the force in the
direction of the displacement d.

Can you tell how much work is being done? .

(i) On the pail when a person holding the pail by the
force F is moving fonivard (Fig. 4.2 a). -=1-.

(ii) On the wall (Fig. 4.2 b)?
When a constant force acts through a distance d, the event
can be plotted on a simple graph (Fig. 4.3). The distance is
normally plotted along x-axis and the force along y-axis. In
this case-as the force does not vary, the graph _will be a
horizontal straight line. lf the constant force F (newton) and
the displacementd (metre) are in the same direction then the
work done‘ is Fd- (joule). Clearly shaded area in Fig. 4.3 is
also Fd. Hence the area under a force- displacement curve
can be taken to represent the work done by the force. In case
the force F is not in the direction of displacement, the graph is
plotted between F cos 0 and d. - 1
From the definition of work, we find that:
(i) Work is a scalar quantity. 1 _
(ii) If 9 < 90°,work is done and it is said to be positive

work. i - 1
(iii) If e = 90°, no work is done. ,
(iv) i lf 0 > 90°, the work done is said tobe negative.
(v) Sl unit of work is N m known as joule (J).

lnf many cases the force does not remain constant during
the process of doing work. For example, as a rocket moves
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away from the Earth, work is done against the force of
gravity, which varies as the inverse square of the distance
from theEarth*s centre.-Similarly,—theferce exerted by a
spring increases with the amount of stretch. How can we
calculate the work done in such a situation?
Fig. 4.4 shows the path of a particle in the x-y plane as it
moves from point a to point b. The path has been divided into
n short inten/als of displacements Adq, Adg, ..... Ad, and
F1, F2, .... F,, are the forces acting during these intervals.

\

During each small interval, the force is supposed to be
approximately constant. So the workdone for the first
interval can then be written as 1

AW1 = F1 _ Ad1 = F1 CQ$91Ad1

and in the second interval 1
AW2 = F, ‘. Ad2= F,-.;'cos92A dz

and so on. The total work done in moving the object can
be calculated by adding all these terms. F
wjomj =AW1 +AW2+ . . . . . . ..+ AW;-|

= F1cos91Ad1+ F 2 cost-)2 Ad2+ .... ..+ F,, cost)" d,,

3 1 ...... .. (4.2)
' » '*<..,wi<' F ‘ ‘;~'~. I -.1 . . 'er-»-‘; IM-a

J1 G.

We caniexanqjne this graphically by plotting F cost-l
verses d,'as shown in Fig. 4.5. The displacement d has
been subdivided into n equal intervals. The value of
Fcosa at the beginning of each intewal is indicated in”).
the figure. 1J j .

Now‘the-ith shaded rectangle has an area F,- cose, Ad,
which is the work done during the ith interval. Thus,the
work done given by Eq. 4.2 equals the sum of the areas of
all the rectangles. If we subdivide the distance into a large
number of intervals so that each Ad becomes very small,
the work done given by Eq. 4.2 becomes more accurate. If
we let each Ad to approach zero then we obtain an exact
result for the work done, such as
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' In this limit Ad approaches1_zero, the total" area of the rectangles

pl Fig. 4.5) approaches the area between the F c1o1s9 cun/e and
Lfdraxis from a to b as shown shaded in Fig. 4.6. .

Thus, the work done by a variable force in moving a particle
between two points is equal to the area under the F cose

Dlsplaoementd1 _, i ‘ ~~ verses d curve between the two points a and b as shown in
Fiq. 4.6 1 ' '1 =, F19-4-5 , 1 ' 1 1

2
0 1 2 3

_‘ x (m)i)

Fig. 4.7
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~ Fig. 4.8
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The ‘space around the Earth in which its gravitational force
acts on a body is called the gravitational field. When an‘
object is moved, in the gravitational field, the work is done by
the gravitational force. If displacement is in the direction of
gravitational force, the work is positive. If the displacement
is against the -gravitational force, the work is negative.

Let us consider an object of mass m being‘ displaced with
constant velocity from point A to B -along various paths In
the presence of a gravitational force (Fig.14.8). lngthis .case
the gravitational force is equal to the weight mg of the
object. - , = 1
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The work done by the gravitational_[orce‘along the path
ADB can be split into two parts. The wo‘rk done along AD is

___ zero,~beoau_sethevweigjht—mg4sperp§ngli:§ul%:1o‘thisgpath, ' " ‘i “W
the work done along D_B is (—'mgh) because ésdifectlon of

- mg-tis epposneggfgheg of the_dispIage‘r?lént_i_4.-e.~6 = ?so°.
_ Hemp, the work~_di {rein disfiacinga from A to B

through path 1 is’ “ .- ‘ 4 i
0 . __l' ‘.

- V|(Aos=0"'('m9h)='mQh V
If we consider the path ACB, the work done along AC is
also (-mgh). Since the work done along CB is zero,
therefore, _

M/A35 = - + = ~

Let us now consider path 3, i._e. a cun/ed one. lmaginethe v
cun/ed path, to be broken down into a series of horizontal Ara A.

Xand vertical steps as shown in Fig. 4.9. Theregis no work _ g_
done along the horizontal steps, because mg is , Z,‘ ‘
perpendicular to the displacement for these steps. Work is ' '
done by the force of gravity only along the vertical 2
displacements. A32]/~ *

- A\L'_---‘m _ - — — _ — Q — - — - - _ _ _ --

, W43 =-mg(Ay,+Ay2 +Ay3+ +Ay,,) Fig_4_9
as (Ay, + Ayz +Ay3 + ...... .. + Ayn) = h ' ‘ '

Henc = - ie= WAB mg" e " .,
The net amount of work done along AB path is still (-mgh). '
We conclude from the above discussion that

Can you, prove that the work done along a closed path
such as ACBA or ADBA (Fig. 4.8), in a gravitational field is
zero? t
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The frictional force is a non-conservative force, because if
an object is moved over a rough surface between two
points along different paths, the work done against the

frictional force certainly depends onthe path followed.

In the definition of work, it_ is not clear, whether the same
amount of work is done in one second or in one hour. The
rate, at which work is done, is often of interest in practical
applications. e

lf‘work AW is done in a time intervalAt, then the average
power P,_,,, during the interval At is defined as '

If work is expressed as a‘ function of time, the
instantaneous power P at any instant is defined as

5»:iiflb

Where-AW is the work done in short interval of time At
following the instant t.

Power and Velocity '
It is, sometimes, convenient to express power in terms of a
constant force F acting on an object moving at constant
velocjy v. For example, when the propeller of a motor boat

A causes thewater to exert a constant force F on the boat, it
moves with a constant velocity v. The power delivered by
the motor at any instant is, then, given by _

P=Lr'mit AllAt—>0 At

we know AW=F.Ad

so P~= LimitAf—)0 At
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Sometimes, for example, in the electrical measurements, the
unit of work is expressed as watt second. However, a
commercial unit of electrical energy is kilowatt-hour. -
One kilowatt hour is the work done in one hour by "an
agency whose power is one kilowatt. _

Therefore, 7 ' 1 kWh = 1000 W x 3600 s.

or 11 kwn = 3.6 x10°J = 3.5 MJ

Energy of a body is its capacity to do work. There are two
basic forms of energy.

_ (I) .~.i;4?.»Ii=r:¢ (ii) §T~,,i_:~;r..;:: ;;== ~'

The kinetic energy is possessed by a body due to- its
motion and is given by the formula '

A . ........ .. ~ (4.7)5
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where m is, the mass of the body moving with velocity v. A ,
The potential energy is possessed bye a_ body because of
its position in a force field e.g. gravitational field or because

‘pf its constrained. state. The potential energy due to
" gravitational field near the surface of the Earth at a-height

h is given by" the formula _ - ~" . ,

This is called gravitational potential energy. The
gravitational P.E. is_alway'sd,e,termihed relative to some
arbitrary position which is assignedvthe value of zero P.E.
In _ the‘, present case, this reference level is the surface of
the Earth as position of zero P.E. lnsome cases a poin-tat
infinity from the Earth can also be chosen as zero reference
level. 1 t .-

The energy stored in a cornpressedspring is the potential
energy possessed by the spring due to its-compressed or
stretched state. This form of energy is called the elastic
potential energy.‘ , l_ _ _ .

nergy Principle

Whenever work is done on a body, it increases its energy.
For example a body of mass m is moving with velocity v,. A
force F acting through a distance d increases the velocity
to vr, then from equation of motion

i ‘ 2ad = vf — v,-2 ' _

|i—~—
. ’ \

From second law offmotion A ‘ . ~ ‘

Multiplying equations 4.9 and 4.10, we have-A g

Fd = —;—m~(v,2.s Vi/,2) .
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where the left hand side of the above equation gives the
work done on the body and -right hand side gives the

A _increaseeorecl1ange_in‘kineticeoergyofthe body.,.Th'us ___. _
‘-. ‘I . .

This is -known as work-energy principle. if a body is raised
up from the Earth'ssurface, the W0l'k done changes the
gravitational potential energy. Similarly, if at ' spring is
compressed, the work done on it equals the increase in its
elastic potential energy. _, - I

Absolute Potential Energy . A '
The absolute gravitational potential energy of an object at
a certain position is the work done by the_ gravitational
force in displacing the object from that position to infinity
where the force of gravity becomes zero. The relation for
the calculation of the work done by the gravitational force
or potential‘ energy = mgh, is true only near“ the surface of
the Earth where the gravitational force is nearly constant.
Butif the body is displaced through a large distance in
space from, let, point 1 to N (-Fig. 4.10) in the gravitational
field, then the gravitational force will not remain constant,
‘since it varies inversely to the square of the distance. "

in order to overcome this difficulty, we divide the distance
between points 1 and N into small steps each of length Ar
so th-at the value of the force- remains constant for each

-small step- Hence, the total work done can be calculated
by adding the work done during all these steps. If r1 and r2
are the distances of points 1 and 2 respectively, from the
centre O of- the Earth (Fig. 4.10.), the work done during
the first step i.e., displacing a body from point 1 to point 2
can be calculated as below.
The distance between the centre of this step and the
centre of the Earth will be F

!'+f'_v ___ . f=__1__i
2‘ .

if r2 — r, =Ar then r2 = r, ‘+Ar
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' r1"2
' Similarly the work done during the second step in which

the body is displaced from point 2 to 3 is

w2_>, =- GMm[-1--lj
_ T2 '3

Or W-1-); = "

and the work done in the last step is
I .» 1

Wrv-1—>~ = ‘ GMT" ———1— .
A V__ rN-1 rN r

Hence, the total work done in displacing a body from point1
to N is calculated by adding up the work done duringall
these steps. '

‘ vVgo¢a/ = M/1—>g + VVQ->3 + . . . . . . . . ..+ VVN. 1—)N

= _GMm[l-1],[l_1]. ...... ..
'1 '2 '2 '3 "N-1 TN 7_7

On simplification, we get 1

M/to!aI='GMm l-L
» F1 !'N'

lf the point N is<-situated at an infinite distance from the
Earth, so

r,.,=eo . , then l=l=0

Hence. l/l/eel =
1

Therefore,_ the general expression for the gravitational
potential eri'er‘gy"of a body situated at distance r from the
centre of Earth is _

U: -GMm
r

This is also known as the absolute value of gravitational
potential energy of a body at a distance r from the centre
of the Earth.

s7_



-<0

" 1-

Noté that when r.increases, U becomes less negative i.e., U
increases. It means when we raise a body above the surface
of the Earth its“',P.E. increases. The choice of zero point is
'"3l'bltl'3f_yF\_'ld orily the difference of P./E. Fro_?n one?point to

1 _‘

another isrsignificant, wether we consider, the surface of
the Earth or the point at infinity as zero P.E. reference, the
change in P.E. as we_ move a body above the surface of the
Earth, will al,ways_.be positive. . - i

Now the absolute potential energy on the surface of the
Earth is found by putting r = R (Radius of the Earth)

..i:' _,_' .v .I H‘ W i‘ _> " ~ ' r

‘

The negative sign shows ‘that the Earth's gravitational field
for mass m is attractive. The above expression gives the
work or the energy required to take the body out of the
Earth's gravitational field, where its potential energy with

_ respect to Earth is zero. ‘
Escape Velocity ' A
It is our daily life experience that an object projected upward
comes back to the groundtafter rising to a certain height.
This is due to the force of gravity acting downward. With
increased initial velocity, the object rises to the greater
height before coming back. If we go on increasing the initial
velocity of the object, a stage comes when it will not return
to the ground. It will escape oxut of the influence of gravity.
The initial velocity of an object with which it goes out of the

g Earth's gravitational field, is known as escape velocity.

The escape velocity corresponds to the initial kinetic
energy gained by the body, which carries it to an infinite
distance from the surface of Earth. '

1 e initial K.E. = gmi/,1, "
We know that the workdone in lifting a body from Earth's
surface to an infinite distance is equal to the increase in
its potential energy .
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. A lncerase in P.E. = 0-(-G%)= G% '

'"—"wl'rere"M"and"R"are*the—mass“and"radius"of the“Eartn
" respectively. The body will escape out of the gravitational

field if the initial K:E.of the body is equal to the increase
, in P.E. of the body in lifting it up to infinity. Then A

,, .

1 M
I En“!/zesc = ‘

, i “'. ,~7' ' ' "»

. _ " _ ,_ V . , ~.» i.'. vi - _‘ . L

.R,As’, , g

‘_. _ .V. ._ ,3 _ .
‘ 7' ‘I’ ' VI I ‘ I'i. 7 ‘ >' > I -4

The value of vm comes out to be approximately 11 kmsi‘

Consider a body of mass m at rest, at a height h above the
surface of the Earth as shown in Fig. 4.11. At» position.
A, the body has P.E. = mgh and‘K;E. =' 0. We release the
body and ‘as it falls, we can examine how kinetic and‘
potential energies associated with it interchange. .

. Let us calculate F?.E..and' K.E. at position B when..the
body has fallen through.a distance x, ignoring air friction.

‘ . P.E_. =mg (h—]x)T '

and , K.E. = gmi/5

Velocity va, at B, can be calculated from therelation,

. _ Vfz = V/2 ‘T

v,=vB , V v,-=_0‘ , 'S=x.
- v§=0+2gx=2gx, A A
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‘ P.E = mgh
K.E=0

P.E = mt; (h—X)
K.E = mgx

P.E = 0
F K.E =mgh

~ C

aw1’ \;_<’._9

iv?
i
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Fig. 4.11'
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1‘ .
K.E. = Em (2_qx) = mgx

Total energy at B = P._E. +:K.E. -H ' F
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At positiion C, just beforelthe body strikes the Earth, P.E. = 0-
and K.E. = gmvcf, where vc can be found out by the

following expression. 1
1 1 v¢?¢=yf+2gh=2gn~ as v,=0

i.e..- - K.E. = %mi/Q2 = gm x 2gha= mgh A

Thus at point C, kinetic energy is equal to the original‘ value.
of the potential energy of the body. Actually when a body
falls, its velocity increases i.e., the body is being accelerated
under the action of gravity. The increase in velocity results

e in the increase in its. kinetic energy. On the other hand, as
the body falls, its height decreases and hence, its potential
energy also decreases. Thuswe see (Fig. 4.12) that, I *

. Loss inP.E.=.Gain in K.E. ‘ A ~ ~
‘ ‘ _ '-"' Q _ v N 7. "M _ .‘ _ —. g.» . V . ~

V .7 l W‘ W» ~< . ii ,1: -1 A5,: V‘ ‘ _ r; ,,

Where v, and v2 are velocities -of the body at heights h,
and ha respectively. This result is true only when frictional
force is not considered. '
If we assume that a frictional force f is present during the
downward motion, then a part of P.E. is used in doing WOl’k
against friction equal to f h. The remaining P.E. = mgh -fh
is converted into K.E. V ‘

Hence, mgh —fh= 2- mi/~ '- -

. 1: ___.'~.. , -~ ~ - .1 ' " ' ' i.

l_oss in P.E. = Gain in K.E. ,+ Work doneagainst friction.
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of the same. basic quantity, i.e. mechanical ene_rgy.'Total
mechanical energy of a bo'_dy is the sum of the kinetic
energyand potential energy.. in our previous discussion of
a falling body, potential energy may change intokinetic
energy and ivice versa, buttthe total energy remains
constant. Mathematically, A ‘ ' ' "~

Total Energy =‘ P.E. + K.E. .= Constant 1
This is a_ special case of the law of conseirvation of energy
which states that: A '. '

This is oneiof the basic laws of physics. We daily observe
many energy -transformations from one form to another.
Some forms, such as electrical arid chemical energy, are
more easily transferred than others, such as heat. Ultimately
all energy transfers result in heating of the environment and
energyiis wasted. For example, the P.E. of the falling object
changes to K.E., but onstriking the ground, the K.E. changes
into heat and sound. If it seems in an energy transfer that
some energy has disappeared, the lost” energy is often
converted into heat. This appears to be the fate of all
available energies and is one reason why new sources of
useful energy have to be developed. 1, ' "
Exampief e.3_;:..A at mass atria is from an
rest li>v$ittOn- 5.6 m the is its mioeiiy at e‘
heightefatimaeiairetliiegtuitineir. ‘ '-

- , . ». _g>_ l . _seiutiiem Maine ~.  
. ‘A A '

As v?1==0‘ A and Vg=V
Hence ' v= ‘J2Q(h1_'h2) _ . '

or v‘ r= ~12 x9.8 ms"2 x 2.0.61 = 6.3 rn sf’
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Land ~ Turbine

High Tide: -
Water level equalized.

. Ldw tide:
Water is beginning to flow out of
basin to ocean, driving turbines.

Water level equalized.

High tide:
Water is allowed to flow back
into the basin, driving turbines.

Fig. 4.1: "
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These are theenergy sources which are not very common
these days. However, it_is expected that these sources
will contribute substantially to the energy demandof the
future. Some of these are introduced briefly here. .

Energy from Tides A 1 T
One very novel example of obtaining energy from
gravitational field» is the energy obtained from tides.
Gravitational force of the moon gives rise to tides in the
sea. The tides raise the water in the sea roughly twice a
day. If the water at the high tide is trapped in a basin by
constructing a dam, then it is possible to use this as a
source of energy. The dam is filled at high tide and water is
released in a controlled‘way at low tide to drive the
turbines. At the next high tide the dam is filled again and
the in rushing water also drives turbines and generates
electricity as shown systematically in the Fig. 4.13.

Energy from Waves T
The tidal movement and the winds blowing across the
surface of the ocean produce strong water waves. Their
energy can be utilized to generate electricity. A method of
harnessing wave energy is to use large floats which move up
and down with the waves. One such deviceinvented by
Professor Salter is known Salter’s duck (Fig. 4.14). it consists
of two parts (i) Duck float. (ii) Balance float. _

. " Fig.4.14 " 4
The wave energy makes duck float move relative to' the
balance float. The relative motion of the duck float is then
used to run electricity generators. .
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Solar Energy _
The Earth receives huge amount gt energydirectly from hot water
the Sun each day. Solar energy at normal incidence
outside the Earth's atmosphere is about 1.4 kWm'2 which
is referred as solar‘ constant. While passing through the
atmosphere,-the total energy is reduced due to reflection,
scattering and absorption by dust particles, water vapours
and other gases. On a clear day at noon, the intensityof
solarehergy reaching the Earth's surface is about 1kWm'2.
This energy can be used directly. to heat water with the help
of' large solar reflectors and thermal absorbers. it can also
be converted toietectricityfln one method the flat plate
collectors are used for heating water. A typical collector is
shown in Fig. 4.15 (a). it has a blackened surface which
absorbs energy directly from solar radiation. Cold water
passes over the surface and is heated upto about 709C.
Much higher temperature can be achieved by
concentrating solar radiation on to a small surface area by
using huge reflectors (mirrors) or lenses to produced
steam for running a-turoine. _
The other method is the direct conversion of sunlight into
electricity through the use of semi conductor devices called
solar cells also known as photo voltaic cells. Solar cells are
thin wafers made from silicon. Electrons in the silicon gain
energy from sunlight to create a voltage. The voltage
produced by a single voltaic cell is very low. In order to get
sufficient high voltage for practical use, a large number of
such cells are connected in series forming a solar cell panel.
For cloudy days or nights, electric energy can be stored
during the Sun light‘ in Nickel cadmium batteries by
connecting them to solar panels.‘These batteries can then
provide power to electrical appliances at nights or on
cloudy days. . ,
Solar cells, although, are expensive but last a long time and
have low running‘ cost. Solar cells are used to power
satellites having large solar panels which are kept facing the
Sun (Fig. 4.15 b). Other examples of the use of solar cells
are remote ground based weather stations and rain ‘forest
communication -systems. Solar calculators and watches are
also invuse now-a-days. - .
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For your information
The rapid growth of human
population has put a strain on our
natural resources. A sustainable
society minimizes waste and
maximizes the benefit from each
resource. Minimizing the use of
energy is an other method of
conservation.We can save energy by;
(i) turning off lights and electrical

appliances when not in use.
(ii) using fluorescent bulbs instead

of incandescent bulbs _
(iii) using sunlight in offices,

commercial centers and . I
houses during daylight hours

(iv) Taking short hot shawers. -

1 .

gas-

digestar

Fig. us

Do you know 7' ,
Pollution ‘can be reduced if
(i) People usemass transportation
(ii) Use geothermal, solar, * ~

hydroelectrlcal and wind energy -
as alternative forms of energy.

Ace") ‘

4 4-

I

n

Energy From Biomass
Biomass is a potential soufceof renewable energy. This
includes all the organic materials such as crop residue,
natural vegetation, trees, animal dung and sewage. Biomass
energy or bio conversionrefers to the use ofthis material as
‘fuel or its conversion into fuels.
There are many methods used for the conversion of
biomassinto fuels. But the most common are .

1- Direct combustion 2- Fermentation
Direct combustion method is usually applied to get energy
from waste products commonly known as solid waste. It
will be discussed in the next section.
Biofuel such as ethanol (alcohol) is a replacement .of
gasoline. It is obtained by fermentation of biomassusing
enzymes and by decomposition through bacterial action. in
the absence of air (oxygen). _ , V
The rotting of biomass in a closed tank called a digester
produces Biogas which can be piped out toluse for cooking
and heating (Fig. 4.16).
The waste material of the process is a good organic
fertilizer. Thus, production of biogas provides us energy
source and also solves the problem of organic waste
disposal.

Energy from Waste Products
Waste products like wood waste, crop residue, and
particularly municipal solid waste can be used to get
energy by direct combustion. It is probably the most
commonly used conversion process in which waste
material is burnt in aconfined container. Heat produced in
this way is directly utilized in-the boiler to produce steam
that can run turbine generator. ‘

Geothermal Energy
This is the heat energy extracted from inside the Earth in
the form of hot water or- steam. Heat within the Earth is
generated by the following processes.
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1- Radioactive Decay _ ' v
The energy, heating the rocks, is constantly being released
by the decay of radioactive elements. ' ~ »

1- Resjdual Heat of the Earth - ' ‘
At some places hot igneous rocks, usually within 10km of
the Earth's surface, are in a molten and partly molten state.
They conduct heat energy from the Earth's interior which is
still very hot. The temperature of these rocks is about
200°C or more. . , ‘

3- Compression of Material h
The compression of material deep inside the Earth also
causes generation of heat energy. T '
In some place water beneath theground is in contact with
hot rocks and is raised to high temperature and pressure. lt
comes‘ to the surface as hot springs, geysers, or steam
vents.. The" steam can be directed to turn turbines of
electric generators. - '

At ‘places water is not present.and..hot rocks are not very
deep, the water is pumped down throughthem to get
steam (Fig. 4.17). The steam then can be used to drive
turbines or'for direct heating. .
An interesting phenomenon of geothermal energy is a
geyser. lt is a hot spring that dischargessteam and hot water,
intermittently releasing an explosive column into the air (Fig.
4.18). Most geysers erupt at irregular intervals. They usually
occur in volcanic regions. Extraction of geothermal heat
energy often occurs closer to geyser sights. This extraction
seriously disturbs geyser system by reducing heat flow and
aquifer pressure. Aquifer is a layer of rock holding water that
allows water to percolate through it with pressure.

9

, . 95



.- 4

Work done by a variable force is computed by dividing the path into very small
displacement irltervals and then tal_<ing~ the sum of works done for ._al| such inter'vals.

g V K . iW=i§:j1F,cos9,Ad, ' .

Graphically, the work done by a variable force in moving at particle between two
points is equal to the area under-the F C059 verses d curve between these two
points. V _ , l T _ ' '
When an object is moved in the gravitational field of the Earth,_ the work is done by
the gravitational force. The work done in the Earth’s gravitational field is independent
Uf'lIh§"flfllh followed, and_th_e work done. along. a closed path is zero. Such a force
field is called a oenservativefield. . E
Power is defined as the rate of doing workand is expressedas '

P= i or P=F.v _
At

Energy of a body is its capacity to do work. The kinetic energy is the energy possessed
by abody due to its motion. _ _ - D A '

The potential energy is possessed by a body because of its position in a force field.

The absolute P.E of a body on the surface of Earth is - . _

V “ -GMm .U9: R 4
The initial velocity of a body with which it should be projected upward so that it does not
oome back, is calledescape velocity. - ' _

- l2GM ;—~
' I Vase: 7;: 2gR

Some of the n-on -conventional energy sources are g
.. Energy from the tides Energy from waves

" Solar energy Energy from biomass
». Energy from waste products Geothermal energy

_. 0
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QUESTIONS _
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stationary with its engine running. From the stand point of work, how are these two
situationssimilar’?
Calculate the work done in kilo joules in lifting a mass of 10 kg (at a steady
velocity) through a vertical height of 10 m. * . '_
A force F acts through-a distance L. The force is then increased to 3 F, and then acts
through a further distance of 2 L. Draw the work diagram to scale. _
In which case is more work done? When a 50 kg bag of books is lified through 50 "cm,
or when a 50 kg crate is pushed through 2m across the floor with a force of 50 N?
An object has 1 J of potential energy. Explain what does it mean? .
A ball of mass m is held at a height hl above a table. The table top is at a height hg
above the floor. One student says that the ball has potential energy mgh1 but
another says that it is mg (h, + ha). Who is correct? I ,
When a rocketre-enters the atmosphere, its nose cone becomes very hot. Where
does this heat energy come from?
What sort of energy is in the following: : '

a) Compressed spring‘
b) Water in a high dam g
c) ' A moving car ‘

A girl drops a cup from a certain height, which breaks into pieces. What energy
changes are involved?
A boy uses a catapult to throw a stone which accidentally smashes a green house
window. List the possible energy changes. » _l

NUMERlCAl_ PROBLEMS

A man pushes a lawn mower with a 40 N force directed at an angle of 20°
downward from the horizontal. Find the work done by the man as he cuts a_ strip of
grass 20 m long.

. ~ (Ans: 7.5 X 10’ .1)
A rain drop (m = 3.35 x10'5 kg) falls vertically at a constant speed underthe influence
of the forces of gravity and fnction. In falling through 100 m, how much work is done by
(a) gravity and (b) friction. ‘

[Ans; (3) 0.0328 J (b) - 0.0328 J]
, \
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4.3

4.4

4.5

4.6

1__l 4.7

4.8

4.9

‘ §

A10.

‘Ten bricks, each 6.0 om thick and mass 1.5 kg, lie flat on a table.How much work is
required to stack them one on the top of another? _ .

V ~ _ _ - (Ans: 40 J)
A car of mass 800 kg travelling at 54 kmh" is brought to rest in 60 metres. Find the
average retarding force on the car. What has happened to original kinetic energy?

_ T (Ans: 1500 N)

A1000 kg automobile at the top of an incline 10 metre high and 100 m long is
released and rolls down the hill. What is its speed at the bottom ‘of the incline if the
average retarding force due to friction is 480 N? (Ans: 10 ms_,)

100 m‘°’]of water ispumped from a reservoir into a tank, 10 m higher than the
reservoir, in 20 minutes. lf density of water is 1000 kg ma. find

(a) the increase in P.E. H
_(b) the power delivered by the pump. 1

‘[Ans: (a) 9.8 x 10° J (b) 8.2 kW]
A force (thrust) of 400 N is required to overcome road friction and air resistance in
propelling an automobile at 80 kmh". What power (kW) must the engine develop?

4 _ , (Ans: 8.9 kW)

How large a force is required to accelerate an electron (m = 9.1 x 10*“ kg) from
rest to a speed of 2.0x107ms“ through a distance of 5.0 cm?

-(Ans: 3.6 X1045 N)

A diver weighing 750 N dives fro_m a board 10 m above the surface of a pool of water.
Use the conservation of mechanical energy to find his speed at a point 5.0 m aboye
the water surface, neglecting air friction. .

_ 1 (Ans: 9.9 ms“)

Achild starts from rest at the top of"a slide of height 4.0 m.(a)' What is his speed at
the bottom if the slide is frictionless? (b) if he reaches the bottom, with a speed of
6 ms", what percentage of his total energy at the top of the slide is lost as a result
of friction? " —

_ [Ans: (a) as ms" (b) 54%]
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ETCHED 5
CIRCULAR MOTION

Learning Objectives

C h a p t e r

At the end of this chapter the students will be able to:

1 Describe angular motion.
2 . Define angular displacement, angular velocity and angular acceleration.
3. Define radian and convert an angle from radian measure to degree and vice versa.
4. Use the equation S = rGand v = rco.

5 . Describe qualitatively motion in a curved path due to a perpendicular force and 
understand the centripetal acceleration in case of uniform motion in a circle.

6 Derive the equation ac = rco2 = v2/r  and Fc = mco2 r = mv2/r

7 Understand and describe moment of inertia of a body.
8. Understand the concept of angular momentum.
9. Describe examples of conservation of angular momentum.
10. Understand and express rotational kinetic energy of a disc and a hoop on an 

inclined plane.
11. Describe the motion of artificial satellites.
12. Understand that the objects in satellites appear to be weightless.
13. Understand that how and why artificial gravity is produced.
14. Calculate the radius of geo-stationary orbits and orbital velocity of satellites.

15; Describe Newton’s and Einstein’s views of gravitation.

w e have studied velocity, acceleration and the laws of motion, mostly as they are
involved in rectilinear motion. However, many objects move in circular paths and their 
direction is continually changing. Since velocity is a vector quantity, this change of direction 
means that their velocities are not constant. A stone whirled around by a string, a car turning 
around a corner and satellites in orbits around the Earth are all examples of this kind of 
motion.
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Fig. 5.1(b)
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In this chapter we will study, circular motion, rotational 
motion, moment of inertia, angular momentum and the 
related topics.

5.1 ANGULAR DISPLACEMENT
Consider the motion of a single particle P of mass m in a 
circular path of radius r. Suppose this motion is taking place 
by attaching the particle P at the end of a massless rigid rod 
of length r whose other end is pivoted at the centre O of the 
circular path, as shown in Fig. 5.1 (a). As the particle is 
moving on the circular path, the rod OP rotates in the plane 
of the circle. The axis of rotation passes through the pivot O 
and is normal to the plane of rotation. Consider a system of 
axes as shown in Fig. 5.1 (b). The z-axis is taken along the 
axis of rotation with the pivot O as origin of coordinates. 
Axes x and y are taken in the plane of rotation. While OP is 
rotating, suppose at any instant t, its position is OP1( making 
angle 0 with x-axis. At later time t + Af, let its position be 
OP2 making angle 0 + A0 with x-axis (Fig. 5.1c).

Angle A0 defines the angular displacement 
of OP during the time interval At
For very small values of A0, the angular 
displacement is a vector quantity.

i The angular displacement A0 is assigned a positive sign 
when the sense of rotation of OP is counter clock wise.

The direction associated with A0 is along the axis of 
rotation and is given by right hand rule which states that

Grasp the axis of rotation in right hand with 
fingers curling in the direction of rotation; 
the thumb points in the direction of angular 
displacement, as shown in Fig 5.1 (d).

Three units are generally used to express angular 
displacement, namely degrees, revolution and radian. We
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are already familiar with the first two. As regards radian 
which is SI unit, consider an arc of length S of a circle of 
radius r  (Fig 5.2) which subtends an angle u at the centre 
of the circle. Its value in radians (rad) is given as

0 = arclen-gtl rad 
radius

or

e = ^  rad
,r

S = r0 (where 0 is in radian) ....  (5.1)

If OP is rotating, the point P covers a distance s = 2 nr in 
one revolution of P. In radian it would be

S 2nr = 2 K

So

r r

1 revolution = 2 n rad = 360c

Or 1 rad = 360
2 k

57.3

5.2 ANGULAR VELOCITY
Very often we are interested in knowing how fast or how 
slow a body is rotating. It is determined by its angular 
velocity which is defined as the rate at which the angular 
displacement is changing with time. Referring to Fig. 5.1(c), 
if A0 is the angular displacement during the time 
interval At, the average angular velocity coav during this 
interval is given by

coau = A0
At

(5.2)

The instantaneous angular velocity oo is the limit of the 
ratio A0/Af as At, following instant t, approaches to zero.

Thus to = Lim ^  
A*-» 0 A*

(5.3)

In the limit when At approaches zero, the angular 
displacement would be infinitesimally small. So it would be a_ 
vector quantity and the angular velocity as defined by
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Eq.5.3 would also be a vector. Its direction is along the axis 
of rotation and is given by right hand rule as described earlier.

Angular velocity is measured in radians per second which is 
its SI unit. Sometimes it is also given in terms of revolution 
per minute. -̂------r->

5.3 ANGULAR ACCELERATION
When we switch on an electric fan, we notice that its 
angular velocity goes on increasing. We say that it has an 
angular acceleration. We define angular acceleration as 
the rate of change of angular velocity. If ©j and cof are the 
values of instantaneous velocity of a rotating body at 
instants t, and tf, the average angular acceleration during 
the interval tf -1 , is given by

cof - co| Aco
At

(5.4)

The instantaneous angular acceleration is the limit of the

ratio — as At approaches zero. Therefore, instantaneous 
At

angular acceleration is given by

Acoa = Lim
0 At

(5.5)

The angular acceleration is also a vector quantity whose 
magnitude is given by Eq. 5.5 and whose direction is along 
the axis of rotation. Angular acceleration is expressed in 
units of rad s'.2

Till now we have been considering the motion of a particle 
P on a circular path. The point P was fixed at the end of a 
rotating massless rigid rod. Now we consider the rotation 
of a rigid body as shown in Fig. 5.3. Imagine a point P on 
the rigid body. Line OP is the perpendicular dropped from 
P on the axis of rotation. It is usually referred as reference 
line. As the body rotates, line OP also rotates with it with 
the same angular velocity and angular acceleration. Thus 
the rotation of a rigid body can be described by the rotation 
of the reference line OP and all the terms that we defined 
with the help of rotating line OP are also valid for the 
rotational motion of a rigid body. In future while dealing
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with rotation of rigid body, we will replace it by its reference 
line OP.

5.4 RELATION BETWEEN ANGULAR 
AND LINEAR VELOCITIES

Consider a rigid body rotating about z-axis with an angular 
velocity co as shown in Fig. 5.4 (a).

Imagine a point P in the rigid body at a perpendicular 
distance r from the axis of rotation. OP represents the 
reference line of the rigid body. As the body rotates, the 
point P moves along a circle of radius r  with a linear 
velocity v whereas the line OP rotates with angular velocity 
co as shown in Fig. 5.4 (b). We are interested in finding out 
the relation between co and v. As the axis of rotation is 
fixed, so the direction of co always remains the same and 
co can be manipulated as a scalar. As regards the linear 
velocity of the point P, we consider its magnitude only 
which can also be treated as a scalar.

Suppose during the course of its motion, the point P moves 
through a distance PiP2 = \s  in a time interval At during 
which reference line OP has an angular displacement A0 
radian during this interval. As and A0 are related by Eq. 5.1.

AS= rA0

Fig. 5.4(a)

Dividing both sides byAf

AS _ A0 
At ~ At

(5.6)

In the limit when A f -> 0 the ratio AS [At represents v, the 
magnitude of the velocity with which point P is moving on 
the circumference of the circle. Similarly A0/At represents 
the angular velocity co of the reference line OP. So 
equation 5.6 becomes

r co (5.7)

In Fig 5.4 (b), it can be seen that the point P is moving 
along the arc P1P2. In the limit when A f ->  0, the length of 
arc P-|P2 becomes very small and its direction represents 
the direction of tangent to the circle at point P^ Thus the 
velocity with which point P is moving on the circumference
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You may feel scared at the top of 
ro lle r coaste r ride in the 
amusement parks but you never 
fall down even when you are 
upside down. Why?

Do You Know?

J - r9
As the wheel turns through an 
angle h it lays out a tangential 
distance S * fe .

of the circle has a magnitude v and its direction is always along 
the tangent to the circle at that point. That is why the linear 
velocity of the point P is also known as tangential velocity.

Similarly Eq 5.7 shows that if the reference line OP is 
rotating with an angular acceleration a, the point P will also 
have a linear or tangential acceleration a*. Using Eq 5.7 it 
can be shown that the two accelerations are related by

at = ra    (5.8)

Eqs 5.7 and 5.8 show that on a rotating body, points that 
are at different distances from the axis do not have the 
same speed or acceleration, but all points on a rigid body 
rotating about a fixed axis do have the same angular 
displacement, angular speed and angular acceleration at 
any instant. Thus by the use of angular variables we can 
describe the motion of the entire body in a simple way.

Equations Of Angular Motion
The equations (5.2, 5.3, 5.4 and 5.5) of angular motion are 
exactly analogous to those in linear motion except that 0, 
o) and a have replaced s. v and a, respectively. As the 
other equations of linear motion were obtained by 
algebraic manipulation of these equations, it follows that 
analogous equations will also apply to angular motion. 
Given below are angular equations together with their 
linear counterparts.

