MEASUREMENTS

Learning Objectives

At the end of this chapter the students will be able to:

1. Understand what is Physics.
2. Understand that all physical quantities consist of a numerical magnitude and a unit.
3. Recall the following base quantities and their units; mass (kg), length (m), time (s), current (A), temperature (K), luminous intensity (cd) and amount of substance (mol).
4. Describe and use base units, supplementary units, and derived units.
5. Understand and use the sclentific notation.
6. Use the standard prefixes and their symbols to indicate decimal sub-multiples or multiples to both base and derived units.
7. Understand and use the conventions for Indicating units.
B. Understand the distinction between systematic errors and random errors:
8. Understand and use the significant figures:
9. Understand the distinction between precision and accuracy,
10. Assess the uncertainty in a derived quantity by simple addition of actual, fractional or percentage uncertainties.
11. Quote answers with correct scientific notation, number of significant figures and units in all numerical and practical work.
12. Use dimensionality to check the homogeneity of physical equations,
13. Derive formulae in simple cases using dimensions.

Eversince man has started to observe, think and reason he has been wondering about the world around him. He tried to find ways to organize the disorder prevailing in the observed facts about the natural phenomena and material things in an orderly manner. His attempts resulted in the birth of a single discipline of science, called natural philosophy. There was a

Aroas of Pbysics

Mechanics
Heat S thermodynamics Electivinagnimistm
Optici
scourd
Hydrodymamices
Speriat remaivily
General rolativity Cilantum machanis
Atornic phitysics Molecular phymics Nuciear plyaic: Solid-atite phyyict Particle physics Buperomptuctivily Super fluidity Plasmin phrsict Magneto hycrodyniamics Space phyoits

Interdisciplinary areas of Physics

Astrophysici Blophysics Chemica! phyaics Empinvering pilysios Geophyaics Medical phynics Physical oceanography Plyytics of nitulte
huge increase in the volume of scientific knowiedge up till the beginning of nineteenth century and it was found necessary to classify the study of nature into two branches, the biological sciences which deal with living things and physical sciences which concern with non-living things. Physics is an important and basic part of physical sciences besides its other disciplines such as chemistry, astronomy, geology etc. Physics is an experimental science and the scientific method emphasizes the need of accurate measurement of various measurable features of different phenomena or of man made objects. This chapter emphasizes the need of thorough understanding and practice of measuring techniques and recording skills.

1.1 INTRODUCTION TO PHYSICS

At the present time, there are three main frontiers of fundamental science. First, the world of the extremely large, the universe itself, Radio telescopes now gather information from the far side of the universe and have recently detected, as radio waves, the "firelight" of the big bang which probably started off the expanding universe nearly 20 billion years ago. Second, the world of the extremely small, that of the particles such as, electrons, protons, neutrons, mesons and others. The third frontier is the world of complex matter. It is also the World of "middie-sized" things, from molecules at one extreme to the Earth at the other. This is all fundamental physics, which is the heart of science.
But what is physics? According to one definition, physics deals with the study of matter and energy and the relationship between them. The study of physics involves investigating such things as the laws of motion, the structure of space and time, the nature and type of forces that hold different materials together, the interaction between different particles, the interaction of electromagnetic radiation with matter and so on.
By the end of $19^{\text {th }}$ century many physicists started belleving that every thing about physics has been discovered. However, about the beginning of the twentieth century many new experimental facts revealed that the laws formulated by the previous investigators need modifications. Further researches gave birth to many new disciplines in physics such as nuclear physics which deals with atomic nuclei,

The measurement of a base quantity involves two steps: first, the choice of a standard, and second, the establishment of a procedure for comparing the quantity to be measured with the standard so that a number and a unit are determined as the measure of that quantity.
An ideal standard has two principal characteristics: it is accessible and it is invariable. These two requirements are often incompatible and a compromise has to be made between them.

1.3 INTERNATIONAL SYSTEM OF UNITS

Physical Quantily	S1 Unit	Symbot
Length	metre	im
Mass	X Xogram	kg
Tine	second	0
Electris curront	ampare	A
Themodyramic temperature	kolvin	K
Intensity of light	candela	od
Amount of Bubstance	molo	mol

Phymical Guantity	Si Unit	Symbol
Paume angle	radlan	rad
Solid angle	steradian	ar

In 1960, an international committee agreed on a set of definitions and standard to describe the physical quantities. The system that was established is called the System International (SI).
Due to the simplicity and convenience with which the units in this system are amenable to arithmetical manipulation, it is in universal use by the world's sclentific community and by most nations. The system international (SI) is built up from three kinds of units: base units, supplementary units and derived units.

Base Units

There are seven base units for various physical quantities namely: length, mass, time, temperature, electric current,
' Iuminous intensity and amount of a substance (with special reference to the number of particles).

The names of base units for these physical quantities together with symbols are listed in Table 1.1. Their standard definitions are given in the Appendix 1.

Supplementary Uhits

The General Conference on Weights and Measures has not yet classified certain units of the SI under either base units or derived units. These SI units are called supplementary units. For the time being this class contains only two units of purely geometrical quantities, which are plane angle and the solid angle (Table1.2).
particle physics which is concerned with the ultimate particles of which the matter is composed, relativistic mechanics which deals with velocities approaching that of light and solid state physics which is concemed with the structure and properties of solids, but this list is by no means exhaustive.

Physics is most fundamental of all sciences and provides other branches of science, basic principles and fundamental laws. This overlapping of physics and other fields gave birth to new branches such as physical chemistry, biophysics. astrophysics, health physics etc. Physics also plays an important role in the development of technology and engineering.

Science and technology are a potent force for change in the outlook of mankind. The information media and fast means of communications have brought all parts of the world in close contact with one another. Events in one part of the world immediately reverberate round the globe.

We are living in the age of information technology. The computer networks are products of chips developed from the basic ideas of physics. The chips are made of silicon. Silicon can be obtained from sand. It is upto us whether we make a sandcastle or a computer out of it.

1.2 PHYSICAL QUANTITIES

The foundation of physics rests upon physical quantities in terms of which the laws of physics are expressed. Therefore, these quantities have to be measured accurately. Among these are mass, length, time, velocity, force, density, temperature, electric current, and numerous others.

Physical quantities are often divided into two categories: base quantities and derived quantities. Derived quantities are those whose definitions are based on other physical quantities. Velocity, acceleration and force etc, are usually viewed as derived quantities. Base quantities are not defined in terms of other physical quantities. The base quantities are the minimum number of those physical quantities in terms of which other physical quantities can be defined. Typical examples of base quantities are length. mass and time.

Unmputer chips are made from Fafors of the metalloid silicon. a semiconductor.

For Your Information

Order of magnitude of some distances

Radian

The radian is the plane angle between two radii of a circle which cut off on the circumference an arc, equal in length to the radius, as shown in Fig. 1.1 (a).

Steradian

The steradian is the solid angle (three-dimensional angle) subtended at the centre of a sphere by an area of its surface equal to the square of radius of the sphere. (Fig. 1.1 b).

Derived Units

SI units for measuring all other physical quantities are derived from the base and supplementary units. Some of the derived units are given in Table. 1.3.

Table 1.3			
Physical quantity	Unit	Symbol	In terms of base units
Force	newton	N	$\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
Work	joule	J	$\mathrm{Nm}=\mathrm{kg} \mathrm{m} \mathrm{m}^{2} \mathrm{~s}^{-2}$
Power	watt	W	$\mathrm{Js}=\mathrm{kg} \mathrm{m}^{2-1} \mathrm{~s}^{-3}$
Pressure:	pascal	Pa	$\mathrm{Nm} \mathrm{m}^{-2}=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$
Electric charge	coulomb	C	As

Scientific Notation

Numbers are expressed in standard form called scientific notation, which employs powers of ten. The intemationally accepted practice is that there should be only one nonzero digit left of decimal. Thus, the number 134.7 should be written as 1.347×10^{2} and 0.0023 should be expressed as 2.3×10^{-3}.

Conventions for Indicating Units

Use of SI units requires special care, more particularly in writing prefixes.
Following points should be kept in mind while using units.
(i) Full name of the unit does not begin with a capital letter even if named after a scientist e.g.,newton.
(ii) The symbol of unit named after a scientist has initial capital letter such as N for newton.
(iii) The prefix should be written before the unit without any space, such as $1 \times 10^{3} \mathrm{~m}$ is written as 1 mm . Standard prefixes are given in table 1.4.

Table 1.4
Some Prefoxes for Powern of Ton

Factor	Profix	Symbol
$10^{\text {III }}$	atto	3
10^{18}	Tento	t
10^{8}	pico	\#
10°	neno	n
$10^{\text {a }}$	micro	μ
10^{3}	mili	m
10^{2}	centi	c
$10^{\prime \prime}$	decl	d
10^{+}	deca	da
10^{3}	kio	k
10^{7}	mega	M
10^{3}	sga	6
10^{12}	tera	T
10^{15}	peta	P
$10^{\text {+8 }}$	ara	E

(iv) A combination of base units is written each with one space apart. For example, newton metre is written as Nm .
(v) Compound prefixes are not allowed. For example, $1 \mu \mu \mathrm{~F}$ may be written as 1 pF .
(vi) A number such as $5.0 \times 10^{4} \mathrm{~cm}$ may be expressed in scientific notation as $5.0 \times 10^{2} \mathrm{~m}$.
(vii) When a multiple of a base unit is raised to a power, the power applies to the whole multiple and not the base unit alone. Thus, $1 \mathrm{~km}^{2}=1(\mathrm{~km})^{2}=1 \times 10^{6} \mathrm{~m}^{2}$
(viii) Measurement in practical work should be recorded immediately in the most convenient unit, e.g.. micrometer screw gauge measurement in mm , and the mass of calorimeter in grams (g). But before calculation for the result, all measurements must be converted to the appropriate SI base units.

1.4 ERRORS AND UNCERTAINTIES

All physical measurements are uncertain or imprecise to some extent it is very difficult to eliminate all possible errors or uncertainties in a measurement. The error may occur due to (1) negligence or inexperience of a person (2) the faulty apparatus (3) inappropriate method or technique. The uncertainty may occur due to inadequacy or limitation of an instrument, natural variations of the object being measured or natural imperfections of a person's senses. However, the uncertainty is also usually described as an error in a measurement. There are two major types of errors.
(i) Random error

(ii) Systematic error

Random error is said to occur when repeated measurements of the quantity, give different values under
the same conditions. It is due to some unknown causes. Repeating the measurement several times and taking an average can reduce the effect of random errors.
Systematic error refers to an effiect that influences all measurements of a particular quantity equally. It produces a consistent difference in readings. It occurs to some definite rule. It may occur due to zero error of instruments, poor calibration of instruments or incorrect markings etc. Systematic error can be reduced by comparing the instruments with another which is known to be more accurate. Thus for systematic error, a correction factor can be applied.

1.5 SIGNIFICANT FIGURES

As stated earlier physics is based on measurements. But unfortunately whenever a physical quantity is measured, there is inevitably some uncertainty about its determined value. This uncertainty may be due to a number of reasons. One reason is the type of instrument, being used. We know that every measuring instrument is calibrated to a certain smallest division and this fact put a limit to the degree of accuracy which may be achieved while measuring with it. Suppose that we want to measure the length of a straight line with the help of a metre rod calibrated in millimetres. Let the end point of the line lies between 10.3 and 10.4 cm marks. By convention, if the end of the line does not touch or cross the midpoint of the smallest division, the reading is confined to the previous division. In case the end of the line seems to be touching or have crossed the midpoint, the reading is extended to the next division.

By applying the above rule the position of the edge of a line recorded as 12.7 cm with the help of a metre rod callibrated in millimetres may lie between 12.65 cm and 12.75 cm . Thus in this example the maximum uncertainty is $\pm 0.05 \mathrm{~cm}$. It is, in fact, equivalent to an uncertainty of 0.1 cm equal to the least count of the instrument divided into two parts, half above and half below the recorded reading.

The uncertainty or accuracy in the value of a measured quantity can be indicated conveniently by using significant figures. The recorded value of the length of the straight line

For Your Information

	Interval (s)
Age of the unverse	5×10^{17}
Age of the Emin	$1.4 \times 10^{\prime \prime}$
Ono year	3.2×10^{7}
Oxin day	8.8×10^{4}
Time between ncrmal heartbeaty	(8x10
Panod of audible sound waves	$1 \times 10{ }^{7}$
Poriod of typitail cidio wive	$4 \times 10{ }^{1}$
Period of viliration of an atom in a solid	1×20^{18}
Fenodatvathe fight waves	2, 10^{10}
Approximate Valt Tirse inter	as of Some als

i.e. 12.7 cm contains three digits $(1,2,7)$ out of which two digits (1 and 2) are accurately. known while the third digit i.e. 7 is a doubiful one. As a rule:

In any measurement, the accurately known digits and the first doubtful digit are called significant figures.

Order of magnitude of some massee.

In other words, a significant figure is the one which is known to be reasonably reliable. If the above mentioned measurement is taken by a better measuring instrument which is exact upto a hundredth of a centimetre, it would have been recorded as 12.70 cm . In this case, the number of significant figures is four. Thus, we can say that as we improve the quality of our measuring instrument and techniques, we extend the measured result to more and more significant figures and correspondingly improve the experimental accuracy of the result. While calculating a result from the measurements; it is important to give due attention to significant figures and we must know the following rules in deciding how many significant figures are to be retained in the final result.
(i) All digits $1,2,3,4,5,6,7,8,9$ are significant. However, zeros may or may not be significant. In case of zeros, the following rules may be adopted.
a) A zero between two significant figures is itself significant.
b) Zeros to the left of significant figures are not significant. For example, none of the zeros in 0.00467 or 02.59 is significant.
c) Zeros to the right of a significant figure may or may not be significant. In decimal fraction, zeros to the right of a significant figure are significant. For example, all the zeros in 3.570 or 7.4000 are significant. However, in integers such as $8,000 \mathrm{~kg}$, the number of significant zeros is determined by the accuracy of the measuring instrument. If the measuring scale has a least count of 1 kg then there are four significant figures written in scientific notation

Following this rule, the correct answer of the computation given in section (ii) is 1.46×10^{3}.
(iii) In adding or subtracting numbers, the number of decimal places retained in the answer should equal the smallest number of decimal places in any of the quantities being added or subtracted. In this case, the number of significant figures is not important. It is the position of decimal that matters. For example, suppose we wish to add the following quantities expressed in metres.

We use many devices io measure phymica! quantitics, much as length, firme and lomperalize. They all have some limit of precision.

i)	72.1	ii)
	3.42	2.7543
	$\underline{0.003}$	4.10
	75.523	$\underline{1.273}$
Correct answer:	75.5 m	8.1273
		8.13 m

In case (i) the number 72.1 has the smallest number of decimal places, thus the answer is rounded off to the same position which is then 75.5 m . In case (ii), the number 4.10 has the smallest number of decimal places and hence, the answer is rounded off to the same decimal positions which is then 8.13 m .

1.6 PRECISION AND ACCURACY

In measurements made in physics, the terms precision and accuracy are frequently used. They should be distinguished clearly. The precision of a measurement is determined by the instrument or device being used and the accuracy of a measurement depends on the fractional or percentage uncertainty in that measurement.

For example, when the length of an object is recorded as 25.5 cm by using a metre rod having smallest division in millimetre, it is the difference of two readings of the initial and final positions. The uncertainty in the single reading as discussed before is taken as $\pm 0.05 \mathrm{~cm}$ which is now doubled and is called absolute uncertainty equal to $\pm 0.1 \mathrm{~cm}$. Absolute uncertainty, in fact, is equal to the least count of the measuring instrument.

Precision or absolute uncertainty (least count) $= \pm 0.1 \mathrm{~cm}$

Fractional uncertainty $=\frac{0.1 \mathrm{~cm}}{25.5 \mathrm{~cm}}=0.004$
Percentage uncertainty $=\frac{0 \mathrm{fcm}}{255 \mathrm{~cm}} \times 100 \quad=0.4 \%$
Another measurement taken by vemier callipers with least count as 0.01 cm is recorded as 0.45 cm . It has

Precision or absolute uncertainty (least count) $= \pm 0.01 \mathrm{~cm}$
Fractional uncertainty $=\frac{0.01 \mathrm{~cm}}{0.45 \mathrm{~cm}}=0.02$
Percentage uncertainty $=\frac{0.1 \mathrm{~cm}}{0.45 \mathrm{~cm}} \cdot 100 \quad=2.0 \%$
Thus the reading 25.5 cm taken by metre rule is although less precise but is more accurate having less percentage uncertainty or error.

Whereas the reading 0.45 cm taken by vemier callipers is more precise but is less accurate. In fact, it is the relative measurement which is important. The smafler a physical quantity, the more precise instrument should be used. Here the measurement 0.45 cm demands that a more precise instrument, such as micrometre screw gauge, with least count 0.001 cm , should have been used. Hence, we can conclude that:

A precise measurement is the one which has less absolute uncertainty and an accurate measurement is the one which has less tractional or percentage uncertainty orerror.

1.7 ASSESSMENT OF TOTAL UNCERTAINTY IN THE FINAL RESULT

To, assess the total uncertainty or error, it is necessary to evaluate the likely uncertainties in all the factors involved in that calculation. The maximum possible uncertainty or error in the final resuit can be found as foltows. The proofs of these rules are given in Appendix 2.

These are not decormion pieces of glass but are the earliest known expldigite and sensifive thermometers, bult by the Accademia del Cimento (1657. 1637), in Fiorence. They contained Atcotiol, some times cotourad tred for cassier reading

A. For addition and subtraction

Absolute uncertainties are added: For example, the distance x determined by the difference between two separate position measurements
$x_{1}=10.5 \pm 0.4 \mathrm{~cm}$ and $x_{2}=26.8 \pm 0.1 \mathrm{~cm}$ is recorded as

$$
x=x_{2}-x_{1}=16.3 \pm 0.2 \mathrm{~cm}
$$

2. For multiplication and division

Percentage uncertainties are added. For example the maximum possible uncertainty in the value of resistance R of a conductor determined from the measurements of potential difference V and resulting current flow I by using $R=V / I$ is found as follows:

$$
\begin{aligned}
& V=5.2 \pm 0.1 \mathrm{~V} \\
& I=0.84 \pm 0.05 \mathrm{~A}
\end{aligned}
$$

The \%age uncertaintyfor V is $=\frac{0.1 \mathrm{~V}}{5.2 \mathrm{~V}} \times 100=$ about 2%
The \%age uncertainty for $/$ is $=\frac{0.05 \mathrm{~A}}{0.84 \mathrm{~A}} \times 100=$ aboul 6%
Hence total uncertainty in the value of resistance R when V is divided by I is 8%. The resuit is thus quoted as
$R=\frac{5.2 \mathrm{~V}}{0.84 \mathrm{~A}}=6.19 \mathrm{VA}^{-1}=\begin{gathered}6.19 \text { ohms with a } \% \text { age } \\ \text { uncertainty of } 8 \%\end{gathered}$ uncertainty of 8\%
that is

$$
R=6.2 \pm 0.5 \text { ohms }
$$

The result is rounded off to two significant digits because both V and R have two significant figures and uncertainty, being an estimate only, is recorded by one significant figure.

3. For power factor

Multiply the percentage uncertainty by that power. For example, in the calculation of the volume of a sphere using

$$
V=\frac{4}{3} \pi r^{3}
$$

$\%$ age uncertainty in $\mathrm{V}=3 \times \%$ age uncertainty in radius r.
As uncertainty is multiplied by power factor, it increases the precision demand of measurement. If the radius of a small sphere is measured as 2.25 cm by a vernier callipers with least count 0.01 cm , then
the radius r is recorded as

$$
r=2.25 \pm 0.01 \mathrm{~cm}
$$

Absolute uncertainty $=$ Least count $= \pm 0.01 \mathrm{~cm}$
\%age uncertainty in $r=\frac{0.01 \mathrm{~cm}}{2.25 \mathrm{~cm}} \times 100=0.4 \%$
Total percentage uncertainty in $V=3 \times 0.4=1.2 \%$
Thus volume

$$
\begin{aligned}
& \begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \times 3.14 \times(2.25 \mathrm{~cm})^{3}
\end{aligned} \\
& =47.689 \mathrm{~cm}^{3} \text { with } 1.2 \% \text { uncertainty }
\end{aligned}
$$

Thus the result should be recorded as

$$
V=47.7 \pm 0.6 \mathrm{~cm}^{3}
$$

4. For uncertainty in the average value of many measurements.
(i) Find the average value of measured values.
(ii) Find deviation of each measured value from the average value.

Intricetimg Intormition

Some Spacific Tempentures
(iii) The mean deviation is the uncertainty in the average value.
For example, the six readings of the micrometer screw gauge to measure the diameter of a wire in min are

$$
1.20,1.22,1.23,1.19,1.22,1.21
$$

Then

$$
\begin{aligned}
\text { Average } & =\frac{1 \cdot 20+1.22+1 \cdot 23+1.19+1.22+1.21}{6} \\
& =1.21 \mathrm{~mm}
\end{aligned}
$$

The deviation of the readings, which are the difference without regards to the sign, between each reading and average value are $0.01,0.01,0.02,0.02,0.01,0$.

$$
\begin{aligned}
\text { Mean of deviations } & =\frac{0.01+0.01+0.02+0.02+0.01+0}{6} \\
& =0.01 \mathrm{~mm}
\end{aligned}
$$

Thus, likely uncertainty in the mean diametre 1.21 mm is 0.01 mm recorded as $1.21 \pm 0.01 \mathrm{~mm}$.

5. For the uncertainty in a timing experiment

The uncertainty in the time period of a vibrating body is found by dividing the least count of timing device by the number of vibrations. For example, the time of 30 vibrations of a simple pendulum recorded by a stopwatch accurate upto one tenth of a second is 54.6 s , the period

$$
T=\frac{54.6 \mathrm{~s}}{30}=1.82 \mathrm{~s} \text { with uncertainty } \frac{0.1 \mathrm{~s}}{30}=0.003 \mathrm{~s}
$$

Thus, period T is quoted as $T=1.82 \pm 0.003 \mathrm{~s}$
Hence, it is advisable to count large number of swings to reduce timing uncertainty.

Example 1.1: The length, breadth and thickness of a sheet are $3.233 \mathrm{~m}, 2.105 \mathrm{~m}$ and 1.05 cm respectively. Calculate the votume of the sheet correct upto the appropriate significant digits.

Solution: Given length $/=3.233 \mathrm{~m}$

$$
\text { Breadth } b=2.105 \mathrm{~m}
$$

Thickness $h=1.05 \mathrm{~cm}=1.05 \times 10^{2-2} \mathrm{~m}$

$$
\text { Volume } V=l \times b \times h
$$

$$
=3.233 \mathrm{~m} \times 2.105 \mathrm{~m} \times 1.05 \times 10^{-2} \mathrm{~m}
$$

$$
=7.14573825 \times 10^{2} \mathrm{~m}^{3}
$$

As the factor 1.05 cm has minimum number of significant figures equal to three, therefore, volume is recorded upto 3 significant figures, hence, $V=7.15 \times 10^{7} \mathrm{~m}^{3}$

Example 1.2: The mass of a metal box measured by a lever balance is 2.2 kg . Two silver coins of masses 10.01 g and ' 10.02 g measured by a beam balance are added to it. What is now the total mass of the box correct upto the appropriate precision.

Solution: Total mass when silver coins are added to box

$$
\begin{aligned}
& =2.2 \mathrm{~kg}+0.01001 \mathrm{~kg}+0.01002 \mathrm{~kg} \\
& =2.22003 \mathrm{~kg}
\end{aligned}
$$

Since least precise is 2.2 kg , having one decimal place, hence total mass should be to one decimal place which is the appropriate precision. Thus the total mass $=2.2 \mathrm{~kg}$.

Example 1.3: The diameter and length of a metal cylinder measured with the help of vemier callipers of least count 0.01 cm are 1.22 cm and 5.35 cm . Calculate the volume V of the cylinder and uncertainty in it.

Solution: Given data is

Diameter $d=1.22 \mathrm{~cm}$ with least count 0.01 cm
Length $I=5.35 \mathrm{~cm}$ with least count 0.01 cm Absolute uncertainty in length $=0.01 \mathrm{~cm}$
\%age uncertainty in length $=\frac{0.01 \mathrm{~cm}}{5.35 \mathrm{~cm}} \times 100=0.2 \%$
Absolute uncertainty in diameter $=0.01 \mathrm{~cm}$
\%age uncertaintyin diameter $=\frac{0.01 \mathrm{~cm}}{1.22 \mathrm{~cm}} \times 100=0.8 \%$

As volume is

$$
V=\frac{\pi d^{2} l}{4}
$$

Atomic Clock

The cesium atomic frequency ntandard ot the Natiomal Institute of Stanifarth ant Technology in Calorndi (LSA) is is the primury standand for the unit aftime.
\therefore total uncertainty in $V=2$ (\%age uncertainty in diameter)

$$
\begin{aligned}
& + \text { (\%age uncertainty in length }) \\
= & 2 \times 0.8^{2}+0.2=1.8 \%
\end{aligned}
$$

Then $V=\frac{3.14 \times(1.22 \mathrm{~cm})^{2} \times 5.35 \mathrm{~cm}}{4}=6.2509079 . \mathrm{cm}^{3}$ with
1.8% uncertainty

Thus

$$
V=(6.2 \pm 0.4) \mathrm{cm}^{3}
$$

Where $6.2 \mathrm{~cm}^{3}$ is calculated volume and $0.1 \mathrm{~cm}^{3}$ is the uncertainty in it.