Linear Angular
vi=v, + at cof =cOj + a t ............ (5.9)

2aS= v? -  v* 2 a 0 = (o ? -o )f   (5.10)

$=  vjf + A a f2 0=a>if + A a f2. (5.11)

The angular equations 5.9 to 5.11 hold true only in the 
case when the axis of rotation is fixed, so that all the 
angular vectors have the same direction. Hence they can 
be manipulated as scalars.

E x a m p le  5 .1 : An electric fan rotating at 3 rev s'1 is 
switched off. It comes to rest in 18.0 s. Assuming
deceleration to be uniform, find its value. How many
revolutions did it turn before coming to rest?
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Solution: In this problem we have

wi = 3.0 rev s'1, c°f=0. t=  18.0s and a = ? , 9 = ?

From Eq. 5.4 we have

a .  -">■ = 1° ~ 3 °2revsl  = - q.167 rev s'2
t 18.0s

and from Eq 5.11, we have

0 =<0,1 + 1 g f2

= 3.0 rev s 1 x 18.0 s + 1  (-0.167 rev s'2) x (18.0 s)2 = 27 rev

5.5 CENTRIPETAL FORCE
The motion of a particle which is constrained to move in a 
circular path is quite interesting. It has direct bearing on the 
motion of such things as artificial and natural satellites, 
nuclear particles in accelerators, bodies whirling at the 
ends of the strings and flywheels spinning on the shafts.

We all know that a ball whirled in a horizontal circle at the 
end of a string would not continue in a circular path if the 
string is snapped. Careful observation shows at once that 
if the string snaps, when the ball is at the point A, in 
Fig. 5.5 (b), the ball will follow the straight line path AB.

The fact is that unless a string or some other mechanism 
pulls the ball towards the centre of the circle with a force, 
as shown in Fig. 5.5 (a), ball will not continue along the 
circular path.

The force needed to bend the normally 
straight path of the particle into a circular 
path is called the centripetal force.

If the particle moves from A to B with uniform speed v as 
shown in Fig. 5.6 (a), the velocity of the particle changes its 
direction but not its magnitude The change in velocity is 
shown in Fig. 5.6 (b). Hence, the acceleration of the particle is

A v
a = —

A f

Direction of motion changes 
continuously in circular motion.

Fig. 5.5(a)
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Fig. 5.6(b)

Banked tracks are needed for 
turns that are taken so quickly that 
friction alone cannot provide 
energy for centripetal force.

where M  is the time taken by the particle to travel from A ‘to 
8. Suppose the velocities at A and B are v r and V2 
respectively. Since the speed of the particle is v, so the time 
taken to travel a distance s, as shown in Fig. 5.6 (a) is

At = — 
v

so a = v -^ -    (5.12)
O

Let us now draw a triangle PQR such that PQ is parallel 
and equal to v1 and PR is parallel and equal to v2, as 
shown in Fig. 5.6 (b). We know that the radius of a circle is 
perpendicular to its tangent, so OA is perpendicular to 
and OB is perpendicular to v2 (Fig. 5.6 a). Therefore, angle 
AOB equals the angle QPR between and v2. Further, as 
V1 = v2 = v and OA = OB, both triangles are isosceles. 
From geometry, we know “two isosceles triangles are 
similar, if the angles between their equal arms are equal”. 
Hence, the triangle OAB of Fig. 5.6 (a) is similar to the 
triangle PQR of Fig. 5.6 (b). Hence, we can write

Av _ AB 
v r

If the point B is close to the point A on the circle, as will be the 
case when At - >  0, the arc AB is of nearly the same length as 
the line AB. To that approximation, we can write AB = s, and 
after substituting and rearranging terms, we have,

. ' Av = S ^
i r

Putting this value for Avinthe Eq. 5.12, we get

............... (5.13)

where a is the instantaneous acceleration. As this 
acceleration is caused by the centripetal force, it is called the 
centripetal acceleration denoted by ac. This acceleration is 
directed along the radius towards the centre of the circle. In 
Fig. 5.6 (a) and (b), since PQ is perpendicular to OA and PR 
is perpendicular to OB, so QR is perpendicular to AB. It may 
be noted that QR is parallel to the perpendicular bisector of 
AB. As the acceleration of the object moving in the circle is
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Do You Know?

parallel to Ay when AB -»  0, so centripetal acceleration is 
directed along radius towards the centre of the circle. It can, 
therefore, be concluded that:

The instantaneous acceleration of an object 
travelling with uniform speed_jn a circle is 
directed towards the centre of the circle and 
is called centripetal acceleration.

The centripetal force has the same direction as the 
centripetal acceleration and its value is given by

ma, mv‘
r

In angular measure, this equation becomes 

Fc = m m 2 .......

(5.14)

(5.15)

Example £ .2 : A 1000 kg car is turning round a corner at 
10 ms'1 as it travels along an arc of a circle. If the radius of 
the circular path is 10 m, how large a force must be 
exerted by the pavement on the tyres to hold the car in the 
circular path?

Solution: The force required is the centripetal force.
So
_  mv2 1000kgx100m2s'2 4 n . _ 4l _2 h n 4n4 MFc = ------ = --------- ----------------- = 1.0x104kgms £ =1.0x104N
c r 10m y

This force must be supplied by the frictional force of the
pavement on the wheels.

Example 5.3: K ball tied to the end of a string, is swung 
in a vertical circle of radius r  under the action of gravity as 
shown in Fig. 5.7. What will be the tension in the string 
when the ball is at the point A of the path and its speed is v 
at this point?

Solution: For the ball to travel in a circle, the force 
acting on the ball must provide the required centripetal 
force. In this case, at point A, two forces act on the ball, the 
pull of the string and the weight w of the ball. These forces 
act along the radius at A, and so their vector sum must 
furnish the required centripetal force. We, therefore, have

Curved flight at high speed 
requires a large centripetal force 
that makes the stunt dangerous 
even if the air planes are not so
close.
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Fig. 5.8

The force F causes a torque about 
the axis O and gives the mass m 
an angular acceleration about the 
pivot point.

Do You Know?

)
Two cylinders of equal mass. The 
one with the larger diameter has 
the greater rotational inertia.

T + W = mv as w -  mg

_  mvT =  mg = m
r -9

If —  = g , then T will be zero and the centripetal force is 

just equal to the weight.

5.6 MOMENT OF INERTIA
Consider a mass m attached to the end of a massless rod 
as shown in Fig. 5.8. Let us assume that the bearing at the 
pivot point 0  is frictionless. Let the system be in a horizontal 
plane. A force F is acting on the mass perpendicularto the rod 
and hence, this will accelerate the mass according to

F = ma

In doing so the force will cause the mass to rotate about O. 
Since tangential acceleration a( is related. to angular 
acceleration a by the equation.

a, = ra

so, F = mra

As turning effect is produced by torque t  t it would, 
therefore, be better to write the equation for rotation in 
terms of torque. This can be done by multiplying both sides 
of the above equation by r. Thus

rF = x = torque = m r2a

which is rotational analogue of the Newton’s second law of 
motion, F = ma.

Here F is replaced by t ,  a by a and m by m r2. The quantity 
m r2 is known as the moment of inertia and is represented by 
I. The moment of inertia plays the same role in angular 
motion as the mass in linear motion. It may be noted that 
moment of inertia depends not only on mass m but also on r 2
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Most rigid bodies have different mass concentration at 
different distances from the axis of rotation, which means 
the mass distribution is not uniform. As shown in Fig. 5.9 (a), 
the rigid body is made up of n small pieces of masses

Fig. 5.9
Each small piece of mass within a large, rigid body undergoes 
the same angular acceleration about the pivot point.

For Your Information

Moments of Inertia of various 
bodies about AX •

(a)
IB
<-

A
Thin Rod

(b)

Thin ring or Hoop

I = mr1

m1t m2t....mn at distances r1f r2l. ...rnfrom the axis of rotation O .. 
Let the body be rotating with "the angular acceleration a . 
so the magnitude of the torque acting on m1 is

= m1r12 cl.

Similarly, the torque on m2 is

t  2 — m2r2 ex2

and so on.

Since the body is rigid, so all the masses are rotating with 
the same angular acceleration a,

Total torque x totai is then given by

i t  total = (m ,r,2 + m2r /  +  +m„r„2)a

= ( i > , r ;2 ) a  
1=1

(C)

(d)

Solid disc or cylinder
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or t  = /a     (5.16)

where I  is the moment of inertia of the body and is 
expressed as

i = ' Z m, ri
i=1

(5.17)

5.7 ANGULAR MOMENTUM
We have already seen that linear momentum plays an 
important role in translational motion of bodies. Similarly, 
another quantity known as angular momentum has 
important role in the study of rotational motion. .

A particle is said to posses an angular 
momentum about a reference axis if it 
so moves that its angular position 
changes relative to that reference axis.

Fig. 5.10

For Your Information

The sphere in (a) is rotating in the 
sense given by the gold arrow. Its 
angular velocity and angular 
momentum are taken to be 
upward along the rotational axis, 
as shown by the right-hand rule 
in (b).

The angular momentum L of a particle of mass m moving 
with velocity v and momentum p (Fig. 5.10) relative to the 
origin O is defined as

L = r x p (5.18)

where r is the position vector of the particle at that instant 
relative to the origin O. Angular momentum is a vector 
quantity. Its magnitude is

L = rp sin0= m rv sinG

where 0 is the angle between r and p. The direction of L is 
perpendicular to the plane formed by r and p and its sense 
is given by the right hand rule of vector product. SI unit of 
angular momentum is kg m2s‘1 or J s.

If the particle is moving in a circle of radius r  with uniform 
angular velocity co, then angle between r  and tangential 
velocity is 90°. Hence

But

L = mrv sin 90 = mrv

v = rco
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Hence L - m  r 2oo

Now consider a symmetric rigid body rotating about a fixed 
axis through the centre of mass as shown in Fig 5.11. 
Each particle of the rigid body rotates about the same axis 
in a circle with an angular velocity co. The magnitude of the 
angular momentum of the particle of mass m{ is m iv j ,  
about the origin O. The direction of Lj is the same as that 
of co. Since v, = r, co, the angular momentum of the /th 
particle is m, /72co. Summing this over all particles gives the 
total angular momentum of the rigid body.

n
L = ( £ m , r 2 ) co = /co

i=i

Where I  is the moment of inertia of the rigid body about the 
axis of rotation.

Physicists usually make a distinction between spin angular 
momentum (Ls) and orbital angular momentum (L0.) 
The spin angular momentum is the angular momentum of 
a spinning body, while orbital angular momentum is 
associated with the motion of a body along a circular path. w

The difference is illustrated in Fig. 5.12. In the usual 
circumstances concerning orbital angular momentum, the 
orbital radius is large as compared to the size of the body, 
hence, the body may be considered to be a point object.

Example 5.4: The mass of Earth is 6.00 x 1024 kg. The 
distance r from Earth to the Sun is 1.50 x 1011 m. As seen 
from the direction of the North Star, the Earth revolves 
counter-clockwise around the Sun. Determine the orbital 
angular momentum of the Earth about the Sun, assuming 
that it traverses a circular orbit about the Sun once a year 
(3.16 x 107s ).

Solution: To find the Earth’s orbital angular momentum 
we must first know, its orbital speed from the given data. 
When the Earth moves around a circle of radius r, it travels 
a distance of 2nr in one year, its orbital speed v0 is thus

2:rr

Fig. 5.11

(b ) 

Fig. 5.12

Orbital angular momentum of the Earth = L0 = mv0r
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Fig. 5.13
A man diving from a diving board.

Why does the coasting rotating 
system slow down as water drips 
into the beaker?

27t(1.50 x1 011m )2 x (6 .0 0 x 1 0 24kg)
3.16 x 107s

= 2.67 x 1040 kg m2 s'1

The sign is positive because the revolution is counter 
clockwise.

5.8 LAW OF CONSERVATION OF 
ANGULAR MOMENTUM

The law of conservation of angular momentum states that 
if no external torque acts on a system, the total angular 
momentum of the system remains constant.

Ltotai = Li + L2 + ....= constant

The law of conservation of angular momentum is one of 
the fundamental principles of Physics. It has been verified 
from the cosmological to the submicroscopic level. The 
effect of the law of conservation of angular momentum is 
readily apparent if a single isolated spinning body alters its 
moment of inertia. This is illustrated by the diver in 
Fig.5.13. The diver pushes off the board with a small angular 
velocity about a horizontal axis through his centre of 
gravity. Upon lifting off from the board, the diver’s legs 
and arms are fully extended which means that the diver 
has a large moment of inertia / 7 about this axis. The 
moment of inertia is considerably reduced to a new value 
I2, when the legs and arms are drawn into the closed tuck 
position. As the angular momentum is conserved, so

A ©1 = I2 ,®j>

Hence, the diver must spin faster when moment of inertia 
becomes smaller to conserve angular momentum. This 
enables the diver to take extra somersaults.

The angular momentum is a vector quantity with direction 
along the axis of rotation. In the above example, we 
discussed the conservation of magnitude of angular 
momentum. The direction of angular momentum along the
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axis of rotation also remain fixed. This is illustrated by the 
fact given below

The axis of rotation of an object will not change 
its orientation unless an external torque causes 
it to do so.

This fact is of great importance-for the Earth as it moves 
around the Sun. No other sizeable torque is experienced by 
the Earth, because the major force acting on it is the pull of 
the Sun. The Earth’s axis of rotation, therefore, remains fixed 
in one direction with reference to the universe around us.

5.9 ROTATIONAL KINETIC ENERGY
If a body is spinning about an axis with constant angular 
velocity w, each point of the body is moving in a circular 
path and, therefore, has some K.E. To determine the total 
K.E. of a spinning body, we imagine it to be composed
of tiny pieces of mass m1t m2,  If a piece of mass m, is
at a distance n from the axis of rotation, as shown in 
Fig. 5.14, it is moving in a circle with speed

Vi = n  to

Thus the K.E of this piece is

K.E, = 1  my,2

2  2 = -  m,7/ a)

The rotational K.E of the whole body is the sum of the 
kinetic energies of all the parts. So we have

K.Erot = -  ( m ^ 2G)2+ m2r22co2+.

= -  (m-ir-i2 +m2r2 +

We at once recognize that the quantity within the brackets 
is the moment of inertia /  of the body. Hence, rotational 
kinetic energy is given by

Do You Know?

The lawofconse 
momentum is in 
Tsports, particu 
gymnastics and i

rvation of angular 
nportant in many 
larly in diving, 
ce-skating.

A
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Interesting Information

(0.

(a) \ J
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Fig. 5.16

The moment you switch on your 
mobile phone, your location can be 
tracked immediately by global 
positioning system.

Where v is the orbital velocity and R is the radius of the 
Earth (6400 km). From Eq. 5.25 we get,

v= JgR

= V9.8ms'2 x6.4x106 m 

= 7.9 kms'1

This is the minimum velocity necessary to put a satellite 
into the orbit and is called critical velocity. The period T is 
given by

2 kR _  6400 km
T =  = 2 x3.14 x

v 7.9 km s1

= 5060s = 84 min approx.

If, however, a satellite in a circular orbit is at an appreciable 
distance h above the Earth’s surface, we must take into 
account the experimental fact that the gravitational 
acceleration decreases inversely as the square of the 
distance from the centre of the Earth (Fig. 5.16).

The higher the satellite, the slower will the required speed 
and longer it will take to complete one revolution around 
the Earth.

Close orbiting satellites orbit the Earth at a height of about 
400 km. Twenty four such satellites form the Global 
Positioning System. An airline pilot, sailor or any other person 
can now use a pocket size instrument or mobile phone to find 
his position on the Earth’s surface to within 10m accuracy.

5.11 REAL AND APPARENT WEIGHT
We often hear that objects appear to be weightless in a 

.spaceship circling round the Earth. In order to examine the 
effect in some detail, let us first define, what do we mean 
by the weight? The real weight of an object is the 
gravitational pull of the Earth on the object. Similarly the 
weight of an object on the surface of the Moon is taken to 
be the gravitational pull of the Moon on the object.

Generally the weight of an object is measured by a spring 
balance. The force exerted by the object on the scale is

116



equal to the pull due to gravity on the object, i.e., the 
weight of the object. This is not always true, as will be 
explained a little later, so we call the reading of the scale 
as apparent weight.

To illustrate this point, let us consider the apparent weight 
of an object of mass m, suspended by a string and spring 
balance, in a lift as shown in Fig. 5.17 (a). When the lift is 
at rest, Newton’s second law tells us that the acceleration 
of the object is zero, the resultant force on it is also zero. If 
w is the gravitational force acting on it and T is the tension 
in the string then we have,

T -  w = ma

As a -  0

hence, T - w    (5.26)

This situation will remain so long as a = 0. The scale thus 
shows the real weight of the object. The weight of the 
object seems to a person in the lift to vary, depending on 
its motion.

When the lift is moving upwards with an acceleration a, 
then

T - w - m a

or T = w  + ma   (5.27)

the object will then weigh more than its real weight by an 
amount ma.

Now suppose, the lift and hence, the object is moving 
downwards with an acceleration a (Fig. 5.17 b), then we 
have

w - T  -  ma 

which shows that

T = w - m a  ...........  (5.28)

The tension in the string, which is the scale reading, is 
less than w by an amount ma. To a person in the 
accelerating lift, the object appears to weigh less than w. 
Its apparent weight is then (w -m a ).

a = 0 
T = w

Fig. 5.17(a)

w - T  = ma 
T = w - m a

Fig. 5.17(b)
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Do You Know?

Your apparent weight differs from 
your true weight when the velocity 
of the elevator changes at the start 
and end of a ride, not during the 
rest of the ride when that velocity is 
constant.

Fig. 5.18

Let us now consider that the lift is falling freely under 
gravity. Then a = g, and hence,

T = w -  mg

As the weight w of the body is equal to mg so

T = m g - m g = 0

The apparent weight of the object will be shown by the 
scale to be zero.

It is understood from these considerations that apparent 
weight of the object is not equal to its true weight in an 
accelerating system. It is equal and opposite to the force 
required to stop it from falling in that frame of reference.

5.12 WEIGHTLESSNESS IN SATELLITES 
AND GRAVITY FREE SYSTEM

When a satellite is falling freely in space, everything within 
this freely falling system will appear to be weightless. It does 
not matter where the object is, whether it is falling under the 
force of attraction of the Earth, the Sun, or some distant star.

An Earth’s satellite is freely falling object. The statement 
may be surprising at first, but it is easily seen to be correct. 
Consider the behaviour of a projectile shot parallel to the 
horizontal surface of the Earth in the absence of air friction. 
If the projectile is thrown at successively larger speeds, 
then during its free fall to the Earth, the curvature of the 
path decreases with increasing horizontal speeds. If the 
object is thrown fast enough parallel to the Earth, the 
curvature of its path will match the curvature of the Earth 
as shown in Fig. 5.18. In this case the space ship will 

| simply circle round the Earth.

The space ship is accelerating towards the centre of the 
Earth at all times since it circles round the Earth. Its radial 
acceleration is simply g, the free fall acceleration. In fact, 
the space ship is falling towards the centre of the Earth at 
all the times but due to spherical shape of the Earth, it 
never strikes the surface of the Earth. Since the space 
ship is in free fall, all the objects within it appear to be 
weightless. Thus no force is required to hold an object 
falling in the frame of reference of the space craft or 
satellite. Such a system is called gravity free system.
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5.13 ORBITAL VELOCITY
The Earth and some other planets revolve round the Sun 
in nearly circular paths. The artificial satellites launched by 
men also adopt nearly circular course around the Earth. 
This type of motion is called orbital motion.

Fig. 5.19 shows a satellite going round the Earth in a 
circular path. The mass of the satellite is ms and v is its 
orbital speed. The mass of the Earth is M and r represents 
the radius of the orbit. A centripetal force msv2/r  is required 
to hold the satellite in orbit. This force is provided by the 
gravitational force of attraction between the Earth and the 
satellite. Equating the gravitational force to the required 
centripetal force, gives

G msM msv2
Fig. 5.19

or ]GM (5.29)

This shows that the mass of the satellite is unimportant in 
describing the satellite’s orbit. Thus any satellite orbiting at 
distance r from Earth’s centre must have the orbital speed 
given by Eq. 5.29. Any speed less than this will bring the 
satellite tumbling back to the Earth.

Example 5.6: An Earth satellite is in circular orbit at a 
distance of 384,000 km from the Earth’s surface. What is its 
period of one revolution in days? Take mass of the Earth 
M = 6.0 x 1024kg and its radius R = 6400 km.

Solution:
As r = R  + h = (6400 + 384000) = 390400 km

Using v = 67x10 Nm kg x6 x10^4kg

Also

T = 2rr r

= 1.01 kms'

= 2x3.14x390400 kmx.

390400km

1day
1.01 kms'1 

27.5 days

60 x 60 x 24s

a a t i E *
In 1984, at a height of 100km 
above Hawaii island with a speed 
of 29000kmh1 Bruce McCandless 
stepped into space from a space 
shuttle and became the first 
human satellite of the Earth.
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The surface of the rotating space 
ship pushes on an object with which 
it is in contact and thereby provides 
the centripetal force needed to keep 
the object moving on a circular path.

5.14 ARTIFICIAL GRAVITY
In a gravity free space satellite there will be no force that 
will force any body to any side of the spacecraft. If this 
satellite is to stay in orbit over an extended period of time, 
this weightlessness may affect the performance of the 
astronauts present in that spacecraft. To over come this 
difficulty, an artificial gravity is created in the spacecraft. 
This could enable the crew of the space ships to function 
in an almost normal manner. For this situation to prevail, 
the space ship is set into rotation around its own axis. The 
astronaut then is pressed towards the outer rim and exerts 
a force on the ‘floor’ of the spaceship in much the same 
way as on the Earth.
Consider a spacecraft of the shape as shown in Fig. 5.20. 
The outer radius of the spaceship is R and it rotates 
around its own central axis with angular speed oo. then its 
angular acceleration ac is

ac = Rco2

But co = where T is the period of revolution of spaceship 

Hence ac = R ^ -  = R ^ -
T

As frequency f -  M T therefore ac = R 4 jt2 f2

1 laor f  = — §— or f=  v
4tu2R 2tuV R

The frequency f  is increased to such an extent that ac 
equals to g. Therefore,

ac = g

a n d  f - i M    ( 5 3 0 )
When the space ship rotates with this frequency, the 
artificial gravity like Earth is provided to the inhabitants of 
the space ship.

5.15 GEOSTATIONARY ORBITS
An interesting and useful example of satellite motion is the 
geo-synchronous or geo-stationary satellite. This type of 
satellite is the one whose orbital motion is synchronized with
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the rotation of the Earth. In this way the synchronous 
satellite remains always over the same point on the equator 
as the Earth spins on its axis. Such a satellite is very useful 
for worldwide communication, weather observations, 
navigation, and other military uses.

What should the orbital radius of such a satellite be so that 
it could stay over the same point on the Earth surface? The 
speed necessary for the circular orbit, given by Eq. 5.29, is

but this speed must be equal to the average speed of the

A/here T is the period of revolution of the satellite, that is 
equal to one day. This means that the satellite must move

Earth rotates in. one day and the satellite will revolve 
around the Earth in one day, the satellite at A will always 
stay over the same point A on the Earth, as shown in 
Fig. 5.21. Equating the above two equations, we get

v =

satellite in one day, i.e.,

s 2nr
T

in one complete orbit ,in a time of exactly one day. As the Fig. 5.21

or

From this we get the orbital radius

Squaring both sides

rf GMT j3

J3 _ GMT2 
4k 2

(5.31)

Substituting the values for the Earth into Eq. 5.31 we get 

r=  4.23 x 104 km

A geostationary satellite orbits the 
Earth once per day over the 
equator so it appears to be 
stationary. It is used now for 
international communications.
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Fig. 5.22

The whole Earth can be covered 
by just three geo-stationary 
satellites.

Fig. 5.23
Communications satellite 
INTELSAT VI

Do You Know?

1GHz = 109 Hz

which is the orbital radius measured from the centre of the 
Earth, for a geostationary satellite. .A satellite at this height 
will always stay directly above a particular point on the 
surface of the Earth. This height above the equator comes 
to be 36000 km.

5.16 COMMUNICATION SATELLITES
A satellite communication system can be set up by placing 
several geostationary satellites in orbit over different points 
on the surface of the Earth. One such satellite covers 120° 
of longitude, so that whole of the populated Earth’s surface 
can be covered by three correctly positioned satellites as 
shown in Fig. 5.22. Since these geostationary satellites 
seem to hover over one place on the Earth, continuous 
communication with any place on the surface of the Earth 
can be made. Microwaves are used because they travel in a 
narrow beam, in a straight line and pass easily through the 
atmosphere of the Earth. The energy needed to amplify and 
retransmit the signals is provided by large solar cell panels 
fitted on the satellites. There are over 200 Earth stations 
which transmit signals to satellites and receive signals via 
satellites from other countries. You can also pick up the 
signal from the satellite using a dish antenna on your house. 
The largest satellite system is managed by 126 countries, 
International Telecommunication Satellite Organization 
(INTELSAT). An INTELSAT VI satellite is shown in the 
Fig.5.23. It operates at microwave frequencies of 4,6,11 and 
14 GFIz and has a capacity of 30, 000 two way telephone 
circuits plus three TV channels.

Example 5.7: Radio and TV signals bounce from a 
synchronous satellite. This satellite circles the Earth once in 
24 hours. So if the satellite circles eastward above the 
equator, it stays over the same spot on the Earth because 
the Earth is rotating at the same rate, (a) What is the orbital 
radius for a synchronous satellite? (b) What is its speed?

Solution:

r- c o ,  G/WT2.3From Eq. 5.31, r= I  c - ;

where G = 6.67 x 10'11 N m2 kg'2, M =  6.0 x 1024kg
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and T=  24 x 60 x 60s.

Therefore, on.substitution; weget

a)
6.67 x 10 N m 2 kg"2 x 6.0 x-1024kg x(24 x6 0  x 6 0 s )2

4 (3 .14 )'

= 4.23 x 107m

b) Substituting the value of r in equation 2xr

Do You Know?

The gravity can bend light. The 
gravity of a star could be used to 
focus light from stars.

we get,

V =2rt(4 .23  x 1 0 7m) 

86400s
= 3.1 kms"

5.17 NEWTON’S AND EINSTEIN’S VIEWS 
OF GRAVITATION

According to Newton, the gravitation is the intrinsic 
property of matter that every particle of matter attracts 
every other particle with a force that is directly proportional 
to the product of their masses and is inversely proportional 
to the square of the distance between them.

According to Einstein’s theory, space time is curved, 
especially locally near massive bodies. To visualize this, 
we might think of space as a thin rubber sheet; if a heavy 
weight is hung from it, it curves as shown in Fig 5.24. The 
weight corresponds to a huge mass that causes space 
itself to curve. Thus, in Einstein’s theory we do not speak 
of the force of gravity acting on bodies; instead we say that 
bodies and light rays move along geodesics (equivalent to 
straight lines in plane geometry) in curved space time. 
Thus, a body at rest or moving slowly near the great mass 
of Fig. 5.24 would follow a geodesic toward that body.

Einstein’s theory gives us a physical picture of how gravity 
works; Newton discovered the inverse square law of gravity; 
but explicitly said that he offered no explanation of why 
gravity should follow an inverse square law. Einstein’s theory 
also says that gravity follows an inverse square law (except in 
strong gravitational fields), but it tells us why this should be 
so. That is why Einstein’s theory is better than Newton’s, 
even though it includes Newton’s theory within itself and

Fig. 5.24

Rubber sheet analogy for curved 
space-time.

Interesting Information

To Earth

Bending of starlight by the* Sun. 
Light from the star A is deflected as 
it passes close to the Sun on its 
way to Earth. We see the star in the 
apparent direction B, shifted by the 
angle <)>. Einstein predicted that 
<(> = 1.745 seconds of angle which 

was found to be the same during 
the solar eclipse of 1919.
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gives the same answers as Newton’s theory everywhere 
except where the gravitational field is very strong.

Einstein inferred that if gravitational acceleration and 
inertial acceleration are precisely equivalent, gravity must 
bend light, by a precise amount that could be calculated. 
This was not entirely a startling suggestion: Newton’s 
theory, based on the idea of light as a stream of tiny 
particles, also suggested that a light beam would be 
deflected by gravity. But in Einstein’s theory, the 
deflection of light is predicted to be exactly twice as 
g rea t'as itis  according to Newton’s theory. When the 
bending of starlight caused by the gravity of the Sun 
was measured during a solar eclipse in 1919, and found to 
match Einstein’s prediction rather than Newton’s, then 
Einstein’s theory was hailed as a scientific triumph.

M B
• Angular displacement is the angle subtended at the centre of a circle by a particle 

moving along the circumference in a given time.
• SI unit of angular measurement is radian.
• Angular acceleration is the rate of change of angular velocity.
• Relationship between angular and tangential or linear quantities.

,i. s = r0  it. Vr=ra> iii. aT= ra
• The force needed to move a body around a circular path is called centripetal force

2
and is calculated by the expression f  = mra2 =

r
•  Moment of inertia is the rotational analogue of mass in linear motion. It depends on 

the mass and the distribution of mass from the axis of rotation.
•  Angular momentum is the analogue of linear momentum and is defined as the 

product of moment of inertia and angular velocity.
• Total angular momentum of all the bodies in a system remains constant in the 

absence of an external torque.
• Artificial satellites are the objects that orbit around the Earth due to gravity.
•  Orbital velocity is the tangential velocity to put a satellite in orbit around theE^arth.
• Artificial gravity is the gravity like effect produced in an orbiting spaceship to 

overcome weightlessness by spinning the spaceship about its own axis.
• Geo-stationary satellite is the one whose orbital motion is synchronized with the 

rotation of the Earth.
• Albert Einstein viewed gravitation as a space-time curvature around an object.
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c m M D
5.1 Explain the difference between tangential velocity and the angular velocity. If one of 

these is given for a wheel of known radius, how will you find the other?
5.2 Explain what is meant by centripetal force and why it must be furnished to an object if 

the object is to follow a circular path?
5.3 What is meant by moment of inertia? Explain its significance.
5.4 What is meant by angular momentum? Explain the law of conservation of angular 

momentum.
5.5 Show that orbital angular momentum L0 = mvr.
5.6 Describe what should be the minimum velocity, for a satellite, to orbit close to the 

Earth around it.
5.7 State the direction of the following vectors in simple situations; angular momentum 

and angular velocity.
5.8 Explain why an object, orbiting the Earth, is said to be freely falling. Use your 

explanation to point out why objects appear weightless under certain circumstances.
5.9 When mud flies off the tyre of a moving bicycle, in what direction does it fly? 

Explain.
5.10 A disc and a hoop start moving down from the top of an inclined plane at the same 

time. Which one will be moving faster on reaching the bottom?
5.11 Why does a diver change his body positions before and after diving in the pool?
5.12 A student holds two dumb-bells with stretched arms while sitting on a turn table. He 

is given a push until he is rotating at certain angular velocity. The student then pulls the 
dumb-befls towards his chest (Fig. 5.25). What will be the effect on rate of rotation?

Fig. 5.25

5.13 Explain how many minimum number of geo-stationary satellites are required for global 
coverage of T.V transmission.
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NUMERICAL PROBLEMS

Fig. 5.26

5.1 A tiny laser beam is directed from the Earth to the Moon. If the beam is to have a
diameter of 2.50 m at the Moon, how small must divergence angle be for the
beam? The distance of Moon from the Earth is 3.8 x 108m. , A „  „

(Ans: 6.6 x 10'9 rad)
5.2 A gramophone record turntable accelerates from rest to an angular velocity of

45.0 rev mih' in 1.60s. What is its average angular acceleration? /A _  ' ,
^ ^ (Ans: 2.95 rad s'2)

5.3 A body of moment of inertia /  = 0.80 kg m2 about a fixed axis, rotates with a
constant angular velocity of 100 rad s'1. Calculate its angujar momentum L and the
torque to sustain this motion. /A    _

M (Ans: 80 Js, 0)
5.4 Consider the rotating cylinder shown in Fig. 5.26.

Suppose that m = 5.0 kg, F  = 0.60 N and r -  0.20 m.
Calculate (a) the torque acting on the cylinder, (b) the 
angular acceleration of the cylinder.
(Moment of inertia of cylinder = \m r 2)

(Ans: 0.12 Nm, 1.2 rad s'2)
5.5 Calculate the angular momentum of a star of mass 2.0 x 103° kg and radius

7.0 x 105 km. If it makes one complete rotation about its axis once in 20 days, what
is its kinetic energy? /A ^  lv

(Ans: 14  x 1042 J s, 2.5 x 1036 J)

5.6 A 1000 kg car travelling with a speed of 144 km h'1 round a curve of radius 100 m.
Find the necessary centripetal force. , (Ans: 1 60 x 1Q4 N)

5.7 What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km 
radius so that there will be no tendency for the pilot to fall down at the highest point?

(Ans: 99 ms'1)
5.8 The Moon orbits the Earth so that the same side always faces the Earth.

Determine the ratio of its spin angular momentum (about its own axis) and its
orbital angular momentum. (In this case, treat the Moon as a particle orbiting the
Earth). Distance between the Earth and the Moon is 3.85 x 108 m. Radius of the
Moon is 1.74 x 106 m. /A „

(Ans: 8.2 x 10 )

5.9 The Earth rotates on its axis once a day. Suppose, by some process the Earth contracts 
so that its radius is only half as large as at present. How fast will it be rotating then?
( For sphere /  -  2/5 MR ). Âns; The Earth complete its rotation in 6 hours)

5.10 What should be the orbiting speed to launch a satellite in a circular orbit 900 km 
above the surface of the Earth? (Take mass of the Earth as 6.0 x 1024and its radius 
as 6400 km). (Ans: 7.4 km s'1)
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C h a p t e r

FLUID DYNAMICS

Learning Objectives
At the end of this chapter the students will be able to:

1. Understand that viscous forces in a fluid cause a retarding force on an object moving

2. Use Stokes’ law to derive an expression for terminal velocity of a spherical body 
falling through a viscous fluid under laminar conditions.

3. Understand the terms steady (laminar, streamline) flow, incompressible flow, non 
viscous flow as applied to the motion of an ideal fluid.

4. Appreciate that at a sufficiently high, velocity, the flow of viscous fluid undergoes a 
transition from laminar to turbulence conditions.

5. Appreciate the equation of continuity Av = Constant for the flow of an ideal and 
incompressible fluid.

6. Appreciate that the equation of continuity is a form of the principle of conservation of 
mass.

7. Understand that the pressure difference can arise from different rates of flow of a 
fluid (Bernoulli effect).

8. Derive Bernoulli’s equation in form P+ Vzpv2*pgh  = constant.

9. Explain how Bernoulli effect is applied in the filter pump, atomizers, in the 
flow of air over an aerofoil, Venturimeter and in blood physics.

10. Give qualitative explanations for the swing of a spinning ball.

he study of fluids in motion is relatively complicated, but analysis can be simplified by
making a few assumptions. The analysis is further simplified by the use of two important 
conservation principles; the conservation of mass and the conservation of energy. The law of 
conservation of mass gives us the equation of continuity while the law of conservation of 
energy is the basis of Bernoulli’s equation. The equation of continuity and the Bernoulli’s 
equation along with their applications in aeroplane and blood circulation are discussed in this 
chapter.

through it.
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For Your Information
Viscosities of Liquids and Gases 

at 30°C

Material
Viscosity 

10° (Nsm'2)

Air 0:019
Acetone 0.295
Methanol 0.510
Benzene 0.564
Water 0.801
Ethanol 1.000
Plasma 1.6
Glycerin 6.29

6.1 VISCOUS DRAG AND STOKES’ LAW
The frictional effect between different layers of a flowing 
fluid is described in terms of viscosity of the fluid. Viscosity 
measures, how much force is required to slide one layer of 
the liquid over another layer. Substances that do not flow 
easily, such as thick tar and honey etc; have large 
coefficients of viscosity, usually denoted by greek letter V|\ 
Substances which flow easily, like water, have ,small 
coefficients of^ viscosity. Since liquids and gases have non 
zero viscosity" a force is required if an object is to be 
moved through them. Even the small viscosity of the air 
causes a large retarding force on a car as it travels at high 
speed. If you stick out your hand out of the window of a 
fast moving car, you can easily recognize that considerable 
force has to be exerted on your hand to move it through the 
air. These are typical examples of the following fact,

An object moving through a fluid experiences a 
retarding force called a drag force. The drag force 
increases as the speed of the object increases.

Even in the simplest cases the exact value of the drag 
force is difficult to calculate. However, the case of a sphere 
moving through a fluid is of great importance.

The drag force F on a sphere of radius r moving slowly with 
speed v through a fluid of viscosity r\ is given by Stokes’ law 
as under.

F = 6 7tr| r v (6 .1)

At high speeds the force is no longer simply proportional to 
speed.

6.2 TERMINAL VELOCITY
Consider a water droplet such as that of fog falling 
vertically, the air drag on the water droplet increases with 
speed. The droplet accelerates rapidly under the over 
powering force of gravity which pulls the droplet downward. 
However, the upward drag force on it increases as the 
speed of the droplet increases. The net force on the 
droplet is
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Net force = Weight -  Drag force (6 .2)

As the speed of the droplet continues to increase, the drag 
force eventually approaches the weight in the magnitude. 
Finally, when the magnitude of the drag force becomes 
equal to the weight, the net force acting on the droplet is 
zero. Then the droplet will fall with constant speed called 
terminal velocity.

To find the terminal velocity vt in this case, we use Stokes 
Law for the drag force. Equating it to the weight of the 
drop, we have

mg = 6 nx\rvt

or Vl=jn9_
6nr\r

(6.3) Can You Do That?

The mass of the droplet is pV, 

where volume

Substituting this value in the above equation, we get 

vt = 2gr2p
9n

(6.4)

Example 6.1: A tiny water droplet of radius 0.010 cm 
descends through air from a high building. Calculate its 
terminal velocity. Given that n for air = 19 x 10‘6kg m'1 s‘1 
and density of water P = 1000 kgm*3.

Solution:

r=  1.0 x 10'4m , P= 1000kgm*3 , n = 19 x io ^kg  m*1 s'1

A table tennis ball can be made 
suspended in the stream of air 
coming from the nozzle of o hair 
dryer.

Putting the above values in Eq. 6.4

2 x9.8ms"2x (1x10 4 m fx  1000 kgm"3 

9x19x10*6kgm*1s*1

We get Terminal velocity = 1.1 m s'
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6.3 FLUID FLOW

(a) Streamlines (laminar |pw }„

Plate

(b) Turbulent flow

Fig, 6.1

For Your Information

Formula One racing cars have a 
streamlined design.

Dolphins have streamlined bodies 
to assist their movement in water.

Moving fluids are of great importance. To learn about the 
behaviour of the fluid in motion, we consider their flow 
through the pipes. When a fluid is in motion, its flow can be 
etthfeflstreamline or turbulent.

The flow is said to be streamline or laminar, if 
every particle that passes a particular point, 
moves along exactly the same path, as followed 
by particles which passed that points earlier.

In this case each particle of the fluid moves along a smooth 
path called a streamline as shown in Fig. 6.1 (a). The 
different streamlines can not cross each other. This 
condition is called steady flow condition. The direction of the 
streamlines is the same as the direction of the velocity of the 
fluid at that point. Above a certain velocity of the fluid flow, 
the motion of the fluid becomes unsteady and irregular.

Under this condition the velocity of the fluid changes 
abruptly as shown in Fig.6.1 (b). In this case the exact path 
of the particles of the fluid can not be predicted.

The irregular or unsteady flow of 
the fluid is called turbulent flow.

We can understand many features of the fluid in motion by 
considering the behaviour of a fluid which satisfies the 
following conditions.

The fluid is non-viscous i.e, there is no internal 
frictional force between adjacent layers of fluid.

The fluid is incompressible, i.e., its density is constant.

The fluid motion is steady.

6.4 EQUATION OF CONTINUITY
Consider a fluid flowing through a pipe of non-uniform size. 
The particles in the fluid move along the streamlines in a 
steady state flow as shown in Fig. 6.2.



In a small time At, the fluid at the lower end of the tube 
moves a distance AXi, with a velocity v*. If A Js  the area of 
cross section of this end, then the mass of the fluid 
contained in the shaded region is:

Am 1 = P1A1AX1 = piA-tVt x A t

Where Pt is the density of the fluid. Similarly the fluid that 
moves with velocity v2 through the upper end of the pipe 
(area of cross section A2) in the same time At has a mass

A m 2 = P2A2v2 xA t

If the fluid is incompressible and the flow is steady, the 
mass of the fluid is conserved. That is, the mass that flows 
into the bottom of the pipe through Â  in a time At must be 
equal to mass of the liquid that flows out through A2 in the 
same time. Therefore,

A m 1 = Am2

or PiA1v 1 = P2A 2v2

This equation is called the equation of continuity. Since 
density is constant for the steady flow of incompressible 
fluid, the equation of continuity becomes

A1v1 = A2v2   (6.5)

The product of cross sectional area of the pipe 
and the fluid speed at any point along the pipe 
is a constant. This constant equals the volume 
flow per second o f the fluid or simply flow rate.

Example: 6.2: A water hose with an internal diameter of 
20 mm at the outlet discharges 30 kg of water in 60 s. 
Calculate the water speed at th.e outlet. Assume the density 
of water is 1000 kgm'3and its flow is steady.

Solution: - — -

Mass flow per second = = 0.5 kgs'1
60s

Cross sectional area A = n r2

As the water falls; its speed 
increases and so its cross sectional 
area decreases as mandated by the 
continuity equation.
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The mass of water discharging per second through area A is. 

massp Av
second

m ass/
or v = second

P A
0.5 kgs'1

1000 kgm'3 x 3.14 x (10 xi O'3 m)2 
= 1.6 ms'1

6.5 BERNOULLI’S EQUATION
As the fluid moves through a pipe of varying cross section 
and height, the pressure will change along the pipe. 
Bernoulli’s equation is the fundamental equation in fluid 
dynamics that relates pressure to fluid speed and height.

In deriving Bernoulli’s equation, we assume that the fluid is 
incompressible, non viscous and flows in a steady state 
manner. Let us consider the flow of the fluid through the 
pipe in time t, as shown in Fig. 6.3.

Ax,

The force on the upper end of the fluid is P?A? where P? the 
pressure and A1 is the area of cross section at the upper 
end. The work done on the fluid, by the fluid behind it, in 
moving it through a distance Ax?, will be

W1 = F? Ax? = P?A? Ax?
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Similarly the work done on the fluid at the lower end is

W2 -  - F 2 A x 2 = - P 2A 2Ax2

Where P 2 is the pressure, A 2 is the area of cross section of 
lower end and Ax2 is the distance moved by the fluid in the 
same time interval t. The work W2 is taken to be -ive as 
this work is done against the fluid force.

The net work done = W  = W 1 + W2 '

or \A/ — P  tAj Ax? — P 2A 2 ax2 ........ (6.6)

If v1 and v2 are the velocities at the upper and lower ends 
respectively, then

W  = Vff -  P 2A 2 v2t 

From equation of continuity (equation 6.5)

A1V1  = A 2v2

a v # - \ /  /Volume of fluid ^Hence, A m  x t - A 2v2 x t - V  \̂ uncjer consideration/
So, we have

W = ( P 1 - P 2) V    (6.7)

if m is the mass and p is the density then V = ^

So equation 6.7 becomes

W = ( P 1 - P 2) j  ............... (6.8)

Part of this work is utilized by the fluid in changing its K.E. 
and a part is used in changing its gravitational P.E.

Change in K.E. = &(K.E.) = ~mv22 -  .... (6.9)

Change in P.E. = A(PE.) = mgh2-m g h 1 . (6.10)

Where h1 and h2 are the heights of the upper and lower
ends respectively.

Applying, the law of conservation of energy to this.volume 
of the fluid, we get

A stream of air passing over a tube 
dipped in a liquid will cause the liquid 
to rise in the tube as shown. This 
effect is used in perfume bottles and 
paint sprayers.

A chimney works best when it is tall 
and exposed to air currents, which 
reduces the pressure at the top and 
force the upward flow of smoke.
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(Pi - P2) ™  = \ m v 2 ~  \ mv i + m9 h 2 ~  m 'Qhi.  (6 -11)

Fig.6.4.

For your information

Water

A filter pump has a constriction in the 
centre, so that a jet of water from the 
tap flows faster here. This cause a 
drop in pressure near it and air, 
therefore, flows in from the side 
tube. The air and water together are 
expelled through the lower part of 
the pump.

rearranging the equation (6.11)

p iJr\  Pvi + P9hi = p2+-^Pv2 + P9h2 

This is Bernoulli’s equation and is often expressed as:

1 2P +-pv '+ pgh  = constant (6 .12)

6.6 APPLICATIONS OF BERNOULLI’S 
EQUATION

Torricelli’s Theorem

A simple application of Bernoulli’s equation is shown in 
Fig. 6.4. Suppose a large tank of fluid has two small 
orifices A and B on it, as shown in the figure. Let us find 
the speed with which the water flows from the orifice A.

Since the orifices are so small, the efflux speeds v2 and v3 
will be much larger than the speed v-i of the top surface of 
water. We can therefore, take as approximately zero. 
Hence, Bernoulli’s equation can be written as:

Pi + p g/?! = P2 + ~  p v2 +  P fl^ 2

But P̂  = P2 = atmospheric pressure

Therefore, the above equation becomes

  (6.13)v2 = p g ( h , -h 2)

This is Torricelli’s theorem which states that;

The speed of efflux is equal to the velocity 
gained by the fluid in falling through the 
distance (/»i -h 2) under the action of gravity.

Nptice that the speed of the efflux of liquid is the same as 
the speed of a ball that falls through a height (h1 - h2). The

\
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top level of the tank has moved down a little and the P.E. 
has been transferred into K.E. of the efflux of fluid. If the 
orifice had been pointed upward as at B shown in Fig.6.4, 
this K.E. would allow the liquid to rise to the level of 
water tank. In practice, viscous-energy losses would alter 
the result to some extent.

R e la tio n  betw een Speed and P ressure  o f the  
F lu id

A result of the Bernoulli’s equation is that the pressure will 
be low where the speed of the fluid is high. Suppose that 
water flows through a pipe system as shown in Fig. 6.5. 
Clearly, the water will flow faster at B than it does at A or C. 
Assuming the flow speed at A to be 0.20 ms'1 and at B to be
2.0 ms'1, we compare the pressure at B with that at A.

Applying Bernoulli’s equation and noting that the average 
P.E. is the same at both places, We have,

PA+±pvZ =Pfl+ipvI  . (6.14)

vA = 0.20 ms'1 , vB = 2.0 ms'1 

P = 1000 kgm'3 

PA-P B = 1980 Nm'2

This shows that the pressure in the narrow pipe where 
streamlines are closer together is much smaller than in the 
wider pipe. Thus,

Where the speed is high, the pressure will be low.

The lift on an aeroplane is due to this effect. The flow of air 
around an aeroplane wing is illustrated in Fig. 6.6. The wing is 
designed to deflect the air so that streamlines are closer 
together above the wing than below it. We have seen in 
Fig.6.6 that where the streamlines are forced closer together,__ 

, the speed is faster. Thus, air is travelling faster on the upper  ̂
side of the wing than on the lower. The pressure will be lower' 
at the top of the wing, and the wing will be forced upward.

Similarly, when a tennis ball is hit by a racket in such a way 
that it spins as well as moves forward, the velocity of the

Substituting 

And 

We get
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Fig. 6.7.

Fig. 6.8.

air on one side of the ball increases (Fig. 6.7) due to spin 
and air speed in the same direction as at B and hence, the 
pressure decreases. This gives an extra curvature to the 
ball known as swing which deceives an opponent player.

Venturi Relation
If one of the pipes has a much smaller diameter than the 
other, as shown in Fig. 6.8, we write Bernoulli’s equation in 
a more convenient form. It is assumed that the pipes are 
horizontal so that pgA? terms become equal and can, 
therefore, be dropped. Then

P i- p 2 = ± p v i  -  ± p * 2 = i P(vf - *  j (615)

As the cross-sectional area A2 is small as compared to the 
erea Au then from equation of continuity v1 = (A/A*) v2, will 
be small as compared to v2. Thus for flow from a large pipe 
to a small pipe we can neglect v* on the right hand side of 
equation 6.15. Hence,

P i-P 2 = i p v i (6.16)

This is known as Venturi relation, which is used in Venturi- 
meter, a device used to measure speed of liquid flow.

Interesting Information

Atmospheric
pressure

The carburetor of a car engine uses 
a Venturi duct to feed the correct mix 
of air and petrol to the cylinders. Air 
is drawn through the duct and along 
a pipe to the cylinders. A tiny inlet at 
the side of duct is fed with petrol. 
The air through the duct moves very 
fast, creating low pressure in the 
duct, which draws petrol vapour into 
the air stream.

Example 6.3: Water flows down hill through a closed 
vertical funnel. The flow speed at the top is 12.0 cms'1. The 
flow speed at the bottom is twice the speed at the top. If 
the funnel is 40.0 cm long and the pressure at the top is 
1.013 x 105 Nm'2, what is the pressure at the bottom?

Solution: Using Bernoulli’s equation

Pi + P gh7+ ^  pVi =P2 + pgh2 + pv2

Or P2-  Pi + pgh + -i p (vi - v \ )

. where /7 = - f?2 = the length of the funnel

P2 = (1.013 x 105Nm'2) + (1000 kgrn3 x9.8 ms2 x0.4m) 

+ [ i  (lOOOkgm-3) x {(0.12 ms1)2- (0.24 m s1)2}]

= 1.05 x105 N m'2
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A stethoscope detects the instant at which the external 
pressure becomes equal to the systolic pressure. At this 
point the first surges of blood flow through the narrow 
stricture produces a high flow speed. As a result the flow is 
initially turbulent.

As the pressure drops, the external pressure eventually 
equals the diastolic pressure. From this point, the vessel 
no longer collapse during any portion of the flow cycle. The 
flow switches from turbulent to laminar, and the gurgle in 
the stethoscope disappears. This is the signal to record 
diastolic pressure.

An object moving through a fluid experiences a retarding force known as drag force. 
It increases as the speed of object increases.

A sphere of radius r moving with speed v through a fluid of viscosity rj experiences a 
viscous drag force F given by Stokes’ law F = 6 n r\rv.
The maximum and constant velocity of an object falling vertically downward is called 
terminal velocity.

An ideal fluid is incompressible and has no viscosity. Both air and water at low 
speeds approximate to ideal fluid behaviour.

In laminar flow, layers of fluid slide smoothly past each other.

In turbulentTtewTbere is great disorder and a constantly changing flow pattern.

Conservation of mass in an incompressible fluid is expressed by the equation of
continuity A1v1 = A2v2. = constant•> - >» —
Applying the principles of conservation of mechanical energy to the steady flow of an 
ideal fluid leads to Bernoulli’s equation.

P + i  pv2 + pgh = constant

The effect of the decrease in pressure with the increase in speed of the fluid in a 
horizontal pipe is known as Venturi effect.
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B lo o d  F low

Blood is an incompressible fluid having a density nearly 
equal to that of water. A high concentration (-50%) of red 
blood cells increases its viscosity from three to five times 
that of water. Blood vessels are not rigid. They stretch like 
a rubber hose. Under normal circumstances the volume 
of the blood is sufficient to keep the vessels inflated at all 
times, even in the relaxed state between heart beats. This 
means there is tension in the walls of the blood vessels 
and consequently the pressure of blood inside is greater 
than the external atmospheric pressure. Fig. 6.9 shows 
the variation in blood pressure as the heart beats. The 
pressure varies from a high (systolic pressure) of 120 torr 
(1 torr = 133.3 Nm'2) to a low diastolic pressure) of about 
75-80 torr between beats in normal, healthy person. The 
numbers tend to increase with age, corresponding to the 
decrease in the flexibility of the vessel walls.

The unit torr or mm of Hg is opted instead of SI unit of 
pressure because of its extensive use in medical equipments.

An instrument called a sphygmomanometer measures 
blood pressure dynamically (Fig. 6.10).

An inflatable bag is wound around the arm of a patient and 
external pressure on the arm is increased by inflating the bag. 
The effect is to squeeze the arm and compress the blood 
vessels inside. When the external pressure applied becomes 
larger than the systolic pressure, the vessels collapse, cutting 
off the flow of the blood. Opening the release valve on the bag 
graduallydecreasesthe fextefjnal gres-
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6.1 Explain what do you understand by the term viscosity?

6.2 What is meant by drag force? What are the factors upon which drag force acting 
upon a small sphere of radius r, moving down through a liquid, depend?

6.3 Why fog droplets appear to be suspended in air?
6.4 Explain the difference between laminar flow and turbulent flow.

State Bernoulli’s relation for a liquid in motion and describe some of its applications.

A person is standing near a fast moving train. Is there any danger that he will fall 
towards it?

Identify the correct answer. What do you infer from Bernoulli’s theorem?

Where the speed of the fluid is high the pressure will be low.

Where the speed of the fluid is high the pressure is also high.

This theorem is valid only for turbulent flow of the liquid.

6.8 Two row boats moving parallel in the same direction are pulled towards each other. 
Explain.

6.9. Explain, how the swing is produced in a fast moving cricket ball.
6.10 Explain the working of a carburetor of a motorcar using by Bernoulli’s principle.
6.1 For which position will the maximum blood pressure in the body have the smallest 

value, (a) Standing up right (b) Sitting (c) Lying horizontally (d) Standing on one’s 
head?

6.12 In an orbiting space station, would the blood pressure in major arteries in the leg 
ever be greater than the blood pressure in major arteries in the neck?

NUMERICAL PROBLEMS

6.1 Certain globular protein particle has a density of 1246 kg m'3. It falls through pure 
water (r|=8.0 x 10'4Nrris) with a terminal speed of 3.0 cm h'1. Find the radius of 
the particle.

(Ans: 1.6 x 10'6m)

6.2 Water flows through a hose, whose internal diameter is 1cm at a speed of 1ms‘1. 
What should be the diameter of the nozzle if the water is to emerge at 21ms'1?

(Ans: 0.2 cm)
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6.3 The pipe near the lower end of a large water storage tank develops a small leak and 
a stream of water shoots from it. The top of water in the tank is 15m above the point 
of leak.

a) With what speed does the water rush from the hole?

b) If the hole has an area of 0.060 cm2, how much water flows out in one second?

(Ans: (a) 17 m s'1, (b) 102 cm3)

6.4 Water is flowing smoothly through a closed pipe system. At one point the speed of 
water is 3.0 ms'! while at another point 3.0 m higher, the speed is 4.0 ms1. If the 
pressure is 80 kPa at the lower point, what is pressure at the upper point?

(Ans: 47 kPa)

" 6.5 An airplane wing is designed so that when the speed of the air across the top of the 
wing is 450 ms'1, the speed of air below the wing is 410 ms"1. What is the pressure 
difference between the top and bottom of the wings? (Density of air = 1.29kgm'3)

(Ans: 22 kPa)

The radius of the aorta is about 1.0 cm and the blood flowing through it has a speed 
of about 30 cms'1. Calculate the average speed of the blood in the capillaries using 
the fact that although each capillary has a diameter of about 8 x 10"4 cm, there are 
literally millions of them so that their total cross section is about 2000cm2.

(Ans: 5 x 104ms1)

6.7 How large must a heating duct be if air moving 3.0 ms'1 along it can replenish the air in 
a room of 300 m3 volume every 15 min? Assume the air’s density remains constant.

(Ans: Radius = 19 cm)

6 8 An airplane design calls for a “lift” due to the net force of the moving air on the wing of 
about 1000 Nm of wing area. Assume that air flows past the wing of an aircraft with 
streamline flow. If the speed of flow past the lower wing surface is 160ms1, what is 
the required speed over the upper surface to give a “lift” of 1000Nm'2? The density of 
air is 1.29 kgm'3 and assume maximum thickness of wing to be one metre.

(Ans: 165 ms'1)

6.9 What gauge pressure is required in the city mains for a stream from a fire hose 
connected to the mains to reach a vertical height of 15.0 m?

(Ans: 1.47x10s Pa)
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C h a p t e r 7
OSCILLATIONS

Learning Objectives

At the end of this chapter the students will be able to:

Investigate the motion of an oscillator using experimental, analytical and graphical 
methods.
Understand and describe that when an object moves in a circle the motion of its 
projection on the diameter of the circle is simple harmonic.
Show that the motion of mas.s attached to a spring is simple harmonic.

Understand that the motion of simple pendulum is simple harmonic and to 
calculate its time period.
Understand and use the terms amplitude, time period, frequency, angular 
frequency and phase difference.
Know and use of solutions in the form of x = x0 cos cof or y  = y0 sin cof.
Describe the interchange between kinetic and potential energies during SHM.

Describe practical examples of free and forced oscillations.

Describe practical examples of damped oscillations with particular reference to 
the effects of the degree of damping-and the importance of critical damping in 
cases such as car suspension system.

I \ / I  any a times, we come across a type of motion in which a body moves to and fro about
a mean position. It is called oscillatory or vibratory motion. The oscillatory motion is called 
periodic when it repeats itself after equal intervals of time.

Some typical vibrating bodies are shown in Fig. 7.1. It is our common observation that
a) a mass, suspended from a spring, when pulled down and then released, starts 

oscillating (Fig. 7.1 a),
b) the bob of a simple pendulum when displaced from its rest position and released, 

vibrates (Fig. 7.1 b).



(Vibrating objects)
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c) a steel ruler clamped at one end to a bench oscillates 
when the free end is displaced sideways (Fig. 7.1 c).

d) a steel ball rolling in a curved dish, oscillates about its 
rest position (Fig. 7.1 d).

Thus to get oscillations, a body is pulled away from its rest 
or equilibrium position and then released.The body oscillates 
due to a restoring force. Under the action of this restoring 
force, the body accelerates and it overshoots the rest 
position due to inertia. The restoring force then pulls it 
back. The restoring force is always directed towards 
the rest position and so the acceleration is also directed 
towards the rest or mean position.
It is observed that the vibrating bodies produce waves. 
For example, a violin string produces sound waves in air. 
There are many phenomena in nature whose explanation 
requires the understanding of the concepts of vibrations 
and waves. Although many large structures, such as 
skyscrapers and bridges, appear to be rigid, they actually 
vibrate. The architects and the engineers who design and 
build them, take this fact into account.

7.1 SIMPLE HARMONIC MOTION
Let us consider a mass m attached to one end of an elastic 
spring which can move freely on a frictionless horizontal 
surface as shown in Fig. 7.2 (a). When the mass is 
displaced towards right through a distance x (Fig. 7.2 b), 
the force F at that instant is given by Hooke’s law F = kx 
where k is a constant known as spring constant. Due to 
elasticity, spring opposes the applied force which produces 
the displacement. This opposing force is called restoring 
force Fr which is equal and opposite to the applied force 
within elastic limit of the spring. Hence

J Fr = -kx   (7.1)
The negative sign indicates that Fr is directed opposite, to 
x. i.e., towards the equilibrium position. Thus we see that 
in a system obeying Hooke’s law, the restoring force Fr is 
directly proportional to the displacement x of the system 
from its equilibrium position and is always directed towards 
it. When the mass is released, it begins to oscillate about 
the equilibrium position (Fig. 7.2 c). The oscillatory motion 
taking place under the action of such a restoring force is
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known as simple harmonic motion (SHM). The acceleration 
a produced in the mass m due to restoring force can be 
calculated using second law of motion 

F = ma
Then, -kx = ma

or a = x........................................ . (7.2)
m

or aoc -x

The acceleration at any instant of a body 
executing SHM is proportional to displacement 
and is always directed towards its mean position.

We will now discuss various terms which are very often 
used in describing SHM.

Movement of Paper

It can be seen in Fig. 7.2 that when a body is vibrating, its b f
displacement from the mean position changes with time. TS^ d
The value of its distance from the mean position at any A J I V  
time is known as its instantaneous displacement. It is zero d h
at the instant when the body is at the mean position and is 
maximum at the extreme positions. The maximum value of 
displacement is known as amplitude.
The arrangement Shown in Fig. 7.3 can be used to record 
the variations in displacement with time for a mass-spring 
system. The strip of paper is moving at a constant speed 
from right to left, thus providing a time scale on the strip.
A pen attached with the vibrating mass records its 
displacement against time as shown in Fig. 7.3. It can 
be seen that the curve showing the variation of 
displacement with time is a sine curve. It is usually 
known as wave-form of SHM. The points B and D 
correspond to the extreme positions o f tFie vibrating mass 
and points A, C and E show its mean position. Thus the line 
ACE represents the level of mean position of the mass on 
the strip. The amplitude of vibration is thus a measure of 
the line Bb or Dd in Fig. 7.3.

(i) Instantaneous Displacement and Amplitude 
of Vibration
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(ii) Vibration
A vibration means one complete round trip of the body in 
motion. In Fig. 7.3, it is the motion of mass from its mean 
position to the upper extreme position, from upper extreme 
position to lower extreme position and back to its mean 
position. In Fig. 7.3, the curve ABCDE correspond to the 
-different positions of the pen during one complete 
vibration. Alternatively the vibration can also be defined as 
motion of the body from its one extreme position back to 
the same extreme position. This will correspond to the 
portion of curve from points B to F or from points D to H.

(iii) Time Period
It is the time 7* required to complete one vibration.

(iv) Frequency
Frequency f  is the number of vibrations executed by a body 
in one second and is expressed as vibrations per second 
or cycles per second or hertz (Hz).
The definitions of T and f  show that the two quantities are 
related by the equation

(7.3)

(v) Angular Frequency
If T is the time period of a body executing SHM, its angular 
fregikncy wil\ be

( 0 = ^ = 2  n f ............ (7.4)

Angular frequency co is basically a characteristic of circular 
motion. Here it has been introduced in SHM because it 
provides an easy method by which the value of 
instantaneous displacement and instantaneous velocity of 
a body executing SHM can be computed.

7.2 SHM AND UNIFORM CIRCULAR MOTION
Let a mass m , attached with the end of a vertically 
suspended spring, vibrate simple harmonically with period 
T, frequency f  and amplitude x0. The motion of the mass is 
displayed by the pointer Pi on the line BC with A as mean 
position and B, C as extreme positions (Fig. 7.4a). 
Assuming A as the position of the pointer at 
t = 0, it will move so that it is at B,A,C and back to A at



instants 7/4, 7/2, 37/4 and T respectively. This will 
complete one cycle of vibration with amplitude of vibration 
being x0 = AB = AC.
The concept of circular motion is introduced by considering a 
point P moving on a circle of radius x0, with a uniform angular 
frequency co = 2n/T, where 7 is the time period of the 
vibration of the pointer. It may be noted that the radius of the 
circle is equal to the amplitude of the pointer’s motion. 
Consider the motion of the point N, the projection of P on the 
diameter DE drawn parallel to the line of vibration of the 
pointer in Fig. 7.4 (b). Note that the level of points D and E

is the same as the points B and C. As P describes 
uniform circular motion with a constant angular speed co, N 
oscillates to and fro on the diameter DE with time period 7  
Assuming 0 1t to be the position of P at t = 0 , the position of 
the point N at the instants 0, 7/4,7/2,37/4 and 7 will be at 
the points 0,D ,0,E  and O respectively. A comparison of the 
motion of N with that of the pointer Pi shows that it is a 
replica of the pointer’s motion. Thus the expressions of 
displacement, velocity and acceleration for the motion of N 
also hold good for the pointer P1t executing SHM.

(i) D isp lacem en t
Referring to Fig. 7.4 (b), if we count the time t = 0 from the 
instant when P is passing through Oi, the angle which the 
radius OP sweeps out in time t is ZO-iOP = 0 = co t. The 
displacement x of N at the instant t will be

x = ON = OP sinZO iO P
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Fig. 7.5(a)

or x = x0 sin 0
or x = x0 sin cof    (7.5)
This will be also the displacement of the pointer Pi at the 
instant t.
The value of x as a functions of 0 is shown in Fig. 7.4 (c). 
This is the wave-form of SHM. In Fig. 7.3, the same wave
form was traced experimentally but here, we have traced it 
theoretically by linking SHM with circular motion through 
the concept of angular frequency. The angle 0 gives the 
states of the system in its vibrational cycle. For example, at
the start of the cycle 0 = 0. Half way through the cycle, is
180° ( k radians). When 0 = 270° (or 3n/2 radians), the 
cycle is three-fourth completed. We call 0 as the phase of 
the vibration. Thus when quarter of the cycle is completed, 
phase of vibration is 90° (orn/2 radian). Thus phase is also 
related with the circular motion aspect of SHM.

ii) Instan tan eo u s V elocity
The velocity of point P, at the instant t, will be directed along 
the tangent to the circle at P and its magnitude will be

vP = x0co   (7.6)
As the motion of N on the diameter DE is due to motion of P 
on the circle, the velocity of N is actually the component of 
the velocity vP in a direction parallel to the diameter DE. As 
shown in Fig. 7.5 (a), this component is

vP sin (90° - 0) = vP cos 0 = x0 co cos 0.

Thus the magnitude of the velocity of N or its speed v is

v = xQ(o cos0 = x0co cos cof ...........  (7,7)
The direction of the velocity of N depends upon the value 
of the phase angle 0. When 0 is between 0° to 90° the 
direction is from O to D, for 0 between 90° to 270°, its 
direction is from D to E. When 0 is between 270° to 360°, the 
direction of motion is from E to D.

' lx 2 - x 2
From Fig. 7.5, cos 0 = cos ZNPO = NP/OP =  .

* o

Substituting the value of cos 0 in Eq. 7.7

  (78)
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As the motion of N on the diameter DE is just the replica of 
the motion of the pointer executing SHM (Fig. 7.4), so 
velocity of the point P or the velocity of any body 
executing SHM is given by equations 7.7 and 7.8 in terms 
of the angular frequency co. Eq. 7.8 shows that at the 
mean position, where x = 0, the velocity is maximum and 
at the extreme positions where x = x0, the velocity is zero.

[iii) A cce le ra tio n  in Term s of
When the point P is moving on the circle, it has an 
acceleration ap = x0oo2, always directed towards the centre O 
of the circle.
At instant t,its direction will be along PO. The acceleration of 
the point N will be component of the acceleration ap along the 
diameter DE on which N moves due to motion of P. As 
shown in Fig. 7.5 (b), the value of this component is

ap sine = x0co2 sinG.

Thus the acceleration a of N is a = x co2 sineo
and it is directed from N to O, i.e., directed towards the 
mean position O (Fig. 7.5 b). In this figure sin e = ON/OP = 
x/x0. Therefore,

a = x0cd2 x —  = oo2x 
*0

Comparison of Fig. 7.5 (b) and 7.4 (b) shows that the 
direction of acceleration a and displacement x are 
opposite. Considering the direction of x as reference, the 
acceleration a will be represented by

a = -«?x   (7.9)
Eq. 7.9 shows that 4he acceleration is proportional to the 
displacement and is directed towa/ds the mean position 
which is the characteristic of SHM. Thus the point N is 
executing SHM with the same amplitude, period and 
instantaneous displacement as the pointer P T h i s  
confirms our assertion that the motion of N is just a replica 
of the pointer’s motion.

O,

Fig. 7.5(b)

7.3 PHASE
Equations 7.5 and 7.7 indicate that displacement and 
velocity of the point executing SHM are determined by the 
angle 0 = cot. Note that this angle is obtained when SHM is 

; related with circular motion. It is the angle which the rotating
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radius OP makes with the reference direction OOi at any 
instant f (Fig, 7.4 b.).

The angle \ 0 = co t which specifies the 
displacement as well as the direction of motion 
of the point executing SHM is known as phase.

The phase determines the state of motion of the vibrating 
point. If a body starts its motion from mean, position, its 

71 0 phase at this pqint would be 0. Similarly at the extreme
positions, its phase would be n/2:

3n/2
In Fig. 7.4 (b), we have assumed that to start with at f = 0, 
the position of the rotating radius OP is along OOi so that 

j the point N is at its mean position and the displacement at 
f =0, is zero. Thus it represents a special case. In general at 
f=0,the rotating radius OP can make any angle (p with the 
reference OOi as shown in Fig. 7.6 (a). In time f, the radius 

' 1 will rotate by cof. So now the radius OP would make an 
angle (cot + cp) with OOi at the instant t and the 
displacement ON = x at instant t would be given by

ON = x = OP sin (cof+ 9 )

. = x0sin (cof+ 9 )   (7.10)

Now the phase angle is cof+9 i.e.,

0 = cof +9

when f = 0 , 0 = 9 . So 9 is the initial phase. If we take initial

phase as n/2 or 90°, the displacement as given by Eq 7.10 
is

x = x0 sin (cof + 90°)
= x0coscof   (7.11)

148



Thus Eq. 7.11 also gives the displacement of SHM, but in this 
case the point N is starting its motion from the extreme 
position instead of the mean position as shown in Fig. 7.6 (b).

7.4 A HORIZONTAL MASS SPRING SYSTEM
Practically, for a simple harmonic system, consider again the
vibrating mass attached to a spring as shown in Fig. 7.2 (a, b
and c) whose acceleration at any instant is given by Eq. 7.2
which is k j - i

a -  —  x 
m

As k and m are constant, we see that the acceleration is 
proportional to displacement x, and its direction is towards 
the mean position. Thus the mass m executes SHM 
between A and A' with x0 as amplitude. Comparing 
the above equation with Eq. 7.9, the vibrational angular 
frequency is

Vm V
(7.12)

The time period of the mass is

•' ' r =
<o V/c (7-13)

The instantaneous displacement x of the mass as given by
Eq. 7.5 is

x = x0 sin © t

x = x0 sin J — t 
Km

(7-14)

The instantaneous velocity v of the mass m as given by 
Eq. 7.8 is

v = o>Jx02- x 2 = £ ~
m

(x0 - x 2)

- x af
y m

(7.15)

Eq 7.15 shows that the velocity of the mass gets maximum 
equal to v0, when x = 0. Thus

V m
(7.16)

O,
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then (7.17)

Fig. 7.7

The formula derived for displacement and velocity are also 
valid for vertiealjy suspended mass-spring system provided 
air friction is npt considered.

Example 7.1 : A block weighing 4.0 kg extends a spring 
by 0.16 m from its unstretched position. The block is 
removed and a 0.50 kg body is hung from the same spring.
If the spring is now stretched and then released, what is its 
period of vibration?

Solution:

Applied stretching force F = kx or k = f-

F = mg = 4 kg x 9.8 ms'2 = 39.2 kgms'2 = 39.2 N

x = 0.16m, k = 4kgx9c8ms'2 = 245 kg s 2 
0.16m

Now time period

or

T = 2 « fe

r=2it | 05k9 = o.28s
y 245 kgs

7.5 SIMPLE PENDULUM
A simple pendulum consists of a small heavy mass m 
suspended by a light string of length / fixed at its upper 
end, as shown in Fig. 7.7. When such a pendulum is 
displaced from its mean position through a small angle 0 to 
the position B and released, it starts oscillating to and fro 
over the same path. The weight mg of the mass can be 
resolved into two components; mg sin 0 along the tangent 
at B and mg cos 0 along CB to balance the tension of the 
string. The restoring force at B will be

F = - mg sin 0

150



When 0 is small, s in0«0
So F = m a = - m gQ .......... (7.18)
Or a -  -g0

But 0 _ Arc AB

When 0 is small Arc AB = OB = x, hence 0 = y

Thus, a = - S~- .......... (7.19)

At a particular place ‘g’ is constant and for a given pendulum 
T  is also a constant.

Therefore, j  = k (a constant)

and the motion of the simple pendulum is simple harmonic. 
Comparing Eq. 7.19 with Eq. 7.9

“ = #
As time period T = —

CD

Hence T =2n J— ..........
Id

(7.20)

This shows that the time period depends only on 
the length of the pendulum and the acceleration 
due to gravity. It is independent of mass.

Example 7.2: What should be the length of a simple 
pendulum whose period is 1.0 second at a place where 
g = 9.8 ms'2? What is the frequency of such a pendulum?

Solution:

Time period, T = 2n —
II9

T = 1.0 s , g = 9.8 ms'2
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Squaring both sides

/ =
4n2

or l  9.8ms'2 x1s2 
"  4x3.14x3.14

= 0.25 m

Frequency

7.6 ENERGY CONSERVATION IN SHM
Let us consider the case of a vibrating mass-spring 
system. When the mass m is pulled slowly, the spring is 
stretched by an amount xD against the elastic restoring 
force F. It is assumed that stretching is done slowly so that 
acceleration is zero. According to Hooke’s law

Work done in displacing the m§ss m through x0 is

The Eq. 7.21 gives the maximum P.E. at the extreme 
position. Thus

At any instant f, if the displacement is x, then PE. at that 
instant is given by

F = kx0

When displacement = 0

When displacement = x0
force = 0 
force = kx0

Average force

W -  F d -  ^  k x0x x0 = -~kXo

This work appears as elastic potential energy of the spring. 
Hence

P.E. = | (7.21)



, P.E. = |  tot2 (7.22)

The velocity at that instant is given by Eq. 7.15 which is

' - " M i
Hence the K.E. at that instant is

K.E. of the mass = — mv2 = -  mx02 
2 2

K.E. = i  to 02 1- (7.23)

Thus, kinetic energy is maximum when x  = 0, i.e. when the 
mass is at equilibrium or mean position (Fig. 7.8)

K.E. max “  kXn (7-24)*

For any displacement x, the energy is partly P.E. and partly 
K.E. Hence,

E total = PE. + K.E.

= \  A* 2+ i kx° l1- | .

Total energy = — kxi (7.25)

Thus the total energy of the vibrating mass and spring is 
constant. When the K.E. of the mass is maximum, the PE. 
of the spring is zero. Conversely, when the P.E. of the 
spring is maximum, the K.E. of the mass is zero. The 
interchange occurs continuously from one form to the other 
as the spring is compressed and released alternately. 
The variation of P.E. and K.E. with displacement is 
essential for maintaining oscillations. This periodic 
exchange of energy is a basic property of all oscillatory 
systems. In the case of simple pendulum gravitational PE. 
of the mass, when displaced,is converted into K.E. at the

Fig. 7.8
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M
H

y
equilibrium position. The K.E. is converted into P.E. as the 
mass rises to the top of the swing. Because of the frictional 
forces, energy is dissipated and consequently,the systems 
do not oscillate indefinitely.

Example 7.3: A spring, whose spring constant is 
80.0 Nm'1 vertically supports a mass of 1.0 kg in the rest 
position. Find the distance by which the mass must be 
pulled down, so that on being released, it may pass the 
mean position with a velocity of 1.0 ms'1.

Solution:

7.7 FREE AND FORCED OSCILLATIONS
A body is said to be executing free vibrations when it oscillates 
without the interference of an external force. The frequency 
of these free vibrations is known as its natural frequency. 
For example, a simple pendulum when slightly displaced 
from its mean position vibrates freely with its natural frequency 
that depends only upon the length of the pendulum.