1.8 DIMENSIONS OF PHYSICAL QUANTITIES

Each base quantity is considered a dimension denoted by a specific symbol written within square brackets. It stands for the qualitative nature of the physical quantity. For example, different quantities such as length, breadth, diameter, light year which are measured in metre denote the same dimension and has the dimension of length [L]. Similarly the mass and time dimensions are denoted by $[M]$ and $[T$], respectively. Other quantities that we measure have dimension which are combinations of these dimensions. For example, speed is measured in metres per second. This will obviously have the dimensions of length divided by time. Hence we can write.

Dimensions of speed $=\frac{\text { Dimension of length }}{\text { Dimension of time }}$

$$
[v]=\frac{[L]}{[T]}=[L]\left[T^{-1}\right]=\left[L T^{-1}\right]
$$

Similarly the dimensions of acceleration are

$$
[a]=[L]\left[T^{-2}\right]=\left[L T^{-2}\right]
$$

and that of force are

$$
[F]=[m][a]=[M]\left[L T^{-2}\right]=\left[M L T^{-2}\right]
$$

Using the method of dimensions called the dimensional analysis, we can check the correctness of a given formula or an equation and can also derive it. Dimensional analysis
makes use of the fact that expression of the dimensions can be manipulated as algebraic quantities.
(i) Checking the homogeneity of physical equation In order to check the correctness of an equation, we are to show that the dimensions of the quantities on both sides of the equation are the same, irrespective of the form of the formula. This is called the principle of homogeneity of dimensions,

Example 1.4: Check the correctness of the relation $v=\sqrt{\frac{F \times l}{m}}$ where v is the speed of transverse wave on a stretched string of tension F, length / and mass m.

Solution:

Dimensions of L.H.S. of the equation $=[v]=\left[L T^{-1}\right]$
Dimensions of R.H.S, of the equation $=\left([F] \times[I] \times\left[m^{-1}\right]\right)^{1 / 2}$

$$
=\left(\left[M L T^{-2}\right] \times[L] \times\left[M^{-1}\right]\right)^{1 / 2}=\left[L^{2} T^{-2}\right]^{1 / 2}=\left[L T^{-1}\right]
$$

Since the dimensions of both sides of the equation are the same, equation is dimensionally correct.

(ii) Deriving a possible formula

The success of this method for deriving a relation for a physical quantity depends on the correct guessing of various factors on which the physical quantity depends.

Example 1.5: Derive a relation for the time period of a simple pendulum (Fig. 1.2) using dimensional analysis. The various possible factors on which the time period T may depend are :
i) Length of the pendulum (l)
ii) Mass of the bob (m)
iii) Angle θ which the thread makes with the vertical
iv) Acceleration due to gravity (g)

Fig. 1.2

Solution:

The relation for the time period T will be of the form

$$
\begin{array}{ll}
& T \times m^{s} \times l^{b} \times \theta^{c} \times g^{d} \\
\text { or } & T=\text { constant } m^{a} l^{b} \theta^{c} g^{d}
\end{array}
$$

where we have to find the values of powers a, b, c and d.
Writing the dimensions of both sides we get

$$
[T]=\text { constant } \times[M]^{\circ}[L]^{b}\left[L L^{-1}\right]^{c}\left[L T^{-2}\right]^{d}
$$

Comparing the dimensions on both sides we have

$$
\begin{aligned}
{[T] } & =[T]^{2 d} \\
{[M]^{0} } & =[M]^{0} \\
{[L]^{0} } & =[L]^{b \cdot d+C o c}
\end{aligned}
$$

Equating powers on both the sides we get

$$
\begin{array}{rlrc}
-2 d=1 & \text { or } & d=-\frac{1}{2} \\
a=0 & \text { and } & b+d=0 \\
b=-d=\frac{1}{2} & \text { and } & \theta=\left[L L^{-1}\right]^{c}=\left[L^{0}\right]^{c}=1
\end{array}
$$

or
Substituting the values of a, b, θ and d in Eq. 1.1

$$
\begin{aligned}
& T=\text { constant } \times m^{0} \times l^{1 / 4} \times 1 \times g^{-1 / 2} \\
& T=\text { constant } \sqrt{\frac{l}{g}}
\end{aligned}
$$

The numerical value of the constant cannot be determined by dimensional analysis, however, it can be found by experiments.

Example 1.6: Find the dimensions and hence, the SI units of coefficient of viscosity η in the relation of Stokes' law for the drag force F for a spherical object of radius r moving with velocity v given as $F=6 \pi \eta r v$

Solution: 6π is a number having no dimensions. It is not accounted in dimensional analysis. Then

$$
[F]=[\eta r v]
$$

or

$$
[\eta]=\frac{[F]}{[r][v]}
$$

Substituting the dimensions of F, r, and v in R.H.S.
or

$$
\begin{aligned}
& {[\eta]=\frac{\left[M L T^{-2}\right]}{\left[L \| L T^{-1}\right]}} \\
& {[\eta]=\left[M L^{-1} T^{-1}\right]}
\end{aligned}
$$

Thus, the SI unit of coefficient of viscosity is $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$

SUMMARY

* Physics is the study of entire Physical World.
* The most basic quantities that can be used to describe the Physical World are mass, length and time. All other quantities, called derived quantities, can be described in terms of some combinations of the base quantities:
- The internationally adopted system of units used by all the scientists and aimost all the countries of the World is International System (SI) of Units. It consists of seven base units, two supplementary units and a number of derived units.
- Errors due to incorrect design or calibrations of the measuring device are called systematic errors. Random errors are due to unknown causes and fluctuations in the quantity being measured.
- The accuracy of a measurement is the extent to which systematic error make a measured value differ from its true value.
- The accuracy of a measurement can be indicated by the number of significant figures, or by a stated uncertainty.
* The significant figures or digits in a measured or calculated quantity are those digits that are known to be reasonably reliable.
- The result of multiplication or division has no more significant figures than any factor in the input data. Round off your calculator result to correct number of digits.
* In case of addition or subtraction the precision of the result can be only as great as the least precise term added or subtracted:
*. Each basic measurable physical property represented by a specific symbol written within square brackets is called a dimension. All other physical quantities can be derived as combinations of the basic dimensions.
- Equations must be dimensionally consistent. Two terms can be added only when they have the same dimensions.

QUESTIONS

1.1 Name several repetitive phenomenon occurring in nature which could serve as reasonable time standards,
1.2 Give the drawbacks to use the period of a pendulum as a time standard.
1.3 Why do we find it useful to have two units for the amount of substance, the kilogram and the mole?
1.4 Three students measured the length of a needle with a scale on which minimum division is 1 mm and recorded as (i) 0.2145 m , (ii) 0.21 m (iii) 0.214 m . Which record is correct and why?
1.5 An old saying is that "A chain is only as strong as its weakest link". What analogous statement can you make regarding experimental data used in a computation?
1.6 The period of simple pendulum is measured by a stop watch. What type of errors are possible in the time period?
1.7 Does a dimensional analysis give any information on constant of proportionality that may appear in an algebraic expression? Explain.
1.8 Write the dimensions of (i) Pressure (ii) Density
1.9 The wavelength λ of a wave depends on the speed v of the wave and its frequency f. Knowing that
$[\lambda]=[L]$.
$[v]=\left[\left\llcorner T^{-1}\right] \quad\right.$ and $[f]=\left[T^{-1}\right]$

Decide which of the following is correct. $f=v \lambda$ or $f=\frac{v}{\lambda}$.

NUMERICAL PROBLEMS

1.1 A light year is the distance light travels in one year. How many metres are there in one light year: (speed of light $=3.0 \times 10^{4} \mathrm{~ms}^{-1}$).
(Ans: $9.5 \times 10^{15} \mathrm{~m}$)
1.2 a) How many seconds are there in 1 year?
b) How many nanoseconds in 1 year?
c) How many years in 1 second?
[Ans. (a) $3.1536 \times 10^{7} \mathrm{~s}$, (b) $3.1536 \times 10^{18} \mathrm{~ns}$ (c) $3.1 \times 10^{-8} \mathrm{yr}$]
1.3 The length and width of a rectangular plate are measured to be 15.3 cm and 12.80 cm , respectively. Find the area of the plate.
(Ans: $196 \mathrm{~cm}^{2}$)
1.4 Add the following masses given in kg upto appropriate precision. 2.189, 0.089, 11.8 and 5.32 .
(Ans: 19.4 kg)
1.5 Find the value of ' g ' and its uncertainty using $T=2 \pi \sqrt{\frac{l}{g}}$ from the following measurements made during an experiment
Length of simple pendulum $I=100 \mathrm{~cm}$.
Time for 20 vibrations $=40.2 \mathrm{~s}$
Length was measured by a metre scale of accuracy upto 1 mm and time by stop watch of accuracy upto 0.1 s .
(Ans: $9.76 \pm 0.06 \mathrm{~ms}^{-2}$)
1.6 What are the dimensions and units of gravitational constant G in the formula $F=G \frac{m_{1} m_{2}}{r^{\prime}}$
(Ans: [$\left.M^{-1} L^{3} T^{-2}\right], N m^{2} \mathrm{~kg}^{-2}$)
1.7 Show that the expression $v_{1}=v_{1}$ tat is dimensionally correct, where v_{i} is the velocity at $t=0$, a is acceleration and v, is the velocity at time t.
1.8 The speed v of sound waves through a medium may be assumed to depend on (a) the density p of the medium and (b) its modulus of elasticity E which is the ratio of stress to strain. Deduce by the method of dimensions, the formula for the speed of sound.

$$
\text { (Ans: } v=\text { Constant } \sqrt{\frac{E}{\rho}} \text {) }
$$

1.9 Show that the farnous "Einstein equation" $E=m c^{2}$ is dimensionally consistent.
1.10 Suppose, we are told that the acceleration of a particle moving in a circle of radius r with uniform speed v is proportional to some power of r, say r^{n}, and some power of v, say $v^{\prime \prime}$, determine the powers of r and v ?
(Ans: $\mathrm{n}=-1, \mathrm{~m}=2$)

Chapter 2

VECTORS AND EQUILIBRIUM

Learning Objectives

At the end of this chapter the students will be able to:

1. Understand and use rectangular coordinate system.
2. Understand the idea of unit vector, null vector and position vector.
3. Represent a vector as two perpendicular components (rectangular components).
4. Understand the rule of vector addition and extend it to add vectors using rectangular components.
5. Understand multiplication of vectors and solve problems.
6. Define the moment of force or torque.

7 Appreciate the use of the torque due to a force.
8. Show an understanding that when there is no resultant force and no resultant torque, a systern is in equilibrium.
9. Appreciate the applications of the principle of moments.
10. Apply the knowiedge gained to solve problems on statics.

Physical quantities that have both numerical and directional properties are called vectors. This chapter is concerned with the vector algebra and its applications in problems of equilibrium of forces and equilibrium of torques.

2.1 BASIC CONCEPTS OF VECTORS

(i) Vectors

As we have studied in school physics, there are some physical quantities which require both magnitude and direction for their complete description, such as velocity, acceleration
and force. They are called vectors. In books, vectors are usually denoted by bold face characters such as A, d, r and v while in handwriting, we put an arrowhead over the fetter e.g. d. If we wish to refer only to the magnitude of a vector d we use light face type such as d.
A vector is represented graphically by a directed line segment with an arrowhead. The length of the line segment, according to a chosen scale, corresponds to the magnitude of the vector.

(ii) Rectangular coordinate system

Two reference lines drawn at right angles to each other as shown in Fig. 2.1 (a) are known as coordinate axes and their point of intersection is known as origin. This system of coordinate axes is called Cartesian or rectangular coordinate system.
One of the lines is named as x-axis, and the other the y axis. Usually the x-axis is taken as the horizontal axis, with the positive direction to the right, and the y-axis as the vertical axis with the positive direction upward.
The direction of a vector in a plane is denoted by the angle which the representative line of the vector makes with positive x-axis in the anti-clock wise direction, as shown in Fig 2.1 (b). The point P shown in Fig 2.1 (b) has coordinates (a, b). This notation means that if we start at the origin, we can reach P by moving ' a ' units along the positive x-axis and then ' b ' units along the positive y-axis.
The direction of a vector in space requires another axis which is at right angle to both x and y axes, as shown in Fig 2.2 (a). The third axis is called z-axis.
The direction of a vector in space is specified by the three angles which the representative line of the vector makes with x, y and z axes respectively as shown in Fig 2.2 (b). The point P of a vector A is thus denoted by three coordinates ($\mathrm{a}, \mathrm{b}, \mathrm{c}$).

(iii) Addition of Vectors

Given two vectors \mathbf{A} and \mathbf{B} as shown in Fig 2.3 (a), their sum is obtained by drawing their representative lines in such a way that tail of vector B coincides with the head of the vector A. Now if we join the tail of A to the head of B, as shown in

$\mathrm{Flg}-2.1(\mathrm{a})$

Fig. 2.1 (b)

Fig. 2.2(a)

Fig. 2,2,b)

Fig. 2.3(a)

Fig. 23 (b)

Fig. 2.3(c)

Fig. 2.3(d)

Fig. 24
the Fig. 2.3 (b), the line joining the tail of \mathbf{A} to the head of B will represent the vector sum $(\mathbf{A}+\mathbf{B})$ in magnitude and direction. The vector sum is also called resultant and is indicated by R Thus $\mathbf{R}=\mathbf{A + B}$. This is known as head to tail rule of vector addition. This rule can be extended to find the sum of any number of vectors. Similarly the sum B + A is illustrated by black lines in Fig 2.3 (c). The answer is same resultant R as indicated by the red line. Therefore, we can say that

$$
\begin{equation*}
A+B=B+A \tag{2.1}
\end{equation*}
$$

So the vector addition is said to be commutative. It means that when vectors are added, the result is the same for any order of addition.

(iv) Resultant Vector

The resultant of a number of vectors of the same kind-force vectors for example, is that single vector which would have the same effect as all the original veotors taken together.

(v) Vector Subtraction

The subtraction of a vector is equivalent to the addition of the same vector with its direction reversed. Thus, to subtract vector \mathbf{B} from vector \mathbf{A}, reverse the direction of \mathbf{B} and add it to A . as shown in Fig. 2.3 (d).

$$
\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B}) \quad \text { where }(-\mathbf{B}) \text { is negative vector of } \mathbf{B}
$$

(vi) Multiplication of a Vector by a Scalar

The product of a vector A and a number $n>0$ is defined to be a new vector nA having the same direction as \mathbf{A} but a magnitude n times the magnitude of A as illustrated in Fig. 2.4. If the vector is multiplied by a negative number, then its direction is reversed.
In the event that n represents a scalar quantity, the product nA will correspond to a new physical quantity and the dimensions of the resulting vector will be the product of the dimensions of the two quantities which were multiplied together. For example, when velocity is multiplied by scalar mass m, the product ls a new vector quantily called momentum having the dimensions as those of mass and velocity.

(vii) Unit Vector

A unit vector in a given direction is a vector with magnitude one in that direction. It is used to represent the direction of a vector.
A unit vector in the direction of \mathbf{A} is written as \hat{A}, which we read as 'A hat', thus

$$
\begin{align*}
& A=\hat{A} \\
& \hat{A}=\frac{A}{A} \tag{2.2}
\end{align*}
$$

The direction along x, y and z axes are generally represented by unit vectors \hat{i}, \hat{j} and \hat{k} respectively (Fig. 2.5 a). The use of unit vectors is not restricted to Cartesian coordinate system only. Unit vectors may be defined for any direction. Two of the more frequently used unit vectors are the vector r which represents the direction of the vector r (Fig. 2.5 b) and the vector n which represents the direction of a normal drawn on a specified surface as shown in, Fig 2.5 (c).

(viii) Null Vector

Fig. 25(a)

Fig. 2.5(b)
Null vector is a vector of zero magnitude and arbitrary direction. Forexample, the sum of a vector and its negative vector is a null vector.

$$
\begin{equation*}
A+(-A)=0 \tag{2,3}
\end{equation*}
$$

..........

(ix) Equal Vectors

Two vectors \mathbf{A} and \mathbf{B} are said to be equal if they have the same magnitude and direction, regardless of the position of their initial points.
This means that parallel vectors of the same magnitude

Fig. 2.5.디 are equal to each other.

(x) Rectangular Components of a Vector

A component of a vector is its effective value in a given direction. A vector may be considered as the resultant of its component vectors along the specified directions, It is usually convenient to resolve a vector into components along mutually perpendicular directions. Such components are called rectangular components.

Fig. 2.6

Let there be a vector A represented by OP making angle θ with the x-axis. Draw projection $O M$ of vector OP on x-axis and projection ON of vector OP on y-axis as shown in Fig.2.6. Projection OM being along x-direction is represented by $A_{x} \hat{i}$ and projection $O N=M P$ along y-direction is represented by $A_{y} \hat{j}$. By head and tail rule

$$
\begin{equation*}
A=A_{x} \hat{i}+A_{y} \hat{j} \tag{2,4}
\end{equation*}
$$

Thus $A_{x} \hat{i}$ and $A_{y} \hat{j}$ are the components of vector A. Since these are at right angle to each other, hence, they are called rectangular components of \mathbf{A}. Considering the right angled triangle OMP, the magnitude of $A_{2} \hat{i}$ or x-component of A is

$$
A_{\mathrm{x}}=A \cos \theta
$$

And that of A_{y} jor y-component of \mathbf{A} is

$$
\begin{equation*}
A_{x}=A \sin \theta \tag{2.6}
\end{equation*}
$$

(xi)

 Determination of a Vector from its Rectangular ComponentsIf the rectangular components of a vector, as shown in Fig. 2.6, are given, we can find out the magnitude of the vector by using Pythagorean theorem.

In the right angled $\triangle O M P$,

$$
\begin{array}{rlrl}
O P^{2} & =O M^{2}+M P^{2} \\
\text { or } & A^{2} & =A_{x}^{2}+A_{y}^{2} \\
\text { or } & A & =\sqrt{A_{x}^{2}+A_{y}^{2}}
\end{array}
$$

and direction θ is given by $\quad \tan \theta=\frac{M P}{O M}=\frac{A_{y}}{A_{n}}$

$$
\text { or } \quad \theta=\tan ^{-1} \frac{A_{y}}{A_{x}}
$$

(xii) Position Vector

The position vector ris a vector that describes the location of a point with respect to the origin. It is represented by a straight line drawn in such a way that its tail coincides with the origin and the head with point $P(a, b)$ as shown in Fig.2.7(a). The projections of position vector r on the x and y axes are the coordinates a and b and they are the rectangular components of the vector \mathbf{r}. Hence

$$
\begin{equation*}
r=a i+b j \text { and } r=\sqrt{a^{t}+b^{2}} \tag{2.9}
\end{equation*}
$$

Fig. $2.7(a)$

In three dimensional space, the position vector of a point $P(a, b, c)$ is shown in Fig. 2.7 (b) and is represented by
$r=a \hat{i}+b \hat{j}+c \hat{k}$ and $r=\sqrt{a^{2}+b^{3}+c^{2}} \ldots \ldots \ldots$

Example 2.1: The positions of two aeroplanes at any instant are represented by two points $A(2,3,4)$ and $B(5,6,7)$ from an origin O in km as shown in Flg .2 .8.
(i) What are their position vectors?
(ii) Calculate the distance between the two aeroplanes.

Solution: (i) A position vector r is given by

$$
\mathbf{r}=a \hat{\mathbf{1}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}
$$

Thus position vector of first aeroplane A is

$$
O A=2 i+3 j+4 i
$$

And position vector of the second aeroplane B is

$$
\mathrm{OB}=5 \hat{i}+6 \hat{j}+7 \hat{k}
$$

By head and tail rule

$$
O A+A B=O B
$$

Therefore, the distance between two aeroplanes is given by

$$
\begin{aligned}
A B=O B-O A & =(5 \hat{i}+6 \hat{j}+7 \hat{k})-(2 \hat{i}+3 \hat{j}+4 \hat{k}) \\
& =(3 \hat{i}+3 \hat{j}+3 \hat{k})
\end{aligned}
$$

Fig. 2.8

Magnitude of vector AB is the distance between the position of two aeroplanes which is then:

$$
A B=\sqrt{(3 \mathrm{~km})^{2}+(3 \mathrm{~km})^{2}+(3 \mathrm{~km})^{2}}=5.2 \mathrm{~km}
$$

2.2 VECTOR ADDITION BY RECTANGULAR COMPONENTS

Fig. 2.9

Let \mathbf{A} and \mathbf{B} be two vectors which are represented by two directed lines OM and ON respectively. The vector B is added to \mathbf{A} by the head to tail rule of vector addition (Fig 2.9). Thus the resultant vector $R=A+B$ is given, in direction and magnitude by the vector OP

In the Fig 2.9 A,$~ \mathbf{B}$, and \mathbf{R}, are the \times components of the vectors A, B and R and their magnitudes are given by the lifies OQ. MS, and OR respectively, But
or $\quad O R=O Q+M S$
or $\quad R_{x}=A_{s}+B_{s}$
which means that the sum of the magnitudes of x-components of two vectors which are to be added, is equal to the x-component of the resultant. Similarly the sum of the magnitudes of y-components of two vectors is equal to the magnitude of y-component of the resultant, that is

$$
\begin{equation*}
R_{y}=A_{y}+B_{y} \tag{2.12}
\end{equation*}
$$

Since R, and R_{r}, are the rectangular components of the resultant vector R, hence
or

$$
\begin{aligned}
& \mathbf{R}=R_{y} i+R_{y} j \\
& \mathbf{R}=\left(A_{x}+B_{2}\right) \hat{i}+\left(A_{y}+B_{2}\right) j
\end{aligned}
$$

The magnitude of the resultant vector R is thus given as

$$
\begin{equation*}
R=\sqrt{\left(A_{x}+B_{y}\right)^{2}+\left(A_{y}+B_{y}\right\rangle^{2}} \tag{2.13}
\end{equation*}
$$

and the direction of the resultant vector is determined from

$$
\theta=\tan ^{-1} \frac{R_{y}}{R_{x}}=\tan ^{-1} \frac{\left(A_{y}+B_{y}\right)}{\left(A_{x}+B_{z}\right)}
$$

and

$$
\begin{equation*}
\theta=\tan ^{(} \frac{\left(A_{y}+B_{y}\right)}{\left(A_{y}+B_{z}\right)} \tag{2.14}
\end{equation*}
$$

Similarly for any number of coplanar vectors A. B, C...., we can write

$$
\begin{equation*}
R=\sqrt{\left(A_{y}+B_{y}+C_{y}+\ldots\right)^{2}+\left(A_{y}+B_{y}+C_{y}+\ldots\right)^{2}} \tag{2.15}
\end{equation*}
$$

and $\theta=\tan ^{-1} \frac{\left(A_{y}+B_{y}+C_{\gamma}+\ldots\right)}{\left(A_{x}+B_{x}+C_{x}+\ldots\right)}$
The vector addition by rectangular components consists of the following steps.

1) Find x and y components of all given vectors.
ii) Find x-component R, of the resultant vector by adding the x-components of all the vectors.
iii) Find y-component R_{y}, of the resultant vector by adding the y-components of all the vectors.
iv) Find the magnitude of resultant vector R using

$$
R=\sqrt{R_{r}{ }^{2}+R_{r}^{2}}
$$

v) Find the direction of resultant vector \mathbf{R} by using

$$
\theta=\tan \cdot \frac{R_{y}}{R_{x}}
$$

where θ is the angle, which the resultant vector makes with

The Chinese acrokats in to incredible balancing act are equiliorum positive x-axis. The signs of R_{x} and R_{y} determine the quadrant in which resultant vector lles. For that purpose proceed as given below.
Irrespective of the sign of R, and R, determine the value of $\tan ^{-1} \frac{R_{y}}{R_{x}}=\phi$ from the calculator or by consulfing trigonometric tables. Knowing the value of ϕ, angle θ is determined as follows.

Table 2.1

3rd quadrant

a) If both R_{x} and R_{y} are positive, then the resultant lies in the first quadrant and its direction is $\theta=\phi$.
b) If R_{x} is -ive and R_{y} is tive, the resultant lies in the second quadrant and its direction is $\theta=180^{\circ}-\phi$.
c) If both R_{x} and R_{y}, are -ive, the resultant lies in the third quadrant and its direction is $\theta=180^{\circ}+\phi$.
d) If R_{x} is positive and R_{Y} is negative, the resultant lies in the fourth quadrant and its direction is $\theta=360^{\circ}-\phi$.