On the other hand, if a freely oscillating system is subjected 
to an external periodic force, then forced vibrations will 
take place. Such a$ when the mass of a vibrating 
pendulum is struck repeatedly, then forced vibrations are 
produced.

k = 80.0 Nm'1 m = 1.0 kg

Since co2= A
m

or

Then v = x0co

asas v= 1 .0m s '1 and © = 8.94 s'1

Let the amplitude of vibration be x0

Distance through which m is pulled = xQ = 1ms = 0.11 m
8.94s

J80Nm~1 I;
1kg

or

80 kgms 2xm~1 _ 8>94 s-i 
1kg

x
-A O A
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A physical system under going forced vibrations 
is known as driven harmonic oscillator.

The vibrations of a vehicle body caused by the running of 
engine is an example of forced vibrations. Another example 
of forced vibration is loud music produced by sounding 
wooden boards o f string instruments.

7.8 RESONANCE • 1
Associated with the motion of a driven harmonic oscillator, 
there is a very striking phenomenon, known as resonance.
It arises if the external driving force is periodic with a 
period comparable to the natural period of the oscillator.

In a resonance situation, the driving force may be feeble, 
the amplitude of the motion may become extra ordinarily 
large. In the case of oscillating simple pendulum, if we 
blow to push the pendulum whenever it comes in front of 
our mouth, it is found that the amplitude steadily increases.

To demonstrate this resonance effect, an apparatus is 
shown in Fig. 7.9. A horizontal rod AB is supported by two 
strings Si and S2. Three pairs of pendulums aa', bb'and cc' 
are suspended to this rod. The length of each pair is the 
same but is different for different pairs. If one of these 
pendulums, say c, is displaced in a direction perpendicular 
to the plane of the paper, then its resultant oscillatory 
motion causes in rod AB a very slight disturbing motion, 
whose period is the same as that of c'. Due to this slight 
motion of the rod, each of the remaining pendulums (aa', 
bb'.and qc') under go a slight periodic motion. This causes 
the pendulum c', whose length and, hence, period is 
exactly the same as that of c, to oscillate back and forth 
with steadily increasing amplitude. However, the 
amplitudes of the other pendulums remain small through 
out the subsequent motions of c and c', because their 
natural periods are not the same as that of the disturbing 
force due to rod AB.
The energy of the oscillation comes from the driving source. * 
At resonance ,the transfer of energy is maximum.

Thus resonance occurs when the frequency of the applied
periodic forced is equal to one of the natural frequencies of
vibration o f the forced or driven harmonic oscillator.

Fig. 7.9

Do You Know?

All structures are likely to resonate 
at one or more frequencies. This 
can cause problem. It is especially 
im p o rtan t to tes t a ll the  
components in helicopters and 
aeroplanes; Resonance in an 
aeroplane’s wing or a helicopter 
rotor could be very dangerous.
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Interesting Information

The collapse of Tacoma Narrow 
bridge (USA) is suspected to be due 
to violent resonance oscillations.

box to k««p 
microwaves inside

i over it

Fig. 7.10

Advantages And Disadvantages of Resonance
We come across many examples of resonance in every 
day life. A swing is a good example of mechanical 
resonance. It is like a pendulum with a single natural frequency 
depending on its length. If a series of regular pushes are 
given to the swing, its motion can be built up enormously. If 
pushes are given irregularly, the swing will hardly vibrate. 
The column of soldiers, while marching on a bridge of long span 
are advised to break their steps. Their rhythmic march might 
set up oscillations of dangerously large amplitude in the 
bridge structure. '1

Tuning a radio is the best example of. electrical resonance. 
When we turn the knob of a radio, to tune a station, we are 
changing the natural frequency of the electric circuit of the 
receiver, to make it equal to the transmission frequency of 
the radio station. When the two frequencies match, energy 
absorption is maximum and this is the only station we hear.

Another^ good example of resonance is the heating and. 
cooking of food very efficiently and evenly by microwave 
oven (Fig.v7.10): T fie waves produced in this type of oven 
have a wavelength! of 12 cm at a frequency of 2450 MHz. 
At this frequency: the waves are absorbed due to 
resonance by water and fat molecules in the food, heating 
them up and so cooking the food.

7.9 DAMPED OSCILLATIONS
This is a common observation that the amplitude of an 
oscillating simple pendulum decreases gradually with time 
till it becomes zero. Such oscillations, in which the 
amplitude decreases steadily with time, are called damped 
oscillations.

(a) Undamped

Fig. 7. 
Graph

11(a)
between amplitude and time

We know from our everyday pxperience that the motion of 
any macroscopic system is accompanied by frictional 
effects. While describing the motion of a simple pendulum, 
this effect was completely ignored. As the bob of the 
pendulum moves to and fro, then in addition to the weight 
of the bob and the tension in the string, bob experiences 
viscous drag due to its motion through ,the air. Thus simple 
harmonic motion is an idealization (Fig. 7.11 a). In practice, 
the amplitude of this motion gradually becomes smaller
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and smaller because of friction and air resistance because 
the energy of the oscillator is used up in doing work against 
the resistive forces. Fig. 7.11 (b) shows how the amplitude 
of a damped simple harmonic wave changes with time as 
compared with an ideal un-damped harmonic wave.Thus 
we see that

Damping is the process whereby energy 
is dissipated from the oscillating system. Fig. 7.11(b)

Graph between amplitude and time

An application of damped oscillations is the shock 
absorber of a car which provides a damping force to 
prevent excessive oscillations (Fig. 7.12).

7.10 SHARPNESS OF RESONANCE
We have seen that at resonance, the amplitude of the oscillator 
becomes very large. If the amplitude decreases rapidly at a 
frequency slightly different from the resonant frequency, the 
resonance will be sharp. The amplitude as well as its sharpness, 
both depend upon the damping. Smaller the damping, greater 
will be the amplitude and more sharp will be the resonance.

Chassis weight

Fig. 7.12

A heavily damped system has a fairly 
flat resonance curve as is shown in an 
amplitude frequency graph in Fig. 7.13.

The effect of damping can be observed by attaching a 
pendulum having light mass such as a pith ball as its bob 
and another of the same length carrying a heavy mass 
such as a lead bob of equal size, to a rod as shown in 
Fig. 7.9. They are set into vibrations by a third pendulum 
of equal length, attached to the same rod. It is observed 
that amplitude of the lead bob is much greater than that 
of the pith-ball. The damping effect for the pith-ball due 
to air resistance is much greater than for the lead bob.

Driving frequency

Fig. 7.13



•  Oscillatory motion is to and fro motion about a mean position.

•  Periodic motion is the one that repeats itself after equal intervals of time.

• Restoring force opposes the change in shape or length of a body and is equal and 
opposite to applied force.

• A vibratory motion in which acceleration is directly proportional to displacement from 
mean position and is always directed towards the mean position is known as simple 
harmonic motion.

2n• The projection of a particle moving in a circle executes SHM. Its time period 7" is — .

• Phase of vibration is the quantity which indicates the state of motion of a vibrating 
particle generally referred by the phase angle.

• The vibratory motion of a mass attached to an elastic spring is SHM and its time

•' The vibratory motion of the bob of simple pendulum is also SHM and its time period

• In an oscillating system P.E. and K.E. interchange and total energy is conserved.

• A body is said to be executing free oscillation if it vibrates with its $wn natural 
frequency without the interference of an external force.

When a freely oscillating system is subjected to an external periodic force, then' 
forced vibrations take place.

• Resonance is the specific response of a system to a periodic force acting with the 
natural vibrating period of the system.

• Damping is the process whereby energy is dissipated from the oscillating system.

is given by

S B
7.1 Name two characteristics of simple harmonic motion.

7.2 Does frequency depends on amplitude for harmonic oscillators?

7.3 Can we realize an ideal simple pendulum?



7 4 What is the total distance travelled by an object moving with SHM in a time equal to 
its'period, if its amplitude is A?

7.5 What happens to the period of a simple pendulum if its length is doubled? What 
happens if the suspended mass is doubled?

7.6 Does the acceleration of a simple harmonic oscillator remain constant during its 
motion? Is the acceleration ever zero? Explain.

7.7 What is meant by phase angle? Does it define angle between maximum
displacement and the driving force?

#
7.8 Under what conditions does the addition of two simple harmonic motions produce a 

resultant, which is also simple harmonic?
7.9 Show that in SHM the acceleration is zero when the velocity is greatest and the 

velocity is zero when the acceleration is greatest?
7.10In relation to SHM, explain the equations;

(i) y  = A sin (co t + (p)

(ii) a = - co2x
7.11 Explain the relation between total energy, potential energy and kinetic energy for a 

body oscillating with SHM.
7.12 Describe some common phenomena in which resonance plays an important role.

7.13If a mass spring system is hung vertically and set into oscillations' why does the 
motion eventually stop?

NUMERICAL PROBLEMS

7.1 A 100.0 g body hung on a spring elongates the spring by 4.0 cm. When a certain 
object is hung on the spring and set vibrating, its period is 0.568 s. What is the 
mass of the object pulling the spring?

(Ans:0.20 kg)

7.2 A load of 15.0g elongates a spring by 2.00 cm. If body of mass 294 g is attached to 
the spring and is set into vibration with an amplitude of 10.0 cm, what will be its 
(i) period (ii) spring constant (iii) maximum speed of its vibration.

[Ans: (i) 1.26s, (ii) 7.35 Nm"1, ̂ iii^ 49.0 cm s’1]
7.3 An 8.0 kg body executes SHM with amplitude 30 cm. The restoring force is 60 N

when the displacement is 30 cm. Find

(i) Period
(ii) Acceleration, speed, kinetic energy and potential energy when the

displacement is 12 cm.
[Ans: (i) 1.3 s, (ii) 3.0 ms'2, 1.4 ms ’ , 7.6 J, 1.44J]



A block of mass 4.0 kg is dropped from a height of 0.80 m on to a spring of spring 
constant k = 1960 Nm'1, Find the maximum distance through which the spring will 
be compressed.

4 (Ans:0.18m)

A simple pendulum is 50.0 cm long. What will be its frequency of vibration at a place 
where g = 9.8 ms'2?

(Ans: 0.70 Hz)

A block of mass 1.6 kg is attached to a spring with spring constant 1000 Nm'1, as 
shown in Fig. 7.14. The spring is compressed through a distance of 2.0cm and the 
block is released from rest. Calculate the velocity of the block as it passes through 
the equilibrium position, x = 0, if the surface is frictionless.

Fig, 7.14 x = °

wU f  I

(Ans: 0.50 ms'1)

h— I
X = 2cm

7.7 A car of mass 1300 kg is constructed using a frame supported by four springs. 
Each spring has a spring constant 20,000 Nm'1. If two people riding in the car have 
a combined mass of 160 kg, find the frequency of vibration of the car, when it is 
driven over a pot hole in the road. Assume the weight is evenly distributed.

(Ans: 1.18 Hz)

7.8^ Find the amplitude, frequency and period of an object vibrating at the end of a 
spring, if the equation for its position, as a function of time, is

x = 0.25 cos [ j ]  f 

What is the displacement of the object after 2.0 s?

(Ans: 0.25 m, —  Hz, 16 s, x = 0.18 m) 
16 '
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C h a p t e r 8

■ ■ ■ B  waves HR
Learning Objectives

At the end of this chapter the students will be able to :

1. Recall the generation and propagation of waves.

2. Describe the nature of the motions in transverse and longitudinal waves.
3. Understand and use the terms wavelength, frequency and speed of wave.

4. Understand and use the equation v - f \

5. Understand and describe Newton’s formula of speed of sound.
6. Derive Laplace correction in Newton's formula of speed of sound for air.
7. Derive the formula v=  v0 + 0.61 i.

8. Recognize and describe the factors on which speed of sound in air depends.
9. Explain and use the principle of superposition.

10. Understand the terms interference and beats.

11. Describe the phenomena of interference and beats giving examples of sound
waves.

12. Understand and describe reflection of waves.
13. Describe experiments, which demonstrate stationary waves for stretched strings

and vibrating air columns.

14. Explain the formation of a stationary wave using graphical method.

15. Understand the terms node.and anti-node.
16. Understand and describe modes of vibration of string.
17. Understand and describe Doppler's effect and its causes.
18. Recognize the applications of Doppler's effect in radar, sonar, astronomy, satellite 

and radar speed traps.
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w aves transport energy without transporting matter.
The energy transportation is carried by a disturbance, which , 
spreads out from a source. We are well familiar with different 
types of waves such as water waves in the ocean, or gently 
formed ripples on a still pond due to rain drop. When a 
musician plucks a guitar-string, sound waves are generated 
which on reaching our ear, produce the sensation of music. 
Wave disturbances may also come in a concentrated bundle 
like the shock waves from an aeroplane flying at supersonic 
speed. Whatever may be the nature of waves, the 
mechanism' by which it transports energy is the same. A 
succession of oscillatory motions are always involved. The 
wave is generated by an oscillation in the vibrating body and 
propagation of wave through space is by means of 
oscillations. The waves'which propagate by the oscillation of 
material particles are known as mechanical waves.

There is another class of waves which, instead of material 
particles, propagate out in space due to oscillations of
electric and magnetic fields. Such waves are known as
electromagnetic waves. We will undertake the study of
electromagnetic waves at a later stage. Here we will

radars travel just a few centimetres consider the mechanical waves only. The waves generated
in water, whereas highly directional r . , .
beams of ultrasonic waves can be in ropes, strings, coil of springs, water and air are all
made to travel many kilometres mechanical waves.’

So far wc have been considering motion o f individual 
particles but in case of mechanical waves, we study the 
collective motion o f particles. An example will help us 
here. If youMook at a black and white picture in a 
newspaper with a magnifying glass, you will discover that 
the picture is made up o f many closely spaced dots. If you 
do not use the magnifier, you do not see the dots. What .you 
see is the collective effect of dots in the form of a picture. 
Thus what we sec as mechanical wave is actually the effect 
o f oscillations o f a very large number o f particles o f the 
medium through which the wave is passing.

8.1 PROGRESSIVE WAVES
Drop a pebble into water. Ripples will be produced and 
spread out across the water. The ripples are the examples 
of progressive waves because they carry energy across

Do You Know?
Ultrasonic waves are particularly 
useful for undersea communication 
and detection systems. High 
frequency radio waves, used in
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the water surface. A wave, which transfers energy by 
moving away from the source of disturbance, is called a 
progressive or travelling wave. There are two kinds of 
progressive waves - transverse waves and longitudinal 
waves.

Transverse and Longitudinal Waves
Consider two persons holding opposite ends of a rope or a 
hosepipe. Suddenly one person gives one up and down jerk to 
the rope. This disturbs the rope and creates a hump in it which 
travelsalongtheropetowardstheotherperson(Fig.8.1 a & b).

Fig. 8.1

When this hump reaches the other person, it causes his 
hand to move up (Fig. 8.1 c). Thus the energy and 
momentum imparted to the end of the rope by the first 
person has reached the other end of the rope by travelling 
through the rope i.e., a wave has been set up on the rope 
in the form of a moving hump. We call this type of wave a 
pulse. The forward motion of the pulse from one end of the 
rope to the other is an example of progressive wave. The 
hand jerking the end of the rope is the source of the 
wave. The rope i$ th£ medium in which the wave moves.
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Transverse waves

Fig. 8.2(a)

Longitudinal waves

Fig. 8.2(b)

A large and loose spring coil (slinky spring) can be used to 
demonstrate the effect of the motion of the source in 
generating waves in a medium. It is better that the 
spring is laid on a smooth table with its one end fixed 
so that the spring does not sag under gravity.
If the free end of the spring is vibrated from side to side, a pulse 
of wave having a displacement pattern shown in Fig. '8.2 (a) 
will be generated which \\ ill mo\ e along the spring.
If the end of the spring is moved back and forth, along the 
direction of the spring itself as shown in Fig. 8.2 (b), a wave 
with back and forth displacement will travel along the spring. 
Waves like those in Fig. 8.2 (a) in which displacement of the 
spring is perpendicular to the direction of the waves are 
called transverse waves. Waves like those in Fig. 8.2 (b) in 
which displacements are in the direction of propagation of 
waves are called longitudinal waves. In this example the coil 
of spring is the medium, so in general we can say that

Transverse waves are those in which particles of 
the medium are displaced in a direction 
perpendicular to the direction of propagation of 
waves and longitudinal waves are those in which 
the particles of the medium have displacements 
along the direction of propagation of waves.

Both types of waves can be set up in solids. In fluids, 
however, transverse waves die out very quickly and 
usually cannot be produced at all. That is why, sound 
waves in air are longitudinal in nature.

8.2 PERIODIC WAVES

Fig. 8.3(a)

Upto now we have considered wave in the form of a pulse 
which is set up by a single disturbance in a medium like the 
snapping of one end of a rope or a coil spring. Continuous, 
regular and rhythmic disturbances in a medium result from 
periodic vibrations of a source which cause periodic waves 
in that medium. A good example of a periodic vibrator is an 
oscillating mass-spring system (Fig 8.3 a). We have already 
studied in the previous chapter that the mass of such a 
system executes SHM.
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Transverse Periodic Waves
Imagine an experiment where one end of a rope is fastened 
to a mass spring vibrator. As the mass vibrates up and 
down, we observe a transverse periodic wave travelling 
along the length of rope (Fig. 8.3 b). The wave consists of 
crests and troughs. The crest is a pattern in which the rope 
is displaced above its equilibrium position, and in troughs, 
it has a displacement below its equilibrium position.

As the source executes harmonic motion up and down with 
amplitude A and frequency f, ideally every point along the 
length of the rope executes SHM in turn, with the same 
amplitude and frequency. The wave travels towards right 
as crests and troughs in turn, replace one another, but the 
points on the rope simply oscillates up and down. The 
amplitude of the wave is the maximum value of the 
displacement in a crest or trough and it is equal to the 
amplitude of the vibrator. The distance between any two 
consecutive crests or troughs is the same all along the 
length of the rope. This distance is called the wavelength 
of the periodic wave and is usually denoted by the Greek 
letter lambda X (Fig. 8.3 b).

In principle, the speed of the wave can be measured by 
timing the motion of a wave crest over a measured 
distance. But it is not always convenient to observe the 
motion of the crest. As discussed below, however, the 
speed of a periodic wave can be found indirectly from its 
frequency and wavelength.

As a wave progresses, each point in the medium oscillates 
periodically with the frequency and period of the source. 
Fig. 8.4 illustrates a periodic wave moving to the right, as it 
might look in photographic snapshots taken every %  
period. Follow the progress of the crest that started out 
from the extreme left at t = 0. The time that this crest takes 
to move a distance of one wavelength is equal to the time 
required for a point in the medium to go^.through one 
complete oscillation. That is the crest moves one 
wavelength X in one period of oscillation 7".Th^ speed v of 
the crest is therefore,

Fig. 8.3(b)

Fig. 8.4

V = distance moved
corresponding time interval
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All parts of the wave pattern move with the same speed, so  
the speed of any one crest is just the speed of the wave/ 
We can therefore, say that the speed v of the waves is

* =    (8 .1)

but y  = f, where f  is the frequency of the wave. It is the

same as the frequency of the vibrator, generating the 
waves. Thus Eq. 8.1 becomes

v = n    (8.2)

Phase Relationship between two Points on a Wave
The profile of periodic waves generated by a source 
executing SHM is represented by a sine curve. Figure 8.5 
shows the snapshot of a periodic wave passing through a 
medium. In this figure, set of points are shown which are 
moving in unison as the periodic wave passes. The points 
C and C ' , as they move up and down, are always in the 
same state of vibration i.e., they always have identical 
displacements and velocities. Alternatively, we can say that 
as the wave passes, the points C ad C' move in phase. 
We may also say that C ' leads C by one time period or 2n 
radian. Any point at a distance x, C lags behind by phase 
angle q> = 2nx 

A
So is the case with points D and D' . Indeed there are 
infinitely many such points along the medium which are 
vibrating in phase. Points separated from one another
through distances of A, 2A, 3A, ........ are all in phase with
each other. These points can be anywhere along the wave 
and need not correspond with only the highest and lowest
points. For example, points such as P, P ' , P" .............
are all in phase. Each is separated from the next by a 
distance A.
Some of the points are exactly out of step. For example, 
when point C reaches its maximum upward displacement, 
at the same time D reaches its maximum downward 
displacement. At the instant that C begins to go down, D 
begins to move up. Points such as these are called one 
half period out of phase. Any two points separated from
one another by 3 ^ ,  5 ^ ,  are out of phase.



Longitudinal Periodic Waves
In the previous section we have considered the generation 
of transverse periodic waves. Now we will see how the 
longitudinal periodic waves can be generated.

Consider a coil of spring as shown in Fig. 8.6. It is 
suspended by threads so that it can vibrate horizontally. 
Suppose an oscillating force F is applied to its end as 
indicated. The force will alternately stretch and compress 
the spring, thereby sending a series of stretched regions 
(called rarefaction) and compressions down the spring. We 
will see the oscillating force causes a longitudinal wave to 
move down the spring. This type of wave generated in 
springs is also called a compressional wave. Clearly in a 
compressional wave, the particles in the path of wave move 
back and forth along the line of propagation of the wave.

Notice in Fig. 8.6, the supporting threads would be exactly 
vertical if the spring were undisturbed. The disturbance 
passing down the spring causes displacements of the 
elements of the spring from their equilibrium positions. In 
Fig. 8.6, the displacements of the thread from the vertical 
are a direct measure of the displacements of the spring 
elements. It is, therefore, an easy way to graph the 
displacements of the spring elements from their equilibrium 
positions and this is done in the lower part of the figure.

8.3 SPEED OF SOUND IN AIR
Sound waves are the most important examples of 
longitudinal or compressional waves. The speed of sound 
waves depends on the compressibility and inertia of the 
medium through which they are travelling. If the medium has 
the elastic modulus E and densityp then, speed v is given by

v = (8.3)

As seen from the table 8.1, the speed of sound is much 
higher in solids than in gases. This makes sense because 
the molecules in a solid are closer than in a gas and 
hence, respond more quickly to a disturbance.

In general, sound travels more slowly in gases than in 
solids because gases are more compressible and hence

Table 8.1
Speed of sound In different media

Medium Speed
ms'1

Solids at 20°C
Lead 1320
Copper 3600
Aluminium 5100
Iron 5130
Glass 5500

Liauids at 20°C
Methanol 1120
Water 1483

Gases at S.T.P.
Carbon dioxide 258
Oxygen 315
Air 332
Helium 972
Hydogen 1286
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have a smaller elastic modulus. For the calculation of 
elastic modulus for air, Newton assumed that when a 
sound wave travels through air, the temperature of the air 
during compression remains constant and pressure 
changes from P to (P+AP) and therefore, the volume 
changes from V to (V - AV). According to Boyle’s law

PV  = (P + A P )(V - AV) ............ (8.4)

or P V = P V ~  PAV + VAP - APAV

The product AP AV is very small and can be neglected. So, 
the above equation becomes

AP AP
PAV=VAP  or P .  —  x V m —

For Your Information
Values of constant

The expression is the elastic modulus E at constant
v , / v j

temperature. So, substituting P for E in equation 8.3, we

Types of gas Y
Monoatom ic 1.67
Diatomic 1.40
Polyatomic 1.29

get Newton’s formula for the speed of sound in air. Hence

  (8.5)

On substituting the values of atmospheric pressure and 
density of air at S.T.P. in equation 8.5, we find that the 
speed of sound waves in air comes out to be 280 ms'1, 
whereas its experimental value is 332 ms'1.
To account for this difference, Laplace pointed out that the 
compressions and rarefactions occdr so rapidly that heat of 
compressions remains confined to the region where it is 
generated and does not have time to flow to the 
neighbouring cooler regions which have undergone an 
expansion. Hence the temperature of the medium does not 
remain constant. In such case Boyle’s law takes the form

PVy = Constant (8 .6 )

where Y = Molar specific heat of gas at constant pressure 
Molar specific heat of gas at constant volume

If the pressure of a given mass of a gas is changed from P 
to (P + A P ) and volume changes from V to (V - AV), then 
using Eq. 8.6
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P V 1 = (P + A P )(V - AV)'

PV = (P + AP)V'

Applying Binomial theorem

1 - ^

1-
AV AV1 - y + negligible terms

Hence P = ( P +AP)
'■ ’ V

or

where

AV ' AVP = P - y P- + AP- y A P----
\/ V

is negligible.. Hence, we have

AV
0= -YP + AP

\/

or
AP
AV /

= Y P =E

Thus elastic modulus
r

AP
A\7/

/ V J

equals Y p.

Hence,substituting the value of elastic modulus in Eq. 8.3, 
we get Laplace expression for the speed of sound in a gas

I r P ■ (8.7)

For air Y = 1.4 so at S.T.P.

v -  Vi .4 X 280 m s'1 =  333 ms'

This value is very close to the experimental value.

For Your Information 
Ranges of Hearing

Organisms Frequencies
(Hz)

Dolphin
Bat
Cat
Dog
Human

150- 150,000 
1000- 120,000 

60 -  70,000 
15-50,000  
20-20,000
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Effect of Variation of Pressure, Density and 
Temperature on the Speed of Sound in a Gas
1. Effect of Pressure: Since density is proportional 

to the pressure, the speed of sound is not affected by a 
variation in the pressure of the gas.

2. Effect of Density: At the same temperature and 
pressure for the gases having the same value of Y, the 
speed is inversely proportional to the square root of 
their densities Eq. 8.7. Thus the speed of sound in 
hydrogen is four times its speed in oxygen as density 
of oxygen is 16 times that of hydrogen.

3. Effect of Temperature: When a gas is heated at
constant pressure, its volume is increased and hence 
its density is decreased. As

v=

So, the speed is increased with rise in temperature.

Let

v0 = Speed of sound at 0 °C , pQ -  Density of gas at 0 °C 

vt = Speed of sound at t °C , Pt = Density of gas at t °C

then v0 = and vt =
V P0 4 V Pt

Hence’    (88)

We have studied the volume expansion of gases in 
previous classes. If Vo is the volume of a gas at 
temperature 0 °C and Vt is volume at t °C, then

Vt = V0 (1 + p t)

Where p is the coefficient of volume expansion of the gas.
1

For all gases, its value is a b o u t . Hence



Since

Hence

or

Volume =

m m

p, p.

mass
density

P 0= P t
V.

273

t
273

Putting the value of pQ in equation 8.8 we have,

or

l . L X
, V 273 

V, [273 I Y

v0 v 2 7 3  \ r 0

(8.9)

(8.10)
V . V V l n

where T and T0 are the absolute temperatures
corresponding to t °C and 0 °C respectively. Thus, the
speed of sound varies directly as the square root of
absolute temperature

Expanding the R.H.S. of equation (8.9), using Binomial 
theorem and neglecting higher powers, we have

1 +—
546v  _y

0r &
As vQ = 332 ms

putting this value in the 2nd factor

332
Then v,= vn+ ------- 1

' 546

or vt = va + 0.61 t (8 .11)

Example 8 .1 : Find the temperature at which the velocity 
of sound in air is two times its velocity at 10 °C.

Solution: 10 °C = 10 °C + 273 = 283 K

Suppose at T K, the velocity is two times its value at 283 K.

Do You Know?

Slower than the speed of sound.

Faster than the speed of sound.

What happens when a jet plane 
like Concorde flies faster than the 
speed of sound?
A conical surface of concentrated 
sound energy sweeps over the 
ground as a supersonic plane 
passes overhead. It is known as 
sonicboom.
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Since

■ Therefore,
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or

-  P -V 283 K

r n
2S3 V 283 K

Fig. 8.7

wave 1

Superposition of two waves of the same 
frequency which are exactly ir

Wave 1 and 2 super posed 

resultant wave 

V = 0
Superposition of two waves of the same 
frequency which are exactly out of 
phase.

V2S3

T=  1132 K or 859 °C

H ^ m ^ P E R P O S I T I i

So far, we have considered single waves. Wh'at happens 
when two waves encounter each other in the same 
medium? Suppose two waves approach each other on a 
coil of spring, one travelling towards the right and the other 
travelling towards left. Fig. 8.7 shows what you would see 
happening on the spring. The waves pass through each 
other without being modified. After the encounter, each 
wave shape looks just as it did before and is travelling 
along just as it was before.

This phenomenon of passing through each other 
unchanged can be observed with all types of waves. You 
can easily see that it is true for surface ripples.

But what is going on during the time when the two waves 
overlap? Fig. 8.7 (c) shows that the displacements they 
produce just add up. At each instant, the spring’s 
displacement at any point in the overlap region is just the 
sum of the displacements that would be caused by each of 
the two waves separately.

Thus, if a particle of a medium is simultaneously acted 
upon by n waves such that its displacement due to each of
the individual n waves be yi, y2, ......... ' yn, then the
resultant displacement of the particle, under the 
simultaneous action of these n waves is the algebraic'sum 

jOf all the displacements i.e.,

Y = y,+ y2+  + yn

This is called principle o f superposition.
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Again, if two waves which cross each other have 
opposite phase, their resultant displacement will be

V = yi - y2

Particularly if yi = yi then result displacement Y= 0. 
Principle of superposition leads to many interesting 
phenomena with waves.

i) Two waves having same frequency and
travelling in the same direction (Interference).

ii) Two waves of slightly different frequencies and
travelling in the same direction (Beats)

iii) Two waves of equal frequency travelling in
opposite direction (Stationary waves).

________  .___________ s,

:.5 ERFERENCE
Superposition of two waves having the same frequency 
and travelling in the same direction results in a 
phenomenon called interference.

An experimental set up to observe interference effect in 
sound waves is shown in Fig. 8.8 (a).

Fig. 8.8 (b)

Interference of sound waves
Points P,, Pv P5 are points of constructive interference.
Points P2 and P4 are points of destructive interference.

Two loud speakers St and S2 act as two sources of 
harmonic sound waves of a fixed frequency produced by

Audio generator

T

Fig. 8.8(a)
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Fig. 8.8(c)
Constructive Interference 
Large displacement is displayed on 
the CRO screen

Fig. 8.8(d)
Destructive Interference
Zero displacement is displayed on
the CRO screen

An audio generator. Since the two speakers are driven from 
the same generator, they vibrate in phase. Such sources of 
waves are called coherent sources. A microphone attached 
to a sensitive cathode ray oscilloscope (CRO) acts as a 
detector of sound waves. The CRO is a device to display 
the input signal into waveform on its screen. The 
microphone is placed at various points, turn by turn, in 
front o f the loud speakers as shown in the Fig. 8.8 (b).

t

At points Pi, P3 and P5 a large signal is seen on the CRO 
[Fig. 8.8(c)], whereas at points P2 and P4 no signal is 
displayed on CRO screen [Fig. 8.8 (d)].This effect is 
explained in Fig. 8.8 (b) in which compressions and 
rarefactions are alternately emitted by both speakers. 
Continuous lines show compression and dotted lines 
show rarefactions. At points P^ P3 and P5> we find that 
compression meets with a compression and rarefaction 
meets a rarefaction. So, the displacement of two waves 
are added up at these points and a large resultant 
displacement is produced which is seen on the CRO 
screen Fig. 8.8 (c).

Now from Fig. 8.8 (b), we find that the path difference AS 
between the waves at the point Pi is

AS — S2Pi ■ S 1P1 or AS — 4-J-X - 34-A. — %

Similarly at points P3 and P5, path difference is zero and 
respectively.

Whenever path difference is an integral multiple of 
wavelength, the two waves are added up. This effect is 
called constructive interference.

Therefore, the condition for constructive interference can 
be written as

where

A S  = nX 

n = 0, ±1, ±2, ±3,

(8 .12)

At points P2 and P4, compression meets with a rarefaction, 
so that they cancel each other’s effect. The resultant 
displacement becomes zero, as shown in [Fig. 8.8(d)].

Now let us calculate the path-differene between the 
waves at points P2 and P4. For point P2
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Similarly at P4 the path difference is  X.
2

So, at points where the displacements of two waves cancel 
each other's effect, the path difference is an odd integral 
multiple of half the wavelength. This effect is called 
destructive interference.

Therefore, the condition for destructive interference can be 
written as

Tuning forks give out pure notes (single frequency). If two 
tuning forks A and B of the same frequency say 32Hz are 
sounded separately, they will give out pure notes. If they are 
sounded simultaneously, it will be difficult to differentiate the 
notes of one tuning fork from that of the other. The sound 
waves of the two will be superposed on each other and will 
be heard by the human ear as a single pure note. If the 
tuning fork B is loaded with some wax or plasticene, its 
frequency will be lowered slightly, say it becomes 30Hz.

If now the two tuning forks are sounded together, a note of 
alternately increasing and decreasing intensity will be heard. 
This note is called beat note or a beat which is due to 
interference between the sound waves from tuning forks A 
and B. Fig. 8.9 (a) shows the waveform of the note emitted 
from a tuning fork A. Similarly Fig. 8.9 (b) shows the 
waveform of the note emitted by tuning fork B. When both 
the tuning forks A and B are sounded together, the resultant 
waveform is shown in Fig. 8.9 (c).

where

AS = (2n +1) ^
2

n = 0, ±1, ±2, ±3:

(8.13)

Fig. 8.9 (c) shows how does the beat note occur. At some instant 
X the displacement of the two waves is in the same direction. 
The resultant displacement is large and a loud sound is heard.



After 1/4s the displacement of the wave due to one tuning fork 
is opposite to the displacement of the wave due to the other 
tuning fork resulting in a minimum displacement at Y, hence, 
faint sound or no sound is heard.

Another 1/4 s later the displacements are again in the 
same direction and a loud sound is heard again at Z.

This means a loud sound is heard two times in each 
second. As the difference of the frequency of the two 
tuning forks is also 2 Hz so, we find that

Number of beats per Second is equal to the difference 
between the frequencies of the tuning forks.

When the difference between the frequencies of the two 
sounds is more than about 10 Hz, then it becomes difficult 
to recognize the beats.

One can use beats to tune a string instrument, such as piano 
or violin, by beating a note against a note of known frequency. 
The string can then be adjusted to the desired frequency by 
tightening or loosening it until no beats are heard.

Example 8.2: A tuning fork A produces 4 beats per 
second with another tuning fork B. It is found that by 
loading B with some wax, the beat frequency increases to 
6 beats per second. If the frequency of A is 320 Hz, 
determine the frequency of B when loaded.

Solution: Since the beat frequency is 4, the frequency 
of B is either 320 + 4 = 324 Hz or 320 - 4 = 316 Hz. By 
loading B, its frequency will decrease. Thus if 324 Hz is the 
original frequency, the beat frequency will reduce. On the 
other hand, if it is 316 Hz, the beat frequency will increase 
which is the case. So, the original frequency of the tuning 
fork B is 316 Hz and when loaded, it is 316 - 2 = 314 Hz.

In an extensive medium, a wave travels in all directions 
from its source with a velocity depending upon the 
properties of the medium. However, when the wave comes

WAVES
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across the boundary of two media, a part of it is reflected 
back. The reflected wave has the same wavelength and 
frequency but its phase may change depending upon the 
nature of the boundary.

Now we will discuss two most common cases of reflection 
at the boundary. These cases will be explained with the 
help of waves travelling in slinky spring. (A slinky spring is 
a loose spring which has small initial length but a relatively 
large extended length).
One end of the slinky spring is tied to a rigid support on a 
smooth horizontal table. When a sharp jerk is given up to the 
free end of the slinky spring towards the side A, a 
displacement or a crest will travel from free end to the 
boundary (Fig. 8.10 a). It will exert a force on bound end 
towards the side A. Since this end is rigidly bound and acts 
as a denser medium, it will exert a reaction force on the 
spring in opposite direction. This force will produce 
displacement downwards B and a trough will travel 
backwards along the spring (Fig.8.10 b).

From the above discussion it can be concluded that 
whenever a transverse wave, travelling in a rarer medium, 
encounters a denser medium, it bounces back such that the 
direction of its displacement is reversed. An incident crest 
on reflection becomes a trough.

This experiment is repeated with a little variation by attaching 
one end of a light string to a slinky spring and the other end to 
the rigid support as shown in Fig. 8.11. If now the spring is 
given a sharp jerk towards A, a crest travels along the spring 
as shown in Fig. 8.11. When this crest reaches the spring- 
string boundary, it exert a force on the string towards the side 
A. Since the string has a small mass as compared to spring, 
it does not oppose the motion of the spring. The end of the 
spring, therefore, continues its displacement towards A. The 
spring behaves as if it has been plucked up. In other words a 
crest is again created at the boundary of the spring-string 
system, which travels backwards along the spring. From this 
it can be concluded that when a transverse wave travelling in 
a denser medium, is reflected from the boundaty o^a rarer 
medium, the direction of its displacement remains ihe, same. 
An incident crest is reflected as a crest. We are already 
familiar with the fact that the direction of displacement is

 .

jgM

B
(a)

-•nurrmrrr'-'Trrtvrnrmr^. m

(b) ..

Fig. 8.10

Slinky
CUULUlUUJJUX., light string |
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...----------------------1

Fig. 8.11
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reversed when there is change of 180° in the phase of 
vibration. So, the above conclusion can be written as follows.

i) If a transverse wave travelling in a rarer medium 
is incident on a denser medium, it is reflected 
such that it undergoes a phase change of 180°.

ii) If a transverse wave travelling in a denser 
medium is incident on a rarer medium, it is 
reflected without any change in phase.