Example 2.2: Two forces of magnitude 10 N and 20 N act on a body in directions making angles 30° and 60° respectively with x-axis. Find the resuitant force.

Solution:

Step (i) x-components

The x-component of the first force $=F_{t x}=F_{1} \cos 30^{\circ}$

$$
=10 \mathrm{~N} \times 0.866=8.66 \mathrm{~N}
$$

The x-component of second force $=F_{2 x}=F_{2} \cos 60^{\circ}$

$$
=20 \mathrm{~N} \times 0.5=10 \mathrm{~N}
$$

y-components

The y-component of the first force $=F_{1 y}=F_{1} \sin 30^{\circ}$

$$
=10 \mathrm{~N} \times 0.5=5 \mathrm{~N}
$$

The y-component of second force $=F_{2 y}=F_{z} \sin 60^{\circ}$

$$
=20 \mathrm{~N} \times 0.866=17.32 \mathrm{~N}
$$

Step (ii)

The magnitude of x component F_{x} of the resultant force F

$$
\begin{aligned}
& F_{x}=F_{1 x}+F_{2 x} \\
& F_{x}=8.66 \mathrm{~N}+10 \mathrm{~N}=18.66 \mathrm{~N}
\end{aligned}
$$

Stop (iii)
The magnitude of y component F y of the resultant force F

$$
\begin{aligned}
& F_{y}=F_{1 y}+F_{z y} \\
& F_{y}=5 \mathrm{~N}+17.32 \mathrm{~N}=22.32 \mathrm{~N}
\end{aligned}
$$

Step (iv)

The magnitude F of the resultant force F

$$
F=\sqrt{F_{x}^{2}+F_{y}^{2}}=\sqrt{(18.66 \mathrm{~N})^{2}+(22.32 \mathrm{~N})^{2}}=29 \mathrm{~N}
$$

Step (v)
If the resultant force F makes an angle θ with the x-axis then

$$
\theta=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{22.32 \mathrm{~N}}{18.68 \mathrm{~N}}=\tan ^{-1} 1.196=50^{\circ} .
$$

Example 2.3: Find the angle between two forces of equal magnitude when the magnitude of their resultant is also equal to the magnitude of elther of these forces.
Solution: Let θ be the angle between two forces F_{1} and F_{2}, where F_{1} is along x-axis. Then x-component of their resultant will be

$$
\begin{aligned}
& R_{x}=F_{1} \cos \theta^{\circ}+F_{2} \cos \theta \\
& R_{x}=F_{1}+F_{2} \cos \theta
\end{aligned}
$$

And y-component of their resultant is

$$
\begin{aligned}
& R_{y}=F_{1} \sin \theta^{\circ}+F_{2} \sin \theta \\
& R_{y}=F_{2} \sin \theta
\end{aligned}
$$

The resultant R is given by $R^{2}=R_{x}^{2}+R_{y}^{2}$

As

$$
\begin{aligned}
R & =F_{1}=F_{2}=F \\
F^{2} & =(F+F \cos \theta)^{2}+(F \sin \theta)^{2} \\
0 & =2 F^{2} \cos \theta+F^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
0 & =2 F^{2} \cos \theta+F^{2} \\
\cos \theta & =-0.5 \\
\theta & =\cos ^{-1}(-0.5)=120^{\circ}
\end{aligned}
$$

Or
Or
Or

2.3 PRODUCT OF TWO VECTORS

There are two types of vector multiplications. The product of these two types are known as scalar product and vector product. As the name implies, scalar product of two vector quantities is a scalar quantity, while vector product of two vector quantities is a vector quantity.

Point to Ponder

Fig. 2.10 (a)

Fig. 2.10 (b)

Fig. 2.11

Scalar or Dot Product

The scalar product of two vectors A and B is written as A. B and is defined as

$$
\begin{equation*}
A \cdot B=A B \cos \theta \tag{2.17}
\end{equation*}
$$

where A and B are the magnitudes of vectors \mathbf{A} and \mathbf{B} and θ is the angle between them.
For physical interpretation of dot product of two vectors \mathbf{A} and B, these are first brought to a common origin (Fig 2.10 a).
then,

$$
\mathbf{A} \cdot \mathbf{B}=(\mathbf{A})(\text { projection of } \mathbf{B} \text { on } \mathbf{A})
$$

or
$A \cdot B=A($ magnitude of component of B in the direction of $A)$

$$
=A(B \cos \theta)=A B \cos \theta
$$

Similarly

$$
\text { B.A }=B(A \cos \theta)=B A \cos \theta
$$

We come across this type of product when we consider the work done by a force F whose point of application moves a distance din a direction making an angle 0 with the line of action of \mathbf{F}, as shown in Fig. 2.11.
Work done $=$ (effective component of force in the direction

$$
\begin{aligned}
& \text { of motion) } \times \text { distance moved } \\
& =(F \cos \theta) d=F d \cos \theta
\end{aligned}
$$

Using vector notation

$$
\mathrm{F} . \mathrm{d}=F d \cos \theta=\text { work done }
$$

Characteristics of Scalar Product

1. Since $A \cdot B=A B \cos \theta$ and $B \cdot A=B A \cos \theta=A B \cos \theta$. hence, $\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A}$. The order of multiplication is irrelevant. In other words, scalar product is commutative.
2. The scalar product of two mutually perpendicular vectors is zero. $A \cdot B=A B \cos 90^{\circ}=0$

In case of unit vectors \hat{i}, \mathbf{j} and \hat{k}, since they are mutually perpendicular, therefore,

$$
\begin{equation*}
\hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}=0 \tag{2.18}
\end{equation*}
$$

3. The scalar product of two parallel vectors is equal to the product of their magnitudes. Thus for parallel vectors ($\theta=0^{\circ}$)

$$
A \cdot B=A B \cos 0^{\circ}=A B
$$

In case of unit vectors

$$
\begin{equation*}
\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1 \tag{2.19}
\end{equation*}
$$

and for antiparallel vectors $\left(\theta=180^{\circ}\right)$

$$
A \cdot B=A B \cos 180^{\circ}=-A B
$$

4. The self product of a vector A is equal to square of its magnitude.

$$
A \cdot A=A A \cos 0^{\circ}=A^{2}
$$

5. Scalar product of two vectors \mathbf{A} and \mathbf{B} in terms of their rectangular components

$$
\mathrm{A} \cdot \mathrm{~B}=\left(A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}\right) \cdot\left(B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}\right)
$$

or

$$
\begin{equation*}
\mathrm{A} . \mathrm{B}=A_{x} B_{x}+A_{y} B_{y}+A_{x} B_{x} \tag{2.20}
\end{equation*}
$$

Equation 2.17 can be used to find the angle between two vectors: Since,

$$
\begin{equation*}
\mathrm{A} \cdot \mathrm{~B}=A B \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \tag{2.21}
\end{equation*}
$$

Therefore, ${ }^{\kappa}, \quad \cos \theta=\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{A B}$

You are falling off the edge. What thould you do to avoidtalling?

Example 2.4: A force $F=2 \dot{i}+3 \dot{j}$ units, has its point of application moved from point $A(1,3)$ to the point $B(5,7)$. Find the work done.

Solution: Position vector of point A is $\mathrm{r}_{\mathrm{A}}=\hat{i}+3 \hat{j}$ and that of point B is $r_{8}=5 \hat{i}+7 \hat{j}$

$$
\begin{aligned}
& \text { Displacement } d=r_{\mathrm{B}}-r_{\mathrm{A}}=(5-1) \hat{i}+(7-3) \hat{j}=4 \hat{i}+4 \hat{j} \\
& \text { Work done }=F \cdot d=(2 \hat{i}+3 \hat{j}) \cdot(4 \hat{i}+4 \hat{j}) \\
& \\
& =8+12=20 \text { units }
\end{aligned}
$$

Example 2.5: Find the projection of vector $A=2 \hat{i}-8 \hat{j}+\hat{k}$ in the direction of the vector $B=3 \hat{i}-4 \hat{j}-12 \hat{\mathbf{k}}$.

Solution: If θ is the angle between \mathbf{A} and \mathbf{B}, then $\mathbf{A} \cos \theta$ is the required projection.
By definition

$$
\begin{aligned}
A \cdot B & =A B \cos \theta \\
A \cos \theta & =\frac{A \cdot B}{B}=A \cdot \dot{B}
\end{aligned}
$$

Where $\hat{\mathbf{B}}$ is the unit vector in the direction of \mathbf{B}
Now

$$
B=\sqrt{3^{2}+(-4)^{2}+(-12)^{2}}=13
$$

Therefore,

$$
\hat{\mathrm{B}}=\frac{(3 \hat{i}-4 \hat{\mathrm{j}}-12 \hat{k})}{13}
$$

The projection of \mathbf{A} on $\mathbf{B}=(2 \hat{i}-8 \hat{j}+\hat{k}) \cdot \frac{(3 \hat{i}-4 \hat{j}-12 \hat{k})}{13}$

$$
=\frac{(2)(3)+(-8)(-4)+1(-12)}{13}=\frac{26}{13}=2
$$

Fig. 2.12(a)

Vector or Cross Product

The vector product of two vectors \mathbf{A} and B , is a vector which is defined as

$$
\begin{equation*}
A \times B=A B \sin \theta \hat{n} \tag{2.22}
\end{equation*}
$$

where $\hat{\mathrm{n}}$ is a unit vector perpendicular to the plane containing \mathbf{A} and \mathbf{B} as shown in Fig. 2.12 (a). Its direction can be determined by right hand rule. For that purpose. place together the tails of vectors \mathbf{A} and \mathbf{B} to define the
plane of vectors A and B. The direction of the product vector is perpendicular to this plane. Rotate the first vector A into B through the smaller of the two possible angles and curl the fingers of the right hand in the direction of rotation, keeping the thumb erect. The direction of the product vector will be along the erect thumb, as shown in the Fig 2.12 (b). Because of this direction rule, $\mathrm{B} \times \mathrm{A}$ is a vector opposite in sign to $\mathbf{A} \times \mathbf{B}$. Hence,

$$
\begin{equation*}
A \times B=-B \times A \tag{2.23}
\end{equation*}
$$

Characteristics of Cross Product

1. Since $\mathbf{A} \times \mathbf{B}$ is nat the same as $\mathbf{B} \times \mathbf{A}$, the cross product is non commutative.
2. The cross product of two perpendicular vectors has maximum magnitude $\mathbf{A} \times \mathbf{B}=A B \sin 90^{\circ} \hat{n}=A B \hat{n}$ In case of unit vectors, since they form a right handed system and are mutually perpendicular Fig. 2.5 (a)

$$
\hat{i} \times \hat{j}=\hat{k}, j \times \hat{k}=\hat{i}, \hat{k} \times \hat{i}=\hat{j}
$$

3. The cross product of two parallel vectors is null vector, because for such vectors $\theta=0^{\circ}$ or 180°. Hence

$$
A \times B=A B \sin 0^{\circ} \hat{n}=A B \sin 180^{\circ} \hat{n}=0
$$

As a consequence $\quad \mathbf{A} \times \mathbf{A}=0$

Fin 2. 2 (c)

$$
\begin{equation*}
\text { Also } \hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0 \ldots \ldots . . \tag{2.24}
\end{equation*}
$$

4. Cross product of two vectors \mathbf{A} and \mathbf{B} in terms of their rectangular components is :

$$
\begin{gather*}
A \times B=\left(A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}\right) \times\left(B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}\right) \\
A \times B=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{i}+\left(A_{x} B_{x}-A_{x} B_{x}\right) \hat{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k} . \tag{2.25}
\end{gather*}
$$

The result obtained can be expressed for memory in determinant form as below:

Fig. 2.12(d)

$$
A \times B=\left|\begin{array}{ccc}
i & j & k \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

5. The magnitude of $\mathbf{A} \times \mathbf{B}$ is equal to the area of the parallelogram formed with A and B as two adjacent sides (Fig. 2.12 d).

Examples of Vector Product

i. When a force \mathbf{F} is applied on a rigid body at a point whose position vector is r from any point of the axis about which the body rotates, then the turning effect of the force, called the torque τ is given by the vector product of r and F .

$$
\tau=r \times F
$$

ii. The force on a particle of charge q and velocity \mathbf{v} in a magnetic field of strength \mathbf{B} is given by vector product.

$$
\mathbf{F}=q(\mathbf{v} \times \mathbf{B})
$$

2.4 TORQUE

We have already studied in school physics that a turning effect is produced when a nut is tightened with a spanner (Fig. 2.13). The turning effect increases when you push harder on the spanner. It also depends on the length of the spanner: the longer the handle of the spanner, the greater is the turning effect of an applied force. The turning effect of a force is called its moment or torque and its magnitude is defined as the product of force \mathbf{F} and the perpendicular distance from its line of action to the pivot which is the point O around which the body (spapner) rotates. This distance OP is called moment $\operatorname{arm} /$. Thus the magnitude of torque represented by τ is

$$
\begin{equation*}
\tau=1 F \tag{2.26}
\end{equation*}
$$

When the line of action of the applied force passes through the pivot point, the value of moment $a r m /=0$, so in this case torque is zero.
We now consider the torque due to a force F acting on a rigid body. Let the force F acts on rigid body at point P whose position vector relative to pivot O is r . The force F can be resolved into two rectangular components, $F \sin \theta$ perpendicular to \mathbf{r} and $F \cos \theta$ along the direction of \mathbf{r} (Fig. 2.14 a). The torque due to $F \cos \theta$ about pivot O is zero as its line of action passes through point O . Therefore, the magnitude of torque due to F is equal to the torque due to $F \sin \theta$ only about O. It is given by

$$
\begin{equation*}
\tau=(F \sin \theta) r=r F \sin \theta \tag{2.27}
\end{equation*}
$$

Alternatively the moment arm / is equal to the magnitude of the component of r perpendicular to the line of action of F as illustrated in Fig. 2.14 (b). Thus

$$
\begin{equation*}
\tau=(r \sin \theta) F=r F \sin \theta \tag{2.28}
\end{equation*}
$$

where θ is the angle between r and F
From Eq. 2.27 and Eq. 2.28 it can be seen that the torque can be defined by the vector product of position vector r and the force F, so

Where $(r F \sin \theta)$ is the magnitude of the torque. The direction of the forque represented by \boldsymbol{n} is perpendicular to the plane corntaining r and F given by right hand rule for the vector product of two vectors.

The SI unit for torque is newton metre (N m).
Just as force determines the linear acceleration produced in a body, the torque acting on a body determines its angular acceleration. Torque is the analogous of force for rotational motion. If the body is at rest or rotating with uniform angular velocity, the angular acceleration will be zero. In this case the torque acting on the body will be zero.

Point to Ponder

Do you think the rider in the above figure is really in danger? What if peopte below were removod?

Stand with one arm and the side of one foot pressed against a well. Can you raise the other leg side ways? If not then why not?

Example 2.6: The line of action of a force F passes through a point P of a body whose position vectorin metre is $\hat{i}-2 \hat{j}+\hat{k}$. If $\mathrm{F}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ (in newton), determine the torque about the point ' A ' whose position vector (in metre) is $2 \hat{i}+\hat{j}+\hat{k}$

Solution:

The position vector of point $A=r_{t}=2 \hat{i}+\hat{j}+\hat{k}$
The position vector of point $P=r_{2}=\hat{i}-2 \hat{\jmath}+\hat{k}$ relative to O,
The position vector of P relative to A is

$$
\begin{aligned}
& A P=r=r_{2}-r_{1} \\
& A P=(\hat{i}-2 \hat{j}+\hat{k})-(2 \hat{i}+\hat{j}+\hat{k})=-\hat{i}-3 \hat{j}
\end{aligned}
$$

The torque about $A=r \times F$

$$
\begin{aligned}
& =(-\hat{i}-3 \hat{j}) \times(2 \hat{i}-3 \hat{j}+4 \hat{k}) \\
& =-12 \hat{i}+4 \hat{j}+9 \hat{k} \mathrm{~N} m
\end{aligned}
$$

2.5 EQUILIBRIUM OF FORCES

We have studied in school physics that if a body, under the action of a number of forces, is at rest or moving with uniform velocity, it is said to be in equilibrium.

First Condition of Equilibrium

A body at rest or moving with uniform velocity has zero acceleration. From Newton's Law of motion the vector sum of all forces acting on it must be zero.

This is known as the first condition of equilibrium. Using the mathematical symbol ΣF for the sum of all forces we can write

$$
\begin{equation*}
\Sigma F=0 \tag{2.30}
\end{equation*}
$$

In case of coplanar forces, this condition is expressed usually in terms of x and y components of the forces. We have studled that x-component of the resultant force F equals the sum of x-directed or x-components of all the forces acting on the body. Hence

$$
\begin{equation*}
\Sigma F_{x}=0 \tag{2.31}
\end{equation*}
$$

Similarly for the y-directed forces, the resultant of y-directed forces should be zero. Hence

$$
\begin{equation*}
\Sigma F_{y}=0 \tag{2,32}
\end{equation*}
$$

It may be noted that if the rightward forces are taken as positive then leftward forces are taken as negative. Similarly if upward forces are taken as positive then downward forces are taken as negative.

Example 2.7: A load is suspended by two cords as shown in Fig. 2.15. Determine the maximum load that pan be suspended at P, if maximum breaking tension of the cord used is 50 N .

Solution: For using conditions of equilibrium, all the forces acting at point P are shown by a force diagram as illustrated in Fig. 2.16 where w is assumed to be the maximum weight which can be suspended. The inclined forces can now be easily resolved along x and y directions.

Applying

$$
\Sigma F_{x}=0
$$

$$
T_{2} \cos 20^{\circ}-T_{1} \cos 60^{\circ}=0
$$

Or
As

$$
T_{1}=1.88 T_{2}
$$

$T_{1}>T_{2} \therefore T_{1}$ has the maximum tension
If $\quad T_{1}=50 \mathrm{~N}$, then $T_{2}=26.6 \mathrm{~N}$
Now applying

$$
\Sigma F_{y}=0
$$

$$
T_{1} \sin 60^{\circ}+T_{2} \sin 20^{\circ}-w=0
$$

Putting the values

$$
50 \mathrm{~N} \times 0.866+26.6 \mathrm{~N} \times 0.34=w
$$

or

$$
w=52 \mathrm{~N}
$$

A concuerent farce system in equiltrium The tersion applied can be adjusted an deneirind

Fig. 2.15

Fig. 216

Fig. 217

With your nose touching the end of the door, put your feet astride the door and try to rise up on your toes.

2.6 EQUILIBRIUM OF TORQUES

Second Conditton of Equilibrium

Let two equal and opposite forces act on a rigid body as shown in Fig. 2.17. Although the first condition of equilibrium is satisfied, yet it may rotate having clockwise turning effect. As discussed earlier, for angular acceleration to be zero, the net torque acting on the body should be zero. Thus for a body in equilibrium, the vector sum of all the torques acting on it about any arbitrary axis should be zero. This is known as second condition of equilibrium. Mathematically it is written as

$$
\begin{equation*}
\Sigma_{\mathrm{t}}=0 \tag{2.33}
\end{equation*}
$$

By convention, the counter clockwise torques are taken as positive and clockwise torques as negative. An axis is chosen for calculating the torques. The position of the axis is quite arbitrary. Axis can be chosen anywhere which is convenient in applying the torque equation. A most helpful point of rotation is the one through which lines of action of several forces pass.
We are nowin a position to state the complete requirements for a body to be in equilibrium, which are

$$
\begin{align*}
& \Sigma F=0 \quad \text { i.e } \Sigma F_{x}=0 \text { and } \Sigma F_{y}=0 \tag{1}\\
& \Sigma \tau=0 \tag{2}
\end{align*}
$$

When $1^{\text {st }}$ condition is satisfled, there is no linear acceleration and body will be in translational equilibrium. When $2^{\text {nd }}$ condition is satisfied, there is no angular acceleration and body will be in rotational equilibrium.

For a body to be in complete equilibrium, both conditions should be satisfied, l.e., both linear acceleration and angular acceleration should be zero.

If a body is at rest, it is said to be in static equilibrium but if the body is moving with uniform velocity, it is said to be in dynamic equilibrium.

We will restrict the applications of above mentioned conditions of equilibrium to situations in which all the forces lie in a common plane. Such forces are said to be
coplanar. We will also assume that these forces lie in the xy-plane.

If there are more than one object in equilibrium in a given problem, one object is selected at a time to apply the conditions of equilibrium.

Example 2.8: A uniform beam of 200 N is supported horizontally as shown. If the breaking tension of the rope is: 400 N , how far can the man of weight 400 N walk from point A on the beam as shown in Fig. 2.18?
Solution: Let breaking point be at a distance d from the pivot A. The force diagram of the situation is given in Fig 2,19. By applying 2nd condition of equillbrium about point A

$$
\Sigma t=0
$$

$$
400 \mathrm{~N} \times 6 \mathrm{~m}-400 \mathrm{~N} \times d-200 \mathrm{~N} \times 3 \mathrm{~m}=0
$$

or

$$
\begin{gathered}
400 \mathrm{~N} \times d=2400 \mathrm{Nm}-600 \mathrm{Nm}=1800 \mathrm{Nm} \\
d=4.5 \mathrm{~m}
\end{gathered}
$$

Example 2.9: A boy weighing 300 N is standing at the edge of a uniform diving board 4.0 m in length. The weight of the board is 200 N (Fig. 2.20 a). Find the forces exerted by pedestals on the board.

Solution: We isolate the diving board which is in equilibrium under the action of forces shown in the force diagram (Fig. 2.20 b). Note that the weight 200 N of the uniform diving board is shown to act at point C , the centre of gravity which is taken as the mid-point of the board, $R_{\text {, }}$ and R_{2} are the reaction forces exerted by the pedestals on the board. A little consideration will show that R_{i} is in the wrong direction, because the board must be actually pressed down in order to keap it in equilibrium. We shall see that this assumption will be automatically corrected by calculations.

Let us now apply conditions of equilibrium

$$
\begin{array}{rlr}
\Sigma F_{x} & =0 & \quad \text { (No x-directed forces) } \\
\Sigma F_{y} & =0 & R_{1}+R_{2}-300-200=0 \\
R_{\mathrm{Y}}+R_{2} & =500 \mathrm{~N} & \ldots \\
\Sigma \tau & =0 & \\
\text { (i) } \\
\text { (pivot at point } D \text {) }
\end{array}
$$

Fig 218

Fig. 2.21

Flg. 2.20(a)

Fig. $2.20(\mathrm{~b})$

$$
\begin{gathered}
-R_{1} \times A D-300 \mathrm{~N} \times \mathrm{DB}-200 \mathrm{~N} \times \mathrm{DC}=0 \\
-R_{1} \times 1 \mathrm{~m}-300 \mathrm{~N} \times 3 \mathrm{~m}-200 \mathrm{~N} \times 1 \mathrm{~m}=0 \\
R_{f}=-1100 \mathrm{~N}=-1.1 \mathrm{kN}
\end{gathered}
$$

Substituting the value of R_{r} in Eq. (i). we have

$$
\begin{aligned}
& -1100+R_{2}=500 \\
& R_{2}=1600 \mathrm{~N}=1.6 \mathrm{kN}
\end{aligned}
$$

The negative sign of R, shows that it is directed downward.

- Thus the result has corrected the mistake of our initial assumption.

SUMMARY

- The arrangement of mutually perpendicular axes is called rectangular or Cartesian coordinate system.
- A scalar is a quantity that has magnitude only, whereas a vector is a quantity that has both direction and magnitude.
- The sum vector of two or more vectors is called resultant vector.
- Graphically the vectors are added by drawing them to a common scale and placing them head to tail, the vector connecting the tail of the first to the head of the last vector is the resultant vector.
- Vector addition can be carried out by using rectangular components of vectors. If A_{x} and A_{y} are the rectangular components of A and B_{x} and B_{y} are that of vector B, then the sum $\mathbf{R}=\mathbf{A}+\mathbf{B}$ is given by

$$
R_{x}=A_{x}+B_{x} \quad R_{y}=A_{y}+B_{y}
$$

where $R=\sqrt{R_{x}^{2}+R_{y}^{2}}$ and direction $\theta=\tan ^{-1} \frac{R_{y}}{R_{x}}$
Unit vectors describe directions in space. A unit vector has a magnitude of 1 with no units.

A vector of magnitude zero without any specific direction is called null vector.
The vector that describes the location of a particle with respect to the origin of coordinate system is known as position vector.