8.8 STATIONARY WAVES
Now let us consider the superposition of two waves 
moving along a string in opposite directions. Fig. 8.12 
(a,b) shows the profile of two such waves at instants 
t =0,7/4, 3/47 and 7, where 7 is the time period of the 
wave. We are interested in finding out the displacements 
of the points 1,2,3,4,5,6 and 7 at these instants as the 
waves superpose. From the Fig. 8.12 (a,b), it is obvious
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Fig. 8.12 . . .
that the points 1,2,3, etc are distant X/4 apart, X being 
the wavelength of the waves. We can determine the 
resultant displacement of these points by applying the 
principle of superposition. Fig 8.12 (c) shows the 
resultant displacement of the points 1,3,5 and 7 at the 
instants t = 0, 7/4, 7/2, 37/4 and 7. It can be seen that 
the resultant displacement of these points is always 
zero. These points of the medium are known as nodes. 
Fig. 8.12 (c) shows that the distance between two

 ̂̂  always 
2 “ ~4j" " 6 " oscillating
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consecutive nodes is A, /2. Fig. 8.12 (d) shows the 
resultant displacement of the points 2,4 and 6 at the 
instants t = 0, 7/4, 7/2, 37/4 and 7. The figure shows 
that these points are moving with an amplitude which is 
the sum of the amplitudes of the component waves. 
These points are known as antinodes. They are situated 
midway between the nodes and are also XI2 apart. The 
distance between a node and the next antinode is X/4. 
Such a pattern of nodes and anti-nodes is known as a 
stationary or standing wave.

Energy in a wave moves because of the motion of the 
particles of the medium. The nodes always remain at rest, 
so energy cannot flow past these points. Hence energy 
remains “standing” in the medium between nodes, 
although it alternates between potential and kinetic forms. 
When the antinodes are all at their extreme displacements, 
the energy stored is wholly potential and when they are 
simultaneously passing through their equilibrium positions, 
the energy is wholly kinetic.

An easy way to generate a stationary wave is to superpose 
a wave travelling down a string with its reflection travelling 
in opposite direction as explained in the next section.

8.9 STATIONARY WAVES IN A STRETCHED 
STRING

Consider a string of length / which is kept stretched by 
clamping its ends so that the tension in the string is F. If 
the string is plucked at its middle point, two transverse 
waves will originate from this point. One of them will move 
towards the left end of the string and the other towards the 
right end. When these waves reach the two clamped ends, 
they are reflected back thus giving rise to stationary waves. 
As the two ends of the string are clamped, no motion will 
take place there. So nodes will be formed at the two ends 
and one mode of vibration of the string will be as shown in 
Fig. 8.13 with the two ends as nodes with one antinode in 
between. Visually the string seems to vibrate in one loop. 
As the distance between two consecutive nodes is one half 
of the wavelength of the waves set up in the string, so in 
this mode of vibration, the length / of the string is

/ = h .  or * 1 = 2 /    (8.14)
2

l -

Fig. 8.13
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where X1 is the wavelength of the waves set up in this 
mode.
The speed v of the waves in the string depends upon the 
tension F of the string and m, the mass per unit length of

the string. It is given by v =

Knowing the speed v and wavelength the frequency f1 
of the waves is given by

Substituting the value of v,

Thus in the first mode of vibration shown in Fig. 8.13, 
waves of frequency f1 only will be set up in the given string.

If the same string is plucked from one quarter of its length, 
again stationary waves will be set up with nodes and 
antinodes as shown in Fig. 8.14. Note that now the string 
vibrates in two loops. This particular configuration of nodes 
and antinodes has developed because the string was 
plucked from the position of an antinode. As the distance 
between two consecutive nodes is half the wavelength, so 
the Fig. 8.14 shows that the length / of string is equal to 
the wavelength of the waves set up in this mode. If ?,2is the 
measure of wavelength of these waves, then,

X2 = l   (8.18)

A comparison of this equation with Eq. 8.14 shows the 
wavelength in this case is half of that in the first case.

Eq. 8.16 shows that the speed of waves depends upon the 
tension and mass per unit length of the string. It is 
independent of the point from where the string is plucked 
to generate the waves. So the speed v of the waves will 
be same in two cases.

If f2 is frequency of vibration of string in its second mode, 
then by Eq. 8.2

v = f 2xX 2 = f 2 l or f2= j  . ( 8 . 1 9 )  

Comparing it with Eq. 8.16, we get

fi = ~ J ~  
2 l \ m

(8.16)

(8.17)

£ (8.15)
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f2 = 2 f t

Thus when the string vibrates in two loops, its frequency 
becomes dogble than when it vibrates in one loop.

Similarly by plucking the string properly, it can be made to 
vibrate in 3 loops, with nodes and antinodes as shown in 
Fig. 8.15.

In this case the frequency of waves will be ft = 3 ft and the 
wavelength will be equal to 2113. Thus we can say that if the' 
string is made to vibrate in n loops, the frequency of 
stationary waves set up on the string will be

fn =  n f t ..........................  (8.20)

and the wavelength

K=-l  (8.21)
n

It is clear that as the string vibrates in more and more 
loops, its frequency goes on increasing and the 
wavelength gets correspondingly shorter. However the 
product of the frequency and wavelength is always equal 
to v, the speed of waves.

The above discussion, clearly establishes that the 
stationary waves have a discrete set of frequencies ft, 2ft,
3ft ......., nft which is known as harmonic series. The
fundamental frequency ft corresponds to the first harmonic, 
the frequency ft - 2 ft corresponds to the second harmonic 
and so on. The stationary waves can be set up on the 
string only with the frequencies of harmonic series 
determined by the tension, length and mass per unit length 
of the string. Waves not in harmonic series are quickly 
damped out.

The frequency of a string on a musical instrument can be 
changed either by varying the tension or by changing the 
length. For example, the tension in guitar and violin strings is 
varied by tightening the pegs on the neck of the instrument. 
Once the instrument is tuned, the musicians vary the 
frequency by moving their fingers along the neck, thereby 
changing the length of the vibrating portion of the string.
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A standing-wave pattern is formed 
when the length of the string is an 
integral multiple of half wave
length; otherwise no standing 
wave is formed.

For Your Information

In an organ pipe, the primary 
driving mechanism is wavering, 
sheet like jet of air from flute-slit, 
which interacts with the upper lip 
and the air column in the pipe to 
maintain a steady oscillation.

Example 8.3: A steel wire hangs vertically from a fixed 
point, supporting a weight of 80 N at its lower end. The 
diameter of the w ire is 0.50 mm and its length from  the 
fixed point to the weight is 1.5 m. Calculate the 
fundamental frequency emitted by the wire when it is 
plucked?

(Density of steel wire = 7.8 x 103 kgm '3)

Solution:
Volume of wire = Length x Area of cross section 

Mass = Volume x Density

therefore
-M ass of wljre = Length x Area of cross section x Density 

So. mass per unit length m is given by

m = Density x Area of cross section 

Diameter of the wire = D = 0.50 mm = 0.5 x 10'3 m

Radius o f the wire = r = — = 0.25 x 10'3 m 
2

Area of cross section of wire = n r 2 = 3.14 x (0.25 x 10‘3m)2 

F = w

therefore

m  •= 7.8 x 103 kgm ' x 3.14 x (0.25 x 10'3 m)2 

m -  1.53 x lO ^kg m '1 
W eight = 80 N = 80 kg m s '

Using the equation (8.17). we get

21

U =- 1

or

2 x1.5m 

U = 76 Hz.

80 kgms'

1.53X10'3 kgm '
= 76 s*

8.10 STATIONARY WAVES IN AIR COLUMNS
Stationary waves can be set in other media also, such as air 
column. A common example of vibrating air column is in the
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organ pipe. The relationship between the incident wave and 
the reflected wave depends on whether the reflecting end of 
the pipe is open or closed. If the reflecting end is open, the 
air molecules have complete freedom of motion and this 
behaves as an antinode. If the reflecting end is closed, then 
it behaves as a node because the movement of the 
molecules is restricted. The modes of vibration of an air 
column in a pipe open at both ends are shown in Fig. 8.16.

In figure, the longitudinal waves set up in the pipe have been 
represented by transverse curved lines indicating the varying 
amplitude of vibration of the air particles at points along the 
axis of the pipe. However, it must be kept in mind that air 
vibrations are longitudinal along the length of the pipe. The 
wavelength'A.n'of nth harmonic and its frequency ' fn' of any 
harmonic is given by

x = f  , f„ =   (8.22)
n \  21

n = 1, 2, 3 ,4 , .........

where V  is the speed of sound in air and is the length of 
the pipe. The equation 8.22 can also be written as

fn = n U   (8.23)

If a pipe is closed at one end and open at the other, the closed 
end is a node. The modes of vibration in this case are shown 
in Fig. 8.17.

In case of fundamental note, the distance between a node 
and antinode is one fourth of the wavelength,

Hence, / = — 
4

Since

Hence

or

v = fX

^ 1 = 4 1

It can be proved that in a pipe closed at one end, only odd 
harmonics are generated, which are given by the equation

/ -)7 2  / ,-e /2 /
<•)

" X T  “X T
I - 2('k/2) /,-2 (P /2 /)

<tt

/ -  3(X/2) / s -3(o/2/)
<r>

Fig. 8.16 
Stationary longitudinal waves in a 
pipe open at both ends.

I •  3(A/4) /,-3 (0 /4 /)
<M

/ -  5(31/4) f3-  5(o/4/)
✓ to

Fig. 8.17
Stationary longitudinal waves in a 
pipe dosed at one end. Only odd 
harmonics are present
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Echolocation allows dolphins to 
detect small differences in the shape, 
size and thickness of objects.

rw _  . .

f „ = —    (8.24)
4/

where n = 1, 3, 5,

This shows that the pipe, which is open at both ends, is 
richer in harmonics.

Example 8.4: A pipe has a length of 1 m. Determine the 
frequencies of the fundamental and the first two harmonics
(a) if the pipe is open at both ends and (b) if the pipe is 
closed at one end.

(Speed of sound in air = 340 ms'1)

Solution:

,  . nv 1 x 340ms'1 . «
a) fy = — = -----------------= 170 s - 170 Hz

21 2 x 1 m

f2 = 2 fj = 2 x 170 Hz = 340 Hz

and h  = 3 fy = 3 x 170 Hz = 510 Hz

nv 1x340ms'1 .
b fy = —  = -----------------= 85 s 1 = 85 Hz

4/ 4 xim

In this case only odd harmonics are present, so

h  = 3 fi = 3 x 85 Hz = 255 Hz

and f5 = 5 fy = 5 x 85 Hz = 425 Hz

8.11 DOPPLER EFFECT
An important phenomenon observed in waves is the 
Doppler effect. This effect shows that if there is some 
relative motion between the source of waves and the 
observer, an apparent change in frequency of the waves is 
observed.

This effect was observed by Johann Doppler while he was 
observing the frequency of light emitted from distant stars. 
In some cases, the frequency of light emitted from a star 
was found to be slightly different from that emitted from a 
similar source on the Earth. He found that the change in

184



frequency of light depends on the motion of star relative to 
the Earth.

This effect can be observed with sound waves also. When 
an observer is standing on a railway platform, the pitch of 
the whistle of an approaching locomotive is heard to be 
higher. But when the same locomotive moves away, the 
pitch of the whistle becomes lower.

The change in the frequency due to Doppler effect can be 
calculated easily if the relative motion between the source 
and the observer is along a straight line joining them. 
Suppose v is the velocity of the sound in the medium and 
the source emits a sound of frequency f  and wavelength X . 
If both the source and the observer are stationary, then the

v
waves received by the observer in one second are f  = —. IfA
an observer A moves towards the source with a velocity uQ 
(Fig. 8.18), the relative velocity of the waves and the 
observer is increased to {v + u 0). Then the number of 
waves received in one second or modified frequency fA is

v+ u
— 2-

v
Putting the value of X = —, the above equation becomes

f* = f
v+u

(8.25)

For an observer B receding from the source (Fig. 8.19), 
the relative velocity of the waves and the observer is 
diminished to {v - u0). Thus the observer receives waves at 
a reduced rate. Hence, the number of waves received in

v - u
one second in this case is

If the modified frequency, which the observer hears, is fB 
then

Fig. 8.18

An observer moving with velocity uD 
towards a stationary source hears a 
frequency fA that is greater than the 
source frequency.

Fig. 8.19

(An observer moving with velocity u0 
jaway from stationary source hears a 
/frequency fB that is smaller than the 
I source frequency.
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Fig. 8.20
A source moving with velocity u, 
towards a stationary observer C and 
away from stationary observer D. 
Observer C hears an increased and 
observer D hears a decreased 
frequency.

Now, if the source is moving towards the observer with 
velocity us (Fig. 8.20), then in one second, the waves are 
compressed by an amount known as Doppler shift 
represented by a*,.

A A . =

The compression of waves is due to the fact that same 
number of waves are contained in a shorter space 
depending upon the velocity of the source.

The wavelength for observer C is then

x c = x  - AX

x c =

wavelength given by;

a.d -

v - u s
I f  f J I  f  J

will an increase

X + AX

r , +v rv+

L f  J

The modified frequency for observer C is then

V- u, (8.27)

and for the observer D will be



f ° ~ Y ~D V + U C
(8.28)

This means that the observed frequency increases when 
the source is moving towards the observer and decreases 
when source is moving away from the observer.

Example 8.5: A train is approaching a station at 
90 kmh'1 sounding a whistle of frequency 1000 Hz. What will 
be the apparent frequency of the whistle as heard by a 
listener sitting on the platform? What wiff be the apparent 
frequency heard by the same listener if the train moves 
away from the station with the same speed?

(speed of sound = 340ms )

Solution:

Frequency of source = f0 = 1000 Hz 

Speed of sound = 340 ms'1

Speed of train = us = 90 kmh'1 = 25 ms'1

When train is approaching towards the listener, then using 
the relation

f '  =
V — U0V  S j

Do You Know?

blood vessel
The Doppler effect can be used to 
monitor blood flow through major 
arteries. Ultrasound waves of 
frequencies 5MHz to 10MHz are 
directed towards the artery and a 
rece iver detects the back  
scattered signal. The apparent 
frequency depends on the velocity 
of flow of the blood.

V  =
340 ms'

,340 m s '1 -25  ms"1̂
X1000 Hz = 1079.4 Hz

When train is moving away from the listener, then using 
the relation

r  =
v + u
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M  c f -Planeieceding

f iw  CJ J

Plane approaching

A frequency shift is used in a radar to 
detect the motion of an aeroplane

Stationery star 

♦

f "  =

Star receding

(b)

Star approaching 

*

(c)

340 ms'

340 m s '1 + 25 m s '1
x1000 Hz = 931.5 Hz

Applications of Doppler Effect
Doppler effect is also applicable to electromagnetic waves. 
One of its important applications is the radar system, which 
uses radio waves to determine the elevation and speed of 
an aeroplane. Radar is a device, which transmits and 
receives radio waves. If an aeroplane approaches towards 
the radar, then the wavelength of the wave reflected from 
aeroplane would be shorter and if it moves away, then the 
wavelength would be larger as shown in Fig. 8.21. 
Similarly speed of satellites moving around the Earth can 
also be determined by the same principle.

Sonar is an acronym derived from "Sound navigation and 
ranging". The general name for sonic or ultrasonic underwater 
echo-ranging and echo-sounding system. Sonar is the name 
of a technique for detecting the presence of objects 
underwater by acoustical echo.

In Sonar, "Doppler detection" relies upon the relative speed 
of the target and the detector to provide an indication of the 
target speed. It employs the Doppler effect, in which an 
apparent change in frequency occurs when the source and 
the observer are in relative motion to one another. Its known 
military applications include the detection and location of 
submarines, control of antisubmarine weapons, mine hunting 
and depth measurement of sea.

Astronomers use the Doppler effect to calculate the speeds of 
distant stars and galaxies. By comparing the line spectrum of 
light from the star with light from a laboratory source, the 
Doppler shift of the star's light can be measured. Then the 
speed of the star can be calculated.

Stars moving towards the Earth show a blue shift. This is 
because the wavelength of light emitted by the star are 
shorter than if the star had been at rest. So, the spectrum is 
shifted towards shorter wavelength, i.e., to the blue end of 
the spectrum (Fig. 8.22).

Fig. 8.22
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Stars moving away from the Earth show a red shift. The 
emitted waves have a longer wavelength than if the star had 
been at rest. So the spectrum is shifted towards longer 
wavelength, i.e., towards the red end of the spectrum. 
Astronomers have also discovered that all the distant 
galaxies are moving away from us and by measuring their 
red shifts, they have estimated their speeds.

Another important application of the Doppler shift using 
electromagnetic waves is the radar speed trap. 
Microwaves are emitted from a transmitter in short bursts. 
Each burst is reflected off by any car in the path of 
microwaves in between sending out bursts. The transmitter 
is opened to detect reflected microwaves. If the reflection 
is caused by a moving obstacle, the reflected microwaves 
are Doppler shifted. By measuring the Doppler shift, the 
speed at which the car moves is calculated by computer 
programme.

m m ®
• Waves carry energy and this energy is carried out by a disturbance, which spreads 

out from the source.

• If the particles of the medium vibrate perpendicular to the direction of propagation of 
the wave, then such wave is called transverse wave, e.g. light waves.

• If the particle of the medium vibrate parallel to the direction of propagation of the 
wave, then such wave is called longitudinal wave, e.g. sound waves.

• If a particle of the medium is simultaneously acted upon by two waves, then the 
resultant displacement of the particle is the algebraic sum of their individual 
displacements. This is called principle of superposition.

•  When two waves meet each other in a medium then at some points they 
reinforce the effect of each other and at some other points they cancel each other's 
effect. This phenomenon is called interference.

• The periodic variations of sound between maximum and minimum loudness are 
called beats.

• Stationary waves are produced in a medium, when two identical waves travelling in 
opposite directions interfere in that medium

• The apparent change in the pitch of sound caused by the relative motion of either the 
source of sound or the listener is called Doppler effect.

Bats navigate and find food by 
echo location.
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8.1 What features do longitudinal waves have in common with transverse waves?

8.2 The five possible waveforms obtained, when the output from a microphone is fed
into the Y-input of cathode ray oscilloscope, with the time base on, are shown in 
Fig.8.23. These waveforms are obtained under the same adjustment of the 
cathode ray oscilloscope controls. Indicate the waveform

a) which trace represents the loudest note?

b) which trace represents the highest frequency?

Fig. 8.23 a  B C D E

8.3 Is it possible for two identical waves travelling in the same direction along a string 
to give rise to a stationary wave?

8.4 A wave is produced along a stretched string but some of its particles permanently 
show zero displacement. What type < ■* yvave is it?

8.5 Explain the terms crest, trough, node and antinode.

8.6 Why does sound travel faster in solids than in gases?

8.7 How are beats useful in tuning musical instruments?

8.8 When two notes of frequencies U and f2 are sounded together, beats are formed. If
U > f2 , what will be the frequency of beats?

i) fi + h ii) -  (fi + fi)
2

iii) f, - f2 iv) -  (f, - f2)
2

8.9 As a result of a distant explosion, an observer senses a ground tremor and then 
hears the explosion. Explain the time difference.

8.10 Explain why sound travels faster in warm air than in cold air.

8.11 How should a sound source move with respect to an observer so that the frequency
of its sound does not change?



NUMERICAL PROBLEMS

8.1 The wavelength of the signals from a radio transmitter is 1500 m and the frequency is 
200 kHz. What is the wavelength for a transmitter operating at 1000 kHz and with what 
speed the radio waves travel?

(Ans: 300 m, 3 x 108 ms'1)
8.2 Two speakers are arranged as shown in Fig. 8.24. The distance between them is 3 m 

and they emit a constant tone of 344 Hz. A microphone P is moved along a line 
parallel to and 4.00 m from the line connecting the two speakers. It is found that tone 
of maximum loudness is heard and displayed on the CRO when microphone is on 
the centre of the line and directly opposite each speakers. Calculate the speed of 
sound.

Fig. 8.24

(Ans: 344 ms'1)
8.3 A stationary wave is established in a string which is 120 cm long and fixed at both 

ends. The string vibrates in four segments, at a frequency of 120 Hz. Determine its 
wavelength and the fundamental frequency?

(Ans: 0.6 m, 30 Hz)
8.4 The frequency of the note emitted by a stretched string is 300 Hz. What will be the 

frequency of this note when;
(a) the length of the wave is reduced by one-third without changing the tension.
(b) the tension is increased by one-third without changing the length of the wire.

(Ans: 450 Hz, 346 Hz)
8.5 An organ pipe has a length of 50 cm. Find the frequency of its fundamental note 

and the next harmonic when it is
(a) open at both ends.
(b) closed at one end.

(Speed of sound = 350 ms'1)
[Ans: (a) 350 Hz, 700 Hz, (b) 175 Hz, 525 Hz]
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8.6 A church organ consists of pipes, each open at one end, of different lengths. The 
minimum length is 30 mm and the longest is 4 m. Calculate the frequency range of 
the fundamental notes.
(Speed of sound = 340 ms*1)

(Ans: 21 Hz to 2833 Hz)
8.7 Two tuning forks exhibit beats at a beat frequency of 3 Hz. The frequency of one 

fork is 256 Hz. Its frequency is then lowered slightly by adding a bit of wax to one 
of its prong. The two forks then exhibit a beat frequency of 1 Hz. Determine the 
frequency of the second tuning fork.

(Ans: 253 Hz)
8.8 Two cars P and Q are travelling along a motorway in the same direction. The leading 

car P travels at a steady speed of 12 ms'1; the other car Q, travelling at a steady speed 
of 20 ms'1, sound its horn to emit a steady note which P's driver estimates, has a 
frequency of 830 Hz. What frequency does Q's own driver hear?
(Speed of sound = 340 ms*1)

(Ans: 810 Hz)

8.9 A train sounds its horn before it sets off from the station and an observer waiting on the 
plateform estimates its frequency at 1200 Hz. The train then moves off and 
accelerates steadily. Fifty seconds after departure, the driver sounds the horn again 
and the plateform observer estimates the frequency at 1140 Hz. Calculate the train 
speed 50 s after departure. How far from the station is the train after 50 s?
(Speed of sound = 340 ms'1)

(Ans: 17.9 ms'1, 448 m)

8.10 The absorption spectrum of faint galaxy is measured and the wavelength of one of 
the lines identified as the Calcium a line is found to be 478 nm. The same line has 
a wavelength of 397 nm when measured in a laboratory.

a) Is the galaxy moving towards or away from the Earth?

b) | Calculate the speed of the galaxy relative to Earth.

(Speed of light = 3.0 x 108 ms'1)

[Ans: (a) away from the Earth, (b) 6.1 x 107 ms'1]



D  9

PHYSICAL OPTICS

C h a p t e r

Learning Objectives '
At the end of this chapter the students will be able to:

Understand the concept of wavefront.
State Huygen’s principle.
Use Huygen’s principle to explain linear superposition of light.
Understand interference of light.
Describe Young's double slit experiment and the evidence it provided to support 
the wave theory of light.
Recognize and express colour patterns in thin films.
Describe the formation of Newton’s rings.
Understand the working of Michelson's interferometer and its uses.
Explain the meaning of the term diffraction.
Describe diffraction at a single slit.
Derive the equation for angular position of first minimum.

Derive the equation d sin0 = mX.

Carry out calculations using the diffraction grating formula.
Describe the phenomenon of diffraction of X-rays by crystals.
Appreciate the use of diffraction of X-rays by crystals.
Understand polarization as a phenomenon associated with transverse waves. 
Recognize and express that polarization is produced by a Polaroid.
Understand the effect of rotation of Polaroid on polarization.
Understand how plane polarized light is produced and detected.

iI— ight is a type of energy which produces sensation of vision. But how does this energy 
propagate? In 1678, Huygen's, an eminent Dutch scientist, proposed that
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Wavefronts

Wavefronts (b)

Fig. 9.1
Spherical wave fronts (a) and plane 
wavefronts(b)spaced a wavelength 
apart. The arrows represent rays.

Do You Know?
Small segments o f large spherical 
wavefronts approximate a plane 
wavefront.

light energy from a luminous source travels in space as 
waves. The experimental evidence in support of wave 
theory in Huygen’s time was not convincing. However, 
Young’s interference experiment performed for the first time 
in 1801 proved wave nature of light and thus established the 
Huygen’s wave theory. In this chapter you will study the 
properties of light, associated with its wave nature.

9.1 WAVEFRONTS
Consider a point source of light at S (Fig. 9.1 a). Waves 
emitted from this source will propagate outwards in all 
directions with speed c. After time t, they will reach the 
surface of an imaginary sphere with centre as S and radius 
as ct .Every point on the surface of this sphere will be set 
into vibration by the waves reaching there. As the distance 
of all these points from the source is the same, their state 
of vibration will be identical. In other words, all the points 
on the surface of the sphere will have the same 
phase.

Such a surface on which all the points have the
same phase of vibration is known as wavefront.

Thus in case of a point source, the wavefront is spherical 
in shape. A line normal to the wavefront, showing the 
direction of propagation of light is called a ray of light.

With time, the wave moves farther giving rise to new wave
fronts. All these wavefronts will be concentric spheres of 
increasing radii as shown in Fig. 9.1 (a). Thus the wave 
propagates in space by the motion of the wavefronts. The 
distance between the consecutive wavefronts is one wave
length. It can be seen that as we move away at greater 
distance from the source, the wavefronts are parts of spheres 
of very large radii. A limited region taken on such a wavefront 
can be regarded as a plane wavefront (Fig.9.1 b). For example, 
light from the Sun reaches the Earth with plane wavefronts.

In the study of interference and diffraction, plane waves and 
plane wavefronts are considered. A usual way to obtain a
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plane wave is to place a point source of light at the focus of 
a convex lens. The rays coming out of the lens will constitute 
plane waves.

9.2 HUYGEN’S PRINCIPLE
Knowing the shape and location of. a wavefront at any 
instant t, Huygen’s principle enables us to determine the 
shape and location of the new wavefront at a later time 
t +At .  This principle consists of two parts:

(i) Every point of a wavefront may be considered as a 
source of secondary wavelets which spread out in 
forward direction with a speed equal to the speed of 
propagation of the wave.

(ii) The new position of the wavefront after a certain 
interval of time can be found by constructing a 
surface that touches all the secondary wavelets.

The principle is illustrated in Fig. 9.2 (a). AB represents the 
wavefront at any instant t. To determine the wavefront at 
time t+ At, draw secondary wavelets with centre at various 
points on the wavefront AB and radius as cAt where c is 
speed of the propagation of the wave as shown in Fig.9.2 (a). 
The new wavefront at time t + At is A'B' which is a 
tangent envelope to all the secondary wavelets.

Figure 9.2 (b) shows a similar construction for a plane wave- 
front.

9.3 INTERFERENCE OF LIGHT WAVES
An oil film floating on water surface exhibits beautiful 
colour patterns. This happens due to interference of light 
waves, the phenomenon, which is being discussed in this 
section.

Conditions for Detectable Intqrferen
It was studied in Chapter 8 that when two waves travel in 
the same medium, they would interfere constructively or 
destructively. The amplitude of the resultant wave will be 
greater then either o f the individual waves, if  they interfere 
constructively. In the case o f destructive interference, the

A’

(b) Plane wavefront

Fig.9.2
(H uyge ns ' c o n s tru c t io n  fo r  
'determining the position o f the 

* wavefronts AB and CD after a time 
interval At. A'B' and C'D' are the 
new positions o f the wavefomts.
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For Your Information amplitude of the resultant wave will be less than either 
of the individual waves.

Monochromatic Light
Sodium chloride in a flame gives 
out pure yellow light. This light is not 
a mixture of red and green.

Fig. 9.3 (a)
Ray geometry of .Ypung’s double 
slit experiment.

Interference of light waves is not easy to observe because 
of the random emission of light from a source. The 
following conditions must be met, in order to observe the 
phenomenon.

1. The interfering beams must be monochromatic, 
that is, of a single wavelength.

2
The interfering beams of light must be coherent.

Consider two or more sources of light waves of the same 
wavelength. If the sources send out crests or troughs at 
the same instant, the individual waves maintain a constant 
phase difference with one another.The monochromatic 
sources of light which emit waves, having a constant 
phase difference, are called coherent sources.

A common method of producing two coherent light beams 
is to use a monochromatic source to illuminate a screen 
containing two small holes, usually in the shape of slits. 
The light emerging from the two slits is coherent because a 
single source produces the original beam and two slits 
serve only to split it into two parts. The points on a 
Huygen’s wavefront which send out secondary wavelets 
are also coherent sources of light.

9.4 YOUNG’S DOUBLE SLIT EXPERIMENT
Fig. 9.3 (a) shows the experimental arrangement, similar to 
that devised by Young in 1801, for studying interference 
effects of light. A screen having two narrow slits is 
illuminated by a beam of monochromatic light. The portion 
of the wavefront incident on the slits behaves as a source 
of secondary wavelets (Huygen’s principle). The secondary 
wavelets leaving the slits are coherent. Superposition of 
these wavelets result in a series of bright and dark bands 
(fringes) which are observed on a second screen placed at 
some distance parallel to the first screen.

Let us now consider the formation of bright and dark 
bands. As pointed out earlier the two slits behave as
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coherent sources of secondary wavelets. The wavelets 
arrive at the screen in such a way that at some points 
crests fall on crests and troughs on troughs resulting in 
constructive interference and bright fringes are formed. 
There are some points on the screen where crests meet 
troughs giving rise to destructive interference and dark

Young's double slit experiment for interference of light.

The bright fringes are termed as maxima and dark fringes 
as minima.

In order to derive equations for maxima and minima, an 
arbitrary point P is taken on the screen on one side of 
the central point O as shown in Fig. 9.3 (c). AP and BP 
are the paths of the rays reaching P. The line AD is 
drawn such that AP = DP. The separation between the 
Centres of the two slits is AB = d. The distance of the 
screen from the slits is CO = L. The angle between 
CP and CO is 0. It can be proved that the angle 
BAD = 0 by assuming that AD is nearly normal to BP. 
The path difference between the wavelets, leaving the 
slits and arriving at P, is BD. It is the number of 
wavelengths, contained within BD, that determines 
whether bright or dark fringe will appear at P. If the point 
P is to have bright fringe, the path difference BD must be 
an integral multiple of wavelength.

B
J<------- L ------- >

Fig. 9.3(c)
G e o m e tr ic a l c o n s tru c tio n  o f 
Young's double slit experiment
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Thus, BD = mX, where m = 0 ,1 ,2 ,

Since

iherefon?

BD = of sin0 

d sin 0 = mA. (9.1)

-It is observed that each bright fringe on one side of O has 
symmetrically located bright fringe on the other side of O. The 
central bright fringe is obtained when m = 0. If a dark fringe 
appears at point P, the path difference BD must contain 
half-integral number of wavelengths.

Thus

theref<^re\

BD =

d sin 0 =

m + -

m  +  - (9.2)

The first dark fringe, in this case, will obviously appear for 
m = 0 and second dark for m = 1. The interference pattern 
formed in the Young’s experiment is shown in Fig. 9.3 (d).

For Your Information

0' sine tan0

2 0.035 0.035
4 0.070 0.070
6 0.104 0.105
8 0.139 0.140

10 0.174 0.176

Fig. 9.3(d)

An interference pattern by monochromatic light inYoung's double slits experiment.

Equations 9.1 and 9.2 can be applied for determining the 
linear distance on the screen between adjacent bright or 
dark fringes. If the angle 0 is small, then

sin 0 « tan0
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Now from Fig. 9.3 (c), tanG = y/L, where y is the distance 
of the point P from O. If a bright fringe is observed at P. 
then, from Eq. 9.1, we get,

y  = m XL (9.3)

If P is to have dark fringe it can be proved that

m XL
d

(9.4)

In order to determine the distance between two adjacent 
bright fringes on the screen, mth and (m + 1) th fringes are 
considered.

XLym = m -For the mth bright fringe, 

and for the (m + 1 )th bright fringe ym+i = ( m +1) XL

If the distance between the adjacent bright fringes iSA y, 
then

Ay= ym +i- ym=(m  + 1) ^  -m  ^
O 0

Therefore, Ay = XL (9.5)

Tidbits

§ v«

An interference pattern formed 
with white light.

Similarly, the distance between two adjacent dark fringes 
can be proved to be XL/d. It is, therefore, found that the 
bright and dark fringes are of equal width and are equally
spaced.

t 1
Eq. 9.5 reveals that fringe spacing increases if red 
light (long wavelength) is used as compared to blue light 
(short wavelength). The fringe spacing varies directly with 
distance L between the slits and screen and inversely with 
the separation d of the slits.

If the separation d between the two slits" the order m of a 
bright or dark fringe and fringe spacing Ay are known, the 
wavelength /. of the light used for interference effect can be 
determined by applying Eq. 9.5.
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Example 9.1: The distance between the slits in Young's 
double slit experiment is 0.25 cm. Interference fringes are 
formed on a screen placed at a distance of 100 cm from the 
slits. The distance of the third dark fringe from the central bright 
fringe is 0.059 cm. Find the wavelength of the incident light.

Solution: Given that
of =0 .25cm = 2 .5 x 10'3m

y =0.059 cm =5.9 x lO^m

L = 100 cm = 1 m

For the 3rd dark fringe m = 2

Interesting Information

Colours seen on oily water surface 
are due to interference of incident 
white light.

Using y =
1m + — 
2

5.9 x10 m x2.5 x 10 m

Therefore,

-k )x  1

I  =5.90 x 10'7 m = 590 nm

m

Example 9.2: Yellow sodium light of wavelength 589 nm, 
emitted by a single source passes through two narrow 
slits 1.00 mm apart. The interference pattern is observed 
on a screen 225 cm away. How far apart are two adjacent 
bright fringes?

Solution: Given that

X = 589 nm = 589 x 10"9 m 

d=  1.00 mm = 1.00 x I0 '3m 

L = 225 cm = 2.25 m 
Ay =?

Using Ay =
a

Ay = 589 x10'9 mx 2.25 m
1.0x10 J m 

Ay = 1.33 x 10'3m or
Thus; the adjacent frings will be 1.33 mm apart. 
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9.5 INTERFERENCE IN THIN FILMS
A thin film is a transparent medium whose thickness is 
comparable with the wavelength of light. Brilliant and 
beautiful colours in soap bubbles and oil film on the 
surface of water are due to interference of light reflected 
from the two surfaces of the film as explained below:

Consider a thin film of a refracting medium. A beam AB of 
monochromatic light of wavelength X is incident on its upper 
surface. It is partly reflected along BC and partly refracted 
into the medium along BD. At D it is again partly reflected 
Inside the medium along DE and then at E refracted along EF as 
shown in Fig. 9.4. The beams BC and EF, being the parts of the same 
primary beam have a phase coherencfe. As the film is thin, so the 
separation between the beams BC and EF will be very small, 
and they will superpose and the result of their interference 
will be detected by the eye. It can be seen in Fig. 9.4. that 
the original beam splits into two parts BC and EF due to the 
thin film enter the eye after covering different lengths^ 
of paths. Their path difference depends upon (i) thickness' 
and nature of the film and (ii) angle of incidence. If the two 
reflected waves reinforce each other, then the film as seen 
with the help of a parallel beam of monochromatic light 
will look bright. However, if the thickness of the film and 
angle of incidence are such that the two reflected waves 

'  cancel each other, the film will look dark.

If white light is incident on a film of irregular thickness at all 
possible angles, we should consider the interference 
pattern due to each spectral colour separately. It is quite 
possible that at a certain place on the film, its thickness 
and the angle of incidence of light are such that the 
condition of destructive interference of one colour is being 
satisfied. Hence, that portion of the film will exhibit the 
remaining constituent colours of the white light as shown in 
Fig. 9.5.

9.6 NEWTON’S RINGS
When a plano-convex lens of long focal length is placed in 
contact with a plane glass plate (Fig. 9.6 a), a thin air film is 
enclosed between the upper surface of the glass plate and 
the lower surface of the lens. The thickness of the air film is

D! Water

G e o m e tr ic a l c o n s tru c tio n  o f 
interference of light due to a thin oil
Him

Do You Know?

The vivid iridescence of peacock 
feathers due to interference of the 
light reflected from its complex 
layered surface.

Fig. 9.5
Interference pattern produced by a 
thin soap film illuminated by white
light.
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Fig. 9.6 (a)
Experim enta l a rrangem ent for' 
observing Newton's rings.

Fig. 9.6(b)
A pattern of Newton's rings due to 
interference of monochromatic light.

Fig.9.7
Schematic diagram of a Micheisun’s 
Interferometer.

almost zero at the point of contact 0  and it gradually increases 
as one proceeds towards the periphery of the lens. Thus, the 
points where the thickness of air film is constant, will lie on a 
circle with O as centre.

By means of a sheet of glass G, a parallel beam of 
monochromatic light is reflected towards the plano-convex 
lens L. Any ray of monochromatic light that strikes the 
upper surface of the air film nearly along normal is partly 
reflected and partly refracted. The ray refracted in the 
air film is also reflected partly at the lower surface of the 
film. The two reflected rays, i.e. produced at the upper 
and lower surfaces of the film, are coherent and interfere 
constructively or destructively. When the light reflected 
upwards is observed through a microscope M which is 
focussed on the glass plate, series of dark and bright rings 
are seen with centre at O (Fig. 9.6 b). These concentric 
rings are known as Newton’s rings.

At the point of contact of the lens and the glass plate, the 
thickness of the film is effectively zero but due to reflection 
at the lower surface of air film from denser medium, an 
additional path difference of^/2 is introduced. Consequently, 
the centre of Newton rings is dark due to destructive 
interference.

9.7 MICHELSON’S INTERFEROMETER

Michelson’s interferometer is an instrument that can be used 
to measure distance, with extremely high precision. Albert 
A. Michelson devised this instrument in 1881 using the 
idea of interference of light rays. The essential features of a 
Michelson’s interferometer are shown schematically in Fig.9.7.