The scalar product of two vectors \mathbf{A} and \mathbf{B} is a scalar quantity, defined as :

$$
\mathbf{A} \cdot \mathbf{B}=A B \cos \theta
$$

- The vector product of two vectors \mathbf{A} and \mathbf{B} is another vector \mathbf{C} whose magnitude is given by: \quad $C=A B \sin \theta$
Its direction is perpendicular to the plane of the two vectors being multiplied, as given by the right hand rule.
- A body is said to be in equilibrium under the action of several forces if the body has zero translational acceleration and no angular acceleration.
- For a body to be in translational equilibrium the vector sum of all the forces acting on the body must be zero.
- The torque is defined as the product of the force and the moment arm.
- The moment arm is the perpendicular distance from the axis of rotation to the direction of line of action of the force.
- For a body to be in rotational equilibrium, the sum of torques on the body about any axis must be equal tozero.

QUESTIONS

2.1 Define the terms (i) unit vector (ii) Position vector and (iii) Components of a vector.
2.2 The vector sum of three vectors gives a zero resultant. What can be the orientation of the vectors?
2.3 Vector A lies in the xy plane. For what orientation will both of its rectangular components be negative ? For what orientation will its components have opposite signs?
2.4 If one of the rectangular components of a vector is not zero, can its magnitude be zero? Explain.
2.5 Can a vector have a component greater than the vector's magnitude?
2.6 Can the magnitude of a vector have a negative value?
2.7 If $\mathbf{A}+\mathbf{B}=\mathbf{0}$, What can you say about the components of the two vectors?
2.8 Under what circumstances would a vector have components that are equal in magnitude?
2.9 Is it possible to add a vector quantity to a scalar quantity? Explain.
2.10 Can you add zero to a null vector?

211 Two vectors have unequal magnitudes. Can their sum be zero? Explain.
2.12 Show that the sum and difference of two perpendicular vectors of equal lengths are also perpendicular and of the same length.
2.13 How would the two vectors of the same magnitude have to be oriented, if they were to be combined to give a resultant equal to a vector of the same magnitude?
2.14 The two vectors to be combined have magnitudes 60 N and 35 N . Pick the correct answer from those given below and tell why is it the only one of the three that is correct.
i) 100 N
iii) 70 N
iii) 20 N
2.15 Suppose the sides of a closed polygon represent vector arranged head to tail. What is the sum of these vectors?
2.16 Identify the correct answer.
i) Two ships X and Y are travelling in different directions at equal speeds. The actual direction of motion of X is due north but to an observer on Y, the apparent direction of motion of X is north-east. The actual direction of motion of Y as observed from the shore will be
(A) East
(B) West
(C) south-east
(D) south-west
ii) A horizontal force F is applied to a small object P of mass m at rest on a smooth plane inclined at an angle θ to the horizontal as shown in Fig. 2.22. The magnitude of the resultant force acting up and along the surface of the plane, on the object is
a) $F \cos \theta-m g \sin \theta$
b) $F \sin \theta-m g \cos \theta$
c) $F \cos \theta+m g \cos \theta$
d) $F \sin \theta+m g \sin \theta$
e) $m g \tan \theta$

Fig. 2.21
2.17 If all the components of the vectors, \boldsymbol{A}_{1} and \mathbf{A}_{2} were reversed, how would this alter $A_{1} \times A_{2}$?
2.18 Name the three different conditions that could make $\mathbf{A}_{1} \times \mathbf{A}_{2}=0$.
2.19 Identify true or false statements and explain the reason.
a) A body in equilibrium implies that it is not moving nor rotating.
b) If coplanar forces acting on a body form a closed polygon, then the body is said to be in equilibrium.
2.20 A picture is suspended from a wall by two strings. Show by diagram the configuration of the strings for which the tension in the strings will be minimum.
2.21 Can a body rotate about its centre of gravity under the action of its weight?

NUMERICAL PROBLEMS

2.1. Suppose, in a rectangular coordinate system, a vector \mathbf{A} has its tail at the point P $(-2,-3)$ and its tip at Q $(3,9)$.Determine the distance between these two points.
(Ans: 13 Units)
2.2. A certain comer of a room is selected as the origin of a rectangular coordinate system. If an insect is sitting on an adjacent wall at a point having coordinates $(2,1)$, where the units are in metres, what is the distance of the insect from this comer of the room?
(Ans: 2.2m)
2.3. What is the unit vector in the direction of the vector $A=4 \hat{i}+3 \hat{j}$?
(Ans: $\frac{(4 \hat{i}+3 \hat{j})}{5}$)
2.4. Two particles are located at $r_{1}=3 \hat{i}+7 \hat{j}$ and $r_{2}=-2 \hat{i}+3 \hat{j}$ respectively. Find both the magnitude of the vector $\left(r_{2} r_{1}\right)$ and its orientation with respect to the x-axis.
[Ans: 6,4,219 ${ }^{\circ}$]
2.5. If a vector \mathbf{B} is added to vector \mathbf{A}, the result is $6 \hat{i}+\hat{j}$, If \mathbf{B} is subtracted from \mathbf{A}, the result is $-4 \hat{i}+7 \hat{j}$. What is the magnitude of vector A ?
(Ans: 4.1)
2.6. Given that $\mathbf{A}=2 \hat{i}+3 \hat{j}$ and $\mathbf{B}=3 \hat{i}-4 \hat{j}$. find the magnitude and angle of (a) $\mathbf{C}=\mathbf{A}+\mathrm{B}$, and (b) $\mathrm{D}=3 \mathrm{~A}-2 \mathrm{~B}$.
(Ans: 5.1, 349 ${ }^{\circ} ; 17,90^{\circ}$)
2.7. Find the angle between the two vectors, $\mathbf{A}=5 \hat{i}+\hat{j}$ and $\mathbf{B}=2 \hat{i}+4 \hat{j}$.
(Ans: 52°)
2.8. Find the work done when the point of application of the force $3 \hat{i}+2 \hat{j}$ moves in a straight line from the point $(2,-1)$ to the point $(6,4)$.
(Ans: 22 units)
2.9. Show that the three vector $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}-3 \hat{j}+\hat{k}$ and $4 \hat{i}+\hat{j}-5 \hat{k}$ are mutually perpendicular.
2.10. Given that $\mathbf{A}=\hat{\mathrm{i}}-2 \hat{\mathbf{j}}+3 \hat{k}$ and $\mathbf{B}=3 \hat{\mathbf{i}}-4 \hat{\mathbf{k}}$, find the projection of A on B.
(Ans: $-\frac{9}{5}$)
2.11. Vectors A, B and C are 4 units north, 3 units west and 8 units east, respectively. Describe carefully (a) $\mathbf{A} \times \mathbf{B}$ (b) $\mathbf{A} \times \mathbf{C}$ (c) $\mathbf{B} \times \mathbf{C}$
[Ans: (a) 12 units verticallyup (b) 32 units verticallydown (c) Zero]
2.12. The torque or turning effect of force about a given point is given by $\mathrm{r} \times \mathrm{F}$ where r is the vector from the given point to the point of application of F . Consider a force $\mathbf{F}=-3 \hat{i}+\hat{j}+5 \hat{k}$ (newton) acting on the point $7 \hat{i}+3 \hat{j}+\hat{k}(m)$. What is the torque in N m about the origin?
[Ans: $14 \hat{i}-38 \hat{j}+16 \hat{k} \mathrm{Nm}$]
2.13. The line of action of force, $\mathbf{F}=\hat{i}-2 \hat{j}$, passes through a point whose position vector is $(-\hat{j}+\hat{k})$. Find (a) the moment of Fabout the origin, (b) the moment of F about the point of which the position vector is $\hat{i}+\hat{k}$.
[Ans: (a) $2 \hat{\mathbf{i}}+\hat{j}+\hat{k}$, (b) $3 \hat{k}$]
2.14. The magnitude of dot and cross products of two vectors are $6 \sqrt{3}$ and 6 respectively. Find the angle between the vectors
(Ans: 30°)
2.15. A load of 10.0 N is suspended from a clothes line. This distorts the line so that it makes an angle of 15° with the horizontal at each end. Find the tension in the clothes line.
[Ans: 19.3N]

Chapter 3

MOTION AND FORCE

Learning Objectives

At the end of this chapter the students will be able to:

1. Understand displacement from its definition and illustration.
2. Understand velocity, average velocity and instantaneous velocity.
3. Understand acceleration, average acceleration and instantaneous acceleration.
4. Understand the significance of area under velocity-time graph.
5. Recall and use equations, which represent uniformly accelerated motion in a straight line including falling in a uniform gravitational field without air resistance.
6. Recall Newton's Laws of motion.
7. Describe Newton's second law of motion as rate of change of momentum.
8. Define impulse as a product of impulsive force and time.
9. Describe law of conservation of momentum.
10. Use the law of conservation of momentum in simple applications including elastic collisions between two bodies in one dimension.
11. Describe the force produced due to flow of water.
12. Understand the process of rocket propulsion (simple treatment).
13. Understand projectile motion in a non-resistive medium.
14. Derive time of flight, maximum height and horizontal range of projectile motion.
15. Appreciate the motion of ballistic missiles as projectile motion.

We live in a universe of continual motion. In every piece of matter, the atoms are in a state of never ending motion. We move around the Earth's surface, while the Earth moves in its orbit around the Sun. The Sun and the stars, too, are in motion. Everything in the vastness of space is in a state of perpetual motion.

Every physical process involves motion of some sort. Because of its importance in the physical wordd around us, it is logical that we should give due attention to the study of motion.

We already know that motion and rest are relative. Here, in this chapter, we shall discuss other related topics in some more details.

3.1 DISPLACEMENT

Whenever a body moves from one position to another, the change in its position is called displacement. The displacement can be represented as a vector that describes how far and in what direction the body has been displaced from its original position. The tail of the displacement vector is located at the position where the displacement started, and its tip or arrowhead is located at the final position where the displacement ended. For example, if a body is moving along a curve as shown in Fig. 3.1 with A as its initial position and B as its final position then the displacement d of the body is represented by AB. Note that although the body is moving along a curve, the displacement is different from the pathi of motion.

If r is the position vector of A and r_{2} that of point B then by head and tail rule it can be seen from the figure that

$$
d=r_{2}-r_{1}
$$

> The displacement is thus a change in the position of body from its initial position to its final position.

Its magnitude is the straight line distance between the initial position and the final position of the body.
When a body moves along a straight line, the displacement coincides with the path of motion as shown in Fig. 3.2. (a)

3.2 VELOCITY

We have studied in school physics that time rate of change of displacement is known as velocity. Its direction is along the direction of displacement. So if d is the total

Fig 3.7

Fig.3.2(a)
displacement of the body in time t, then its average velocity during the interval t is defined as

$$
\begin{equation*}
v_{a y}=\frac{d}{f} \tag{3,1}
\end{equation*}
$$

Average velocity does not tell us about the motion belween A and B. The path may be straight or curved and the motion may be steady or variable. For example if a squash. ball comes back to its starting point after bouncing off the wall several times, its total displacement is zero and so

For Your Information
TypicalSpeeds

Speed, ms ${ }^{\text {d }}$	Motion
300000000	Light, radio waves. x-rBys, mictowaves (in vacuum)
210000	Earth-Sin travel around the griaxy
- 29600	Earth around the Sun
1000	Moon around tien Earth
980	SR-7.7 reconnalissance jot
333	Sound (in air)
201	Cortmercial jet arliner
82	Commencial automobile (max.)
37	Falcon in a dive
29	Running cheetah
10	100 metres dash (hiax)
9	Porpoise cwimming
5	Flying bee
4	Human muning
2	Human swimming
008	Walking ant

Fig. 3.2 (b)
also is its average velocity.
In such cases the motion is described by the instantaneous velocity.
In order to understand the concept of instantaneous. velocity, consider a body moving along a path $A B C$ in $x y$ plane. At any time 1 , let the body be at point A Fig, 3.2(b) its position is given by position vector \mathbf{r}_{1} - After a short time interval at following the instant t, the body reaches the point B which is described by the position vector \mathbf{r}_{2}. The displacement of the body during this short time interval is given by

$$
\Delta d=r_{2}-r_{1}
$$

The notation Δ (delfa) is used to represent a very small change.
The instantaneous velocity at a point A, can be found by making Δt smaller and smaller. In this case Δd will also become smaller and point B will approach A. If we continue this process, letting B approach A, thus, allowing A t and ad to decrease but never disappear completely, the ratio $\Delta \mathrm{d} / \Delta t$ approaches a definite limiting value which is the instantaneous velocity. Although Δt and sd become extremely small in this process, yet their ratio is not necessanly a small quantity. Moreover, while decreasing the displacement vector, Δ d approaches a limiting direction along the tangent at A . Therefore,

The instantaneous velocity is defined as the limiting value of Ad/At as the time interval Δt, following the time t, approaches zero.

Using the mathematical language, the definition of instantaneous velocity v_{m} is expressed as

$$
\begin{equation*}
v_{\mathrm{ing}}=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta d}{\Delta t} \tag{3.2}
\end{equation*}
$$

read as limiting value of $\Delta d / \Delta t$ as Δt approaches zero.
If the instantaneous velocity does not change, the body is said to be moving with uniform velocity.

3.3 ACCELERATION

If the velocity of an object changes, it is said to be moving with an acceleration.

The time rate of change of velocity of a body is called acceleration.

As velocity is a vector so any change in velocity may be due to change in its magnitude or a change in its direction or both.
Consider a body whose velocity v_{1} at any instant t changes to \mathbf{v}_{2} in further small time interval Δt. The two velocity vectors \mathbf{v}_{1} and \mathbf{v}_{2} and the change in velocity, $\mathbf{v}_{2}-\mathbf{v}_{1}=\Delta \mathbf{v}$, are represented in Fig. 3.3. The average acceleration $a_{0 v}$ during time interval Δt is given by

Figi3, 3

$$
\begin{equation*}
\mathbf{a}_{\mathrm{av}}=\frac{\mathbf{v}_{2}-\mathbf{v}_{1}}{\Delta t}=\frac{\Delta \mathbf{v}}{\Delta t} \tag{3.3}
\end{equation*}
$$

As $\mathbf{a}_{s v}$ is the difference of two vectors divided by a scalar $\Delta t, \mathbf{a}_{\text {av }}$ must also be a vector. Its direction is the same as that of $\Delta \mathrm{V}$. Acceleration of a body at a particular instant is known as instantaneous acceleration and it is the value obtained from the average acceleration as Δt is made smaller and smaller till it approaches zero. Mathematically, it is expressed as

Instantaneous acceleration $=\mathbf{a}=\operatorname{Lim} \Delta t \rightarrow 0 . \frac{\Delta v}{\Delta t}$

Fig, 3.4

Fig. 3.5

Fig 3.6

If the velocity of a body is increasing, its acceleration is positive but if the velocity is decreasing the acceleration is negative. If the velocity of the body changes by equal amount in equal intervals of time, the body is said to have uniform acceleration. For a body moving with uniform acceleration, its average acceleration is equal to instantaneous acceleration.

3.4 VELOCITY-TIME GRAPH

Graphs may be used to illustrate the variation of velocity of an object with time. Such graphs are called velocity-time graphs. The velocity.time graphs of an object making three different journeys along a straight road are shown in figures 3.4 to 3.6 . When the velocity of the car is constant, its velocity-time graph is a horizontal straight line (Fig 3.4). When the car moves with constant acceleration, the velocity-time graph is a straight line which rises the same height for equal intervals of time (Fig 3.5).

> The average acceleration of the car during the interval t is given by the slope of its velocity-time graph.

When the car moves with increasing acceleration, the velocity-time graph is a curve (Fig 3.6). The point A on the graph corresponds to time t. The magnitude of the instantaneous acceleration at this instant is numerically equal to the slope of the tangent at the point A on the velocity-time graph of the object as shown in Fig 3.6.
The distance moved by an object can also be determined by using its velocity-time graph. For example, Fig 3.4 shows that the object moves at constant velocity v for time t. The distance covered by the object given by Eq. 3.1 is $v \times t$. This distance can also be found by calculating the area under the velocity-time graph. This area is shown shaded in Fig 3.4 and is equal to $v \times t$. We now give another example shown in Fig 3.5. Here the velocity of the object increases uniformly from 0 to \mathbf{v} in time t. The magnitude of its average velocity is given by

$$
v_{a v}=\frac{0+v}{2}=\frac{1}{2} v
$$

How the difplacement of a vertically throw bal varass with time?

How the velocity of a vortically thrown ball vaties with time? Vétocity in upwarus ponilive.

At the surface of the Earth, in situations whiere air friction is neglloibles, objects firl with the same soceleration regardless of their weights.

3.5 REVIEW OF EQUATIONS OF UNIFORMLY ACCELERATED MOTION

In school physics we have studied some useful equations for objects moving at constant acceleration.
Suppose an object is moving with uniform acceleration a along a straight line. If its initial velocity is V , and final velocity after a time interval t is v_{i}. Let the distance covered during this interval be S then we have

$$
\begin{align*}
& v_{t}=v_{i}+a t \tag{3.5}\\
& s=\frac{\left(v_{t}+v_{i}\right)}{2} x t \tag{3.6}\\
& S=v_{1} t+\frac{1}{2} a t^{2} \tag{3.7}\\
& v_{t}^{2}=v_{i}^{2}+2 a S \tag{3.8}
\end{align*}
$$

These equations are useful only for linear motion with uniform acceleration. When the object moves along a straight line, the direction of motion does not change. In this case all the vectors can be manipulated like scalars. In such problems, the direction of initial velocity is taken as positive. A negative sign is assigned to quantities where direction is opposite to that of initial velocity.

In the absence of air resistance, all objects in free fall near the surface of the Earth, move towards the Earth with a uniform acceleration. This acceleration, known as acceleration due to gravity, is denoted by the letter g and its average value near the Earth surface is taken as $9.8 \mathrm{~ms}^{-2}$ in the downward direction.

The equations for uniformly accelerated motion can also be applied to free fall motion of the objects by replacing a by g.

3.6 NEWTON'S LAWS OF MOTION

Newton's laws are empirical laws, deduced from experiments. They were clearly stated for the first time by Sir Isaac Newton, who published them in 1687 in his famous book called "Principia". Newton's laws are adequate for speeds that are low compared with the speed of light.

Distance covered $=$ average velocity \times time $=\frac{1}{2} v \times t$
Now we calculate the area under velocity-time graph which is equal to the area of the triangle shaded in Fig 3.5. Its value is equal to $1 / 2$ base \times height $=1 / 2 v \times t$. Considering the above two examples it is a general conclusion that

The area between the velocity-time graph and the time axis is numerically equal to the distance covered by the object.

Example 3.1: The velocity-time graph of a car moving on a straight road is shown in Fig 3.7. Describe the motion of the car and find the distance covered.

Solution: The graph tells us that the car starts from rest, and its velocity increases uniformly to $20 \mathrm{~ms}^{-1}$ in 5 seconds. Its average acceleration is given by

$$
a=\frac{\Delta v}{\Delta t}=\frac{20 \mathrm{~ms}^{-1}}{5 \mathrm{~s}}=4 \mathrm{~ms}^{-2}
$$

The graph further tells us that the velocity of the car remains constant from $5^{\text {th }}$ to $15^{\text {th }}$ second and it then

Fig, 3.7 decreases uniformly to zero from $15^{\text {th }}$ to $19^{\text {th }}$ seconds. The acceleration of the car during last 4 seconds is

$$
a=\frac{\Delta v}{\Delta t}=\frac{-20 \mathrm{~ms}^{-1}}{4 \mathrm{~s}}=-5 \mathrm{~ms}^{-2}
$$

The negative sign indicates that the velocity of the car decreases during these 4 seconds.

The distance covered by the car is equal to the area between the velocity-time graph and the time-axis. Thus
Distance travelled $=$ Area of $\triangle A B F+$ Area of rectangle BCEF + Area of $\triangle C D E$

$$
\begin{aligned}
& =\frac{1}{2} \times 20 \mathrm{~ms}^{-1} \times 5 \mathrm{~s}+20 \mathrm{~ms}^{-1} \times 10 \mathrm{~s}+\frac{1}{2} \times 20 \mathrm{~ms}^{-1} \times 4 \mathrm{~s} \\
& =50 \mathrm{~m}+200 \mathrm{~m}+40 \mathrm{~m}=290 \mathrm{~m}
\end{aligned}
$$

For very fast moving objects, such as atomic particles in an accelerator, relativistic mechanics developed by Albert Einstén ls appiticabte.

You have already studied these laws in your secondary school Physics. However a summarized review is given below.

Newton's First Law of Motion

A hody at rest wilt remain at rest, and a body moving with uniform velocity will continue to do so, unless acted upon by some unbaianced external force. This is aiso known as law of inertis. The property of an object fending to maintain the stale of rest or stafe of uniform motion is referred to as the object's inertia. The more inertia, the stronger is this tendericy in the presence of a force. Thus,

The mass of the object is a quantitative measure of its inertia.

The frame of reference in which Newton's first law of motion hoids, is known as inertial frame of reference. A frame of reference stationed on Earth is approximately an inerfiat frame of reference.

Newton's Second Law of Motion

A force applied on a body produces acceleration in its own direction. The acceleration produced varies directly with the applied force and inversely with the mass of the body. Mathematically, it is expressect as

$$
\begin{equation*}
F=m a \tag{3.9}
\end{equation*}
$$

$$
\ldots
$$

Newton's Third Law of Motion

Action and reaction are equal and opposite. For example, whenever an interaction ocours between two objects, each object exerts the same force on the other, but in the opposite direction and for the same length of time. Each force in action-reaction pair acts onty on one of the two bodies, the action and reaction forces never act on the same body.

An unappreciated anticipation.

Tio body beghes to mque or colmes to matorfisely

ABUALI SENA. $(980 \cdot 4037)$

Ameasurament of mass independent of grivity The uncoown mase m and a caibrated mans ma are mounted on In light weright rod It the matsen are equal, the rod wifl fotale without Wobole about ite centre.

Point to Ponder
A cat accelepatas niong a rand. Which force actually moves the fear?

Throwing a package onto shore from a boat that was previously at rest causes the boat to move out-ward fromshore (Newton's third law).

Point to Ponder

Which will be moro effective in knocking a bear down.

1. a nubber bullet or
i. a lead butfet of the same momintum

3.7 MOMENTUM

We are aware of the fact that moving object possesses a quality by virtue of which it exerts a force on anything that tries to stop it. The faster the object is travelling, the harder is to stop it. Similarly, if two objects move with the same velocity, then it is more difficult to stop the massive of the two.
This quality of the moving body was called the quantity of motion of the body, by Newton. This term is now called linear momentum of the body and is defined by the relation.

$$
\begin{equation*}
\text { Linear momentum }=\mathbf{p}=m \mathrm{v} \tag{3,10}
\end{equation*}
$$

In this expression \mathbf{v} is the velocity of the mass m. Linear momentum is, therefore, a vector quantity and has the direction of velocity.

The SI unit of momentum is kilogram metre per second ($\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$). It can also be expressed as newton second (Ns).

Momentum and Newton's Second Law of Motion

Consider a body of mass m moving with an initial velocity $\mathbf{v}_{\text {}}$. Suppose an external force \mathbf{F} acts upon it for time t after which velocity becomes $\mathbf{v}_{\text {. }}$. The acceleration a produced by this force is given by

$$
a=\frac{v_{1}-v_{i}}{t}
$$

By Newton's second law, the acceleration is given as

$$
\mathrm{a}=\frac{\mathrm{F}}{m}
$$

Equating the two expressions of acceleration, we have

$$
\frac{\mathbf{F}}{m}-\frac{\mathbf{v}_{1}-\mathbf{v}_{i}}{t}
$$

or

$$
\begin{equation*}
\mathbf{F} \times t=m \mathbf{v}_{\mathrm{t}}-m \mathbf{v}_{1} \tag{3.11}
\end{equation*}
$$

where $m v$ is the initial momentum and $m v v_{c}$ is the final momentum of the body

The equation 3.11 shows that change in momentum is equal to the product of force and the time for which force is applied. This form of the second law is more general than the form $\mathrm{F}=m \mathrm{~m}$, because it can easily be extended to account for changes as the body accelerates when its mass also changes. For example, as a rocket accelerates, it loses mass because its fuel is burnt and ejected to provide greater thrust.

From Eq. 3.11.

$$
\mathbf{F}=\frac{m \mathbf{v}_{1}-m \mathbf{v}_{i}}{t}
$$

Thus, second law of motion can also be stated in terms of momentum as follows

Time rate of.change of momentum of a body equals the applied force.

Impulse

Sometimes we wish to apply the concept of momentum to cases where the applied force is not constant, it acts for very short time. For example, when a bat hits a cricket ball, the force certainly varies from instant to instant during the collision. In such cases, it is more convenient to deal with the product of force and time ($\mathbf{F} \times t$) instead of either quantity alone. The quantity $\mathbf{F} \times t$ is called the impulse of the force, where F can be regarded as the average force that acts during the time t. From Eq. 3.11

$$
\begin{equation*}
\text { Impulse }=\mathbf{F} \times t=m \mathbf{v}_{\mathrm{t}}-m \mathbf{v}_{\mathrm{t}} \tag{3.12}
\end{equation*}
$$

Example 3.2: A 1500 kg car has its velocity reduced from $20 \mathrm{~ms}^{-1}$ to $15 \mathrm{~ms}^{-1}$ in 3.0 s . How large was the average retarding force?
Solution: Using the Eq 3.11

$$
\begin{aligned}
F \times t & =m v_{t}-m v_{i} \\
\mathrm{~F} \times 3.0 \mathrm{~s} & =1500 \mathrm{~kg} \times 15 \mathrm{~ms}^{-1}-1500 \mathrm{~kg} \times 20 \mathrm{~ms}^{-1} \\
\text { or } \mathrm{F} & =-2500 \mathrm{~kg} \mathrm{~ms}^{2}=-2500 \mathrm{~N} \quad-2.5 \mathrm{kN}
\end{aligned}
$$

The negative sign indicates that the force is retarding one.

Point to Ponder
(a)

(b)

Which hurt you in the above situations (a) or (b) and think why?

Point to Ponder
Does a moving object have Impulee?

Do You Know?

Your hair acts like a crumple zone on your skull. A force of 5 N might be enough to fracture your naked skull (cranium), but with a covering of skio and hair, a force of $50 \mathrm{~N} w o t i l d ~ b e ~ n e n d e d, ~$

Law of Conservation of Momentum

Let us consider an isolated system. It is a system on which no external agency exerts any force. For example, the molecules of a gas enclosed in a glass vessel at constant temperature constitute an isolated system. The molecules can collide with one another because of their random motion but, being enclosed by glass vessel, no external agency can exert a force on them.
Consider an isolated system of two smooth hard interacting balls of masses m_{1} and m_{2}, moving along the same straight line, in the same direction, with velocities v_{1} and v_{2} respectively. Both the balls collide and after collision, ball of mass m_{1} moves with velocity v_{1} and m_{2} moves with velocity \mathbf{V}_{2} in the same direction as shown in Fig 3.8 .
To find the change in momentum of mass m_{1}, using Eq 3.11 we have.

$$
\mathbf{F}^{\prime} \times t=m_{1} \mathbf{v}_{1}-m_{1} \mathbf{v}_{1}
$$

Similarly for the ball of mass m_{z}, we have

$$
\mathbf{F} \times t=m_{2} \mathbf{v}_{2}-m_{2} \mathbf{v}_{2}
$$

Adding these two expressions, we get

$$
\left(\mathbf{F}+\mathbf{F}^{\prime}\right) t=\left(m_{1} \mathbf{v}_{1}-m_{1} \mathbf{v}_{1}\right)+\left(m_{2} \mathbf{v}_{2}^{\prime}-m_{2} \mathbf{v}_{2}\right)
$$

Since the action force F is equal and opposite to the reaction force F, we have $F=-F$, so the left hand side of the equation is zero. Hence,

$$
0=\left(m_{1} \mathbf{v}_{1}-m_{1} \mathbf{v}_{3}\right)+\left(m_{2} \mathbf{v}_{2}-m_{2} \mathbf{v}_{2}\right)
$$

In other words, change in momentum of 1st ball + change in momentum of the $2^{2 d}$ ball $=0$

$$
\begin{equation*}
\text { Or }\left(m_{1} \mathbf{v}_{1}+m_{2} \mathbf{v}_{2}\right)=\left(m_{1} \mathbf{v}_{1}+m_{2} \mathbf{v}_{2}\right) \tag{3,13}
\end{equation*}
$$

Which means that total initial momentum of the system before collision is equal to the total final momentum of the system after collision. Consequently, the total change in momentum of the isolated two ball systern is zero.
For such a group of objects, if one object within the group experiences a force, there must exist an equal but
opposite reaction force on some other object in the same group. As a result, the change in momentum of the group of objects as a whole is always zero. This can be expressed in the form of law of conservation of momentum which states that

The total linear momentum of an isolated system remains constant.

In applying the conservation law, we must notice that the momentum of a body is a vector quantity.

Example 3.3: Two spherical balls of 2.0 kg and 3.0 kg masses are moving towards each other with velocities of $6.0 \mathrm{~ms}^{-1}$ and $4 \mathrm{~ms}^{-1}$ respectively. What must be the velocity of the smaller ball after collision, if the velocity of the bigger ball is $3.0 \mathrm{~ms}^{-1}$?

Solution: As both the balls are moving towards one another, so their velocities are of opposite sign. Let us suppose that the direction of motion of 2 kg ball is positive and that of the 3 kg is negative.

The momentum of the system before collision $=m_{1} v_{1}+m_{2} v_{2}$

$$
=2 \mathrm{~kg} \times 6 \mathrm{~ms}^{-1}+3 \mathrm{~kg} \times\left(-4 \mathrm{~ms}^{-1}\right)=12 \mathrm{kgms}^{-1}-12 \mathrm{~kg} \mathrm{~ms}^{-1}=0
$$

Momentum of the system after collision $=m_{1} v_{1}+m_{2} v_{2}$

$$
=2 k g x y_{i}^{i}+3 \mathrm{~kg} x(-3) \mathrm{ms}
$$

From the law of conservation of momentum

$$
\begin{aligned}
{\left[\begin{array}{c}
\text { Momentum of the system } \\
\text { before collision. }
\end{array}\right] } & =\left[\begin{array}{c}
\text { Momentum of the system } \\
\text { after collision }
\end{array}\right] \\
0 & =2{\mathrm{~kg} \times v_{1}-9 \mathrm{~kg} \mathrm{~m} \mathrm{~s}}^{-1} \\
2 \mathrm{~kg} \times v_{1}^{\prime} & =9 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\
v_{1} & =4.5 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Do you wear seat belts?

When a moving car stops quickly, the passengers move forward towordo the windahield Seat betts change the forces of motion and prevent the passengers from moving. Thus the chance of inqury ts greatly rectuced

Do You Know?

A motorcycle's shety heimet is podded so as to exterd the time of any calletion fo prevent serions injury.

3.8 ELASTIC AND INELASTIC COLLISIONS

When two tennis balls collide then, after collision, they will rebound with velocities less than the velocities before the impact. During this process, a portion of K.E is lost, partly due to friction as the molecules in the ball move past one another when the balls distort and partly due to its change into heat and sound energies.

A collision in which the K.E of the system is not conserved, is called the inelastic collision.

Under certain special conditions no kinetic energy is lost in the collision.

> In the ideal case when no K.E is lost, the collision is said to be perfectly elastic.

Before collision

After collision
Fig. 3.5

For example, when a hard ball is dropped onto a marble floor, it rebounds to very nearly the initial height. It looses negligible amount of energy in the collision with the floor.

It is to be noted that momentum and total energy are conserved in all types of collisions. However, the K.E. is conserved only in elastic collisions.

Elastic Collision in One Dimension

Consider two smooth, non-rotating balls of masses m, and m_{2}, moving initially with velocities v_{1} and v_{2} respectively, in the same direction. They collide and after collision, they move along the same straight line without rotation. Let their velocities after the collision be v_{1}^{\prime} and v_{2}^{\prime} respectively, as shown in Fig. 3.9.

We take the positive direction of the velocity and momentum to the right. By applying the law of conservation of momentum we have

$$
\begin{align*}
m_{1} v_{1}+m_{2} v_{2} & =m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime} \\
m_{1}\left(v_{1}-v_{1}^{\prime}\right) & =m_{2}\left(v_{2}^{\prime}-v_{2}\right) \tag{3.14}
\end{align*}
$$

As the collision is elastic, so the K.E is also conserved. From the conservation of K.E we have

$$
\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2} .
$$

or

$$
\begin{equation*}
m_{1}\left(v_{1}^{2}-v_{1}^{2}\right)=m_{2}\left(v_{2}^{2}-v_{2}^{2}\right) \tag{3.15}
\end{equation*}
$$

or $m_{1}\left(v_{1}+v_{1}^{\prime}\right)\left(v_{1}-v_{1}\right)=m_{2}\left(v_{2}+v_{2}\right)\left(v_{2}-v_{2}\right)$
Dividing equation 3.15 by 3.14

$$
\begin{equation*}
\left(v_{1}+v_{1}^{\prime}\right)=\left(v_{2}^{\prime}+v_{2}\right) \tag{3.16}
\end{equation*}
$$

or $\quad\left(v_{1}-v_{2}\right)=\left(v_{2}^{\prime}-v_{1}^{\prime}\right)=-\left(v_{1}^{\prime}-v_{2}^{\prime}\right)$
We note that, before collision $\left(v_{1}-v_{2}\right)$ is the velocity of first ball relative to the second ball. Similarly $\left(v_{1}-v_{2}\right)$ is the velocity of the first ball relative to the second ball after collision. It means that relative velocities before and after the collision has the same magnitude but are reversed after the collision. In other words, the magnitude of relative velocity of approach is equal to the magnitude of relative velocity of separation.

In equations 3.14 and $3.16, m_{1}, m_{2}, v_{1}$ and v_{2} are known quantities. We solve these equations to find the values of v_{1}^{\prime} and v_{2}, which are unknown. The results are

$$
\begin{align*}
& v_{1}^{\prime}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2} \tag{3.17}\\
& v_{2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2} \tag{3.18}
\end{align*}
$$

There are some cases of special interest, which are discussed below:
(i) When

$$
m_{1}=m_{2}
$$

From equations 3.17 and 3.18 we find that

$$
v_{1}=v_{2}
$$

and

$$
V_{2}=v, \quad \text { as shown in Fig } 3.10
$$

(ii) When

$$
m_{1}=m_{2} \text { and } v_{2}=0
$$

After collision

In this case the mass m_{2} be at rest, then $v_{2}=0$ the equations 3.17 and 3.18 give

Fig. 3.11
case (iii)

Before collision

After collision
Fig. 3.12
case (iv)

Before collision

After collision

$$
v_{1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1} \quad ; \quad v_{2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1}
$$

When $m_{1}=m_{2}$ then bail of mass m_{1} after collision will come to a stop and m_{2} will take off with the velocity that m_{1} originally has, as shown in Fig 3.11. Thus when a billiard ball m_{t}, moving on a table collides with exactly similar ball m_{2} at rest, the ball m_{1} stops while m_{2} begins to move with the same velocity, with which m_{1} was moving initially.
(iii) When a light body collides with a massive body at rest In this case initial velocity $v_{2}=0$ and $m_{2} \gg m_{1}$. Under these conditions m_{1} can be neglected as compared to m_{2}. From equations 3.17 and 3.18 we have $v_{1}^{\prime}=-v_{1}$ and $v_{2}^{\prime}=0$

The result is shown in Fig 3.12. This means that m_{1} will bounce back with the same velocity while m_{2} will remain stationary. This fact is made used of by the squash player.
(iv) When a massive body collides with light stationary body
In this case $m_{1} \gg m_{2}$ and $v_{2}=0$ so m_{2} can be neglected in equations 3.17 and 3.18 . This gives $v_{1} \simeq v_{1}$ and $v_{2} \simeq 2 v_{1}$. Thus after the collision, there is practically no change in the velocity of the massive body, but the lighter one bounces off in the forward direction with approximately twice the velocity of the incident body, as shown in Fig. 3.13,

Example 3.4: A 70 g ball collides with another ball of mass 140 g . The initial velocity of the first ball is $9 \mathrm{~ms}^{-1}$ to the right while the second ball is at rest. If the collision were perfectly elastic what would be the velocity of the two balls after the collision?

Solution:

$$
\begin{array}{lcc}
m_{1}=70 \mathrm{~g} & v_{1}=9 \mathrm{~ms}^{-1} & v_{2}=0 \\
m_{2}=140 \mathrm{~g} & v_{1}^{\prime}=? & v_{2}^{\prime}=? \\
\text { w that } & v_{1}^{\prime}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1} &
\end{array}
$$

We know that

$$
\begin{aligned}
& =\frac{70 \mathrm{q}-140 \mathrm{~g}}{70 \mathrm{~g}+140 \mathrm{~g}} \times 9 \mathrm{~ms}^{-1}=-3 \mathrm{~ms}^{-1} \\
v_{2}^{\prime} & =\frac{2 m_{1}}{m_{1}+m_{2}} v_{1} \\
& =\frac{2 \times 70 \mathrm{~g}}{70 \mathrm{~g}+140 \mathrm{~g}} \times 9 \mathrm{~ms}^{-1}=6 \mathrm{~ms}^{21}
\end{aligned}
$$

Example 3.5: A 100 g golf ball is moving to the right with a velocity of $20^{\circ} \mathrm{ms}^{-1}$. It makes a head on collision with an 8 kg steel ball, initially at rest Compute velocities of the balls after collision.

Solution: We know that

$$
v_{1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1} \quad \text { and } \quad v_{2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1}
$$

Hence

$$
\begin{aligned}
& v_{\mathrm{t}}^{\prime}=\frac{0.1 \mathrm{~kg}-8 \mathrm{~kg}}{0.1 \mathrm{~kg}+8 \mathrm{~kg}} \times 20 \mathrm{~ms}^{-1}=-19.5 \mathrm{~ms}^{-1} \\
& v_{2}^{\prime}=\frac{2 \times 0.1 \mathrm{~kg}}{0.1 \mathrm{~kg}+8 \mathrm{~kg}} \times 20 \mathrm{~ms}^{-1}=0.5 \mathrm{~ms}^{-1}
\end{aligned}
$$

3.9 FORCE DUE TO WATER FLOW

When water from a horizontal pipe strikes a wall normally, a force is exerted on the wall. Suppose the water strikes the wall normally with velocity v and comes to rest on striking the wall, the change in velocity is then $0-v=-v$. From second law, the force equals the momentum change per second of water. If mass m of the water strikes the wall in time t then force F on the water is
$F=-\frac{m}{1} v=-$ mass per second x changein velocity
From third law of motion, the reaction force exerted by the water on the wall is equal but opposite

Hence.

$$
F=-\left(-\frac{m}{r} v\right)=\frac{m}{r} v
$$

If another car crashes into beck of yours, the head-rest of the car seat can save you from serious mect injuy it helpe to acoalerate your head forward with the same rate as: the rest of your body.

Point to Ponder

In theill machine rides at amusement parks, there pan be an iacceleration of 3 g or more Eut without head rests; acceleration. tifice this would not be safe. Think why not?

Thus force can be calculated from the product of mass of water striking normally per second and change in velocity. Suppose the water flows out from a pipe at $3 \mathrm{kgs}^{-1}$ and its velocity changes from $5 \mathrm{~ms}^{-1}$ to zero on striking the ball, then,

$$
\text { Force }=3 \mathrm{kgs}^{-1} \times\left(5 \mathrm{~ms}^{-1}-0\right)=15 \mathrm{kgms}^{-2}=15 \mathrm{~N}
$$

Example 3.6: A hose pipe ejects water at a speed of $0.3 \mathrm{~ms}^{-1}$ through a hole of area $50 \mathrm{~cm}^{2}$. If the water strikes a wall normally, calculate the force on the wall, assuming the velocity of the water normal to the wall is zero after striking.

Solution:

$\left[\begin{array}{l}\text { The volume of water per } \\ \text { second striking the wall }\end{array}\right]=0.005 \mathrm{~m}^{2} \times 0.3 \mathrm{~m}=0.0015 \mathrm{~m}^{3}$
Mass per second striking the wall $=$ volume \times density

$$
=0.0015 \mathrm{~m}^{3} \times 1000 \mathrm{kgm}^{3}=1.5 \mathrm{~kg}
$$

Velocity change of water on striking the wall $=0.3 \mathrm{~ms}^{-1}-0=0.3 \mathrm{~ms}^{-1}$

$$
\begin{aligned}
\text { Force } & =\text { Momentum change per second } \\
& =1.5 \mathrm{kgs}^{-1} \times 0.3 \mathrm{~ms}^{-1}=0.45 \mathrm{kgms}^{-2}=0.45 \mathrm{~N}
\end{aligned}
$$

3.10 MOMENTUM AND EXPLOSIVE FORCES

There are many examples where momentum changes are produced by explosive forces within an isolated system For example, when a shell explodes in mid-air, its fragments fly off in different directions. The total momentum of all its fragments equals the initial momentum of the shell. Suppose a falling bomb explodes into two pieces as shown in Fig. 3,14. The momenta of the bomb fragments combine by vector addition equal to the original momenturn of the falling bomb.

Consider another example of bullet of mass m fired from a rifle of mass M with a velocity \mathbf{v}. Initially, the total momentum of the bullet and rifle is zero. From the principle of conservation of linear momentum, when the bullet is fired, the total momentum of bullet and rifle still remains zero, since no external force has acted on them. Thus if \mathbf{v}^{\prime} is the velocity of the rifle then

$$
\begin{array}{ll}
m v & m \text { (bullet) }+M v^{\prime}(\text { rifle })=0 \\
M v & \text { or } \quad v^{\prime}=\frac{-m v}{M} \quad \ldots \ldots \ldots \tag{3.20}
\end{array}
$$

The momentum of the rifle is thus equal and opposite to that of the bullet. Since mass of rifle is much greater than the bullet, it follows that the rifle moves back or recolls with only a fraction of the velocity of the bullet.

3.11 ROCKET PROPULSION

Rockets move by expelling burning gas through engines at their rear. The ignited fuel turns to a high pressure gas which is expelled with extremely high velocity from the rocket engines (Fig. 3,15). The rocket gains momentum equal to the momentum of the gas expelled from the engine but in opposite direction. The rocket engines continue to expel gases after the rocket has begun moving and hence rocket continues to gain more and more momentum. So instead of travelling at steady speed the rocket gets faster and faster so long the engines are operating.
A rocket carries its own fuel in the form of a liquid or solid tydrogen and oxygen. It can, therefore work at great heights where very littie or no air is present in order to provide enough upward thrust to overcome gravity, a typical rocket consumes about $10000 \mathrm{kgs}^{-1}$ of fuel and ejects the burnt gases at speeds of over $4000 \mathrm{~ms}^{-1}$. In fact, more than 80% of the launch mass of a rocket consists of fuel only. One way to overcome the problem of mass of fuel is to make the rocket from several rockets linked together.
When one rocket has done its job, it is discarded leaving others to carry the space craft further upat ever greater speed.
If m is the mass of the gases ejected per second with velocity v relative to the rocket, the change in momentum per second of the ejecting gases is mv. This equals the thrust produced by the engine on the body of the rocket. So, the acceleration ' a ' of the rocket is

$$
\begin{equation*}
\mathrm{a}=\frac{\mathrm{mv}}{M} \tag{3.21}
\end{equation*}
$$

Fig. 3.15
Fuel and oxygen mix in the combustion chambat. Hot gases o:chaust the chamber af a very high valocity. The gain in momensam of the gases equals The gair in momentim of the rocket the thes and rocket puth agaunat sach other and move in opposile directions.
where M is the mass of the rocket. When the fuel in the rocket is burned and ejected, the mass M of rocket decreases and hence the acceleration increases .

3.12 PROJECTILE MOTION

Uptill now we have been studying the motion of a particle along a straight line i.e. motion in one dimension. Now we consider the motion of a ball, when it is thrown horizontally from certain height. It is observed that the ball travels forward as well as falls downwards, until it strikes something. Suppose that the ball leaves the hand of the thrower at point A (Fig 3.16 a) and that its velocity at that instant is completely horizontal. Let this velocity be $\mathbf{v}_{\mathbf{x}}$. According to Newton's first law of motion, there will be no acceleration in horizontal direction, unless a horizontally directed force acts on the ball. lgnoring the air friction, only force acting on the ball during flight is the force of gravity. There is no horizontal force acting on it. So its horizontal velocity will remain unchanged and will be v_{x}, until the ball hits something. The horizontal motion of ball is simple. The ball moves with constant horizontal velocity component. Hence horizontal distance x is given by

$$
\begin{equation*}
x=v_{x} x t \tag{3.22}
\end{equation*}
$$

The vertical motion of the ball is also not complicated. It will accelerate downward under the force of gravity and hence $\mathbf{a}=\mathbf{g}$. This vertical motion is the same as for a freely falling body. Since initial vertical velocity is zero, hence, vertical distance y, using Eq. 3.7, is given by

$$
y=\frac{1}{2} g t^{2}
$$

It is not necessary that an object should be thrown with some initial velocity in the horizontal direction. A football kicked off by a player; a ball thrown by a cricketer and a missile fired from a launching pad, all projected at some angles with the horizontal, are called projectiles.

Projectile motion is two dimensional motion under constant acceleration due to gravity.

In such cases, the motion of a projectile can be studied easily by resolving it into horizontal and vertical components which are independent of each other. Suppose that a projectile is fired in a direction angle θ with the horizontal by velocity v_{i} as shown in Fig. 3.16 (b), Let components of velocity v_{i} along the horizontal and vertical directions be $v, \cos \theta$ and $v_{i} \sin \theta$ respectively. The horizontal acceleration is $a_{x}=0$ because we have neglected air resistance and no other force is acting along this direction whereas vertical acceleration $a_{j}=g$. Hence, the horizontal component $v_{i x}$ remains constant and at any fime t, we have

$$
\begin{equation*}
v_{f x}=v_{i x}=v_{i} \cos \theta \tag{3.23}
\end{equation*}
$$

...........

Now we consider the vertical motion. The initial vertical component of the velocity is $v / \sin \theta$ in the upward direction. Using Eq. 3.5 the vertical component v_{y} of the velocity at any instant t is given by

$$
\begin{equation*}
v_{\mathrm{k}}=v_{i} \cdot \sin \theta-g t \tag{3.24}
\end{equation*}
$$

..........

The magnitude of velocity at any instant is

$$
\begin{equation*}
v=\sqrt{v_{f x}^{2}+v_{6 y}^{2}} \tag{3.25}
\end{equation*}
$$

The angle ϕ which this resultant velocity makes with the horizontal can be found from

$$
\begin{equation*}
\tan \phi=\frac{v_{\mathrm{fx}}}{v_{\mathrm{fx}}} \tag{3.26}
\end{equation*}
$$

In projectile motion one may wish to determine the height to which the projectile rises, the time of flight and horizontal range. These are described below.

Height of the Projectile

In order to determine the maximum height the projectile attains, we use the equation of motion

$$
2 a S=v_{1}^{2}-v_{1}^{2}
$$

As body moves upward, so $a=-g$, the initial vertical velocity $v_{y y}=v_{i} \sin \theta$ and $v_{y y}=0$ because the body comes to rest after reaching the highest point. Since

Fig. $2.15(\mathrm{~b})$

A photpgraph of two balls-reteased simultaneousty from a mechanism that allows one ball to drop freely while the other is projected herizontally. At any time the two balls are at the same level, i.e. their werficsil displacements are equal.

Point to Ponder

Water is projected from two rutber pipes at the same ipead-fromprn of an angle of $-30^{\text {a }}$ and from the other at 60°. Why are the ringes equal?

$$
S=\text { height }=h
$$

$$
-2 g h=0-v_{j}^{2} \sin ^{2} \theta
$$

$$
\begin{equation*}
h=\frac{v_{i} \sin ^{2} \theta}{2 g} \tag{3.27}
\end{equation*}
$$

Time of Flight

The time taken by the body to cover the distance from the place of its projection to the place where it hits the ground at the same level is called the time of flight.
This can be obtained by taking $S=h=0$, because the body goes up and comes back to same level, thus covering no vertical distance. If the body is projecting with velocity v making angle θ with a horizontal, then its vertical component will be $v \sin \theta$. Hence the equation is

$$
\begin{align*}
& S=v_{1} t+1 / 2 g t^{2} \\
& 0=v_{i} \sin \theta t-1 / 2 g t^{2} \\
& t=\frac{2 v_{i} \sin \theta}{g} \tag{3.28}
\end{align*}
$$

where t is the time of flight of the projectile when it is projected from the ground as shown in Fig. 3.16 (b).

Range of the Projectile

Maximum distance which a projectile covers in the horizontal direction is called the range of the projectile.

To determine the range R of the projectile, we multiply the horizontal component of the velocity of projection with total time taken by the body after leaving the point of projection. Thus

$$
\begin{aligned}
& R=v_{\text {ix }} \times t \quad \text { using Eq. } 3.28 \\
& R=\frac{v_{i} \cos \theta \times 2 v_{i} \sin \theta}{g} \\
& R=\frac{v_{i}^{2}}{g} 2 \sin \theta \cos \theta
\end{aligned}
$$

But, $2 \sin \theta \cos \theta=\sin 2 \theta$, thus the range of the projectile depends upon the velocity of projection and the angle of projection.

Therefore,

$$
\begin{equation*}
R=\frac{v_{i}{ }^{2}}{g} \sin 2 \theta . \tag{3.29}
\end{equation*}
$$

For the range R to be maximum, the factor $\sin 2 \theta$ should have maximum value which is 1 when $2 \theta=90^{\circ}$ or $\theta=45^{\circ}$

Application to Ballistic Missiles

A ballistic flight is that in which a projectile is given an initial push and is then allowed to move freely due to inertia and under the action of gravity. An un-powered and un-guided missile is called a ballistic missile and the path followed by it is called ballistic trajectory.