Monochromatic light from an extended source falls on a 
half silvered glass plate G, that partially reflects it and 
partially transmits it. The reflected portion labelled as I in 
the figure travels a distance L* to mirror M^ which reflects 
the beam back towards Gi. The half silvered plate G: 
partially transmits this portion that finally arrives at the 
observer’s eye. The transmitted portion of the original 
beam labelled as II, travels a distance L2 to mirror M2 which 
reflects the beam back toward Gi. The beam n partially 
reflected by G1 also arrives the observer’s eye finally. The
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plate G2, cut from the same piece of glass as G1( is 
introduced in the path of beam II as a compensator plate. 
G2, therefore, equalizes the path length of the beams I and 
II in glass. The two beams having their different paths are 
coherent. They produce interference effects when they 
arrive at observer’s eyes. The observer then sees a series 
of parallel interference fringes.

In a practical interferometer, the mirror Mi can be moved 
along the direction perpendicular to its surface by means of 
a precision screw. As the length /_? is changed, the pattern 
of interference .fringes is observed to shift. If M-i is 
displaced through a distance equal to XI2, a path difference 
of double Of this displacement is produced, i.e., equal \.oX. 
Thus a fringe is seen shifted forward across the line of 
reference of cross wire in the eye piece of the telescope used 
to view the fringes.

A p h o to g ra p h  o f M ic h e ls o n  
Interferometer.

A fringe is shifted, each time the mirror is displaced 
through X/2. Hence, by counting the number m of the fringes 
which are shifted by the displacement L of the mirror, we can 
write the equation,

m -
2

(9.6)

Very precise length measurements can be made with an 
interferometer. The motion of mirror Mi by only V4 produces 
a clear difference between brightness and darkness. For 
X = 400 nm, this means a high precision of 100 nm or 10'4 mm.

Michelson measured the length of standard metre in terms 
of the wavelength of red cadmium light and showed that 
the standard metre was equivalent to 1,553,163.5 
wavelengths of this light. Interference fringes in the Michelson 

interferometer.

9.8 DIFFRACTION OF LIGHT
In the interference pattern obtained with Young’s double slit 
experiment (Fig. 9.3 b),the central region of the fringe system 
is bright. If light travels in a straight line, the central region 
should appear dark i.e., the shadow of the screen between 
the two slits. Another simple experiment can be performed 
for exhibiting the same effect.
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Screen

Bending o f light caused by its 
passage past a spherical object.

Consider that a small and smooth steel ball of about 3 mm 
in diameter is illuminated by a point source of light. The 
shadow of the object is received on a screen as shown in 
Fig. 9.8 . The shadow of the spherical object is not 
completely dark but has a bright spot at its centre. 
According to Huygen's principle, each point on the rim 
of the sphere behaves as a source of secondary 
wavelets which illuminate the central region of the 
shadow.

•These two experiments clearly show that when light travels 
past an obstacle, it does not proceed exactly along a 
straight path, but bends around the obstacle.

The property of bending of light around obstacles 
and spreading of light waves into the geometrical 
shadow of an obstacle is called diffraction.

Point to ponder
Hold two fingers close together to 
form a slit. Look at a light bulb 
through the slit. Observe the 
pattern of light being seen and 
think why it is so.

The phenomenon is found to be prominent when the 
wavelength of light is large as compared with the size of 
the obstacle or aperture of the slit. The diffraction of light 
occurs, in effect, due to the interference between rays 
coming from different parts of the same wavefront.

Fig. 9.9

Diffraction of light due to a narrow 
slit AB. The dots represent the 
sources o f secondary wavelets

9.9 DIFFRACTION DUE TO A NARROW SLIT
Fig. 9.9 shows the experimental arrangement for studying 
diffraction of light due to a narrow slit. The slit AB of width d is 
illuminated by a parallel beam of monochromatic light of 
wavelength A.. The screen S is placed parallel to the slit for 
observing the effects of the diffraction of light. A small portion 
of the incident wavefront passes through the narrow slit. 
Each point of this section of the wavefront sends out 
secondary wavelets to the screen. These wavelets then 

in terfere  to produce the diffraction pattern. It becomes 
simple to deal with rays instead of wavefronts as shown in 
the figure. In this figure, only nine rays have been drawn 

/ whereas actually there are a large number of them. Let us 
consider rays 1 and 5 which are in phase on- the 
wavefront AB.When these reach the wavefront AC, ray 
5 would have a path difference ab say equal to X/2. Thus, 
when these two rays reach point P on the screen, they will 
interfere destructively. Similarly, all other pairs 2 and 6, 3
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and 7, 4 and 8 differ in path by a/2 and will do the same. 
For the pairs of rays, the path difference ab= c//2 sin 6.

The equation for the first minimum is, then

sin 0= £
2 2

or d sin0= X (9.7)

In general, the conditions for different orders of minima on 
either side of centre are given by

dsin0  = rriA where m = ± (1,2,3, (9.8 V

The region between any two consecutive minima both 
above and below O will be bright. A narrow slit, therefore, 
produces a series of bright and dark regions with the first 
bright region at the centre of the pattern. Such a diffraction 
pattern is shown in Fig. 9.10(a) and (b).

9.10 DIFFRACTION GRATING
A diffraction grating is a glass plate having a large number 
of close parallel equidistant slits mechanically ruled on it. 
The transparent spacing between the scratches on the 
glass plate act as slits. A typical diffraction grating has 
about 400 to 5000 lines per centimetre.

In order to understand how a grating diffracts light, consider 
a parallel beam of monochromatic light illuminating the 
grating at normal incidence (Fig. 9.11). A few of the equally 
spaced narrow slits are shown in the figure. The distance 
between two adjacent slits is d, called grating element. Its 
value is obtained by dividing the length L of the grating by the 
total number N of the lines ruled on it. The sections of wave- 
front that pass through the slits behave as sources of 
secondary wavelets according to Huygen’s principle.

In Fig. 9.11, consider the parallel rays which after 
diffraction through the grating make an angle 0 with AB, 
the normal to grating. They are then brought to focus on 
the screen at P by a convex lens. If the path difference 
between rays 1 and 2 is one wavelength X, they will 
reinforce each other at P. As the incident beam consists of 
parallel rays, the rays from any two consecutive slits will differ 
in path by A. when they arrive at P.They will, therefore, interfere

1 st min 
2nd max 

2nd min 
3rd ma;

1 st min 
2nd max 

2nd min 
d max

Fig. 9.10 (a)

D iffra c tio n  p a tte rn  o f m ono 
chromatic light produced due to a 
single slit; graphical representation 
and photograph of the pattern.

Fig. 9.10(b)
Diffraction pattern produced by white 
light through a single slit.

d  sin 0

Fig. 9.11
Diffraction of light due to grating
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Interesting Information

The fine rulings, each 0.5 p m wide, 
on a com pact disc function as a 
diffraction grating. When a small 
source o f white light illuminates a 
disc, the diffracted light forms 
colored “ lanes” that are composite 
of the diffraction patterns from the 
rulings.

Light waves projected through this 
d iffraction  g ra ting  produce an 
interference pattern. W hat colours 
a re  b e tw e e n  th e  b a n d s  o f 
interference?

For your Information

constructively. Hence, the condition for constructive 
interference is that ab, the path difference between two 
consecutive rays, should be equal to X i.e.,

From Fig. 9.11

ab = X

ab = dsinG

(9.9)

(9.10)

d  being the grating element. Substituting the value of ab in 
Eq. 9.9

cf sin 0 = X (9.11

According to Eq. 9.10, when 0 = 0 i.e., along the direction 
of normal to the grating, the path difference between the 
rays coming out from the slits of the grating will be zero. So 
we will get a bright image in this direction. This is known as 
zero order image formed by the grating. If we increase 0 
on either side of this direction, a value of 0 will be arrived 
at which dsin0 will be equal to X and according to Eq. 9.11, 
we will again get a bright image. This is known as first 
order image of the grating. In this way if we continue 
increasing 0, we will get the second, third, etc. images on 
either side of the zero order image with dark regions in between. 
The second, third order bright images would occur according 
as d sin 0 becoming equal to 2 X , 3 X, etc. Thus Eq. 9.11 
can be written in more general form as

ds in 0 = n > . 

where n = 0 ± 1 3 /2 ± 3 r*  etc.

(9.12)

Diffraction of white light by 
a fine diffraction grating

However^ if the incident light contains different 
wavelengths, the image of each wavelength for a certain 
value of n is diffracted in a different direction. Thus, 
separate images are obtained corresponding to each 
wavelength or colour. Eq. 9.12 shows that the value of 0 
depends upon n, so the images of different colours are 
much separated in highep orders.

DIFFRACTION OF X-RAYS BY
■ ■ ■ ■ ■ I

X-rays is a type of electromagnetic radiation of much shorter 
wavelength, typically of the order of 10'10 m.
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In order to observe the effects of diffraction, the grating 
spacing must be of the order of the wavelength of the 
radiation used. The regular array of atoms in a crystal 
forms a natural diffraction grating with spacing that is 
typically *1  O'10 m. The scattering of X-rays from the atoms 
in a crystalline lattice gives rise to diffraction effects very 
similar to those observed with visible light incident on 
ordinary grating.

The study of atomic structure of crystals by X-rays was 
initiated in 1914 by W.H. Bragg and W.L Bragg with 
remarkable achievements. They found that a 
monochromatic beam of X-rays was reflected from a 
crystal plane as if it acted like mirror. To understand this 
effect, a series of atomic planes of constant interplanar 
spacing d parallel to a crystal face are shown by lines PP', 
P iP 'i,P 2P'2 . and so on, in Fig. 9.12.

Suppose an X-rays beam is incident at an angle 0 on one of 
the planes. The beam can be reflected from both the upper 
and the lower planes of atoms. The beam reflected from 
lower plane travels some extra distance as compared to the 
beam reflected from the upper plane. The effective path 
difference between the two reflected beams is 2d sine. 
Therefore, for reinforcement, the path difference should be an 
integral multiple of the wavelength. Thus

F ig . 9.12

Diffraction o f X-rays from 
lattice planes o f crystal.

the

Interesting Application

Diffraction of radio waves

2d  sin0 = nk (9.13)

The value of n is referred to as the order of reflection. The 
equation 9.13 is known as the Bragg equation. It can be 
used to determine interplanar spacing between similar 
parallel planes of a crystal if X-rays of known wavelength 
are allowed to diffract from the crystal.

X-ray diffraction has been very useful in determining the 
structure of biologically important molecules such as 

TiaemGlglAbtn^which is an important constituent of blood, 
and double helix structure of DNA.

Example 9.3: Light of wavelength 450 nm is incident 
on a diffraction grating on which 5000 lines/cm have been 
ruled.
(i) How many orders of spectra can be observed on 

either side of the direct beam?

Interesting Information

The spectrum of white light due to 
diffraction grating of 100 slits.

The spectrum of white light due to 
diffraction grating of 2000 slits.
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A multi-aperture diffraction pattern. 
This is a picture o f a white-light 
point source shot through a piece 
o f tightly woven cloth.

Tidbits

Diffraction pattern o f a single 
human hair under laser beam 
illumination.

For Your Information

f.-M,

Looking through two polarizers. When 
they are “crossed", very little light 
passes through.

(ii) Determine the angle corresponding to each order. 

Solution: (i) Given that (, rM

a. = 450 nm = 450 x 1o> q:m

d = -^--cm = — -— tr.
5000 500000

For maximum number of order of spectra sin 0 = 1 
rSince ds in0  = n?v
,therefore,. subsituting the values in the above equation, 
we get.

1 1
m x 1 = n x 450 x 10'9 m or n =500000 500000 x 450 x 10's

i "... '’t'
or n = 4.4

Hence, the maximum order of spectrum is 4.

(i) For the first order of spectrum, n = 1.

cf sin 0 = n>., gives 

m xs in 0  = 1 x450  x l0 '9 m
500000

sin0= (500000)(450x1 O'9) 

sin 0= 0.225 or 0=13°

For second order spectrum,n = 2, using Eq. dsin0 = nA.

1 ml sin0 = 2 x (450x10 ’9m)
500000V.

sin 0 =0.45 

or 0=26.7°

The third order spectrum (n=3) will be observed at 0 = 42.5° 

sin 0=3 x 500000 m'1 x 450 x 10'9 m 

= 0.675 i.e. at 0 = 42.5° 

and the fourth order spectrum (n = 4) will occur at 0 = 64.2f 

sin 0=4 x 500000 rrf1 x 450 x 10'9 m 

sin 0 = 0 .9  gives 0 = 64.2°
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9.12 POLARI2IATION
In transverse mechanical waves, such as produced in a 
stretched string, the vibrations of the particles of the medium 
are perpendicular to the direction of propagation of the 
waves. The vibration can be oriented along vertical, 
horizontal or any other direction (Fig. 9.13). In each of these 
cases, the transverse mechanical wave is said to be 
polarized. The plane of polarization is the plane containing 
the direction of vibration of the particles of the medium and 
the direction of propagation of the wave.
A light wave produced by oscillating charge consists of a 
periodic variation of electric field vector accompanied by 
the magnetic field vector at right angle to each other. Ordinary 
light has components of vibration in all possible planes. Such a 
light is unpolarized. On the other hand,, if the vibrations are 
confined only in one plane, the light is said to be polarized.

P roduction  and Detection o f Plane Polarized L igh t
The light emitted by an ordinary incandescent bulb (and also 
by the Sun) is unpolarized, because its (electrical) vibrations 
are randomly oriented in space (Fig. 9.14). It is possible to 
obtain plane polarized beam of light from un-polarized light 
by removing all waves from the beam except those having 
vibrations along one particular direction. This can be 
achieved by various processes such as selective 
absorption, reflection from different surfaces, refraction 
through crystals and scattering by small particles.
The selective absorption method is the most common 
method to obtain plane polarized light by using certain types 
of materials called dichroic substances. These materials 
transmit only those waves, whose vibrations are parallel to a 
particular direction and will absorb those waves whose 
vibrations are in other directions. One such commercial 
polarizing material is a polaroid.
If un-polarized light is made incident on a sheet of polaroid, 
the transmitted light will be plane polarized. If a second 
sheet of polaroid is*placed in such a way that the axes of 
the polaroids, shown by straight lines drawn on them, are 
parallel (Fig. 9.15a), the light is transmitted through the 
second polaroid also. If the second polaroid is slowly rotated 
about the beam of light, as axis of rotation, the light 
emerging out of the second polaroid gets dimmer and 
dimmer and disappears when the axes become mutually

Fig. 9.13
Transverse waves on a string polarized
(a) in a vertical plane and
(b) in a horizontal plane

Fig. 9.14
An unpolarized light, due to 
incandescent bulb, has vibrations in all 
directions.

Fig.9.15
Experimental arrangement to show 
that light waves are transverse. The 
lines with arrows indicates electric 
vibrations of light waves.
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Do you know? perpendicular (Fig. 9.15 b). The light reappears on further 
rotation and becomes brightest when the axes are again 
parallel to each other.

This experiment proves that light waves are transverse 
waves. If the light waves were longitudinal, they would 
never disappear even if the two polaroids were mutually 
perpendicular.

Light reflected from smooth surface Refection of light from water glass, snow and rough road
of water is p a rtia lly . polarized surfaces, for larger angles of incidences, produces glare,
parallel to the surface. Since the reflected light is partially polarized, glare can

considerably be reduced by using polaroid sunglasses.

Sunlight also becomes partially polorized because of 
scattering by air molecules of the Earth’s atmosphere. This 
effect can be observed by looking directly up through a pair of 
sunglasses made of polarizing glass. At certain orientations 
of the lenses, less light passes through than at others.

Interesting Information

Unpolarized 
light ^ - \

)Sugar solution 
polarizer , Analyzer

Sugar solution rotates the plane of 
polarization of incident light so that 
it is no longer horizontal but at an 
angle .The analyzer thus stops the 
light when rotated from the vertical 
(crossed )positions.

Optical Rotation
When a plane polarized light is passed through certain 
crystals, they rotate the plane of polarization. Quartz 
and sodium chlorate crystals are typical examples, which 
are termed as optically active crystals.

A few millimeter thickness of such crystals will rotate the 
plane of polarization by many degrees. Certain organic 
substances, such as sugar and tartaric acid, show optical 
rotation when they are in solution. This property of optically 
active substances can be used to determine their 
concentration in the solutions.

•  A surface passing through all the points undergoing a similar disturbance (i.e., 
having the same phase) at a given instant is called a wavefront.

• When the disturbance is propagated out in all directions from a point source, the 
wavefronts in this case are spherical.

c Radial lines leaving the point source in all directions represent rays.

• The distance between two consecutive wavefronts is called wavelength.

• Huygen’s principle states that all points on a primary wavefront can be considered 
as the source of secondary wavelets.
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• When two or more waves overlap each other, there is a resultant wave. This 
phenomenon is called interference.

•  Constructive interference occurs when two waves; travelling in the same medium
overlap and the amplitude of the resultant wave is greater than either of
the individual waves.

• In case of destructive interference, the amplitude of the resulting wave is less than 
either of the individual waves.

•  In Young's double slit experiment,

(j) for bright fringe, d sine = m>.

(ii) for dark fringe, ds ine  = +

(iii) the distance between two adjacent bright or dark fringes is

a LX A y , -

•  Newton’s rings are circular fringes formed due to interference in a thin air film
enclosed between a convex lens and a flat glass plate.

• Michelson’s interferometer is used for very precise length measurements.
The distance L of the moving mirror when m fringes move in view is mAV2.

• '  Bending of light around obstacles is due to diffraction of light.

•  For a diffraction grating:

dsin0=n>. where n stands for nth order of maxima.
•  For diffraction of X-rays by crystals

2d sin e = n X where n is the order of reflection.

• Polarization of light proves that light consists of transverse electromagnetic waves.

9.1 Under what conditions two or more sources of light behave as coherent sources?

9.2 How is the distance between interference fringes affected by the separation between 
the slits of Young’s experiment? Can fringes disappear?

9.3 Can visible light produce interference fringes? Explain.

9.4 In the Young’s experiment, one of the slits is covered with blue filter and other with 
red filter. What would be the pattern of light intensity on the screen?
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9.5 Explain whether the Young’s experiment is an experiment for studying interference 
or diffraction effects of light.

9.6 An oil film spreading over a wet footpath shows colours. Explain how does it 
happen?

9.7 Could you obtain Newton’s rings with transmitted light? If yes, would the pattern be 
different from that obtained with reflected light?

9.8 In the white light spectrum obtained with a diffraction grating, the third order image 
of a wavelength coincides with the fourth order image of a second wavelength. 
Calculate the ratio of the two wavelengths.

S 9 How would you manage to get more orders of spectra using a diffraction grating?

9.10 Why the polaroid sunglasses are better than ordinary sunglasses?

9.11 How would you distinguish between un-polarized and plane-polarized lights?

9.12 Fill in the blanks.

(i) According to _______ _ principle, each point on a wavefront acts as a source
of secondary_________ .

(ii) In Young’s experiment, the distance between two adjacent bright fringes for 
violet light is _ _ _ _ _ _  than that for green light.

(iii) The distance between bright fringes in the interference pattern__________as
the wavelength of light used increases.

(iv) A diffraction grating is used to make a diffraction pattern for yellow light and
then for red light. The distances between the red spots will b e __________than
that for yellow light.

(v) The phenomenon of polarization of light reveals that light waves are_________
waves.

(vi) A polaroid is a commercial_________ .
(vii) A polaroid glass__________glare of light produced at a road surface.

NUM ERICAL PROBLEMS

9.1 Light of wavelength 546 nm is allowed to illuminate the slits of Young’s experiment. The 
separation between the slits is 0.10 mm and the distance of the screen from the slits 
where interference effects are observed is 20 cm. At what angle the first minimum will 
fall? What will be the linear distance on the screen between adjacent maxima?

(Ans: 0.16°, 1.1 mm)
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9.2 Calculate the wavelength of light, which illuminates two slits 0.5 mm apart and 
produces an interference pattern on a screen placed 200 cm away from the slits. The 
first bright fringe is observed at a distance of 2.40 mm from the central bright image.

(Ans: 600 nm)

9.3 In a double slit experiment the second order maximum occurs at 0 = 0.25°. The 
wavelength is 650 nm. Determine the slit separation.

(Ans: 0.30 mm)

9.4 A monochromatic light of ^ = 588 nm is allowed to fall on the half silvered glass 
plate Gi, in the Michelson Interferometer. If mirror IVh is moved through 0.233 mm, 
how many fringes will be observed to shift?

(Ans: 792)

9.5 A second order spectrum is formed at an angle of 38.0° when light falls normally on 
a diffraction grating having 5400 lines per centimetre. Determine wavelength of the 
light used.

( Ans. 570 nm)

9.6 A light is incident normally on a grating which has 2500 lines per centimetre. Compute 
the wavelength of a spectral line for which the deviation in second order is 15.0°.

(Ans: 518 nm)

9.7 Sodium light (A = 589 nm) is incident normally on a grating having 3000 lines per 
centimetre. What is the highest order of the spectrum obtained with this grating?

(Ans: 5th)

9.8 Blue light of wavelength 480 nm illuminates a diffraction grating. The second order 
image is formed at an angle of 30° from the central image. How many lines in a 
centimetre of the grating have been ruled?

(Ans: 5.2 x 103 lines per cm)

9.9 X-rays of wavelength 0.150 nm are observed to undergo a first order reflection at a 
Bragg angle of 13.3° from a quartz (S i02) crystal. What is the interplanar spacing of 
the reflecting planes in the crystal?

(Ans: 0.326 nm)

9.10 An X-ray beam of wavelength A, undergoes a first order reflection from a crystal 
when its angle of incidence to a crystal face is 26.5°, and an X-ray beam of 
wavelength 0.097 nm undergoes a third order reflection when its angle of incidence 
to that face is 60.0°. Assuming that the two beams reflect from the same family of 
planes, calculate (a) the interplanar spacing of the planes and (b) the wavelength A.

[Ans: (a) 0.168 nm(b) 0.150 nm]
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KB» 10
OPTICAL INSTRUMENTS

C h a p t e r

Learning Objectives

At the end of this chapter the students will be able to:

1. Recognize the term of least distance of distinct vision.
2. Understand the terms magnifying power and resolving power.
3. Derive expressions for magnifying power of simple microscope, compound 

microscope and astronomical telescope.
4. Understand the working of spectrometer.
5. Describe Michelspn rotating mirror method to find the speed of light.
6 Understand the principles of optical fibre.
7. Identify the types of optical fibres.
8 Appreciate the applications of optical fibres.

I n this chapter, some optical instruments that are based on the principles of reflection 
and refraction, will be discussed. The most common of these instruments are the 
magnifying glass, compound microscope and telescopes. We shall also study 
magnification and resolving powers of these optical instruments. The spectrometer and 
an arrangement for measurement of speed of light are also described. An introduction to 
optical fibres, which has developed a great importance in medical diagnostics, 
telecommunication and computer networking, is also included.

10.1 LEAST DISTANCE OF DISTINCT VISION
The normal human eye can focus a sharp image of an object on the eye if the object is 
located any where from infinity to a certain point called the near point.

The minimum distance from the eye at which an object appears to be 
distinct is called the least distance of distinct vision or near point.

214



This distance represented by d is about 25 cm from the eye
If the object is held closer to the eye than this distance the 
image formed will be blurred and fuzzy. iThe locatio^ of ’ 
the near point, however, changes with age.

10.2 MAGNIFYING POWER AND 
RESOLVING POWER OF OPTICAL 
INSTRUMENTS

When an object is placed in front of a convex lens at a point 
beyond its focus, a real and inverted image of the object is 
formed as shown in the Fig. 10.1.

A

Fig. 10.1

The ratio of the size of the image to the size 
of the object is called magnification.

As the object is brought from a far off point to the focus, the 
magnification goes on increasing. The apparent size of an 
object depends on the angle subtended by it at the eye.Thus, 
the closer the object is to the eye, the greater is the angle 
subtended and larger appears the size of the object 
(Fig.10.2). The maximum size of an object as seen by 
naked eye is obtained when the object is placed at the 
least distance of distinct vision. For lesser distance, the 
image formed looks blurred and the details of the object 
are not visible.

Fig. 10.2
When the same object is viewed at 
a shorter distance, the image on the 
retina of the eye is greater; so the 
object appears larger and more 
details can be seen. The angle 0 
the object subtends in (a) is greater 
than0'in (b).

The magnifying power or angular 
magnification is defined as the ratio of the 
angles subtended by the image as seen 
through the optical device to that subtended 
by the object at the unaided eye.
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The optical resolution of a microscope or a telescope tells 
us how close together the two point sources of light can be 
so that they are still seen as two separate sources. If two 
point sources are too close, they will appear as one becau
se the optical instrument makes a point source look like a 
small disc or spot of light with circular diffraction fringes.

Although the magnification can be made as large as one 
desires by choosing appropriate focal lengths, but the 
magnification alone is of no use unless we can see the 
details of the object distinctly.

The resolving power of an instrument is its ability to reveal 
the minor details of the object under examination.

If you find it difficult to read small 
print, make a pinhole in a piece of 
paper and hold it in front of your 
eye close to the page. You will see 
the print clearly.

Resolving power is expressed as the reciprocal of minimum angle 
which two point sources subtends at the instrument so that 
their images are seen as two distinct spots of light rather 
than one. Raleigh showed that for light of wavelength X 
through a lens of diameter D,Ahe resolving power is 
given by R = 1 = D

OC-min,
Where = 1.22 - (10.1)

The smaller the value of a min, greater is the resolving power 
because two distant objects which are close together can 
then be seen separated through the instrument. 
In the case of a grating spectrometer, the resolving power 
R of the grating is defined as

R =
X 2 "X.1 A A

(10.2 )

where X « X, « X2 and AX = X2 -  X 1 . Thus, we see that a 
grating with high resolving power can distinguish small 
difference in wavelength. If N is the number of rulings on 
the grating, it can be shown that the resolving power in the 
mth-order diffraction equals the product N x m, i .e.

R = Nxm  (10.3)
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As d iscusse^above^^onve fg ingO r convex lens” car 
used to help the eye to see small objects distinctly. A 
watch maker uses convex lens to repair the watches. The 
object is placed inside the focal point of the lens. The 
magnified and virtual image is formed at least distance of 
distinct vision d or much farther from the lens.

Let us, now, calculate the-magnification of a simple 
microscope. In Fig. 10.3 (a), the image formed by the 
object, when placed at a distance d, on the eye is shown. 
In Fig. 10.3 (b), a lens is placed just in front of the eye and 
the object is placed in front of the lens in such a way that a 
virtual image of the object is formed at a distance d from 
the eye. The size of the image is now much larger than 
without the lens.

If (3 and a are the respective angles subtended by the 
object when seen through the lens (simple microscope) 
and when viewed directly, then angular magnification M  is 
defined as

(a)

M = -a (10.4)

When angles are small, then they are nearly equal to their 
tangents. From Fig. 10.3 (a) and (b), we find

a = tana Size of the object _ o  
Distance of the object d

q=d 

(b)
Fig. 10.3
Simple Microscope

and p =tan (3 = Size of the image _ / 
Distance of the image Q

Since the image is at the least distance of distinct vision, 

hence, q=d

Therefore, p = '  
q d

the angular magnification M = = —
O/d
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Fig.10.4 (b).
A Compound Microscope

h2

t ' '

As we already know that

/  _ Size of the image 
O Size of the object

Distance of the image _ q 
Distance of the object P

Therefore, M = —= — (10.5)1 =  1  
P P

For virtual image, the lens formula is written as

1 = 1 . 1  
f  p q

.. 1 _ 1 1
f  p ~  d 0r p

Hence the magnification of a convex lens (simple 
microscope) can be expressed as

But q =d

•(10.6)M = 1=1 +  1 
D f

It is, thus, 't&vious that for a lens of high angular 
magnification the focal length should be small. If, for 
example, f =  5 cm and d = 25 cm, then M = 6, the object 
would look six times larger when viewed through such a lens.

10.4 COMPOUND MICROSCOPE
Whenever high magnification is desired, a compound 
microscope is used. It consists of two convex lenses, an 
object lens of very short focal length and an eye-piece of 
comparatively longer focal length. The ray diagram of a 
compound microscope is given in Fig. 10.4 (a).

Objective
eye piece

Fig.10.4(a).
Ray diagram of a Compound Microscope
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The object of height h is placed just beyond the principal 
focus of the objective. This produces a real, magnified 
image of height /?i of the object at a place situated within 
the focal point of the eye-piece. It is then further magnified 
by the eye-piece. In normal adjustment, the eye-piece is 
positioned so that the final image is formed at the near 
point of the eye at a distance d.

The angular magnification M of a compound microscope is 
defined to be the ratio tan0e/tan0, where 0e is the angle 
subtended by the final image of height h2 and 0 is the 
angle that the object of height h would subtend at the eye if 
placed at the near point d (Fig. 10.3 a). Now

tan 0 = 4  and tan 0e = —
d  d

T, tanGe h2 d hPThus, magnification M = ---------= —  x — =
tan0 d h h

where ratio h ^ h  is the linear magnification M-i of the 
objective and h2/hi is the magnification M2 of the eyepiece. 
Hence, total magnification is

M -M iM2

By Eq. 10.5 and Eq. 10.6 , M1 =q/p  and M2 = 1+ dlfe

Hence, M = 5- (1 + — ) .............(10.7)
P fe

It is customary to refer the values of M as multiples of 5, 10, 
40 etc., and are marked as x5, x10, x40 etc., on the 
instrument.

The limit to which a microscope can be used to resolve 
details, depends on the width of the objective. A wider 
objective and use of blue light of short wavelength 
produces less diffraction and allows more details to be 
seen.

A seventeenth century microscope 
which could be moved up and down in 
its support ring (Courtesy of the 
Museum of the History of Science. 
Florence).
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Example 10.1: A microscope has an objective lens of 
10 mm focal length, and an eye piece of 25.0 mm focal 
length. What is the distance between the lenses and its 
magnification, if the object is in sharp focus when it is 
10.d mm from the objective?

Solution: If we consider the objective alone

1 1 1+ — = --------- or q = 210 mm
10.5mm Q 10mm

If we consider the eye piece alone, with the virtual image at 
the least distance of distinct vision d = -250 mm

1 1 1
— + --------------=  — or p = 22.7 mm
P - 250 mm 25 mm

Distance between Lenses = q + p = 210mm+22.7mm«233mm

Magnification by objective

q 210 mm
M, = — = ------------  = 20.0

P 10.5mm

Magnification by eye piece

-250mm = 1 1 0
22.7 mm

Total magnification

M= M1 x M2 

= 20 x (-11.0) = -220 

-ive sign indicates that the image is virtual.

Telescope is an optical device used for viewing distant 
objects. The image of a distant object viewed through a 
telescope appears larger because it subtends a bigger 
visual angle than when viewed with the naked eye. Initially 
the extensive use of the telescopes was for astronomical 
observations. These telescopes are called astronomical 
telescopes. A simple astronomical telescope consists of 
two convex lenses, an objective of long focal length /o.and
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an eye piece of short focal length fe. The objective forms a 
real, inverted and diminished image A'B'of a distant object 
AB. This real image A ' B '  acts as object for the eye 
piece which is used as a magnifying glass. The final Image 
seen through the eye-piece is virtual, enlarged and inverted. 
Fig. 10.5 shows the path of rays through an astronomical 
telescope.

A'B' A'B' a  =tan a = ------ = -------
OB' fn

Fig.10.5
Ray diagram of Astronomical Telescope

When a very distant object is viewed, the rays of light 
coming from any of its point (say its top) are considered 
parallel and these parallel rays are converged by the 
objective to form a real image A ' B ' a t  its focus-. If it is 
desired to see the final image through the eye-piece 
without any strain on the eye, the eye-piece must be 
placed so that the image A 'B ' lies at its focus. The rays 
after refraction through the eye-piece will become parallel 
and the final image appears to be formed at infinity. In this 
condition the image A ' B '  formed by the objective lies at 
the focus of both the objective and the eye-piece and the 
telescope is said to be in normal adjustment.

Let us now compute the magnifying power of an 
astronomical telescope in normal adjustment. The angle a 
subtended at the unaided eye is practically the same as 
subtended at the objective and it is equal to Z  A'OB'.Thus

Rays from distant 
object AB
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The angle P subtended at the eye by the final image is 
equal to Z  A ' O ' B '  .Thus

For Your Information

Reflecting Telescope

Large astronomical telescopes 
are reflecting type made from 
specially shaped very large 
mirrors used as objectives. With 
such telescopes, astronomers can 
study stars which are millions light 
7earaway.

„  „  A'B' A'B'
P = tanP = — 7 = - 7 -  O'B' fa

Magnifying power of the telescope = ~  =
A'B

or M =
f.

A'Bk

L
(10.8)

. .  Focal length of the objective
M = ------------------------------------

Focal length of the eyepiece

It may be noted that the distance between the objective 
and eye-piece of a telescope in normal adjustment is f0 + f e 
which equals the length of the telescope.

Besides having a high magnifying power another problem 
which confronts the astronomers while designing a 
telescope to see the distant planets and stars is that they 
would like to gather as much light form the object as 
possible. This difficulty is overcome by using the objective 
of large aperture so that it collects a great amount of light 
from the astronomical objects. Thus a good telescope has 
an objective of long focal length and large aperture.

10.6 SPECTROMETER
A spectrometer is an optical device used to study spectra 
from different sources of light. With the help of a 
spectrometer, the deviation of light “by a glass prism and 
the refractive index of the material of the prism can be 
measured quite accurately. Using a diffraction grating, the 
spectrometer can be employed to measure the wave 
length of the light.

The essential components of a spectrometer are shown in 
Fig. 10.6(a).

222 i



It consists of a fixed metallic tube with a convex lens at one 
end and an adjustable slit, that can slide in and out of the 
tube, at the other end. When the slit is just at the focus of 
the convex lens, the rays of light coming out of the lens 
become parallel. For this reason, it is called a collimator.

Turn Table
A prism or a grating is placed on a turn table which is 
capable of rotating about a fixed vertical axis. A circular 
scale, graduated in half degrees, is attached with it.

Telescope
A telescope is attached with a vernier scale and is 
rotatable about the same vertical axis as the turn table.

Before using a spectrometer, one should be sure that the 
collimator is so adjusted that parallel rays of light emerge 
out of its convex lens. The telescope is adjusted in such a 
way that the rays of light entering it are focussed at the 
cross wires near the eye-piece. Finally, the refracting edge 
of the prism must be parallel to the axis of rotation of the 
telescope so that the turn table is levelled. This can be 
done by usinglFie levelling screws.

Source

Fig. 10.6 (b) 

Spectrometer.

Fig. 10.6 (a)

Schematic diagram of a spectrometer.
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Fig. 10.7

M ic h e ls o n 's  m eth od  for  
measurement of speed of light.

Light travels so rapidly that it is very difficult to measure its 
speed. Galileo was the first person to make an attempt to 
measure its speed. Although he did not succeed in the 
measurement of the speed of light, yet he was convinced 
that the light does take some time to travel from one place 
to another. Given below is one of the accurate methods of 
determining the speed of light which is known as 
Michelson’s experiment.

In this experiment, the speed of light was determined by 
measuring the time it took to cover a round trip-between two 
mountains. The distance between the two mountains was 
measured accurately. The experim ental set up is shown 
in F ig .10.7.

An eight-sided polished mirror M is mounted on the shaft of 
a motor whose velocity can be varied. Suppose the mirror 
is stationary in the position shown in the figure. A beam of 
light from the face 1 of the mirror M falls at the plane mirror 
m placed at a distance d from M. The beam is reflected 
back from the mirror m and falls on the face 3 of the mirror 
M. On reflection from face 3, it enters the telescope.

If the mirror M is rotated clockwise, initially the source will 
not be visible through the telescope. When the mirror M 
gains a certain speed, the source S becomes visible. This 
happens when the time taken by light in moving from M to 
m and back to M is equal to the time taken by face 2 to 
move to the position of face 1.

Angle subtended by any side of the eight-sided mirror at 
the centre is 2tt/8. If f  is the frequency of the mirror M, 
when the source S is visible through the telescope, then 
the time taken by the mirror to rotate through an angle 2n 
is 1/f. So, the time taken by the mirror M to rotate through 
an angle 2 t c /8 is

The time taken by light for its passage from M to m and 
back is 2d/c, where c is the speed of light. These two times 
are equal,
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8 f c

c = 16fc(  ............ (10.9)

This equation was used to determine the speed of light by 
Michelson. Presently accepted value for the speed of light 
in vacuum is

c = 2.99792458 x108 m s1 

we usually round this off to 3.00 x108 ms'1.

The speed of light in other materials is always less than c. 
In media other than vacuum, it depends upon the nature of 
the medium. However, the speed of light in air is 
approximately equal to that in vacuum and generally taken 
so in calculations.

10.8 INTRODUCTION TO FIBRE 
OPTICS

For hundreds of years man has communicated using 
flashes of reflected sunlight by day and lanterns by night. 
Navy signalmen still use powerful blinker lights to transmit 
coded messages to other ships during periods of radio
silence. Light communication has not been confined to 
simple dots and dashes. It is an interesting but little known 
fact that Alexander Graham Bell invented a device known 
as “photo phone” shortly after his invention of telephone. 
Bell’s photo phone used a modulated beam of reflected 
sunlight, focussed upon a Selenium detector several 
hundred metres away. With the device, Bell was able to 
transmit a voice message via a beam of light. The idea 
remained dormant for many years. During the recent past 
the idea of transmission of light through thin optical fibres 
has been revived and is now being used in communication 
technology.