As discussed before, a ballistic missile moves in a way that is the result of the superposition of two independent motions: a straight line inertial flight in the direction of the launch and a vertical gravity fall. By law of inertia, an object should sail straight off in the direction thrown, at constant speed equal to its initial speed particularly in empty space. But the downward force of gravity will alter straight path into a curved trajectory. For short ranges and flat Earth approximation, the trajectory is parabolic but the dragless ballistic trajectory for spherical Earth should actually be elliptical. At high speed and for long trajectories the air friction is not negligible and some times the force of air friction is more than gravity. It affects both horizontal as well as vertical motions. Therefore, it is completely unrealistic to neglect the aerodynamic forces.
The shooting of a missile on a selected distant spot is a major element of warfare. It undergoes complicated motions due to air friction and wind etc. Consequently the angle of projection can not be found by the geometry of the situation at the moment of launching. The actual flights of missiles are worked out to high degrees of precision and the result were contained in tabular form. The modified equation of trajectory is too complicated to be discussed here. The ballistic missiles are useful only for short ranges. For long ranges and greater precision, powered and remote control guided missiles are used.

For an angin less than 45', the height reached by the projectle and the range both wil be less. When the anple of projectife is larger ithan 45°. the heght affained will be more but therange is againkesn.

Example 3.7: A ball is thrown with a speed of $30 \mathrm{~ms}^{-1}$ in a direction 30° above the horizon. Determine the height to which it rises, the time of flight and the horizontal range.

Solution: Initially

$$
\begin{aligned}
& v_{\mathrm{xx}}=v_{1} \cos \theta=30 \mathrm{~ms}^{-1} x \cos 30^{\circ}=25.98 \mathrm{~ms}^{-1} \\
& v_{\mathrm{y}}=v_{1} \sin \theta=30 \mathrm{~ms}^{-1} x \sin 30^{\circ}=15 \mathrm{~ms}^{-1}
\end{aligned}
$$

As the time of flight

$$
t=\frac{2 v_{i}}{g} \sin \theta
$$

So

$$
t=\frac{2 \times 15 \mathrm{~ms}^{-1}}{9.8 \mathrm{~ms}^{2}}=3.1 \mathrm{~s}
$$

Height

$$
h=\frac{v_{1}^{\prime} \sin ^{2} \theta}{2 g}
$$

So

$$
h=\frac{\left(30 \mathrm{~ms}^{-1}\right)^{2} \times(0.5)^{2}}{2 \times 9.8 \mathrm{~ms}^{2}}
$$

$$
h=11.5 \mathrm{~m}
$$

Range

$$
R=\frac{v_{1}^{3}}{g} \sin 2 \theta
$$

So

$$
R=\frac{\left(30 \mathrm{~ms}^{-1}\right)^{2} \times 0.866}{9.8 \mathrm{~ms}^{2}}=80 \mathrm{~m}
$$

Example 3.8: In example 3.7 calculate the maximum range and the height reached by the ball if the angles of projection are (i) 45° (ii) 60°.

Solution:

(i) Using the equation for height and range we have

$$
\text { height } \begin{array}{rl}
h & h=\frac{v_{i}{ }^{2} \sin ^{2} \theta}{2 g} \\
& h=\frac{\left(30 \mathrm{~ms}^{-1} \times 0.707\right)^{2}}{2 \times 9.8 \mathrm{~ms}^{2}} \\
h & =23 \mathrm{~m}
\end{array}
$$

Range

$$
R=\frac{v_{1}^{2}}{g} \sin 2 \theta
$$

or

$$
R=\frac{v_{i}{ }^{2}}{g} \sin 90^{\circ}
$$

or

$$
R=\frac{\left(30 \mathrm{~ms}^{-1}\right)^{2}}{9.8 \mathrm{~ms}^{-1}} \times 1=91.8 \mathrm{~m}
$$

(ii) Using the equation for height and range we have

$$
\text { height } h=\frac{v_{y}^{2} \sin ^{2} \theta}{2 g}
$$

So

$$
h=\frac{\left(30 \mathrm{~ms}^{1} \times .866\right)^{2}}{2 \times 9.8 \mathrm{~ms}^{2}}
$$

or

$$
h=34.4 \mathrm{~m}
$$

Range

$$
R=\frac{v_{j}^{2}}{g} \sin 2 \theta
$$

or

$$
R=\frac{v_{i}^{2}}{g} \sin 120^{\circ}
$$

or

$$
R=\frac{\left(30 \mathrm{~ms}^{-1}\right)^{2} \times 0.866}{9.8 \mathrm{~ms}^{2}}=80 \mathrm{~m}
$$

SUMMARY

* Displacement is the change in the position of a body from its initial position to its final position.
- Average velocity is the average rate at which displacement vector changes with time.
- Instantaneous velocity is the velocity at a particular instant of time. When the time interval, over which the average velocity is measured, approaches zero, the average velocity becomes equal to the instantaneous velocity at that instant.

$$
v_{n o}=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta d}{\Delta t}
$$

- Average acceleration is the ratio of the change in velocity Δv that occurs within time interval Δt to that time interval.
- Instantaneous acceleration is the acceleration at a particular instant of time. It is the value obtained from the average acceleration as time intorval at is made smaller and smaller, approaching zero.

$$
a=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta f}
$$

- The slope of velocity-time graph at any instant represents the instantaneous acceleration at that time.
- The area between velocity-time graph and the time axis is numerically equal to the distance covered by the object.
- Freely falling is a body moving under the influence of gravity alone.
- Acceleration due to gravity near the Earth surface is $9.8 \mathrm{~ms}^{-2}$ if air friction is ignored.
- Equations of uniformly accelerated motion are
(b) $v_{t}=v_{1}+a t$
(i) $S=\frac{\left(v_{f}+v_{i}\right)}{2} \cdot t$
(iii) $S=v_{1} t+\frac{1}{2} a t^{2}$
(iv) $v_{t}^{2}=v_{i}^{2}+2 a S$
- Newton's laws of motion
$1^{\text {sf }}$ Law: The velocity of an object will be constant if net force on it is zero.
$2^{\text {nd }}$ Law: An object gains momentum in the direction of applied force, and the rate of change of momentum is proportional to the magnitude of the force,
$3^{\text {rd }}$ Law: When two objects interact, they exert equal and opposite force on each other for the same length of time, and so receive equal and opposite impuises,
- The momentum of an object is the product of its mass and velocity.
- The impulse provided by a force is the product of force and time for which it acts. It equals change in momentum of the object:
- For any isolated system, the total momentum remains constant. The momentum of all bodies in a system add upto the same total momentum at all time.
- Elastic collisions conserve both momentum and kinetic energy. In inelastic collision, some of the energy is transferred by heating and dissipative forces such as friction, air resistance and viscosity, so increasing the internal energy of nearby objects.
- Projectile motion is the motion of particle that is thrown with an initial velocity and then moves under the action of gravity.

QUESTIONS

3.1 What is the difference between uniform and variable velocity? From the explanation of variable velocity, define acceleration. Give SI units of velocity and acceleration.
3.2 An object is thrown vertically upward. Discuss the sign of acceleration due to gravity, relative to velocity, while the object is in air.
3.3 Can the velocity of an object reverse the direction when acceleration is constant? If so, give an example.
3.4 Specify the correct statements:
a. An object can have a constant velocity even its speed is changing.
b. An object can have a constant speed even its velocity is changing.
c. An object can have a zero velocity even its acceleration is not zero.
d. An object subjected to a constant acceleration can reverse its velocity.
3.5 A man standing on the top of a tower throws a ball straight up with initial velocity v_{1} and at the same time throws a second ball straight downward with the same speed. Which ball will have larger speed when it strikes the ground? Ignore air friction.
3.6 Explain the circumstances in which the velocity v and acceleration a of a car are
(i)Parallel
(ii) Anti-parallel
(iii) Perpendicular to one another
(iv) \mathbf{v} is zero but \mathbf{a} is not zero (v) \mathbf{a} is zero but \mathbf{v} is not zero
3.7 Motion with constant velocity is a special case of motion with constant acceleration. Is this statement true? Discuss.
3.1. Find the change in momentum for an object subjected to a given force for a given time and state law of motion in terms of momentum.
3.9 Define impulse and show that how it is related to linear momentum?
3.10 State the law of conservation of linear momentum, pointing out the importance of isolated system. Explain, why under certain conditions, the law is useful even though the system is not completely isolated?
3.11 Explain the difference between elastic and inelastic collisions. Explain how would a bouncing ball behave in each case? Give plausible reasons for the fact that K.E is not conserved in most cases?
3.12 Explain what is meant by projectile motion. Derive expressions for
a. the time of flight
b. the range of projectile.

Show that the range of projectile is maximum when projectile is thrown at an - angle of 45° with the horizontal.
3.13 At what point or points in its path does a projectile have its minimum speed, its maximum speed?
3.14 Each of the following questions is followed by four answers, one of which is correct answer. Identify that answer.

1. What is meant by a ballistic trajectory?
a. The paths followed by an un-powered and unguided projectile.
b. The path followed by the powered and unguided projectile.
c. The path followed by un-powered but guided projectile.
d. The path followed by powered and guided projectile.
ii. What happens when a system of two bodies undergoes an elastic collision?
a. The momentum of the system changes.
b. The momentum of the system does not change.
c. The bodies come to rest after collision.
d. The energy conservation law is violated.

NUMERICAL PROBLEMS

3.1 A helicopter is ascending vertically at the rate of $19.6 \mathrm{~ms}^{-1}$. When it is at a height of 156.8 m above the ground, a stone is dropped. How long does the stone take to reach the ground?
(Ans:8.0s)
3.2 Using the following data, draw a velocity-time graph for a short journey on a straight road of a motorbike.

Velocity $\left(\mathrm{ms}^{-1}\right)$	0	10	20	20	20	20	0
Time (s)	0	30	60	90	120	150	180

Use the graph to calculate
(a) the initial acceleration
(b) the final acceleration and
(c) the total distance travelled by the motorcyclist.

$$
\text { [Ans: (a) } 0.33 \mathrm{~ms}^{-2} \text {, (b) }-0.67 \mathrm{~ms}^{-2} \text {, (c) } 2.7 \mathrm{~km} \text {] }
$$

3.3 A proton moving with speed of $1.0 \times 10^{7} \mathrm{~ms}^{-1}$ passes through a 0.020 cm thick sheet of paper and emerges with a speed of $2.0 \times 10^{6} \mathrm{~ms}^{-1}$. Assuming uniform deceleration, find retardation and time taken to pass through the paper.

$$
\text { (Ans:- } 2.4 \times 10^{17} \mathrm{~ms}^{-2} .3 .3 \times 10^{-11} \mathrm{~s} \text {) }
$$

3.4 Two masses m_{1} and m_{2} are initially at rest with a spring compressed between them. What is the ratio of the magnitude of their velocities after the spring has been released?

$$
\text { (Ans: } \frac{v_{1}}{v_{2}}=\frac{m_{2}}{m_{1}} \text {) }
$$

3.5 An amoeba of mass $1.0 \times 10^{-12} \mathrm{~kg}$ propels itself through water by blowing a jet of water through a tiny orifice. The amoeba ejects water with a speed of $1.0 \times 10^{-1} \mathrm{~ms}^{-1}$ and at a rate of $1.0 \times 10^{-13} \mathrm{kgs}^{-1}$. Assume that the water is being continuously replenished so that the mass of the amoeba remains the same.
a. If there were no force on amoeba other than the reaction force caused by the emerging jet, what would be the acceleration of the amoeba?
b. If amoeba moves with constant velocity through water, what is force of surrounding water (exclusively of jet) on the amoeba?

$$
\left[\text { Ans: (a) } 1.0 \times 10^{-5} \mathrm{~ms}^{-2} \text { (b) } 1.0 \times 10^{-17} \mathrm{~N}\right]
$$

3.6 A boy places a fire cracker of negligible mass in an empty can of 40 g mass. He plugs the end with a wooden block of mass 200 g . After igniting the firecracker, he throws the can straight up, It explodes at the top of its path. If the block shoots out with a speed of $3.0 \mathrm{~ms}^{-1}$, how fast will the can be going?
(Ans: $15 \mathrm{~ms}^{-1}$)
3.7 An electron $\left(m=9.1 \times 10^{-34} \mathrm{~kg}\right)$ travelling at $2.0 \times 10^{7} \mathrm{~ms}^{-1}$ undergoes a head on' collision with a hydrogen atom ($m=1.67 \times 10^{-27} \mathrm{~kg}$) which is initially at rest. Assuming the collision to be perfectly elastic and a motion to be along a straight line, find the velocity of hydrogen atom.
(Ans: $2.2 \times 10^{4} \mathrm{~ms}^{-1}$)
3.8 A truck weighing 2500 kg and moving with a velocity of $21 \mathrm{~ms}^{-1}$ collides with stationary car weighing 1000 kg . The truck and the car move together after the impact. Calculate their common velocity.
(Ans: $15 \mathrm{~ms}^{-1}$)
3.9 Two blocks of masses 2.0 kg and 0.50 kg are attached at the two ends of a compressed spring. The elastic potential energy stored in the spring is 10 J . Find the velocities of the blocks if the spring delivers its energy to the blocks when released.
(Ans: $1.4 \mathrm{~ms}^{-1},-5.6 \mathrm{~ms}^{-1}$)
3.10 A foot ball is thrown upward with an angle of 30° with respect to the horizontal. To throw a 40 m pass what must be the initial speed of the ball?
(Ans: $21 \mathrm{~ms}^{-1}$)
3.11 A ball is thrown horizontally from a height of 10 m with velocity of $21 \mathrm{~ms}^{-1}$. How far off it hit the ground and with what velocity?
(Ans: $30 \mathrm{~m}, 25 \mathrm{~ms}^{-1}$)
3.12 A bomber dropped a bomb at a height of 490 m when its velocity along the horizontal was $300 \mathrm{kmh}^{-1}$.
(a) How long was it in air?
(b) At what distance from the point vertically below the bomber at the instant the bomb was dropped, did it strike the ground?
(Ans: $10 \mathrm{~s}, 833 \mathrm{~m}$)
3.13 Find the angle of projection of a projectile for which its maximum height and horizontal range are equal.
(Ans: 76°)
3.14 Prove that for angles of projection, which exceed or fall short of 45° by equal amounts, the ranges are equal.
3.15 A SLBM (submarine launched ballistic missile) is fired from a distance of 3000 km . If the Earthis considered flat and theangle of launch is 45° with horizontal, find the velocity with which the missile is fired and the time taken by SLBM to hit the target.
(Ans: $5.42 \mathrm{kms}^{-1}, 13 \mathrm{~min}$)

Chapter 4

WORK AND ENERGY

Learning Objectives

At the end of this chapter the students will be able to:

1. Understand the concept of work in terms of the product of a force and displacement in the direction of the force.
2. Understand and derive the formula Work $=\mathbf{w d}=m g h$ for work done in a gravitational field near Earth's surface.
3. Understand that work can be calculated from area under the force-displacement graph.
4. Relate power to work done.
5. Define power as the product of force and velocity.
6. Quote examples of power from everyday life.
7. Explain the two types of mechanical energy.
8. Understand the work-energy principle.
9. Derive an expression for absolute potential energy.
10. Define escape velocity.
11. Understand that in a resistive medium loss of potential energy of a body is equal to gain in kinetic energy of the body plus work done by the body against friction.
12. Give examples of conservation of energies from everyday life.
13. Describe some non-conventional sources of energy.

Work is often thought in terms of physical or mental effort. In Physics, however, the term work involves two things (i) force (ii) displacement. We shall begin with a simple situation in which work is done by a constant force.

4.1 WORK DONE BY A CONSTANT FORCE

Lel us consider an object which is being pullod by a constant force F at an angle θ to the direction of motion. The force displaces the object from position A to B through a displacement d (Fig. 4.1).

Fig. 4.1

Fig. $4.2(\mathrm{~b})$

Fig. 4.3

We define work W done by the force F as the scalar product of \mathbf{F} and \mathbf{d}.

$$
\begin{align*}
W & =F \cdot d=F d \cos \theta \tag{4,1}\\
& =(F \cos \theta) d
\end{align*}
$$

The quantity ($F \cos \theta$) is the component of the force in the direction of the displacement \mathbf{d}.
Thus, the work done on a body by a constant force is defined as the product of the magnitudes of the displacement and the component of the force in the direction of the displacement.
Can you tell how much work is being done?
(i) On the pail when a person holding the pail by the force F is moving forward (Fig. 4.2 a).
(ii) On the wall (Fig, 4.2 b)?

When a constant force acts through a distance d, the event can be plotted on a simple graph (Fig. 4.3). The distance is normally plotted along x-axis and the force along y-axis. In this case as the force does not vary, the graph will be a horizontal straight line. If the constant force F (newton) and the displacement d (metre) are in the same direction then the work done is Fd (joule), Clearly shaded area in Fig. 4.3 is also Fd. Hence the area under a force-displacement curve can be taken to represent the work done by the force. In case the force F is not in the direction of displacement, the graph is plotted between $F \cos \theta$ and d.
From the definition of work, we find that:
(i) Work is a scalar quantity.
(ii) If $\theta<90^{\circ}$, work is done and it is said to be positive work.
(iii) If $\theta=90^{\circ}$, no work is done.
(iv) If $\theta>90^{\circ}$, the work done is said to be negative.
(v) SI unit of work is N m known as joule (J).

4.2 WORK DONE BY A VARIABLE FORCE

In many cases the force does not remain constant during the process of doing work. For example, as a rocket moves
away from the Earth, work is done against the force of gravity, which varies as the inverse square of the distance from the Earth's centre. Similarty, the force exerted by a spring increases with the amount of stretch. How can we calculate the work done in such a situation?
Fig. 4.4 shows the path of a particle in the $x-y$ plane as it moves from point a to point b . The path has been divided into n short intervals of displacements $\Delta \mathbf{d}_{1}, \Delta \mathrm{~d}_{2}, \ldots \ldots, ., \Delta \mathbf{d}_{\mathrm{n}}$ and $F_{1}, F_{2} \ldots \ldots, F_{n}$ are the forces acting during these intervals.
During each small interval, the force is supposed to be approximately constant. So the work done for the first interval can then be written as

$$
\Delta W_{1}=F_{1}, \Delta d_{1}=F_{1} \cos \theta_{1} \Delta d_{1}
$$

and in the second interval

$$
\Delta W_{2}=F_{2} \cdot \Delta d_{2}=F_{2} \cos \theta_{2} \Delta d_{2}
$$

and so on. The total work done in moving the object can be calculated by adding all these terms.
$W_{\text {iotal }}=\Delta W_{1}+\Delta W_{2}+\ldots \ldots .+\Delta W_{n}$
$=F_{1} \cos \theta_{1} \Delta d_{1}+F_{2} \cos \theta_{2} \Delta d_{2}+\ldots \ldots+F_{n} \cos \theta_{n} d_{n}$

$$
\begin{equation*}
W_{100 a}=\sum_{i=1}^{n} F \cos \theta_{i} \Delta d_{j} \tag{4.2}
\end{equation*}
$$

We can examine this graphically by plotting F $\cos \theta$ verses d as shown in Fig. 4.5. The displacement d has been subidivided into n equal intervals. The value of $F \cos \theta$ at the beginning of each interval is indicated in the figure.
Now the i th shaded rectangle has an area $F_{1} \cos \theta \Delta d$, which is the work done during the i th interval. Thus, the work done given by Eq. 4.2 equals the sum of the areas of all the rectangles. If we subdivide the distance into a large number of intervals so that each Δd becomes very small, the work done given by Eq. 4.2 becomes more accurate. If we let each Δd to approach zero then we obtain an exact result for the work done, such as

Fig. 4.4
A particle acted upon by a variable force, moves along the path shown from point a topoint b.

$$
\begin{equation*}
W_{\text {losal }}=\operatorname{Limit}_{\Delta i \rightarrow 0} \sum_{i=1}^{n} F \cos \theta \Delta d_{i} \tag{4.3}
\end{equation*}
$$

Fig. 4.6

Fig. 4.7

Fig. 4.3

In this limit Ad approaches zero, the total area of the rectangles (Fig. 4.5) approaches the area between the F cose curve and d-axis from a to b as shown shaded in Fig. 4.6.
Thus, the work done by a variable force in moving a particle between two points is equal to the area under the $F \cos \theta$ verses d curve between the two points a and b as shown in Fig. 4.6.

Example 4.1: A force Facting on an object varies with distance x as shown in Fig. 4.7. Calculate the work done by the force as the object moves from $x=0$ to $x=6 \mathrm{~m}$.

Solution: The work done by the force is equal to the total area under the curve from $x=0$ to $x=6 \mathrm{~m}$. This area is equal to the area of the rectangular section from $x=0$ to $x=4 \mathrm{~m}$, plus the area of triangular section from $x=4 \mathrm{~m}$ to $x=6 \mathrm{~m}$. Hence

Work done represented by the area of rectangle $=4 \mathrm{~m} \times 5 \mathrm{~N}$

$$
=20 \mathrm{Nm}=20 \mathrm{~J}
$$

Work done represented by the area of triangle $=\frac{1}{2} \times 2 \mathrm{~m} \times 5 \mathrm{~N}$

$$
=5 \mathrm{Nm}=5 \mathrm{~J}
$$

Therefore, the total work done $=20 \mathrm{~J}+5 \mathrm{~J}=25 \mathrm{~J}$

4.3 WORK DONE BY GRAVITATIONAL FIELD

The space around the Earth in which its gravitational force acts on a body is called the gravitational field. When an object is moved in the gravitational field, the work is done by the gravitational force. If displacement is in the direction of gravitational force, the work is positive. If the displacement is against the gravitational force, the work is negative.

Let us consider an object of mass m being displaced with constant velocity from point A to B along various paths in the presence of a gravitational force (Fig. 4.8). In this case the gravitational force is equal to the weight mg of the object.

The work done by the gravitational force along the path $A D B$ can be split into two parts. The work done along $A D$ is zero, because the weight $m g$ is perpendicular to this path, the work done along DB is (-mgh) because the direction of $m g$ is opposite to that of the displacement i.e. $\theta=180^{\circ}$. Hence, the work done in displacing a body from A to B through path 1 is

$$
W_{A D B}=0+(-m g h)=-m g h
$$

If we consider the path $A C B$, the work done along $A C$ is also ($-m g h$). Since the work done along $C B$ is zero, therefore,

$$
W_{A C B}=-m g h+0=-m g h
$$

Let us now consider path 3, i.e. a curved one. Imagine the curved path, to be broken down into a series of horizontal and vertical steps as shown in Fig. 4.9. There is no work done along the horizontal steps, because $m g$ is perpendicular to the displacement for these steps. Work is done by the force of gravity only along the vertical displacements.

$$
W_{A B}=-m g\left(\Delta y_{1}+\Delta y_{2}+\Delta y_{3}+\ldots \ldots . .+\Delta y_{n}\right)
$$

as

$$
\left(\Delta y_{1}+\Delta y_{2}+\Delta y_{3}+\ldots \ldots . .+\Delta y_{n}\right)=h
$$

Hence,

$$
W_{A B}=-m g h
$$

The net amount of work done along AB path is still ($-m g h)$.
We conclude from the above discussion that

Work done in the Earth's gravitational field is independent of the path followed.

Can you prove that the work done along a closed path such as ACBA or ADBA (Fig, 4.8), in a gravitational field is zero?

The field in which the work done be independent of the path followed or work done in a closed path be zero, is called a conservative field.

Fig. 4.3
A smooth path msy be raplaced by a series of infinitesimal x and y displacements. Wurk is done only during the y displacements.

The frictional force is a non-conservative force, because if an object is moved over a rough surface between two points along different paths, the work done against the frictional force certainly depends on the path followed.

4.4 POWER

In the definition of work, it is not clear, whether the same amount of work is done in one second or in one hour. The rate, at which work is done, is often of interest in practical applications.
Power is the measure of the rate at which work is being done.
If work ΔW is done in a time interval Δt, then the average power P_{ov} during the interval Δt is defined as

$$
\begin{equation*}
P_{\mathrm{av}}=\frac{\Delta W}{\Delta t} \tag{4.4}
\end{equation*}
$$

If work is expressed as a' function of time, the instantaneous power P at any instant is defined as

$$
\begin{equation*}
P=\operatorname{Limit}_{\Delta t \rightarrow 0} \frac{\Delta W}{\Delta t} \tag{4.5}
\end{equation*}
$$

Where ΔW is the work done in short interval of time Δt following the instant t

Power and Velocity

It is, sometimes, convenient to express power in terms of a constant force \mathbf{F} acting on an object moving at constant velocity v . For example, when the propeller of a motor boat causes the water to exert a constant force \mathbf{F} on the boat, it moves with a constant velocity \mathbf{v}. The power delivered by the motor at any instant is, then. given by

$$
P=\operatorname{Limit}_{\Delta t \rightarrow 0} \frac{\Delta W}{\Delta t}
$$

we know
50

$$
\begin{aligned}
\Delta W & =F \cdot \Delta d \\
P & =\operatorname{Limit}_{\Delta t \rightarrow 0} \frac{F \cdot \Delta d}{\Delta t}
\end{aligned}
$$

Since $\quad \operatorname{Limit}_{\Delta t \rightarrow 0} \frac{\Delta d}{\Delta t}=v$
Hence, $\quad P=F \cdot v$ \qquad

The SI unit of power is watt, defined as one joule of work done in one second.