The use of light as a transmission carrier wave in fibre 
optics has several advantages over radio wave carriers 
such as a much wider bandwidth capability and immunity 
from electromagnetic interference.

Each of the thin optical fibres is 
small enough to fit through the 
eye of a needle. Why is the size 
of the fibre important?
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Fig. 10.8 (a)
■

Optical fibre image

It is also used to transmit light around corners and into 
inaccessible places so that the formerly unobservable could 
be viewed. The use of fibre optic tools in industry is now 
very common, and their importance as diagnostic tools in 
medicine has been proved (Fig. 10.8 a and b).

Recently the fibre optic technology has evolved into 
something much more important and useful -- a 
communication system of enormous capabilities.

Fig. 10.8(b)

A precision diamond scalpel for use 
in eye surgery. The illumination is 
obtained by light passing through a 
fibre optic light guide.

One feature of such a system is its ability to transmit 
thousands of telephone conversations, several television 
programs and numerous data signals between stations 
through one or two flexible, hair - thin threads of optical 
fibre. With the tremendous information carrying capacity 
called the bandwidth, fibre optic systems have undoubtedly 
made practical such services as two way television which 
was too costly before the development of fibre optics. 
These systems also allow word processing, image 
transmitting and receiving equipment to operate efficiently.

In addition to giving an extremely wide bandwidth, the fibre 
optic system has much thinner and light weight cables. An 
optical fibre with its protective case may be typically 6.0 mm 
in diameter, and yet it can replace a 7.62 cm diameter 
bundle of copper wires now used to carry the same 
amount of signals.

Propagation of light in an optical fibre requires that the light 
should be totally confined within the fibre.

This may be done by total internal reflection and continuous 
refraction.

Total Internal Reflection
One of the qualities of any optically transparent material is 
the speed at which light travels within the material, i.e., it 
depends upon the refractive index n of the material. The 
index of refraction is merely the ratio of the speed of light 
c in vacuum to the speed of light v in that materia!
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Expressed mathematically,

(10 .10)

The boundary between two optical media, e.g. glass and air 
having different refractive indices can reflect or refract light 
rays. The amount and direction of reflection or refraction is 
determined by the amount of difference in refractive indices 
as well as the angle at which the rays strike the boundary. At 
some angle of incidence, the angle of refraction is equal to 
90° when a ray of light is passing through glass to air. This
angle of incidence is called the critical angle 0C shown in
Fig. 10.9 (a).We are already familiar with Snell’s law 

n ^ in  = n2sin 02 
From Fig. 10.9 (a), when 0,= 0C, 02=9O°
thus, n, sin 0C = n2 or sin 0C= n2/ n,
For incident angles equal to or greater than the critical angle,, 
the glass - air boundary will act as a mirror and no light 
escapes from the glass (Fig. 10.9 b). For glass-air boundary,

n  10 •
we have sin 0 = —1 = —— or 0 =  41.8°

ni 1.5
Let us now assume that the glass is formed into a long, 
round rod. We know that all the light rays striking the 
internal surface of the glass at angles of incidence greater 
than 41.8° (critical angle) will be reflected back into the 
glass, while those with angles lessthan 41.8° will escape 
from the glass (Fig. 10.10a). Ray 1 is injected into the rod so 
that it strikes the glass air boundary at an angle of incidence 
about 30°. 1

Fig. 10.9 (a)
If the angle of refraction in the air is 
90° the angle of incidence is called 
the critical angle.

Fig.10.9(b)
For angles of incidence greater 
than the critical angle, all the light is 
reflected; none is refracted into the 
air.

Propagation of light within a glass rod.

Since this is less than the critical angle, it will escape from 
the rod and be lost. Ray 2 at 42° will be reflected back into 
the rod, as will ray 3 at 60°.Since the angle of reflection 
equals the angle of incidence, these two rays will continue 
to propagate down the rod, along paths determined by 
the original angles of incidence. Ray 4 is called an axial

Outgoing

Fig. 10.10(b)
Light propagation within a 
flexible glass fibre.
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Fig. 10.11 .
Cross sectional view of
(a) Multi-mode step index fibre
(b) Multi-mode graded index fibre

r—— a--------
2 - n- .n ,........e - .1 *  —--- -fr3~1
X

n,
n,

n3
n.

Fig.10.12
Light propagation within 
hypothetical multi layer fibre.

ray since its path is parallel to the axis of the rod. 
Axial rays will travel directly down this straight and rigid rod. 
However, in a flexible glass fibre they will be subjected to 
the laws of reflection (Fig. 10.10b).

Optical fibres that propagate light by total internal reflection 
are the most widely used.

Continuous Refraction

There is another mode of propagation of light through 
optical fibres in which light is continuously refracted within 
the fibre. For this purpose central core has high refractive 
index (high density) and over it is a layer of a lower 
refractive index (less density). This layer is called cladding. 
Such a type of fibre is called multi-mode step index fibre 
whose cross sectional view is shown in Fig. 10.11 (a).

Now a days, a new type of optical fibre is used in which the 
central core has high refractive index (high density) and its 
density gradually decreases towards its periphery. This type 
of optical fibre is called a multi mode graded index fibre. Its 
cross sectional view is shown in Fig. 10.11 (b).

In both these fibres the propagation of light signal is 
through continuous refraction. We already know that a ray 
passing from a denser medium to a rarer medium bends 
away from the normal and vice versa. In step index or 
graded index fibre, a ray of light entering the optical fibre, 
as shown in Fig. 10.12, is continuously refracted through 
these steps and is reflected from the surface of the outer 
layer. Hence light is transmitted by continuous refraction 
and total internal reflection.

10.10 TYPES OF OPTICAL FIBRES
There are three types of optical fibres which are classified 
on the basis of the mode by which they propagate light.These 
are (i) single mode step index (ii) multi mode step index and 
(iii) multi mode graded index. The term ‘mode’ is described 
as the method by which light is propagated within the fibre, 
i.e. the various paths that light can take in travelling down 
the fibre. The optical fibre is also covered by a plastic 
jacket for protection.
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(i) Single Mode Step Index Fibre
Single mode or mono mode step index fibre has a very thin 
core of about 5 /jm diameter and has a relatively larger 
cladding (of glass or plastic) as shown in Fig. 10.13. Since 
it has a very thin core, a strong monochromatic light source 
i.e., a Laser source has to be used to send light signals 
through it. It can carry more than 14 TV channels or 14000 
phone calls.

Jacket

Glass cladding

Glass core

(a)

Multimode Step Index Fibre
This type of fibre has a core of relatively larger diameter such 
as 50 jum. It is mostly used for carrying white light but due to 
dispersion effects, it is useful for a short distance only. The 
fibre core has a constant refractive index n1t such as 1.52, 
from its centre to the boundary with the cladding as shown 
in Fig. 10.14. The refractive index then changes to a lower 
value n2, such as 1.48, which remains constant throughout 
the cladding.

1,0.14
Light propogation through Multi-mode step-index fibre.

This is called a step-index multimode fibre, because the 
refractive index steps down from 1.52 to 1.48 at the 
boundary with the cladding.

Cladding

S u fis
(b)

Fig. 10.13

Single-mode step-index fibre.

Multimode Graded Index Fibre
Multi mode graded index fibre has core which ranges in 
diameter from 50 to 1000 /jm. It has a core of relatively high 
refractive index and the refractive index decreases gradually 
from the middle to the outer surface of the fibre. There is no 
noticeable boundary between core and cladding. This type 
of fibre is called a multi mode graded-index fibre (Fig. 10.15) 
and is useful for long distance applications in which white 
light is used. The mode of transmission of light through this 
type of fibre is also the same, i.e., continuous refraction from

Fig. 10.15
Light propogation through Multi- 
mode graded-index fibre
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the surfaces of smoothly decreasing refractive index and the 
total internal reflection from the boundary of the outer 
surfaces.

Example 10.2; Calculate the critical angle and angle of entry 
for an optical fibre having core of refractive index 1.50 and 
cladding of refractive index 1.48.
Solution We have .n, = 1.50, n2 = 1.48

n ,- 1-4S ̂

Fig. 10.16

From Snell’s law n, sin 0. = n2sin 02

When U - 0 CI 02= 90°
So. 1.50sin 0C = 1.48 sin 90°

Which gives 0C= 80.6°
From the Fig. 10.16, O' -  90° - 0C= 9.4°

Again using Snell’s law, we have = —?-= —
; sin 0 n 1

which gives sin 0 = 1.50 sin 0' or 0 = 14.2°
If light beam is incident at the end of the optical fibre at an 
angle greater than 14.2°, total interna! reflection wouid not 
take place.

10.11
CONVERSION

A fibre optic communication system consists of three major 
components: (i) a transmitter that converts electrical 
signals to light signals, (ii) an optical fibre for guiding the 
signals and (iii) a receiver that captures the light signals 
at the other end of the fibre and reconverts them to 
electric signals.

The light source in the transmitter can be either a 
semiconductor laser or a light emitting diode (LED). With 
either device, the light emitted is an invisible infra-red 
signals. The typical wavelength is 1.3 pm.
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Such a light will travel much faster through optical fibres 
than will either visible or ultra-violet light. The lasers and 
LEDs used in this application are tiny units (less than half 
the size of the thumbnail) in order to match the size of the 
fibres. To transmit information by light waves, whether it is 
an audio signal, a telvision signal or a computer data 
signal, it is necessary to modulate the light waves. The 
most common method of modulation is called digital 
modulation in which the laser or LED is flashed on and off 
at an extremely fast rate. A pulse of light represents the 
number 1 and the absence of light represents zero. In a 
sense, instead of flashes of light travelling down the fibre, 
ones (1s) and zeros (Os) are moving down the path.

' 4
Optical fibre

Fig. 10.17

With computer type equipment, any communication can be 
represented by a particular pattern or code of these 1s and 
Os. The receiver is programmed to decode the 1s and Os, thus 
it receives, the sound, pictures or data as required. Digital 
modulation is expressed in bits ( binary d ig it) or megabits 
(106 bits) per second, where a bit is a 1 or a 0.

Despite the ultra-purity (99.99% glass) of the optical fibre, 
the light signals eventually become dim and must be 
regenerated by devices called repeaters. Repeaters are 
typically placed about 30km apart, but in the newer 
systems they may be separated by as much as 100 km.

At the end of the fibre, a photodiode converts the light 
signals, which are then amplified and decoded, if necessary, 
to reconstruct the signals originally transmitted (Fig. 10.17).

When a light signal travels along fibres by multiple 
reflection, some light is absorbed due to impurities in the 
glass. Some of it is scattered by groups of atoms which are 
formed at places such as joints when fibres are joined 
together. Careful manufacturing can reduce the power loss 
by scattering and absorption.
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(a)

Fig. 10.18

Light paths in (a) step-index 
and (b) graded-index fibre.

The information received at the other end of a fibre can be 
inaccurate due to dispersion or spreading of the light signal. 
Also the light signal may not be perfectly monochromatic. In 
such a case, a narrow band of wave-lengths are refracted in 
different directions when the light signal enters the glass fibre 
and the light spreads.

Fig. 10.18 (a) shows the paths of light of three different 
wavelengths X<\t X2 and X3. X1 meets the core-cladding at 
the critical angle and X2 andX3 at slightly greater angles. All 
the rays travel along the fibre by multiple reflections as 
explained earlier. But the light paths have different lengths. 
So the light of different wavelengths reaches the other end 
of the fibre at different times. The signal received is, 
therefore, faulty or distorted.

The disadvantage of the step-index fibre (Fig. 10.18 a) can 
considerably be reduced by using a graded index fibre. As 
shown in Fig. 10.18 (b), the different wavelengths still take 
different paths and are totally internally reflected at 
different layers, but still they are focussed at the same 
point like X and Y etc. It is possible because the speed is 
inversely-proportional to the refractive index. So the 
wavelength Xi travels a longer path than X2 err ^3 but at a 
greater speed.

Inspite of the different dispersion, all the wavelengths 
arrive at the other end of the fibre at the same time. With a 
step-index fibre, the overall time difference may be about 
33ns per km length of fibre. Using a graded index fibre, the 

. time difference is reduced to about 1 ns per km.

Least distance of distinct vision is the minimum distance from the eye at which an 
object appears to be distinct.

Magnification is the ratio of the size of the image to the size of the object, which 
equals to the ratio of the distance of the image to the distance of the object from 
the lens or mirror.

Magnifying power or angular magnification is the angle subtended by the image 
as seen through the optical device to that subtended by the object at the unaided 
eye.

Resolving power is the ability of an instrument to reveaj the minor details of the 
object under examination.
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Simple microscope is in fact a convex lens used to help the eye to see small objects 
distinctly. The magnifying power of a simple microscope is given by

M = - = 1 + -  
P f

Compound microscope consists of two convex lenses, an objective lens of very short 
focal length and an eye piece of moderate focal length. The magnifying power of a 
compound microscope is given by

M = U  1 + f )
P

Telescope is an optical instrument used to see distant object. The magnifying power of 
the telescope is given by

M - i
'e

Spectrometer is an optical device used to study spectra from different sources of light.

Index of refraction is the ratio of speed of light in vacuum to the speed of light in the 
material.

Critical angle is the angle of incidence in the denser medium for which the angle of 
refraction in the rarer medium is equal to 90°.

When the angle of incidence becomes greater than the critical angle of that material, 
the incident ray is reflected in the same material, which is called total internal 
reflection.
Cladding is a. layer, of lower refractive index (less density) over the central core of 
high refractive index (high density).

Multi mode step index fibre is an optical fibre in which a layer of lower refractive 
index is over the central core of high refractive index.

Multi mode graded index fibre is an optical fibre in which the central core has high 
refractive index and its density gradually decreases towards its periphery.

10.1 What do you understand by linear magnification and angular magnification? 
Explain how a convex lens is used as a magnifier?

10.2 Explain the difference between angular magnification and resolving power of an 
optical instrument. What limits the magnification of an optical instrument? '

10.3 Why would it be advantageous to use blue light with a compound microscope?

10.4 One can buy a cheap microscope for use by the children. The images seen in such 
a microscope have coloured edges. Why is this so?
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10.5 Describe with the help of diagrams, how (a) a single biconvex lens can be used as 
a magnifying glass, (b) biconvex lenses can be arranged to form a microscope.

10.6 If a person was looking through a telescope at the full moon, how would the 
appearance of the moon be changed by covering half of the objective lens.

10.7 A magnifying glass gives a five times enlarged image at a distance of 25 cm from 
the lens. Find, by ray diagram, the focal length of the lens.

10.8 Identify the correct answer.
(i) The resolving power of a compound microscope depends on;
a. Length of the microscope.
b. The diameter of the objective lens.
c. The diameter of the eyepiece.
d. The position of an observer’s eye with regard to the eye lens.
(ii) The resolving power of an astronomical telescope depends on: 
a The focal length of the objective lens.
b. The least distance of distinct vision of the observer.
c. The focal length of the eye lens.

{ d. The diameter of the objective lens.
10.9 Draw sketches showing the different light paths through a single-mode and a multi 

mode fibre. Why is the single-mode fibre preferred in telecommunications?
10.10 How the light signal is transmitted through the optical fibre?
10.11 How the power is lost in optical fibre through dispersion? Explain.

N U ME RIC A L P R OB L E M S

10 1 A converging lens of focal length 5.0 cm is used as a magnifying glass. If the 
near point of the observer is 25 cm and the lens is held close to the eye, calculate (i) 
the distance of the object from the lens (ii) the angular magnification. What is the 
angular magnification when the final image is formed at infinity?

[Ans: (i) 4.2 cm (ii) 6.0; 5,0]

10.2 A telescope objective has focal length 96 cm and diameter 12 cm. Calculate the 
focal length and minimum diameter of a simple eye piece lens for use with the 
telescope, if the linear magnification required is 24 times and all the light transmitted 
by the objective from a distant point on the telescope axis is to fall on the eye piece'.

(Ans: 4 = 4.0 cm, dia = 0.50 cm)
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10.3 A telescope is made of an objective of focal length 20 cm and an eye piece of 
5.0cm, both convex lenses. Find the angular magnification.

(Ans: 4.0)

10.4 A simple astronomical telescope in normal adjustment has an objective of focal 
length 100 cm and an eye piece of focal length 5.0 cm. (i) Where is the final image 
formed? (ii) Calculate the angular magnification.

[Ans: (i) infinity (ii) 20]

10.5 A point object is placed on the axis of and 3.6 cm from a thin convex lens of focal 
length 3.0 cm . A second thin convex lens of focal length 16.0 cm is placed coaxial 
with the first and 26.0 cm from it on the side away from the object. Find the position 
of the final image produced by the two lenses.

(Ans: 16 cm from second lens)

10.6 A compound microscope has lenses of focal length 1.0 cm and 3.0 cm. An object 
is placed 1.2 cm from the object lens. If a virtual image is formed, 25 cm from the 
eye, calculate the separation of the lenses and the magnification of the instrument.

(Ans: 8.7 cm, 47)

10.7 Sodium light of wavelength 589 nm is used to view an object under a microscope. 
If the aperture of the objective is 0.90 cm, (i) find the limiting angle of resolution,
(ii) using visible light of any wavelength, what is the maximum limit of resolution for 
this microscope.

[Ans: (i) 8.0 x 10'5 rad, (ii) 5.4 x 10'5 rad]

10.8 An astronomical telescope having magnifying power of 5 consist of two thin lenses 
24 cm apart. Find the focal lengths of the lenses.

[Ans: 20 cm, 4 cm]

10.9 A glass light pipe in air will totally internally reflect a light ray if its angle of incidence 
is at least 39°. What is the minimum angle for total internal reflection if pipe is in 
water? (Refractive Index of water = 1.33)

[Ans: 57°]

10.10 The refractive index of the core and cladding of an optical fibre are 1.6 and 1.4 
respectively. Calculate (i) the critical angle for the interface (ii) the maximum angle 
of incidence in the air of a ray which enters the fibre and is incident at the critical 
angle on the interface.

[Ans: (i) 61°, (ii) 51°]
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State the basic postulates of.Kinetic theory of gases. -' , A
Explain how molecular movement-causes the pressure exerted by a gas and
derive the equation P = 2/3 "N°< V2 mv2>, where N, is theynumberofmolecules
per unit volume of the gas. ' . ' ' »
Deduce that the average translational kinetic energy of (molecules is proportional
to temperature of the gas. V V j V ' T
Derive gas laws on -the basis of Kinetic theory. ' - _
Describe that the intemal energy of an ideal gas is due to kinetic energy of its
molecules. » _
Understand and use the terms work and heat in thermodynamics. 1 5
Differentiate between isothermal and adiabatic processes.
Explain the molar specific heats of a gas.
Apply first law of thermodynamics to derive Cp - C, = R.
Explain the second law of thermodynamics and its meaning in terms of entropy. -
Understand the concept of reversible and irreversible processes.
Define the term heat engine. ' g . . V _ j
Understand anddescribe Carnot theorem. 1
Describe the thermodynamic scale of temperature.
Describe the working of petrol and diesel engines.
Explain the term entropy. g ,

Explain that change in entropy AS = i

Appreciate environmental crisis as an entropycrisis.
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uhermodynamics deals with various phenomena of
.éfié@j/—:=iT1t1 "related properties "o'f_m'atter, especially" the

_ transformation of heat into other forms of energy. An example
of such transformation is the processconverting heat into
mechanical work. Thermodynamics thus plays central role in
technology, since almost all the raw energy available for our
use is liberated in the form of heat. ln this chapter we shall

study the behaviour of gases and laws of thermodynamics,
their significance and applications.

The behavior of gases is well accounted for by the kinetic
theory based on microscopic approach. Evidence in favour
of the theory is exhibited in diffusion of gases and
Brownian motion of smoke particles etc.
The"following postulates help to formulate a mathematical
model of gases; ,

i. A finite volume of gas consists of very large
" number of molecules. -

ii. Thesize of the molecules.is much smaller than
the separation between molecules.

iii. The gas/molecules are in random motion and
may change their direction of motion after every
collision. y

-IV. Collision between gas molecules themselves
and with walls of container are assumed to be
perfectly elastic. A '

v. Molecules do not exert force on each other
1 except duringacollision. 1

Pressure of Gas '
According to kinetic -theory, the pressure exerted by a gas
is merely the momentum transferred to the walls of the
container per second per unit area due to thecontinuous
collisions of molecules of, the gas. An expression for the
pressure exerted by a gas can, therefore, be obtained as
folIows:-
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Let a cubil vessel of side l , contains N molecules, each of
mass m (Fig.11.1). The velocity v, of any one of these molecules
can be resolved into three rectangular components v1,,,v1y,v1,
parallel to three co-ordinate axes X, y and z. "

Initial momentum of the molecule striking the face ABCDA
is then mv1,,. If the collision is assumed perfectly elastic,
the molecule will rebound from the face ABCDA with the
same speed. Thus each collision produces a' change in
momentum, which is equal to _

Final momentum - Initial momentum
or change in momentum = - mv_1,, - mv1,, "

_ I ‘ l __ ,-'11 2; V ,_;, 4,1 a >';\_;§%'i‘,J?fl“.'~;,£;;"3:',~',,-“,__ _,;.'._‘

' '. 11 . ~. 7, ' .t-‘UL. =.;.~1-ea ',<l -. ‘ Q.-. .l-.'¢'"" - -._;~ .' r< . . - P. 1.11.1.1: ~ ~. X11139‘‘ '. ' 7‘. Q’ ' 1”‘ 'f<1 J,-\_ J“ _’.:r--1"-'»<.:»'l‘ i . 1"; 1 ‘= 1.1,‘ --Q'j"r‘ ‘i. “,..§‘ <51. 4:2 -"‘- ; ll‘ -''- i - .». ~-.-=~..-‘ha-'2' "orvf§r1-:‘1.- ¢.'§'<i‘.'~=- "‘i’-L31-rt-t1l==¢=."-'-s.-1:11:11? ‘ 1 s ' '

After recoil the molecule travels to opposite face EFGHE
and collides with it, rebounds and travels back to the face
ABCDA after covering a distance 21. The time At between
two successive collisions with face ABCDA is

“‘“3| $.r'i“ “E1-I/~msi ‘N ., W A \-t ‘fiw/‘H’
$3“

I '-,, .;_ qt '_.,‘,.~\-r_.,‘. .<,___, .._, , \_ -- ~;r,,__-,1 ;__'-.1 -,,'-i__ __. ‘_--»--'r,_‘\ > J ‘I .
,'l.':'\ B ‘. at " ,-,7‘ '.-. ‘wig ‘ V i l.,_ ,1"_i,1fii ._._vl!!TiI_:_1-.'»1_r..

.i.»_Mf ,=_;I;_'\'€9i¥'b¢\_‘_,_‘_\\; ’<f.,‘.>:r‘\;-_- W gr. _‘ '__M5:‘ “gr.-.3}-1._;';d _’| ‘Z .11
l 1'>=- ';»,.i " 1, :‘_.,l\:;$-L,'<~:.-r F51. ; , {Q}; _
'--x';"-'&5"5’ _.‘.'l‘\c*f'3r_-'-. "';'.¢‘-'2‘ ‘tr’ Z "‘17“"- -'1 _f,-;"\'l. ,4 1"“ w _ _

So the number of collisions per second that the molecule

will make with this face is = ,

Thus the rate of change of momentum of the molecule due

to collisions with face ABCDA = -2 mi/,,, >< j

The rate of change of momentum of the molecule is equal
to the force applied by the wall. According to Newton's
third law of motion, force F1, exerted by the molecule on
face ABCDA is equal but opposite, so

K F“: '('mV12x) = mvfx
1 -I -

Similarly the forces due to all other molecules can be
determined. Thus the total, x-directed force F, due to N
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1

* <v,?$. Substituting < v§>» in parenthesis of pressure
expression A, ' ‘ A - 4 y

lg-e "QM -- wt ~ V ‘ - .~_‘.‘~ '—1--‘,- " I-=-;.~_I»,. ' ., ,._.-.,.: I: »1 7.’ mi»-tr "1’ e‘.l.i =;-;‘-.-.--‘1':§.‘ i . - ~ ' .- " -;. ‘i-l~ 57» -. ‘ {"5 1.".-.§I. i'._‘ ;'v} V _ ; . : yr, »..,lt;a.:fi"’,=.1.-_~\¢ j ‘ _;;_-7 ;,,'=_ V'V‘:r:,F’/:'1_, , _,;-,i‘l,rj, __; "~.:_i- r._,.‘ i,\.v,'_,_:»-,-, _ -g $1.‘ _ ;_,_1,_:w »‘“. Q ._ _ >_‘,l‘v|_?M;i.., . ,;_.=-,'$'_,‘.-;_,_.,~'; ,‘I'7 .’ ,1 §;1._ fir '__ ';‘;;'.e. ‘f I I

Similarly 'resure on the faces perpendicular to y. and ‘z '
' axes will be P,=p<vf_> and P,_=p'<v§> 1

. As there is no preference to one direction or another -and
' molecules are supposed to be moving randomly, the mean

square of all the component velocities will be equal. Hence
_ _<vx2>=<vy2>=<v,2> _' .

and from vector addition < v_2 > = < vf > + < vf > + < Hi/,2 >
. 4 , .

_ thus,. _ <v2>=3-<v,,2> '

2 1‘ or <vf>=?<'vf> -

putting this value of <, vf > in equation 11.4

PX: %<v2> r

We have considered the pressure on the face
perpendicular to x-axis. _
By Pascal's,Law the pressure on the other sides and
everywhere inside the vessel will be the same provided the
gas is of uniform density. So . ~

P,,=Py=P,=% <v2>

Thus in general '

P:— < 2>
D 3p V

Since density P; =
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l _,.l-tence ' P=.%£l<v">,

- _:,fJ__~"*_,,, .‘ ,, , V _,I.'
.

.. '.fl2'i.1 -.
-4"‘ ?"*>.<7""’2-2’ Y 1"

, where i~i., is the number -or molecules -per urrir,"»"-~vei'ume.i
. ' , » I.-- Thus, ' , ._P='-Constant[<K.fE.> . . , ..

or . P-<=c<K.E-.> . ' < U -

While deriving the equation, forjpress_ure- we have not-
accounted rotational and vibrational ‘motion of molecules

* except thelinear motion. 4 . - ~
Hence pressure exerted bythe gas is directly proportional
to the average translational kinetic energy of the gas
moleculesj M ~ .~ ' " . -

' interpretation of Temperature. Y - ' . _ V
From experimental data the~,ideal gas law is deduced to be

, -‘ _ Where n is the number of mol_es'of the gas contained. in
ii volume V at absolute temperature T and R is» called
i universal gas constant. Its value is 8;314.J mot‘ K". I
‘ If NA is the Avogadro number, then the above equation can

be written as r . . - “
. " '

' ‘ '2 j" pi/-=LR_T 2I _ V , NA _ ._.

. ‘ 5;-.‘='.>i=i§.t:.:=.g.i“,j-111, 22tri~',11'<~--:3;--'.-...4;-;'1'='*”‘f‘:===:‘,'?"T".“ rt, 'J=‘"---iY.,j. - ~i-. 11 "‘ I . “ '__- A ~-11.), . ,, ,-~_, ¢~i_ Q31:-—‘v. 1"-.-J ~ .1 ‘.4 ‘ I,~ '61 ‘ r, , .I .- i i 1 i ~ ‘l _, '--'" . . '2».-.'..\~.-"~~ ‘~-=:i. - ~ -L-a;.. - 11.4» - -~ , ' —~ . _ A .i . ' > ‘4.:'1:..:; " i >1; ' < .;=' .1 .» 1 > ~ ' I -1 .‘ . "i . - 1__1i .- .,.*.'.l .;.; . *1";-,1‘, 7 ,,__;,,,, 5;,‘ ~. '- _:‘_;»;,.<» "'f-‘,g;_:\',;,~ "I , .. . ‘ .. ' .~ V» ._ . .- M i .‘ , ‘

where Ik = R/N’ is the Boltzman constant. It ‘ -is he_g_a .
. - constantper molecule and hasthe value = 1.38 x- 10'” J l<'1.

Comparinglequations 11.5 and 11.7 . '
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-3 1 2NkT- 3 N<?mv >

t

' _3_ _1_r 2 eor T 3k < 2 mv > ........ .. (11.8)

or T = constant < K.E. >
so V . Toc<K.E.>
This relation shows that Absolute temperature of an ideal
gas is directly proportional to the average translational
kinetic energy of gas molecules.

>

We can, therefore, also say that average translational
kinetic energy of the gas_ molecules shows itself
macroscopically in the form of temperature.
Derivation of Gas Laws .

(i) Boyle’s Law ' _

From kinetic theory of gases (Eq. 11.5)
-- 2 1_ PV=?N <3 mv2>

If we ks? the temperature constant, average K.E. i.e.,
< 1/2 m > remains constant, so the right hand side of the
equation is constant. _
Hence ' _, PV = Constant

Oi’ ' P oc %-

Thus pressure P is inversely proportional to volume Vat
constant temperature of the gas which is Boyle’s law.
(ii) Charles’ Law e

Equation 11.5 can be written" as
r 1 2 _-

can "U2V: ——<? >

If pressure is kept constant
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The sum of all forms of molecular energies (kinetic and
potential) of a substance is termed as its intemallenergy. in
the study of thermodynamics, usually ideal gas is
considered as ‘a working substance. The molecules of an
ideal gas are mere mass points which exert no forces on
one another. So the internal energy of an ideal gas system
is generally the translational K.E; of its molecules. Since
the temperature of a system is defined as the average K.E.-

~ of its molecules, thus -for an ideal gas system, the internal
energy is directly proportional to‘ its temperature.
When we heat a substance, energy associated with its
atoms or molecules is increased i.e., heat is converted to
intemal energy. ‘
It is important to note that.energy can be added to a
system even though no heat transfer takes place. For
example, when two objects are rubbed together, their
internal energy increases because of mechanical work.
The increase in temperature of the object is an indication
of increase in the internal energy. Similarly, when an object
slides ,over_ any surface and comes to rest because of
frictional forces, the mechanical work, done on or by the
system is partially converted into internal energy.
In thermodynamics, internal energy is a function of state.
Consequently, it does not depend on path but depends on
initial and final states of the system. Consider _a system which
undergoes a pressure and volume change from Pa and Va to
Pb. and Vb respectively, regardless of the process by which
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the system changes from initial to final state. By experiment it A P
has been seen_ that the change in intemal energy is always

(P» V» T»)the same and is independent of paths C1 and C; as shown in_ Par - - 1- -_ - -: 1- e__.__o" isomer-1g;11.r2. - T - A 1 r"
Thus intemal energy is similar tothe gravitational P.E. So
like the potential energy, it is the change in intemal energy
and not its absolute value, which is important. _P- - - — ; (p__ v__ U

We know that both heat and work correspond to transfer of
energy by some means. The idea was first applied to the
steam engine where it was natural to pump heat in and
get work out.) Consequently it made a sense to define both
heat in and work out; as positive quantities. Hence work
done by the system on its environment is considered +ive
while work done on the system by the environment is taken
as -ive. If an amount of heat Q enters the system it could
manifest itself as either an increase in intemal energy or as
a resulting quantity of work performed by the system on
the surrounding orboth.

We can express the work in terms of directly rneasurable
variables. ‘Consider the gas enclosed in the cylinder with a
moveable, frictionless piston of cross-sectionalarea A (Fig.
11.3 a). In equilibrium the system occupies (volume, V, _and
exerts a pressure P on the walls of the cylinder and its
piston. The force F exerted by the gas on thepiston is PA.

We assume that the gas expands through AV very slowly,
so that it remains in equilibrium (Fig. 11.3 b). As the piston
moves up through a small distance Ay, the work (W) done
by the gas is ~

W= FAy=PAAy
Since A Ay = AV (Change in volume) I

1 £1 st -.- ‘~: ?.~'4"-*5-‘:3'<.1"F'=-i’E:=:_ »:.:;=-‘"52’; .7-i='~-1: ;'?:i';£-=;"i'=': '-:€'::-.i:.:%r5=aa-=:==‘.'- ' - - --11‘-' -5.’ .=. - “ - ~ ' > ‘~ -' "N ijr ~.<§'_.-7“<’=‘*‘ _"'" ‘3'-I
The work done can also be calculated by area of the, T
curve under P-Vgraph as shown in Fig.1_1.4. " ' ._
Knowing the details of the change in intemal energy and

e i
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the mechanical work done, we are in a position to describe V‘ v_) V’
the general principles which deal with heat energy and its Fig.11.4
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transformation into mechanical energy. These principles
are known as laws of thennodynamics. _

When heat is added to a system there is an increase in the
intemal energy due to the rise in temperature, an increase
in pressure or change in the state. If at the same time, a
substance is allowed to do work on its environment by
expansion, the heat Q required will be the heat necessary
to change the intemal energy of the substance from U1 in
the first state to U2 in the second state plus the work W
done on the environment. r
Thus Q = (U2— U1) + W
at?‘ lQ=Au,+lw. .; ....... .. .(11.1o)
Thus the change in intemal energy AU = U2 - U1 is defined
as Q-W. Since it is the same for all processes conceming
the state, the first law of thermodynamics, thus can be
slated as, -

A bicycle pump provides a good example.When we pump
~on the handle rapidly, it becomes hot due to
mechanical work done on the gas, raising thereby its intemal
energy. One such simple arrangement is shown in Fig.11 .5.
lt consists of a bicycle pump with a blocked outlet. A
thennocouple connected through the blocked outlet allows
the air temperature to be monitored. When piston is rapidly
pushed, thermometer shows a temperature rise due to
increase of intemal energy of the air. The push force does
work on the air, thereby, increasing its intemal energy,
which is shown, by the increase in temperature of the alr.

Human metabolism also provides an example‘ of energy
conservation. Human beings and other animals do work
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when they walk, run, or move heavy objects. Work requires
energy. Energy is also needed for growth to make new
cells and to replace old cells that have died. Energy
transforming processes that occur within an organism are
named as metabolism. We can apply the first law of
thermodynamics,

AU=Q—W 1

to an organism of the human body. Work (W)
result in the decrease in intemal energy of
Consequently the body temperature or in other iii
intemal energy is maintained by the food we eat. -

isothermal Process A
It is a process which is carried out at constant temperature
and hence the condition for the application of Boyle's Law
on the gas is fulfilled. Therefore, when gas expands or
compresses isothermally, the product of its pressure.and-
volume during the process remains constant. If P1, V, are
initial pressure and volume where as P2, V2 are pressure
and volume. after’ the isothermal change takes piece
(Fig.11.6 a), then 2 ‘ _ ' 1

P1V1 = Pgvg
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In case of an ideal gas, the P.E. associated with its
moleculesis zero, hence, the internal energy of an ideal
gas depends only on its temperature, which in this case
remains constant, therefore, AU=‘0. Hence, the first
law of thermodynamics reduces to ’

 o=w .
Thus if gas expands and does external work W, an amount
of heat Q has to be supplied to thegas in order to produce
an isothermal change. Since transfer of heat fromoone place
to another requires time, hence, to keep the temperature of
the gas constant, the expansion or compression must take
place slowly. The curve representing an" isothermal process
is called an isotherm (Fig._11.6a). . ' ‘

A 2 Adiabatic Process , .
An adiabatic process is the one in which no heat enters or
leaves the system. Therefore, Q = *0, and the first law of
thermodynamics gives ,- ~~

' . \

. _ W=-AU ~ '
Thus if the gas expands and does external work, it is done
at the expense of the internal energy of its molecules and,
hence, the temperature of the gas ‘falls. Conversely an
adiabatic compression causes the temperature of the gas to
rise because of the work done on. the.gas.
Adiabatic-change occurs when the gas expands or is
compressedrapidly, particularly when the gas is contained
in an insulated cylinder. The examples of adiabatic
processes are ~
(i) The rapid escape of air from a burst tyre.

(ii) The rapid expansion and compression of air through
which a sound wave is passing.

(iii) Cloud formation in the atmosphere. _

In case of adiabatic changes it has been-seen that

" PV7= Constant _ -
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where, y is the ratio of the molar specific heat of the gas at
constant pressure to molar specificheat at constant volume.
The curve representing an adiabatic process is called an
adiabat(Fig.“‘l*1.‘6'ib)i._ r . e

One kilogram of different substances contain different
number of molecules. Sometimes it is preferred to consider
a quantity called a mole, since one mole of any substance
contains the same ‘number of molecules. The molar
specific heat of the substance is defined" as the heat
required to raise the temperature of one mole of the
substance through 1 K. ln case of solids and liquids the
change of volume and hence work done againstexternal
pressure during a change of temperatureis negligibly
small. But same can not be said about gases which suffer
variation in pressure as~well as in volume with the rise in
temperature. Hence, to study__.the effect of heating the
gases, either pressure or volume iskept constant. Thus, it
is customary to define the molar specific heats of a gas in
two ways. ' 1 ' .

(i) , The‘ molar specific heat at constant volume is the
amount, of heat transfer required to raise the
temperature of one mole of the gas through 1 K at
constant volume and is symbolized by CV. _
If 1 mole of an ideal gas is heated at constant volume
so that its temperature rises by AT, the heat

- transferred Q, must be equal to C,,- AT. ~ Because
Av = O, no work is done (Fig 111.7. a). Applying first
law of thermodynamics, ' r ,

r ~ Q.=Au+w A i
y Hence, C,,AT=AU+O , _

(ii) The molar specific heat at constant pressure is the
amount of heat transfer. required to raise the
temperature of one mole of the gas through 1 K at
constant pressure and it is represented by symbol
C,,. To raise the temperature of 1 mole of the gas
by AT at constant pressure, the heat transfer Qp

' must be equal to Cp AT (Fig 11.7 b). Thus,
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o,,= 0,, AT ........ .. (11.12)
Derivation of - C, = R HP

When one mole of a gas is heated at constant pressure, the
intemal energy increases by the same amount as at
constant volume for the same rise in temperature AT. Thus
from Eq. 11.11 _

‘ t ._AU=C,,AT "
Since the gas expands to keep the pressure constant, so it
does work W = P AV, where AV is the increase in volume.
Substituting the values of heat transfer Qp, i_ntemal energy
AU and the work done W in Eq.11 .10, we get '

c,, AT= c, AT+ PAV ........ .. (11.13)
Using equation 11.6 for one mole of an ideal gas,

PV=RT 4 , ........ .. (11.14)
At constant pressure P, amount of work done by one mole
of a gas due to expansion AV (Fig. 11.7 b) caused by the
rise in temperature AT is given by Eq. 11.14

A P AV = R A T
Substituting for P AV in Eq. 11.13 "

C,,AT=C,,AT+RAT
or C,,=C,,+R

or g c,,- c,= R ........ .. (11.15)
It is obvious from Eq. 11.15 that Cp > C.) by an amount
equal to universal gas constant R.

A reversible process) is one ‘which can be retraced in
exactly reverse order, without producing any change in the
surroundings. In the reverse process, the working
substance passes through the same stages as in the direct
process but themtal and mechanical effects at each stage
are exactly reversed. If heat is absorbed in the direct
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“——HenceTit11e"Won<lng""st1bstance*ls"restoredto"its"origfi1al-

process,'it will be given out in the reverse process and if
work is done by the substance in the direct process, work
willbe done on the. substance in the reverse process.

conditions.

, . It
.1‘ g

Although no actual change is completely reversible but the
processes of liquefaction and evaporation of a substance,
performed slowly, a-re practically reversible. -Similarly the
slow compression of a gas in a cylinder is reversible
process as the compression can. be changed to
expansion by slowly decreasing the pressure on the
piston to reverse the operation. -,.

. , _ t

All changes which occur suddenly or which involve friction
or dissipation of energy through conduction, convection or
radiation are irreversible. An example of highly irreversible
process is an explosion. ~

A heat engine converts some thermal energy to
mechanical (work. Usually the heat comes from the burning
of a fuel. The earliest heat engine was the steam engine. It
was developed on the fact that when water is boiled in a
vessel covered with a lid, the steam inside tries to push the
lid off showing the ability to do work. This observation
helped to develop a steam engine.

25,1
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Fig. 11.a -
’Scherriatic;,_representation. of a
‘heat .engi;e;.i3%ne~ engine ~ absorbs

Qriiifill“. ‘ii? "01. "'°$e"'d7'-~
heat0,10 ti'1e*cold resewoir

'ahdd¢¢$W¢fi<'W' ‘l \ “K -.

Basically a heat engine (Fig. 11.8) consists of hot reservoir
or source which can supply heat at hightemperature and a
cold reservoir or sink into which heat is rejected at a lower
temperature. A working substance is needed which can
absorbheet Q1 from source, converts some of it into work
W by its expansion and rejects the rest heat Q2 to the cold
reservoir or sink. Aheat engine is made cyclic to provide
a continuous supply of work. i - '

First law of thermodynamics tells us that heat energy can
be converted into equivalent amount of work, but it is silent
about the conditions -under which this conversion takes
place. The second law is concerned with the
circumstances in which heatcan be converted into work
and direction of flow of heat. 1
Before initiating the discussion on formal statement of the
second law of thermodynamics, let us analyze briefly the,
factual operation“ of an engine. The engine or the system
represented by the block diagram Fig. 11.8 absorbs ‘a
quantity of heat Q1 from the heat source at temperature T1.
lt does work W and expels heat Q2 to low temperature
reservoir at temperature T2. As the working substance goes
through a cyclic process, in which the substance eventually
returns to its initial state, the change in internal energy is
zero. -Hence from the first law of thermodynamics, net work
done should be equal to the net heat absorbed.

< . W4=Q1-Q2
ln practice, the petrol engine of a motor car extracts heat
from the burning fuel and converts a fraction of this energy
to mechanical energy or work and expels the rest to
atmosphere. It has been observed that petrol engines
convert roughly 25% and "diesel engines 35 to 40%
available heat energy into work. .
The second law of thermodynamics is a formal statement
based on these observations. It can be stated in a number of
different ways. ' ‘
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According to Lord Kelvin‘s statement based on the working
of a heat engine - - -

This means that a single heat reservoir, no matter how
much energy it contains, can not be made to perform any
work. This is true for oceans and our atmosphere which;
contain a large amount of heat energy but can not be
converted into useful mechanical work. As a consequence
of second law of thermodynamics, two bodies at different
temperatures are essential for the conversion of heat into
work.‘ Hence for the working of heat engine there must be
a source of heat at a high temperature and a sink at low
temperature to which heat may be expelled. The reason for
our inability to utilize the. heat contents of oceans and
atmosphere is that there is no reservoir at a temperature
lower than any one of the two. 1

Q

Sadi Carnot in 1840 described an ideal engine using only
isothennal and adiabatic processes. He showed that a
heat engine operating in an ideal reversible cy.cle_ between
two heat reservoirs at different temperatures, would be the
most efficient engine. A Carnot cycle using an ideal gas as
the working substance is shown on PV diagram (Fig. 11.9).
lt consists of following four steps. ' '

1. The gas is allowed to expand isothermally at
temperature T1, absorbing heat Q1 from the hot
reservoir. The process is represented by curve AB.X

2. The gas is then allowed to expand adiabatically until
its temperature drops to T2. The process is
represented by curve BC. ' .

‘ 3. The gas at this stage is compressed isothermallyat
temperature T2 rejecting heat Q2 to the cold reservoir.

o The process is represented by curve CD. ' '
s ' \
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4. Finally the gas is compressed adiabatically to restore
its initial state at temperature T1. The process is
represented by curve DA.

Thermal and mechanical equilibrium is maintained all the
time so that each process is perfectly reversible. As the
working substance returns to the initial state, there is no
change in its intemal energy i.e. AU = 0.
The net work done during one cycle equals to the area
enclosed by the path ABCDA of the PV diagram. lt can
also be estimated from net heat Q absorbed in one cycle-.

_ QFQ1'"Q2

From 1*‘ law of thermodynamics
' Q=AU+W -

2' W=Q1-Q2 -

The efficiency n of the heat engine is defined as

1 11 _ Output (Work) A
Input (Energy)

=iQ1'Q2 = -31 , 1111 'thus, 11 Q1 1 4001 . . . . . . . .. 1 ( , 6)_
1

The energy transfer in an isothermal expansion or
compression turns out to be proportional to Kelvin
temperature. So Q1 and Q2 are proportional to Kelvin
temperatures T, and T2 respectively and hence,

=__T1-5-1-12.5 111 T1 __1,T1 ........ .. (11.11)

The efficiency is usually taken in percentage, in that case,

percentage efficiency = E—;ij100
1

Thus the efficiency of Camot engine depends on the
temperature of hot and cold reservoirs. It is independent of
the nature of working substance. The larger’ the
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temperature difference of two resen/oirs, the greater is the
efficiency. But it can never be one or 100% unless cold
reservoir is at absolute zero temperature (T2 = 0 K).
Such reservoirs are not available and hence the maximum
efficiency is always less than one. Nevertheless the Camot
cycle establishes an upper limit on the efficiency of all heat
engines. No practical heat engine can be perfectly
reversible and also energy dissipation is inevitable. This
fact is stated in Carnot's theorem

» . -

No heat engine can be more then. at"..-an-~»»-ta   r  -ting between the same two temperatures D0 You Know’

1 “!l*fli'—:‘ ir>ii1:i»-i.;l<.'r—. ';<l_:'l'_)l_|l'l'Ill ~11The Carnot s theorem can be extended to state that, "
e

All Camofs engines operating between the same -
two temperatures have thew same efficiency,
irrespective of the nature of working

in most practical cases, the cold reservoiris nearly at room
temperature. So the efficiency can only be increased by
raising the temperature of hot reservoir. All real heat
engines are less efficient than Camot engine due to friction
and other heat losses. ~, .~'- -1

Example 11 .4: The turbine in a steam power plant takes
steam from a boiler at .427°C and exhausts into a low
temperature reservoirat 77°C. What is the maximum possible
efficiency? » 1 -

Solution: .
Maximum efficiency for any engine operating between
temperatures T, and T2 is

. -11-T2" n
where T, = 427 + 273 = 100 K
and . T2-= 17 .+ 273 = 350 K
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Arefrigerator transfers heat from a
low.-temperature compartment to
higher-temperature surroundings
with the help of extemal work. it is
a heat engine operating in reverse
order.
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Generally a. temperature scale is established by two fixed
points using certain physical properties of a material which
varies linearlywith temperature. The Carnot cycle provides
us the basis to define . a temperature scale ' that is
independent of material properties. According toit, the ratio
Q2"/Q1 depends only on the. temperature of two heat
reservoirs. The. ratio of the two temperatures T2/7} can be
found by operating a reversible Carnot cycle between these
two temperatures‘ and carefully measuring the heat transfers
Q2 and Q1. Thetheimodynamic scale of temperature is
defined by choosing 273.16 K as the absolute temperature
of the triple point of water as one fixed point and absolute
zero, as the other. The unit of thermodynamic scale is
kelvin. K is defined as 1/273.16 of the thermodynamic
temperature of the triple point of water. It is a state _in which
ice, water and vapour coexists in equilibrium and it occurs
uniquely at one particular pressure and temperature-. lf heat
Q is absorbed or rejected by the system at corresponding
temperature T when the system is‘ taken through a Carnot
cycle and Q3 is the heat absorbed or rejected by the system
when it is at the temperature of triple point of water, then
unknown temperature Tin kelvin is given by , _

I
mi ;'.1

Since this scale is independent of the property of the
working substance, hence, can be applied atvery low
temperature. . .

Although different engines may differ in their construction
technology but they are based on the principle of a Carnot
cycle. A typical four stroke petrol engine (Fig. 11.10 a) also
undergoes four successive processesin each cycle. ‘
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1. The cycle starts on the intake stroke in which piston
moves outward and petrol air mixture is drawn through
an inlet valve into the cyli_nder from_the_carbu.r:eton at
atmospheric pressure.

2. On the compression stroke, the inlet valve is closed and
the mixture is compressed adiabatically by inward
movement of the piston.

3. On the power stroke, a spark fires the mixture causing a
rapid increase in pressure and temperature. The buming
mixture expands adiabatically and forces the piston to
move outward. This is the stroke which delivers power to
crank shaft to drive the flywheels. _

4. On the exhaust stroke, the outlet valves opens. The
residual gases are expelled and piston moves inward.

The cycle then begins again. Most motorbikes have one
cylinder engine but cars usually have four cylinders on the
same crankshaft (Fig 11.10 b). The cylinders are timed to fire
tum by turn in succession for a smooth running of the car. The
actual efficiency of properly tuned engine is usually not more
than 25% to 30% beuse of friction and other heat losses.

4'3.‘ ()"i*i¢».-,.
(' xi-5*’ ”@

‘I
E \6

flywheel crankshaft N ‘aévirigf

&l<:im.u wasfimmwz
'1:

Fig 11 10(b)

Diesel Engine h q
No spark plug is needed in the diesel engine (Fig. 11.11).
Diesel is sprayed into the-cylinder at maximum compression.
Because air is at very high temperature immediately after
compression, the fuel mixture ignites on contact with the air in

~.th'e cylinder and pushes the piston outward. The efficiency of
diesel engine is about 35% to 40%. '

The concept of entropy was introduced into the study of
thermodynamics by Rudolph Clausius in 1856 to giveta
quantitative basis for the second law. It provides another
variable to describe the state of a system to go alorlg with
pressure, volume, temperature and internal energy. If a
system undergoes a reversible process during which it
absorbs a quantity of heat AQ at absolute temperature T,
then the increase in the state variable called entropy S of
the system is given by ' .

‘ -1
. ‘ _ _._Lv ,~ _. -g-fl--;,_r.i 1.1%. :l;f.aL..‘§T:c;

~~ i 1 ' '* ;' Q 1- rxr ;".‘1i'i""~*»'1iY=ii.§l1.'l§. 2‘ l.i»"'+;i'~.'l-"".=l' 11‘
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Like potential energy or intemal energy. it is the change in
entropy of the system which is important.
Change in entropy is positive when heat is added and
negative when heat is removed from the system. Suppose,
an amount of heat Q flows from a reservoir at temperature
T1 through a conducting rod to a reservoir at temperature
T2 when T1 > T5. The change in entropy of the resen/oir, at
temperature T1, which loses heat, decreases by Q/T1 and
of the reservoir at temperature T2, which gains heat,
increases by Q/T2. As T1 > T2 so Q/T2 will be greater than
Q/T1i.e.Q/'lE>Q/T1. » ,
Hence, net change in entropy = %——gis positive.

2 1

It follows that in all natural processes where heat flows
from one system to another, there is always a net increase
in entropy. This is another statement of 2"“ law “of
thermodynamics. According to this law

it is observed that a-natural process tends to proceed
towards a state of greater disorder. Thus, there is a
relation between entropy and molecular disorder. For
example an irreversible heat flow from a hot to a cold
substance of a system increases disorder because the
molecules are initially sorted out in hotter and cooler
regions. This order is lost when the system comes to
thermal equilibrium. Addition of heat to a system increases
its disorder because of increase in average molecular
speeds and therefore, the randomness of molecular
motion. Similarly, free expansion of gas increases its
disorder because the molecules have greater randomness
of position after expansion than before. Thus in both
examples, entropy is said to be increased.
We can conclude that only those processes are probable
for which entropy of the system increases or remains
constant. The process for which entropy remains constant
is a reversible . process; whereas for all irreversible
processes, entropy of the system increases. i
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Every time entropy increases, the opportunity to. convert
some heat into work is lost. For example there is an increase
in entropy when hot and cold water-s are mixed. Then warm
water which results cannot be separated into a hot layer and
a cold layer.-There has been no loss of energy but some of
the energy is no longer available for conversion into work.
Therefore, increase in entropy means degradation of energy
from a higher level where more work can be extracted to a
lower level at whichless or no useful work can be done. The
energy in a sense is degraded, going from more orderly form
to less orderly form, eventually ending up as thermal energy.
in all real‘ processes where heat transfer occurs, the
energy available for doing useful work decreases. In other
words the entropy increases. Even if the temperature of
somesystem decreases, thereby decreasing the entropy, it
is at the expense of net increase in entropy for some other
system. When all the systems are taken together as the
universe, the entropy of the universe always increases.

EXa‘mple 11.5: Calculate ' the entropy change when
1.0 kgice at 0°C melts into water at 0°C. Latent heat
of fusion of ice L, = 3.36 x 105 J kg". .
Solution: i ‘ -

A m = 1 kg
. r= o°c =s213 K _

1., = 3.36 x1105 J kg“ .
. ._ AQI AS-.T y

where 'AQ = rnL¢

AS=-#1’; '_ AI A

K K ,- s ‘ -,1. .AS: 1.00 kg x3.36x10 AJ kg ,
273K 3

AS~= 1.23 x 10° J K" 3
Thus entropy increases as it changes to water. The increasein
entropy int this case is a measure ofiincreaseln the disorder of
water moleculesthat changefrom solidito liquid state. 3- 1
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The jet engines on this aircraft
convert thermal energy to work, but
th ‘slble exhaust clearl she VI y ows
that a considerable amount of
thermal energy is lost as waste heat.

\

The second law of thermodynamics provides us the key for
both understanding our environmental crisis, and for
understanding how we must deal with this crisis.
From a human standpoint the, environmental crisis results
from our attempts to order nature for our comforts
and greed. From a physical standpoint, however, the
environmental crisis is an entropy or disorder crisis
resulting from our futile efforts to ignore the second law of
thennodynamics. According to which,‘any increase in the
order in a system will produce an even greater increase in
entropy or disorder in the ‘environment. An individual
impact may not have a major consequence but an impact
of large number of all individuals disorder producing
activities can affect the overall life support system.

The energyprocesses we use are not very efficient. As a
result most of the energy is lost as heat to the environment.
Although we can improve the efficiency but 2"“ law eventually
imposes an upper limit on efficiency improvement. Thennal
pollution is an inevitable consequence of 2"“ law of
thermodynamics and the heat is the ultimate death of any
form of energy. The increase in thermal pollution .of the
environment means increase in the entropy and that causes
great concern. Even small temperature changes in the
environment can have significant effects on metabolic rates in
plants and animals. This can cause serious disruption of the
overall ecological balance.
In addition to thermal pollution, the most energy
transformation processes such as heat engines used for
transportation and for power generation cause air pollution.
In effect, all forms of energy production have some
undesirable effects and in some cases all problems can
not be anticipated in advance.
The imperative from thermodynamics is that whenever you
do anything, be sure to take into account its present and
possible future impact on your environment. This is an
ecological imperative that we must consider now if we are
to prevent a drastic degradation of life on our beautiful but
fragile Earth. .
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11.3 A system undergoes from state P1V1 to state P2V2 as shown in Fig 11.12. What
will be the change in intemal energy?

s
P’ “SQ

I.

T Constant
P Temperature

' (Pa) 1x10‘P2 _ _ art. ‘» .,.. .

- '1 4'
v, v—> v,

lam’)
Fig.11.12 F _

11.4 Variation of volume by pressure ‘is given in Fig 11.13. A gas istaken along the
paths -ABCDA, ABCA and A to A. What will be the change in internal energy?

V__> _ v-> v—>
Fig.11.13(a) Fig.11.13(b) Flg.11.13(c)

11.5 Specific heat of a gas at constant pressure is greater than specific heat at constant
volume. Why?

11.6 Give an example of a process in which no heat is transferred to or from the system
but the temperature of the system changes. 1 -

11.7 ls it possible to convert intemal energy into mechanical energy? Explain with an
example. _ - ,

11.8 ls it possible to construct a heat engine that will not expel heat into the atmosphere?
11.9 A thermos flask containing milk as a system is shaken rapidly. Does the

_ temperature of milk rise? i
.11 .10What happens to the temperatureof the room, when an airconditioner is left running on

8 table in the middle of the room? »
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11.11 Can the mechanical energy be converted completely into heat energy? If so give
an example. .

__.__ y$mimmae .mmn? -
11 .13Give an example of a natural process that involvesan increase in entropy.
11 .14An adiabatic change is the one in which j ~ _

a. No heat is added to or taken out of a system
b. No change of temperature takes place -
c. Boyle's law is applicable
d. Pressure and volume remains constant

11 .15Which one of the following process is irreversible? j
a. Slow compressions of an elastic spring
jb. Slow evaporation of a substance in an isolated vessel

1 c. Slow compressionof a gas ,

. . LL'<'}4&.?P£‘?hemI¢§'i°*F?l9§‘¢'ii,'x.>.=
tr I1-J 3 t?1>117§f?’~T*:‘.’ > if »-

3
b. Highest ‘efficiency

- c. An efficiency which depends on the nature of working substance
d. None of these '

at  2 _. NUMERIALPROBLEMS
- 11.1 Estimate the average. speed of nitrogen molecules in air under standard conditions

' of pressure and temperature. ,
» t ' (Ans: 493 ms")
11.2 Show that ratio of the root mean square speeds of molecules iof two different gases

at a certain temperature is equal to the square root of the inverse ratio of their
masses.

11.3 A sample of gas is compressed to one half of its initial volume at constant pressure
of 1.25 x 105 Nm? During the compression, 100 J of work is done on the gas.
Determine the final volume of the gas.

. * 1 (Ans: s x 10*‘ m3)
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11.4 A thermodynamic system undergoes a process in which its internal energy
decreases by 300 J. If at the same time 120 J of work is done on the system, find
the heat lost by the system.

(Ans: - 420 J)
11.5 A carnot engine utilises an ideal gas. The source temperature is 227°C and the sink

temperature is 127°C. Find the efficiency of the engine. Also find the heat input from
the source and heat rejected to the sink when 10000 J of work is done.

‘ j (Ans: 20%, 5.00 x 10“J, 4.00 X 1o“.i)
11.6 A reversible engine works between two temperatures whose difference is 100°C. If

‘it absorbs 746 J of heat from the source and rejects 546 J to the sink, calculate the
temperature of the source and the sink. -

(Ans: 100°C, 0°C)

11.7 A mechanical engineer develops an engine, working between 327°C and 27°C and
claims to have an efficiency of 52%. Does he claim correctly? Explain.

(Ans: No)

11.8 A heat engine performs 100 J of work and at the same time rejects 400 J of heat
energy to the cold reservoirs. What is the efficiency of the engine? 1

' (Ans: 20%)
011.9 A Carnot engine whose low temperature resen/oir is at 7 C has an efficiency of

50%. It is desired to increase the efficiency to 70%. By how many degrees the
temperature of the source be increased?

(Ans: 373°C)

11.10 A steam engine has a boiler that operates at 450 K. The heat changes water to
steam, which drives the piston. The exhaust temperature of the outside air is about
300 K. What is maximum efficiency of this steam engine?

. (Ans: 33%)

11.11 336 J of energy is required to melt 1 g of ice at 0 C. What is the change in
entropy of 30 g of water at 0°C as it is changed-to ice at 0°C by a refrigerator?

' ‘ _ 1 (Ans: -36.3 J K")
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Metre: The unit of length is named as metre. Before 1960 it was defined as the distance
between two lines marked on the bar of an alloy of platinum (90%) and iridium" (10%) kept under
controlled conditions at the international Bureau of Weights and Measures in France. The 11"‘
General Conference on Weights and Measures (1960) redefined the standard metre as follows:
One metre is a lengthequal to 1,650,763.73 wave lengths in vacuum of the orange red radiation
emitted by the Krypton 86-atom. However, in 1983 the metre was redefined to be the distance
traveled by light in vacuum during a time of 1/299,792,458 second. In effect, this latest definition
establishes that the speed of light in vacuum is 299,792,458 ms'1.

Kilogram: The unit’ of mass is known as kilogram. It is defined as the mass of a platinum (90%)
and iridium (10%) alloy cylinder, 3.9 cm in diameter and 3.9 cm in height, kept at the lntemational
Bureau of Weights and Measures in France. This mass standard was established in 1901:

Second: The unit of time is temwed assecond. It is defined as 1/86400 part of an average day of the
year 1900 A.D. The recent time standard is based on the spinning motion of electrons in atoms. This is
since 1967 when the International Committee on Weights and Measures adopted a new definition of
second, making one second equal to the duration in which the outer most electron of the cesium-133
atom makes 9,192,631,770 vibrations.

K6|Vil1Z Temperature is regarded as a thermodynamic quantity, because its equality
determines the thermal equilibrium between two systems. The unit of temperature is kelvin. It is
the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. It should be
noted that the triple point of a substance means the temperature at which solid, liquid and vapour
phases are in equilibrium. The triple point of water is taken as 273.16 K. This standard was
adopted in 1967. ' ' .

Ampere: The unit of electric current is ampere. lt is that constant current which if maintained in
two straight parallel conductors of infinite length, of negligible circular cross-section and placed a
metre apart in vacuum, would produce between these conductors a force equal to 2 x 10'7 newton per
metre of length. This unit was established in 1971.

Candela: The unit of luminous intensity is candela. it is defined as the luminous intensity in the
perpendicular direction of a surface of 1/600000 square metre of a black body radiator at the
solidification temperature of platinum under standard atmospheric pressure. This definition was
adopted by the 13"‘ General Conference of Weights and measures in 1967.

Mole: The mole is the amount of substance of a system which contains as many elementary
entities as there are atoms in 0.012 kg of carbon 12 (adopted in 1971). When this unit i.e. mole is
used, the elementary entities must be specified; these may be atoms, molecules, ions, electrons,
other particles or specified groups of such particles. One mole of any substance contains
6.0225 x 10” entities. -
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lf the errors in the quantities x and y are Ax and Ay respectively, the possible sum is then;

- x 1 Ax + y 1 Ay 1

The maximum possible error is when we have

x + Ax + y + Ay
or ' x - Ax + y - Ay

Hence, the quantity can be expressed as . x + yi (Ax + Ay)
i_9_, the eprqrg 3_[Q_adgl3g§ ._. . _V 2 Z-In -Z 2 t D t

1 .- ' 7 . - - ' V;.‘-7. ". I ?‘- = I.’ 61'-\_'Yi"1¥";TI'5_ .. ‘- - . - - ' ii _ _ -~15; ;~_ -i - Q-6 1' > "'~.;.~‘:--_ ?," i _¢‘. _; ’ , j -_ . -i :.»;~§;;;~» ~.. L, »:~,i.i,:.* .i > . ' i .' '~ ~ .

‘H°"°°- 2-1) . .

(iii INTHF1, 1
If the errors in the quantities x and y are Ax and Ay respectively, the compound

quantity could be as large as (x + Ax) (y + Ay) or as small as (x - Ax) (y - Ay). Theproduct is
thus between about xy + x Ay + yAx +Ax Ay and xy - x Ay - yAx +Ax Ay. lfwe neglectAx Ay,
as being small, then the error is between - 1.

xAy+yAx _ and '- (x Ay+ yAx)

or :1: (x Ay _+ yAx)
The possible fractional error is thus '

= ¢(XAy+yAX) _ 1 Av +Ax
xy y X

which is the sum of possible fractional errors. Since the fractional error is generally
written as percentage error, hence the possible percentage error is the sum of the
percentage errors for the product of the two physical quantities.

~ . . ‘ .j 7. , ,;*<'._‘--‘i’5~.i;' ' , i.: ._.2i.;§1i".‘i=r: ‘.;,_iis.,‘i~;r,a .~;g2I_-:~:. '"~" " ' ‘*_.Z§?f 1."';3‘,;1.fI»~'.f:‘i, ‘;‘,t;Z . -‘ - i ‘,W-§;;g;5f;¢i;§;;;
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3
_iLeLz,_x_a_nd__\Lb_e tile numerical values of the physical quantities and k be a constant.

Taking log of both sides; _i ' .
logz=logk+~alogx+blogy 1

Differentiating: _ '95 =1 0 + a-:1 + bi’;
Z

Multiply’by100 1 ' »~ . - ~
t

‘ , [95j100=a{-q£]100+-b£-qX]100 . ‘. _ - z x _ . y ._ ~ j

If dx,A dy and dz represent the errors in the quantities x, y, and z respectively, then 4
' T

.
. .. ________ , '

_ _ . j . P.

w 'fl.t'l<1 wwerreivw in an average verve 99$‘???-°¥\P'°ifi“91.'9TaP0$»--the.fits“-i¥9Pfis iv
draw ‘bestistraight line through -the plotted points -using-"a transp'areht="ruler.. The best
straight line passes through as many of piotted points as possible or which -leaves.
almost an equal distribution of points on either side of the line. The second step is to
pivot a transparent ruler about the centre of best straight line to draw greatest and least
possibleslopes. If slope of best straight line is m and greatest and least slopes are m1
and mgas illustrated in Fig. A 2.1, then evaluate m,1- m and m, - m which ever of these is
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F mfiemmmmegfig
l") 4 EEEEEEEEEEEEEEEEEEFZziiiiiiiiEEEEEEEEEEEEEEEEEEEEE5555 .

zaeaaaaaeeee
4 mun ammmmmmmemme
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' . , x(mm) ;i'-—> '

greateris the maximum" possible uncertainty in the slope. If the intercept o'n_'a particular
axis is required, the similar procedure can be followed.
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~ Fig. A 3.1
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A. LINEAR EQUATION
A linear equation has the general form . T

y=ax+b_ V (A-3.1)i
Where a and b are constants. This equation is referred to
as being linear because the graph of y versus x is a
straight line, as shown in Fig. A3.1. The constant b, called
the intercept, represents the value of y at which the straight
line intersects the Y-axis. The constant a is equal to the
slope of the straight line and is also equal to the tangent of
the angle that the line makes with the X-axis. If any two
points on the straight line are specified by the coordinates
(x1, y1).and (x2, }/2), as in Fig. A 3.1, then the slope of the
straight line can be expressed ’

I y _y_A ' Ly _ _r‘ k‘

Slope. at = =tan6 . 3.2)
N 2i 1 _g .

Note that a and b can be either positive or negative. A
B. QUADRATIC EQUATION
The general form of a quadratic equation is

V ~ ax21+ bx_Efc=0”E "_ig(A 3.3)
where x is unknown quantity and a, b and c are numerical
factors referred to as coefficients of the equation. This
equation has two roots, given by

. , 1 ac; A (A<§§%fi)
If b2 > 4ac, the roots will be real.

C. THE BINOMIAL THEOREM H
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(iv) Cylinder
_ volume = arr‘! g

‘ (v) Rectangular box
volume = twh

\. _(vi) Sphere . l
Surface area = 41:r’

volume = % nr‘

' \

r ’\\ J ‘
I --

E. TRIGONOMETRY A

According to ourdefinitions, the trigonometric functions are
l_imited to angles in the range.[0, 90°]. We extend the
meaning‘of these functions to negative or larger angles by
a circle of unit radius, the‘ unit circle (Fig.A 3.2).Thea_ngle is
always measured with respect, to the positive x axis
counter clockwise positive and clockwise negative. The
hypotenuse of the right angled triangle OAB is the radius
of the unit circle. Its length is equal to 1, and it is always
positive. The other two sides are assigned a sign
according to the usual conventions‘ i.e., positive to the right
of the x-axis, and so on. With these conventions the
trigonometric functions in each of the four quadrants have
the signs listed in Table A 3.3. ' _

If Gexceeds 360°, the whole pattern of signs and values
repeats itself on the next pass around the circle. Thus,
sine, cosine, and tangent are periodic functions of an
angle with period 360°.» A

’ v' .
» Flg.A8.2 4 .- '
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Adiabatic process

> Angular acceleration
> Angular displacement

> Angular momentum
> Angular velocity
> Antinode

Artificial gravityr >

> Average acceleration
t

> Average velocity

> Base quantities
P Blue shift

> Bulk modulus
P Centre of mass

> Centripetal force
> Cladding

> Compression
> Conservative field
> Constructive

interference
> Core

\.

> Crest
A > Critical angle
> CRO g

A completely isolated process ll'l which no heattransfer
can take place. if
The rate of change of angular velocity with time.
Angle subtended at the centre of a circle by a particle
moving along the circumference in a given time.
The cross product of position vector and linear momentum.
Angular displacement per second.
The point of maximum displacement on a stationary wave.
The gravity like effect produced in orbiting space ship to
overcome-weightlessness. ‘
Ratio of the change in velocity, that occurs within a time
interval, to that time interval.
Average rate at which displacement vector changes with
time. -
Certain physical quantities such as length, massand time.
The ‘shift of received wavelength from a star into the
shorter region.
Ratio of volumetric stress to volumetric strain. .
The point at which all the mass- of the body is
assumed to be concentrated. A
The force needed to move a body around a circular path.
A layer of_ lower refractive index (less density) over the
central core of high refractive index (high density).
The region of maximum density of a wave._
The field in which work done along a closed path is zero.
When two waves meet eaoh other in the same phase.

The central part of optical fibre which has relatively high
refractive index (high density).
The portion of a wave above the mean level. .
The angle of incidence for which the angle of refraction is 90°.
A device used to display input signal into waveform. -
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Damping

Denser medium
Derived quantities
Destructive
interference
Diffraction
Dimension

Displacement

Doppler shift

Drag force

Elastic collision

Energy
Entropy

Escape velocity

Forced oscillations
Free oscillations

Freely falling body
Fundamental mode
Geo-stationary
satellite
Harmonics

Heat engine

ideal fluid
Impulse
Inelastic collision

Q

A process whereby energy is dissipated from the _
oscillatory system.
The medium which has greater density.
The physical quantities defined in terms of base quantities.
When two waves overlap each other in opposite phases.

Bending of light around obstacles. .
One of the basic measurable physical property such as
length, mass and time. ~
The change in the position of a body from its initial position
to its final position.
The apparent change in the frequency due to relative
motion of source and observer.

-

A retarding force experienced by an object moving
through a fluid. y
The interaction in which both momentum and kinetic
energy conserve. ~
Capacity to do work. '
Measure of increase in disorder of a thermodynamic
system or degradation of energy.
The initial velocity of a body to escape from Earth's
gravitational field.
The oscillations of a body subjected to an external force.
Oscillations of a body at its own frequency without the
interference of an external force. A
A body moving under the action of gravity only.
Stationary wave setup with minimum frequency.
The satellite whose orbital motion is synchronized with the
rotation of the Earth. ,

Stationary waves setup with integral multiples of the
fundamental frequency.
A device that converts a part of input heat energy into
mechanical work. -
An incompressible fluid having no viscosity.
The product of force and time for which it acts on a body.
The interaction in which kinetic energy does not conserve.
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Instantaneous
acceleration
instantaneous velocity

Acceleration at a particular instant of time. -

Velocity at a_particular instant of time.
Internal energy

Isothermal process _
Kinetic energy
Laminar flow
Least distance of _
distinct vision
Line spectrum
Longitudinal wave

Magnification

Modulus of elasticity
Molar specific heat at
constant pressure
Molar specific heat at
constant volume '
Moment Arm

Moment of inertia .
Momentum
Multi-mode graded
index fibre
Node
Null vector
Orbital velocity

Oscillatory motion
Periodic motion
Phase

The sum of all ‘forms of molecular energies in a
thermodynamic system.
A process in which Boyle's law is applicable.
Energy possessed by a body due to its motion.
Smooth sliding of layers of fluid past each other,
The minimum distance from the eye at which an object can
be seen distinctly. - V
Set of discrete wavelengths.
The‘wave in which the particles of the medium vibrate
parallel to the propagation of the wave.
The ratio of the angle subtended by the image as seen
through the optiwl device to that subtended by the object at
the unaided eye.
Ratio of stress and the strain.
Amount of heat needed to change the temperature of one
mole of a gas through 1K keeping pressure constant.
Amount of heat needed to change the temperature of one
mole of a gas through 1K keeping volume constant.
Perpendicular distance between the axis of rotation and
line of action of the force. '
The rotational analogue of mass in linear motion.
The productof mass and velocity of an object.
An optical fibre in which the central core has high refractive
index which gradually decreases towards its periphery.
The point of zero displacement.
A vector of magnitude zero without any specific direction.
The tangential velocity to put a satellite in orbit around the
Earth.
To and fro motion of a body about its mean position.
The motion which repeats itself after equal intervals of time.
A quantity which indicates the state and direction of motion
of a vibrating particle.
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Pitch The characteristics of sound by which a shrill sound can be
distinguished from the grave sound.

Plane wavefront A disturbance lying in a_plane surface.
Polarization The orientation of vibration along a particular direction.‘
Position vector A vector that describes the location of a point.
Potential energy Energy possessed by a body due to its position. -
Power The rate of doing work- ‘
Progressive wave The wave which transfers energy away from the source.
Projectile An object moving under the action of gravity and moving

horizontally at the same time. -

Radar speed trap An instrument used to detect the speed of moving object
, y on the basis of Doppler shift.

Random error Error due to fluctuations in the measured quantity.
Range of a projectile The horizontal distance from the point wherethe projectile

is launched to the point it returnsto its launching height.
Rarefaction ' The region of minimum density. .
Rarer medium The medium which has relatively less density.
Rays Radial lines leaving the point source in all directions.
Red shift The shift in the wavelength of light from a star towards

lon_ger wavelength region. 4
Resolving power The ability of an instrument to reveal the minor details of

the object under examination.
Resonance A specific response of vibrating system to a periodic force

. acting with the natural period of the system. '
The force that brings the body back to itsequilibrium
position.

Restoring force

Resultant vector The sum vector of two or more vectors.
Root mean square Square root of the average of the square of
velocity molecular velocities. ~ ‘
Rotational equilibrium A body having zero angular acceleration.
Scalar quantity A physical quantity that has magnitude only} I
Scalar product The product of two vectors that results into a scalar quantity.
Significant figures The.measured or calculated digits for a quantity which are

- reasonably reliable. L -
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Simple harmonic
motion

~

I

A motion in which acceleration is directly
proportional to displacement from mean position
and is always directed towards the mean position. ,

Slinky spring

Space time curvature-
Spherical wavefront

Stationary wave

System international
(5') '
Systematic error

\

Terminal velocity

Torque
Total internal -
reflection

Trajectory .
Translational
equilibrium
Transverse wave

Trough
Turbulent flow
Unit vector g
Vector quantity
Vector product
Wavefront

Wavelength
Work '

v

A loose spring which has small initial length but a relatively
large extended length. . ' '
Einstein's view of gravitation. A _ '
When the disturbance is propagated in all directions from a
point source. g ‘
The resultant wave arising due to the interference of two

--identical bumppositely directed waves.
The internationally agreed system of units used
almost world over. -
Error due to incorrect -design or calibration of the
measuring device. - _
Maximum constant velocity of an object falling vertically
downward.
The tuming effect of a force.
When theangle of incidence increases by the critical
angle, then the incident light is reflected back in the same
material. r »
The path through space followed by am projectile.
A body having zero linear acceleration. .

The wave in which the particles of the medium vibrate
perpendicular to the propagation of wave.
The lower portion of a wave below the mean level.
Disorderly and changing flow pattern of fluids.
A vector of magnitude one used to denote direction.
A physical quantity that has both magnitude and direction.
The product of two vectors that results into another vector.
A surface passing through all the points undergoing a
similar disturbance (i.e., having the same, phase)- at-a
given instant.
The distance between two consecutive wavefronts.
The product of magnitude of force and that of
displacement in the direction of force.
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