Sometimes, for example, in the electrical measurements, the unit of work is expressed as watt second. However, a commercial unit of electricalenergy is kilowatt-hour.

One kilowatt hour is the work done in one hour by an agency whose power is one kilowatt.

Therefore,

$$
\begin{aligned}
& 1 \mathrm{kWh}=1000 \mathrm{~W} \times 3600 \mathrm{~s} . \\
& 1 \mathrm{kWh}=3.6 \times 10^{6} \mathrm{~J}=3.6 \mathrm{M} \mathrm{~J}
\end{aligned}
$$

or $\quad 1 \mathrm{kWh}=3.6 \times 10^{6} \mathrm{~J}=3.6 \mathrm{M} \mathrm{J}$
Example 4.2: A 70 kg man runs up a long flight of stairsin 4.0 s . The vertical height of the stairs is 4.5 m . Calculate his power output in watts.

Solution: Work done $=m g h$

$$
\begin{aligned}
\text { Power } & =\frac{m g h}{t} \\
P & =\frac{70 \mathrm{~kg} \times 9.8 \mathrm{~ms}^{2} \times 4.5 \mathrm{~m}}{4 \mathrm{~s}} \\
P & =7.7 \times 10^{2} \mathrm{kgm}^{2} \mathrm{~s}^{-3}=7.7 \times 10^{2} \mathrm{~W}
\end{aligned}
$$

4.5 ENERGY

Energy of a body is its capacity to do work. There are two basic forms of energy.

(i) Kinetic energy
 (ii) Potential energy

The kinetic energy is possessed by a body due to its motion and is given by the formula

$$
\begin{equation*}
K . E .=\frac{1}{2} m v^{2} \tag{4.7}
\end{equation*}
$$

Fot Your Intormation	
Approximate Energy Values	
Source En	Energy (J)
Burning 1 ton coal	30×10^{7}
Burning 1 itre petrol	$5 \times 10^{\prime}$
K.E. of a car at	
$90 \mathrm{kmh}^{3}$	1×16^{2}
Running Porion: at	
$10 \mathrm{~km} \mathrm{~h}^{-}$	3×10^{2}
Fission of one atom	
of stanium	1.8×10
KE of a moleoule of air	iv 8×10^{-11}

Tidabits

All the lood you eat in one day nes about the zame enargy as $1 / 3$ litre of patso.
where m is the mass of the body moving with velocity \mathbf{v}.
The potential energy is possessed by a body because of its position in a force field e.g. gravitational field or because of its constrained state. The potential energy due to gravitational field near the surface of the Earth at a height h is given by the formula

$$
\begin{equation*}
P E_{1}=m g h \tag{4.8}
\end{equation*}
$$

This is called gravitational potential energy. The gravitational P.E. is always determined relative to some arbitrary position which is assigned the value of zero P.E. In the present case, this reference level is the surface of the Earth as position of zero P.E. In some cases a point at infinity from the Earth can also be chosen as zero reference level.

The energy stored in a compressed spring is the potential energy possessed by the spring due to its compressed or stretched state. This form of energy is called the elastic potential energy.

Work-Energy Principle

Whenever work is done on a body, it increases its energy. For example a body of mass m is moving with velocity v_{i}. A force F acting through a distance d increases the velocity to v_{s} then from equation of motion

$$
2 a d=v_{t}^{2}-v_{1}^{2}
$$

or

$$
\begin{equation*}
d=\frac{1}{2 a}\left(v_{i}^{2}-v_{i}^{2}\right) \tag{4.9}
\end{equation*}
$$

From second law of motion

$$
\begin{equation*}
F=m a \tag{4,10}
\end{equation*}
$$

Multiplying equations 4.9 and 4.10 , we have

$$
F d=\frac{1}{2} m\left(v_{1}^{\prime}-v_{1}^{2}\right)
$$

$$
\begin{equation*}
\text { or } \quad F d=\frac{1}{2} m v_{t}^{2}-\frac{1}{2} m v_{l}^{2} \tag{4.11}
\end{equation*}
$$

where the left hand side of the above equation gives the work done on the body and right hand side gives the increase or change in kinetic energy of the body. Thus

> Work done on the body equals the change in its kinetic energy.

This is known as work-energy principle. If a body is raised up from the Earth's surface, the work done changes the gravitational potential energy. Similarly, if a spring is compressed, the work done on it equals the increase in its elastic potential energy.

Absolute Potential Energy

The absolute gravitational potential energy of an object at a certain position is the work done by the gravitational force in displacing the object from that position to infinity where the force of gravity becomes zero. The relation for the calculation of the work done by the gravitational force or potential energy $=m g h$, is true only near the surface of the Earth where the gravitational force is nearly constant. But if the body is displaced through a large distance in space from, let, point 1 to N (Fig. 4.10) in the gravitational field, then the gravitational force will not remain constant, since it varies inversely to the square of the distance.

In order to overcome this difficulty, we divide the distance between points 1 and N into small steps each of length Δr so that the value of the force remains constant for each - smail step. Hence, the total work done can be calculated by adding the work done during all these steps. If r_{1} and r_{2} are the distances of points 1 and 2 respectively, from the centre O of the Earth (Fig. 4.10.), the work done during the first step i.e., displacing a body from point 1 to point 2 can be calculated as below.

The distance between the centre of this step and the centre of the Earth will be

$$
r=\frac{r_{1}+r_{2}}{2}
$$

if

$$
r_{2}-r_{1}=\Delta r \quad \text { then } \quad r_{2}=r_{1}+\Delta r
$$

or

$$
W_{1 \rightarrow 2}=-G M m\left(\frac{1}{r_{i}}-\frac{1}{r_{2}}\right)
$$

Similarly the work done during the second step in which the body is displaced from point 2 to 3 is

$$
W_{2 \rightarrow 2}=-G M m\left(\frac{1}{r_{2}}-\frac{1}{r_{3}}\right)
$$

and the work done in the last step is

$$
W_{N-t \rightarrow N}=-G M m\left(\frac{1}{r_{N-1}}-\frac{1}{r_{N}}\right)
$$

Hence, the total work done in displacing a body from point1 to N is calculated by adding up the work done during all these steps.

$$
\begin{aligned}
W_{\text {iotar }} & =W_{1} \rightarrow_{2}+W_{2} \rightarrow_{3}+\ldots \ldots \ldots+W_{N-1} \rightarrow N \\
& =-G M m\left[\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)+\left(\frac{1}{r_{2}}-\frac{1}{r_{3}}\right)+\cdots \cdots+\left(\frac{1}{r_{N-1}}-\frac{1}{r_{N}}\right)\right]
\end{aligned}
$$

On simplification, we get

$$
W_{\text {atal }}=-G M m\left(\frac{1}{r_{1}}-\frac{1}{r_{N}}\right)
$$

If the point N is -situated at an infinite distance from the Earth, so

$$
r_{N}=\infty \quad \text { then } \frac{1}{r_{N}}=\frac{1}{\infty}=0
$$

Hence, $\quad W_{\text {itain }}=\frac{. G M m}{r_{1}}$
Therefore, the general expression for the gravitational potential energy of a body situated at distance r from the centre of Earth is

$$
U=\frac{-G M m}{r}
$$

This is also known as the absolute value of gravitational potential energy of a body at a distance r from the centre of the Earth.

For Your information
Some Escape speeds (kms^{-1})

Heavenly body Escape spoed	
Moon	2.4
Mereury	4.3
Mani	5.0
Venus	10.4
Earth	11.2
Uranus	22.4
Neptune	25.4
Saturn	37.0
Jupiter	61

Note that when rincreases, U becomes less negative i.e..U increases. It means when we raise a body above the surface of the Earth its P.E. increases. The choice of zero point is arbitrary land orly the difference of P.E. From one point to another is significant, wether we consider the surface of the Earth or the point at infinity as zero P.E. reference, the change in P.E. as we move a body above the surface of the Earth, will always be positive.

Now the absolute potential energy on the surface of the Earth is found by putting $r=R$ (Radius of the Earth)

Absolute potential energy $=U_{9}=-\frac{G M m}{R}$
The negative sign shows that the Earth's gravitational field for mass m is attractive. The above expression gives the work or the energy required to take the body out of the Earth's gravitational field, where its potential energy with respect to Earth is zero.

Escape Velocity

It is our daily life experience that an object projected upward comes back to the ground after rising to a certain height. This is due to the force of gravity acting downward. With increased initial velocity, the object rises to the greater height before coming back. If we go on increasing the initial velocity of the object, a stage comes when it will not return to the ground. It will escape out of the influence of gravity. The initial velocity of an object with which it goes out of the Earth's gravitational field, is known as escape velocity.

The escape velocity corresponds to the initial kinetic energy gained by the body, which carries it to an infinite distance from the surface of Earth.

$$
\text { Initial K.E. }=\frac{1}{2} m v_{\mathrm{owo}}^{2}
$$

We know that the work done in lifting a body from Earth's surface to an infinite distance is equal to the increase in its potential energy

$$
\text { Incerase in PE }=0-\left(-G \frac{M m}{R}\right)=G \frac{M m}{R}
$$

where M and R are the mass and radius of the Earth respectively. The body will escape out of the gravitational field if the initial K.E. of the body is equal to the increase in P.E. of the body in lifting it up to infinity. Then

$$
\frac{1}{2} m v_{\mathrm{vec}}^{2}=G \frac{M m}{R}
$$

or $\quad V_{\mathrm{mi}}=\sqrt{\frac{2 G M}{R}} \quad \ldots \ldots \ldots$
As

$$
\begin{equation*}
g=\frac{G M}{R^{2}} \tag{4.16}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
V_{\text {Bic }}=\sqrt{2 g R} \tag{4,17}
\end{equation*}
$$

The value of $\mathrm{v}_{\text {esc }}$ comes out to be approximately $11 \mathrm{kms}^{-1}$

4.6 INTERCONVERSION OF POTENTIAL ENERGY AND KINETIC ENERGY

Consider a body of mass m at rest, at a height h above the surface of the Earth as shown in Fig. 4.11. At position: A. the body has P.E. $=m g h$ and $K . E .=0$. We release the body and as it falls, we can examine how kinetic and potential energies associated with it interchange.

Let us calculate PE. and K.E. at position B when the body has fallen through a distance x, ignoring air friction.

$$
\begin{aligned}
& \mathrm{PE}=m g(h-x) \\
& \mathrm{K} . \mathrm{E}=\frac{1}{2} m v_{\mathrm{B}}^{2}
\end{aligned}
$$

and

Velocity v_{a}, at B , can be calculated from the relation,

$$
\begin{gathered}
v_{t}^{2}=v_{t}^{2}+2 g s \\
v_{t}=v_{B} \quad, \\
v_{i}=0 \\
v_{B}^{2}=0+2 g x=2 g x
\end{gathered}
$$

4is - ent

$$
K . E .=\frac{1}{2} m(2 g x)=m g x
$$

Total energy at $\mathrm{B}=\mathrm{P} . \mathrm{E} .+\mathrm{K} . \mathrm{E}$.

$$
\begin{equation*}
=m g(h-x)+m g x=m g h \tag{4.18}
\end{equation*}
$$

At position C. just before the body strikes the Earth, P.E. $=0$ and K.E. $=\frac{1}{2} m v_{\mathrm{c}}^{2}$, where v_{c} can be found out by the following expression.

$$
\begin{aligned}
& v_{c}^{2}=v_{i}^{2}+2 g h=2 g h \quad \text { as } \quad v_{i}=0 \\
& K . E .=\frac{1}{2} m v_{c}^{2}=\frac{1}{2} m \times 2 g h=m g h
\end{aligned}
$$

Fig. 4.12

4.7 CONSERVATION OF ENERGY

The kinetic and potential energies are both different forms of the same basic quantity, i.e. mechanical energy Total mechanical energy of a body is the sum of the kinetic energy and potential energy. In our previous discussion of a falling body, potential energy may change into kinetic energy and vice versa, but the total energy remains constant. Mathematically,

$$
\text { Total Energy }=\text { P.E.E. }+ \text { K.E. }_{.}=\text {Constant }
$$

This is a special case of the law of conservation of energy which states that:

Energy cannot be destroyed. It can be transformed from one kind into another, but the total amount of energy remains constant.

This is one of the basic laws of physics. We daily observe many energy transformations from one form to another. Some forms, such as electrical and chemical energy, are more easily transferred than others, such as heat. Ultimately all energy transfers result in heating of the environment and energy is wasted. For example, the P.E. of the falling object changes to K.E., but on striking the ground, the K.E. changes into heat and sound, If it seems in an energy transfer that some energy has disappeared, the lost energy is often converted into heat. This appears to be the fate of all available energies and is one reason why new sources of useful energy have to be developed.
Example 4.3: A brick of mass 2.0 kg is dropped from a rest position 5.0 m above the ground. What is its velocity at a height of 3.0 m above the ground?
Solution: Using Eq. 4.19

$$
\begin{aligned}
& m g\left(h_{1}-h_{2}\right)=\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right) \\
& \text { As } \quad v_{1}=0 \quad \text { and- } \quad v_{2}=v \\
& \text { Hence } \\
& \text { or }
\end{aligned} \quad v=\sqrt{2 g\left(h_{1}-h_{2}\right)} \quad v=\sqrt{2 \times 9.8 \mathrm{~ms}^{-2} \times 2.0 \mathrm{~m}}=6.3 \mathrm{~ms} \mathrm{~s}^{4}-1 .
$$

For Your Information	
Source of energy	Original source
Solar	Sun
Biomass	Sun
Foralituets	Sun
Wind	Sum
Woves	Sum
Hydro eleatric	Sun
7 des	Moon
Geothermal	Eabt

* Individual lielss mity ruh off

TRenewhbie when made from Bo miná

4.8 NON CONVENTIONAL ENERGY SOURCES

High Tide.
Water level equalized.

Low tide
Water is beginning to flow out of basin to ocean, driving turtines.

Water level equalized.

Hight bides
Water is allowed to flow back. Into the basln, driving turbines.

Fig. 413
Tidal power plant. Turbines are focated inside the dam:

Dot You Know?

The pull of the Moon does not enity pull the sea up and down. This tidal effect can stso distort the continents polling fand up and down by as mueh as 25 cm .

These are the energy sources which are not very common these days. However, it is expected that these sources will contribute substantially to the energy demand of the future. Some of these are introduced briefly here.

Energy from Tides

One very novel example of obtaining energy from gravitational field is the energy obtained from tides. Gravitational force of the moon gives rise to tides in the sea. The tides raise the water in the sea roughly twice a day. If the water at the high tide is trapped in a basin by constructing a dam, then it is possible to use this as a source of energy. The dam is filled at high tide and water is released in a controlled way at low tide to drive the turbines. At the next high tide the dam is filled again and the in rushing water also drives turbines and generates electricity as shown systematically in the Fig. 4.13.

Energy from Waves

The tidal movernent and the winds blowing across the surface of the ocean produce strong water waves. Their energy can be utilized to generate electricity. A method of harnessing wave energy is to use large floats which move up and down with the waves. One such device invented by Professor Salter is known Salter's duck (Fig. 4.14). It consists of two parts (i) Duck float. (ii) Balance float.

Fig. 4.14
The wave energy makes duck float move relative to the balance float. The relative motion of the duck float is then used to run electricity generators.

Solar Energy

The Earth receives huge amount of energy directly from the Sun each day. Solar energy at normal incidence outside the Earth's atmosphere is about $1.4 \mathrm{kWm}^{-2}$ which is referred as solar constant. While passing through the atmosphere, the total energy is reduced due to reflection, scattering and absorption by dust particles, water vapours and other gases. On a clear day at noon, the intensity of solar ehergy reaching the Eart's surface is about $1 \mathrm{kWm}^{-2}$. This energy can be used directly to heat water with the help of large solar reflectors and thermal absorbers. It can also be converted to electricity. In one method the flat plate collectors are used for heating water. A typical collector is shown in Fig. 4.15 (a). It has a blackened surface which absorbs energy directly from solar radiation. Cold water passes over the surface and is heated upto about $70^{\circ} \mathrm{C}$.
Much higher temperature can be achieved by concentrating solar radiation on to a small surface area by using huge reflectors (mirrors) or lenses to produced steam for running a turbine.

The other method is the direct conversion of sunlight into electricity through the use of semi conductor devices called solar cells also known as photo voltaic cells. Solar cells are thin wafers made from silicon. Electrons in the silicon gain energy from sunlight to create a voltage. The voltage produced by a single voltaic cell is very low. In order to get sufficient high voltage for practical use, a large number of such cells are connected in series forming a solar cell panel.
For cloudy days or nights, electric energy can be stored during the Sun light in Nickel cadmium batteries by connecting them to solar panels. These batteries can then provide power to electrical appliances at nights or on cloudy days.

Solar cells, although, are expensive but last a long time and have low running cost. Solar cells are used to power satellites having large solar panels which are kept facing the Sun (Fig. 4.15 b). Other examples of the use of solar cells are remote ground based weather stations and rain forest

Fig. 4.15(b) communication systems. Solar calculators and watches are also in use now-a-days.

For your information

The rapid growth of human population has pot a strain on our natural resources. A sustainable sociaty minimizes waste and maximizes the benefit from each resource. Minimizing the use of enargy is an other mothod of conservation. We can save energy by,
(i) turning off lights and electrical appliances when not in use.
(ii) using fluorescent buibs instead of incandescent bulbs
(iii) using sunlight in offices, commercial centers and houses during daylight hours (iv) Taking short hot shawers.

Fig. 4.16

Do you know?

Pollution can be reduced if (1) Peoplo use mass transportation (ii) Use geothermal, solar, hydroelectrical and wind energy as alkernative forms of energy.

Energy From Biomass

Biomass is a potential source of renewable energy. This includes all the organic materials such as crop residue. natural vegetation, trees, animal dung and sewage. Biomass energy or bio conversion refers to the use of this material as fuel or its conversion into fuels.
There are many methods used for the conversion of biomass into fuels. But the most common are

1. Direct combustion

2. Fermentation

Direct combustion method is usually applied to get energy from waste products commonly known as solid waste. It will be discussed in the next section.

Biofuel such as ethanol (alcohol) is a replacement of gasoline. It is obtained by fermentation of biomass using enzymes and by decomposition through bacterial action in the absence of air (oxygen).

The rotting of biomass in a closed tank called a digester produces Biogas which can be piped out to use for cooking and heating (Fig. 4.16).
The waste material of the process is a good organic fertilizer. Thus, production of biogas provides us energy source and also solves the problem of organic waste disposal.

Energy from Waste Products

Waste products like wood waste, crop residue, and particularly municipal solid waste can be used to get energy by direct combustion. It is probably the most commonly used conversion process in which waste material is bumt in a confined container. Heat produced in this way is directly utilized in the boiler to produce steam that can run turbine generator:

Geothermal Energy

This is the heat energy extracted from inside the Earth in the form of hol water or steam. Heat within the Earth is generated by the following processes.

1. Radioactive Decay

The energy, heating the rocks, is constantly being released by the decay of radioactive elements.

2. Residual Heat of the Earth

At some places hot igneous rocks, usually within 10 km of the Earth's surface, are in a molten and partly molten state. They conduct heat energy from the Earth's interior which is still very hot. The temperature of these rocks is about $200^{\circ} \mathrm{C}$ or more.

3. Compression of Material

The compression of material deep inside the Earth also causes generation of heat energy.
In some place water beneath the ground is in contact with hot rocks and is raised to high temperature and pressure. It comes to the surface as hot springs, geysers, or steam vents. The steam can be directed to turn turbines of electric generators.
At places water is not present and hot rocks are not very deep, the water is pumped down through them to get steam (Fig. 4.17). The steam then can be used to drive turbines or for direct heating.
An interesting phenomenon of geothermal energy is a geyser. It is a hot spring that discharges steam and hot water, intermittently releasing an explosive column into the air (Fig. 4.18). Most geysers erupt at irregular intervals. They usually occur in volcanic regions. Extraction of geothermal heat energy often occurs closer to geyser sights. This extraction seriously disturbs geyser system by reducing heat flow and aquifer pressure. Aquifer is a layer of rock holding water that allows water to percolate through it with pressure.

Fig. 4.17

Fig. 4.18

SUMMARY

- The work done on a body by a constant force is defined as the product of the magnitude of the displacement and the component of the force in the direction of the displacement.

$$
W=\mathbf{E d}=F d \cos \theta
$$

* Work done by a variable force is computed by dividing the path into very small displacement intervals and then taking the sum of works done for all such intervals.

$$
W=\sum_{i=1}^{n} F \cos \theta, \Delta d
$$

* Graphically, the work done by a variable force in moving a particle between two points is equal to the area under the F cos θ verses α curve between these two points.
-1 When an object is moved in the gravitational field of the Earth, the work is done by the gravitational force. The work done in the Earth's gravitational field is independent of the path followed, and the work done along a closed path is zero. Such a force field is called a conservative fieid.
- Power is defined as the rate of doing work and is expressed as

$$
P=\frac{\Delta W}{\Delta t} \quad \text { or } \quad P=F . V
$$

* Energy of a body is its capacity to do work. The kinetic energy is the energy possessed by a body due to its motion.
- The potential energy is possessed by a body because of its position in a force field.
*The absolute P.E of a body on the surface of Earth is

$$
U_{\mathrm{g}}=\frac{-G M m}{R}
$$

* The initial velocity of a body with which it should be projected upward so that it does not come back, is called escape velocity.

$$
v_{\mathrm{mc}}=\sqrt{\frac{2 G M}{R}}=\sqrt{2 g R}
$$

* Some of the non conventional energy sources are

1. Energy from the tides
2. Solar energy
3. Energy from waste products

2 Energy from waves
4. Energy from biomass
5. Geothermal energy

QUESTIONS

4.1 A person holds a bag of groceries while standing still, talking to a friend. A car is stationary with its engine running. From the stand point of work, how are these two situations similar?
4.2 Calculate the work done in kilo joules in lifting a mass of 10 kg (at a steady velocity) through a vertical height of 10 m .
4.3 A force F acts through a distance L. The force is then increased to $3 F$, and then acts through a further distance of 2 L . Draw the work diagram to scale.
4.4 In which case is more work done? When a 50 kg bag of books is lifted through 50 cm , or when a 50 kg crate is pushed through 2 m across the floor with a force of 50 N ?
4.5 An object has 1 J of potential energy. Explain what does it mean?
4.6 A ball of mass m is held at a height h_{1} above a table. The table top is at a height h_{2} above the floor. One student says that the ball has potential energy mgh, but another says that it is $m g\left(h_{1}+h_{2}\right)$. Who is correct?
4.7 When a rocket re-enters the atmosphere, its nose cone becomes very hot. Where does this heat energy come from?
4.8 What sort of energy is in the following:
a) Compressed spring
b) Water in a high dam
c) A moving car
4.9 A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved?
4.10 A boy uses a catapult to throw a stone which accidentally smashes a green house window. List the possible energy changes.

NUMERICAL PROBLEMS

4.1 A man pushes a lawn mower with a 40 N force directed at an angle of 20° downward from the horizontal. Find the work done by the man as he cuts a strip of grass 20 m long.
(Ans: $7.5 \times 10^{2} \mathrm{~J}$)
42 A rain drop ($m=3.35 \times 10^{-5} \mathrm{~kg}$) falls vertically at a constant speed under the influence of the forces of gravity and friction. In falling through 100 m , how much work is done by (a) gravity and (b) friction.
[Ans: (a) 0.0328 J (b) $-0.0328 \mathrm{~J}]$
4.3 Ten bricks, each 6.0 cm thick and mass 1.5 kg , lie flat on a table. How much work is required to stack them one on the top of another?
(Ans: 40 J)
4.4 A car of mass 800 kg travelling at $54 \mathrm{kmh}^{-1}$ is brought to rest in 60 metres. Find the average retarding force on the car. What has happened to original kinetic energy?
(Ans: 1500 N)
4.5 A 1000 kg automobile at the top of an incline 10 metre high and 100 m long is released and rolls down the hill. What is its speed at the bottom of the incline if the average retarding force due to friction is 480 N ?
(Ans: $10 \mathrm{~ms}^{-1}$)
$4.6100 \mathrm{~m}^{3}$ of water is pumped from a reservoir into a tank. 10 m higher than the reservoir, in 20 minutes. If density of water is $1000 \mathrm{~kg} \mathrm{~m}^{-3}$, find
(a) the increase in P.E.
(b) the power delivered by the pump.
[Ans: (a) $9.8 \times 10^{6} \mathrm{~J}$ (b) 8.2 kW]
4.7 A force (thrust) of 400 N is required to overcome road friction and air resistance in propelling an automobile at $80 \mathrm{kmh}^{-1}$. What power (kW) must the engine develop?
(Ans: 8.9 kW)
4.8 How large a force is required to accelerate an electron $\left(m=9.1 \times 10^{-21} \mathrm{~kg}\right)$ from rest to a speed of $2.0 \times 10^{7} \mathrm{~ms}^{-1}$ through a distance of 5.0 cm ?
(Ans: $3.6 \times 10^{-15} \mathrm{~N}$)
4.9 A diver weighing 750 N dives from a board 10 m above the surface of a pool of water. Use the conservation of mechanical energy to find his speed at a point 5.0 m above the water surface, neglecting air friction.
(Ans: $9.9 \mathrm{~ms}^{-1}$)
4910. A child starts from rest at the top of'a slide of height 4.0 m .(a) What is his speed at the bottom if the slide is frictionless? (b) if he reaches the bottom, with a speed of $6 \mathrm{~ms}^{-1}$, what percentage of his total energy at the top of the slide is lost as a result of friction?
[Ans: (a) $8.8 \mathrm{~ms}^{-1}$ (b) 54%]

Chapter

CIRCULAR MOTION

Learning Objectives

At the end of this chapter the studerits will be able to:
1 Descrite angular motion.
2 Define angular diaplacement, angular velocity and angular acceleration. Define radian and corvert an angle from radian measure to degree and vice versa.
Use the equation $S=r$ - -and $v=r \mathrm{~m}$.
Descrite qualitatively motion in: a ourved path due to a perpendicular force and understand the centripetal acceleration in case of uniform motion in a circle.
Derve the equation $a_{5}=r o^{2}=v^{3} r$ and $F_{5}=m 0^{2} r=m v^{2} / r$
Understand and describe moment of inertia of a body
Understand the conoept of angular momentum.
Describe examples of consarvation of angular mornentum.
10. Understand and express rotational kinetic oneigy of a disc and a hoop on an inclined plane.
11. Describe the motion of artifictaf satelifes:
12. Understand that the objecte in satellites appter to ber veightless.
13. Understand that how and why antificial gravily is produced.
14. Calculate the radius of peo-stationary orbits and orbital velocity of natelites.
13. Descrbe Newton's and Einglein's views.of gravitation,

We have studied velocty, acceleration and the laws of motion, mositly as they are involved in rectilinear motion. However, many objects move in circuiar paths and their direction is continually changing. Since velocity is a vector quantity, this change of direction means that their velocities are not constant. A etone whirled around by a string, a car furning around a comer and satellites in orbits around the Earth are all oxamples of this Nind of motion.

$\mathrm{Fe}-5.5(4)$

Fig. 51 (b)

Kan 5.4 fin

In this chapter we will study, circular motion, rotational motion, moment of inertis, angular momentum and the related topics.

5.1 ANGULAR DISPLACEMENT

Conslider the motion of a single particle P of mass m in a circular path of radius r. Suppose this motion is taking place by altaching the particle P at the end of a massless rigid rod of length r whose other end is pivoted at the centre O of the circular path, as shown in Fig, 5.1 (a). As the particle is moving on the circular path, the rod OP rotates in the plane of the circle. The axds of rotation passes through the pivet O and is normal to the plane of rotation. Consider a system of axes as shown in Fig 5.1 (b). The z-axis is taken along the axis of rotation with the pivot Q as origin of coordinates. Axes x and y aro taken in the plane of rotation. While OP is rotating, suppose at any instant t, its position is OP, making angle θ with x-axis. At later time $t+\Delta t$, let its position be

> Angle $\Delta \theta$ detines the angutar displacement, of OP during the time interval Δt.

For very amall values of $M 0$, the angular displecement is a vector quantity.

The angular displacement. $\Delta \theta$ is assigned a positive sign when the sense of rotation of OP is counter clock wise.

The direction associated with $\Delta \hat{0}$ is along the axis of rotation and is given by right hand rule which states that

> Grasp the axis of ratation in right hand with fingers curting in the direction of rotation; the thumb points in the direction of angular displacement, as shown in Fig 5.1 (d).

Three units are generatly used to express angular displacement, namely degrees, revolution and radian. We
are already familiar with the first two As regards radian which is $S i$ unit，consider an arc，of length S of a circle of tadius r（Fig 5．2．）which subtends an angle it at the centre of the cercle．Its value in radians（rady）is given as

$$
\begin{align*}
& \text { it }=\frac{\text { arciength }}{\text { raditas }} \text { rad } \\
& \text { i1 }=\frac{S}{r} \mathrm{rad} \tag{5.7}
\end{align*}
$$

or $\quad \mathrm{S}=\mathrm{rt} \quad$（wheraels in radian）

10．4
If OP is rotating，the point P covers a distance $s=2 \pi r$ in one revolution of P ．In racian it would be

$$
\frac{5}{r}-\frac{2 \pi r}{r}=2 \pi
$$

Eis 12

So $\quad 1$ revolution $=2 \pi \mathrm{rad}=360^{n}$

Or

$$
1 \mathrm{rad}=\frac{360^{\circ}}{2 \pi}=57.3^{\circ}
$$

5．2 ANGULAR VELOCITY

Very often we are inferested in lonowing how fast or how slow a body is rotating，it is determined by its angular velocity which is defined as the rate at which the angular displacement is changing with time．Relerring to Fig．5．1（c）， if $\Delta \theta$ is the angular displacement during the time interval Δt ，the average angular velocily ${ }^{\prime} \omega_{0}$ during this Interval is given by

$$
\begin{equation*}
\omega_{w}=\frac{\Delta t}{\Delta t} \tag{ntwhitrit}
\end{equation*}
$$

The instantaneous angular velocity 6 is the limit of the ratio $\Delta \theta / \Delta t$ as Δt ．following instant t ，approaches to zero．

$$
\text { Thas } \quad e=\operatorname{Lim}_{\Delta d \rightarrow 0} \frac{\Delta g}{\Delta r}
$$

＊＊リッドッ

In the limit when of approaches zero，the angular displacement would be infinitesimally smail So it would be a－ vector quantity and the angular velocity as defined by

Eq. 5.3 would also be a vector. Its direction is along the axis of rotation and is given by right hand rule as described earlier.
Angular velocity is measured in redians per second which is its Si unit Somotimes it is afso given in terme of revolution per minute.

5.3 ANGULAR ACCELERATION

When we switch on an electric fan, we notice that its angular velocity goes on increasing. We say that it has an angufar acoeleration. We define angular acceleration as the rate of change of angular velocity. If ailand are are the values of instantaneous velocity of a rotating body at instants t and t the average angular acceleration during the interval $b-t$ is given by

$$
\begin{equation*}
\alpha_{a v}=\frac{\omega_{1}-\omega}{t_{s} \cdot t_{i}}=\frac{\Delta s}{\Delta f} \tag{5,4}
\end{equation*}
$$

The instantaneous angular acceleration is the limit of the ratio $\frac{\Delta \omega}{\Delta f}$ as Δt approaches zero. Therefore, instantaneous angular acceleration is given by

$$
\begin{equation*}
\alpha=\operatorname{Lim}_{\Delta \rightarrow 0} \frac{\Delta_{e n}}{\Delta t} \tag{5.5}
\end{equation*}
$$

The angular acceleration is also a vector quantity whose magnitude is given by Eq. 5.5 and whose direction is along the axis of rotation. Angular acceleration is expressed in units of rads?

Till now we have been considering the motion of a particle P on a circular path. The point P was fixed at the end of a rolating massless rigid rod. Now we consider the rotation of a rigid body as shown in Fig: 5.3. Imagine a point P on thee rigid body. Line OP is the perpendicular dropped from P on the axis of rotation, it is usually referred as reference Itine. As the body rotates, Ine OP also rotates with it with the same angular velocity and angular acceleration. Thus the rotation of a rigid body can be described by the rotation of the reference line OP and all the terms that we defined with tio holp of rotating line OP are also valld for the rotational motion of a rigid body, In future while dealing
with rotation of rigid botly, we will replace it by its reference line OP.

5.4 RELATION BETWEEN ANGULAR AND LINEAR VELOCITIES

Consider a rigid body rotating about z-axis wilth an angular velocity m as shown in Fig. 5.4 (a).

Imagine a point P in the rigid body at a perpendicular distance r from the axis of rotation. OP represents the reference line of the rigid body. As the body rotates, the point P moves along a circle of radus r with a linear velocity v whereas the line OP rotatess with angular velocity ω as shown in Fig. 5.4 (b). We are interested in finding out the relation batween w and v. As the axis of rotation is foxed, so the direction of io always remaine the same and (i) can be manipulated as a scalar. As regards the linear velocity of the point P. we consider ltes magnitude only which can also be treated as a scalar.

Suppose during the course of its movion, the point P moves through a distance $P_{1} P_{1}=1 s$ in a time interval $A t$ during which reference line OP has an angular isplacement $\Delta 0$ radtanduring this interval, X and Se are related by Eq. 5.1.

$$
\Delta S=r \Delta H
$$

Dividing both sides by of

$$
\frac{\Delta S}{\Delta r}=r \frac{\Delta t}{\Delta t}
$$

In the limit when $\Delta t \rightarrow 0$ the ratio $\Delta S / \Delta t$ represents v, the magnitude of the velocity with which point P is moving on the circumierence of the circle, Similarly $\Delta \theta / M$ represents the angular velocity is of the reference line OP. So equation 5.6 becomes

$$
v=r i o
$$

In Fig 5.4 (b), it can be seen that the polnt P is moving along the arc $P_{1} P_{7}$ In the limit when $\Delta t \rightarrow 0$, the length of arc $P_{1} P_{2}$ becomes very smat and lits drection represente the direction of tangent to the orcle at point P. Thus the velocily with which point P is moving on the circumference

Fse $24 \mid x$

F. 8.4

You insy foel scored is the fap of rolter caaster rise in the amusantirt foria buit you nephé fat down ween when yuu are upederdewn Why?
of the circle has a magnitude vand its direction is a/ways along the tangent to the circle at that point. That is why the linear velocity of the point P is atso known as tangential velocity:

Similarty Eq 5.7 shows that if the reference line OP is rotating with an angular acceleration \propto, the point P will aiso have a Irear or taingential acceleration a, Using Eq 5.7 it can be shown that the two accelerations are related by

$$
\begin{equation*}
a_{l}=r \alpha \tag{5.8}
\end{equation*}
$$

Eqs 5.7 and 5.8 show that on a rolating body, points that are at different dislances from the axis do not have the same speed or acceleration, but all points on a rigid body rotating about a fixed axis do have the same angular displacement, angular speed and angular accaleration at any instant. Thus by the use of angular variables we can describe the motion of the entire body in a simple way.

Equations Of Angular Motion

The equations ($5.2,5.3,5.4$ and 5.5) of angular motion are exactly analogous to those in linear motion except that θ. i0 and a have replaced S, y and a, respectively. As the other equations of linear motion were obtained by aigebraic manipulation of these equations, it follows that analogous bquations wit also apply to angular motion. Given below are angular equations together with their linear counterparts.

Linear

$$
\begin{aligned}
& v_{1}=v_{1}+a t \\
& 2 a S=v_{1}^{2}-v^{2} \\
& S=v t+\frac{1}{2} \cdot a t^{2}
\end{aligned}
$$

The angular equations 5.9 to 5.11 hold true only in the case when the axis of rotation is fixed, so that all the angular veclors have the same direction. Hence they can be manipulated as scalars.

Example 5, 1: An electric fan motating at 3 rev s^{-1} is switched off. it comes to rest in 18.0 s . Assuming deceleration to be uniform, find its value. How many revolutions did it furn before coming to rest?

Solution: In this problem we have

$$
t 5=3.0 \mathrm{rey} s^{\prime} \quad \text { What } 0 \quad t=18,0 \mathrm{~s} \text { and } \quad t=?, \quad 0=7
$$

From Eq. 5.4 we have

$$
\mathrm{a}=\frac{\mathrm{ma}-\mathrm{es}}{\mathrm{t}}-\frac{(6-3.0) \mathrm{revs}^{-1}}{180 \mathrm{~s}}=-0.167 \mathrm{rev} \mathrm{~s}^{2}
$$

and from Eq 5.11, we have

$$
\theta=m_{i} t+\frac{1}{2} \alpha t^{2}
$$

$=3.0 \mathrm{rov} \mathrm{s}^{4} \times 18.0 \mathrm{~s}+\frac{1}{2}\left(-0.167 \mathrm{rov} \mathrm{s}^{2}\right) \times(18.0 \mathrm{~s})^{2}=27 \mathrm{rov}$

5.5 CENTRIPETAL FORCE

The motion of a particle which is constrained to move in-a circulat path is quite interesting. It has direct bearing on the motion of such things as artificial and natural satelites, nuclear particles in accolerators, bodies whirling at the ends of the strings and fywheets spinning on the shatts,

We ail know that a ball whirfed in a horizontal circle at the end of a string would not continuer in a circular path if the string is snapped. Careful observation shows at once that If the string snaps, when the ball is at the point A, in Fig. 5.5 (b), the ball will follow the straight line path AB.

The fact is that unless a string or some other mechanism pulls the ball towards the centre of the circle with a force, as shown in Fig, 5.5 (a), batil will not continue along the circular path.

The force needed to bend the normally straight path of the particle into a circular path is called the centripetal force.

If the particle moves from A to B with uniform speed y as shown in Fig. 5.6 (a), the velocity of the particle changes its diraction but not its magnitude The change in velocity is shown in Fig. 5.6 (b). Hence, the accolaration of the particle is

$$
a=\frac{\Delta v}{\Delta I}
$$

Da You Knew?

Direction of mation chunges andicunowly in erralarmotiox

Fiy $53(3)$

Fis $53(1)$

Fr 3 3 8 (a)

V造

Osciked tracks eres meptuc for furnathet ors laknnso quickfy the Fircien iliane carmot pruvide

where 3 is the time laken by the particle to travel From A to 8. Suppose the velocities at A and B are V_{1} and V_{2} respectively Since the speed of the particle is v, so the time taken to travel a distance s; as shown in Fig. 5.6 (a) is

$$
\begin{equation*}
\Delta t=\frac{S}{V} \tag{5.12}
\end{equation*}
$$

50: $\quad \mathrm{a}=\mathrm{v} \frac{\Delta v}{\mathrm{~S}}$
Let us now draw a triangle POR such that PO is parallef and equal to v_{4} and $P R$ is paraliel and equal to v_{2}, as shown in Fig. 5.6 (b). We know that the radius of a circle is perpendicular to its tangent, so OA is perpendicular to \boldsymbol{v}_{1} and OB is perpendicular to $\mathrm{v}_{2}(\mathrm{Fig}, 5.6$ a). Therefore, angle AOB equals the angle QPR between v_{1} and v_{4}. Further, as $v_{1}=v_{2}=V$ and $O A=O B$, both triangles are isosoeles. From geometry, we know two isoscoles triangles are simitar, if the angtes between their equal arms are equat". Hence, the triangle OAB of Fig. 5.6 (a) is similar to the triangle POR of Fig. 5.6 (b). Hence, we can write

$$
\frac{\Delta w}{v}=\frac{A B}{r}
$$

If the point B is close to the point A on the circle, as will be the case when ot $\rightarrow 0$, the arc $A B$ is of nearly the same length as the line $A B$. To that approximation, we can write $A B=s$, and afler substitutingand rearranging terms, we have,

$$
\Delta v=S^{\frac{v}{r}}
$$

Putting this value for \mathbf{y} in the Eq. 5.12, we get

$$
\begin{equation*}
a-\frac{v^{2}}{r} \tag{5.13}
\end{equation*}
$$

where a is the instantaneous acceleration. As this acceleration is caused by the centripetal force, it is calied the centripetal acceleration denoted by as This acceleration is directed along the radius towards the centre of the circle, In Fig. 5.6 (a) and (b), since PQ is perpendicular to OA and PR is perpendicular to $O B$, so QR is perpendicular to $A B$. It may be noted that QR is parallet to the perpendicular bisector of $A B$. As the acoeleration of the object moving in the circle is
parailef to Δy when $A B \rightarrow 0,50$ centripetas acceleration is directed along radius towards the centre of the circie. It can. therefore, be concluded that:

> The instantaneous acceleration of an object travelling with uniform speed in a circle is directed towards the centre of the circle and is called centripetal acceferation.

The centripetal force has the same direction as the centripetal acceleration and its value is given by

$$
\begin{equation*}
F_{c}=m a_{c}=\frac{m v^{2}}{r} \tag{5,14}
\end{equation*}
$$

In angular measure, this equation becomes

$$
\begin{equation*}
F_{x}=m r_{0}{ }^{2} \tag{Itan}
\end{equation*}
$$

Example 5.5 . A A 1000 kg car is turning round a comer at $10 \mathrm{~ms}^{-1}$ as it travels along an arc of a circio. If the radius of the circular path is 10 m , how farge a force must be exerted by the pavement on the tyres to hold the car in the circular path?

Solution: The force required is the centripetal force.
So
$F_{a}=\frac{m v^{2}}{r}-\frac{1000 \mathrm{~kg} \times 100 \mathrm{~m}^{2} \mathrm{~s}^{3}}{10 \mathrm{~m}}-1.0 \times 10^{4} \mathrm{kgms}^{4}-1.0 \times 10^{4} \mathrm{~N}$
This force must be supplied by the frictional force of the pavement on the wheels.

Example 5.3: A ball fied to the end of a string, is swung In a vertical tircie of radius runder the action of gravity as shown in Fig. 5.7. What will be the tension in the string when the ball is at the point A of the path and its speed is V at thet point?

Solution: For the ball to travel in a circle, the force acting on the bell must provide the required centripetal force. In this case, at point A, two forces act on the ball, the pull of the string and the weight w of the ball. These forces act along the radius-at A and so their vector sum must fumish the required centripetal force: We, therefore, have

Curved thiph at hiph ipeed recures a lame oentipotal tive tral mates the wimt anponow cent if the er phame met not no thes.

Fl H 斯

Fin 51
The froce f causes a burqua sbons the axis O and gives the mase m an ingular accoliararion ahout the phospont.

$$
\begin{aligned}
T+w & =\frac{m v^{2}}{r} \quad \text { as } w=m g \\
T & =\frac{m v^{2}}{r}-m g=m\left(\frac{v^{2}}{r}-g\right)
\end{aligned}
$$

If $\frac{v^{z}}{r}=g$, then T will be zero and the centripetal force is just equal to the weight.

5.6 MOMENT OF INERTIA

Consider a mass m attached to the end of a massless rod as shown in Fig. 5.8. Let us assume that the bearing at the pivot point O is frictionlass. Let the system be in a horizontal plane. A force F is acting on the mass perpendicularto the rod and hence, this will accelerate the mass according to

$$
F=m a
$$

In doing so the force will cause the mass to rotate about O. Since tangential acceleration at is related to angular accelaration α by the equation.
so,

$$
\begin{aligned}
& a_{f}=r \dot{\alpha} \\
& F=m r a
\end{aligned}
$$

As turning effect is produced by torque τ, it would, therefore, be better to write the equation for rotation in terms of torque. This can be done by multiplying both sides of the above equation by r . Thus

$$
n=t=\text { torque }=m r^{2} \alpha
$$

which is rotational analogue of the Newton's second law of motion, $F=m a$.

Here $F i$ is replaced by τ, a by a and m by $m r^{2}$. The quantity $m r^{2}$ is known as the moment of inertia and is represented by 1. The moment of inertia plays the same role in angular motion as the mass in linear motion. It may be noted that moment of ineria depends not only on mass m but also on r ?

Most ngid bodies have different mass concentration को different distances from the axis of rotation, which means the mass distribution is not uniform. As shown in $\mathrm{Fig} .5 .9(\mathrm{a})$, the rigld body is made up of n small pleces of masses

Fig. 5.)
Each small piece of mass within a large, higid body undergoes the sarne angular acoelgration about the pivot point.
$m_{6} m_{s, \ldots} m_{n}$ at distances $r_{7}, f_{2}, \ldots, r_{n}$ from the axis of rotation 0 . Let the body be rotating with the angular acceleration α so the magnitude of the forque acting on m_{1} is

$$
\tau_{1}=m_{1} r_{2}^{2} \alpha_{1}
$$

Similarty, the torque on m_{2} is

$$
t_{2}=m_{1} \sqrt{2}_{2}^{2} \alpha_{8}
$$

and so on.
Since the body is rigid, so all the masses are fotating with the same angular asceleration α,

Total torque τ than is then given by

$$
\begin{aligned}
T_{\text {temt }} & =\left(m_{+} r^{2}+m_{n} r_{2}^{2}+\ldots+m_{n} r_{n}^{2}\right) \alpha \\
& =\left(\sum_{i=1}^{n} m_{1} r^{2}\right) \alpha
\end{aligned}
$$

Far Xeant Intomations

Murnerts of inerta of variaus Doder absinAh

Thin fing or Hoop

$$
1=\pi
$$

Solid dise ar cylindar

$$
f=\frac{1}{5}=
$$

5 phere

$r=\frac{2}{3}=$

$$
\begin{equation*}
r=f a \tag{5,16}
\end{equation*}
$$

AHH:H
where I is the moment of inertis of the body and is expressed as

$$
\begin{equation*}
I=\sum_{k=1}^{\infty} m_{i} t^{7} \tag{5.17}
\end{equation*}
$$

5.7 ANGULAR MOMENTUM

We have already seen that linear momentum plays an important role in translational motion of bodies. Similarly, another quantity known as angular momentum has important role in the study of rotational motion.

Fig. 44

For Your Mfonnition

The ephers in (a) en rotativg in the sense ghen by To gold amme her angilat velochy and anguts momentum ary taken to the upward along the roational aus. as shown by the ngiththand rule inctit:

A particle is said to posses an angular
momentum about a reference axis if it
so moves that its angular position
changes relative to that reference axis.
The angular momentum L of a particle of mass m moving with velocity v and momentum p (Fig. 5.10) relative to the arigin O is defined as

$$
\begin{equation*}
\mathrm{L}=\mathrm{r} \times \mathrm{p} \tag{5.18}
\end{equation*}
$$

twint

Where r is the position vector of the particle at that instant relative to the origin 0 Anguiar momentum is a vector quantity. Its magnitude is

$$
L=\pi \sin \theta=m r v \sin \theta
$$

where θ is the angle between r and p. The direction of L is perpendicular to the plane formed by \mathbf{r} and \mathbf{p} and its sense is given by tha right hand rule of vector product St unit of angular momentum is $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$ or J E.

If the particle is moving in a circle of radius r with uniform angular velocity ea, then angle between r and tangential velocity is 90°. Hence

$$
L=m r v \sin 90^{\circ}=m r v
$$

But

$$
y=r \omega
$$

Hence

$$
L=m r^{2}
$$

Now consider a symmetric rigid body rotating about a fixed axis through the oentre of mass as shown in Fig 5.11, Each particie of the rigid body rotates about the same axis in a circle with an angular velocily as. The magnitude of the angular momentum of the particte of mass m 音 m vi in about the crigin O. The direction of L is the same as that of to. Since $v_{y}=r 00$, the angular momentum of the ith particte is m. $r^{2} \mathrm{~m}$. Summing this over all partcles gives the totas angular momentum of the rigid body.

$$
=\quad L=\left(\sum_{m}^{n} m, c^{2}\right) \theta=10
$$

Where 7 is the moment of inartia of the rigid body about the axis of rotation.

Physicists usually make a distinction batween spin anguiar momentum (L_{0}) and orbital angular momentum (to.) The spin angular momeritum is the angular momentum of a spinning body, while orbital angular momentum is associated with the motion of a body along a circular path. .
The difference is illustrated in Fig. 5.12. In the usual circumstances concerning orbital angular momentum, the orbital radlus is large as compared to the slza of the body. hence, the body may be considered to be a point object.

Example 5.4: The mass of Earth is $6.00 \times 10^{24} \mathrm{~kg}$. The distance r from Earth to the Sun is $1.50 \times 10^{\text {H1 }} \mathrm{m}$. As seen from the direction of the North Saar, the Earth revolves counter-clookwise around the Sun. Determine the ortital angular momentum of the Earth about the Sun, assuming that it traverses a circular orbit about the Sun once a year ($3,16 \times 10^{\prime}$ s)
Solution: To find the Earth's orbital angufar momentum we must first know its orbital speed from the given data. When the Earth moves around a dircle of tadius f, it travels a distance of 2 are in one year its orbital speed v_{a} is thus

$$
x_{n}=\frac{2 \pi r}{T}
$$

Orbital angular momentum of the Earth $=L_{0}=m \mathrm{var}_{4}$

Fiss. 51

6
Fin 1.17

$$
\begin{aligned}
& -\frac{2 \pi r^{2} m}{T} \\
& =\frac{2 \pi\left(150 \times 10^{-1} \mathrm{~m}^{2} \times\left(600 \times 10^{34} \mathrm{~kg}\right)\right.}{3.16 \times 10^{2} \mathrm{~s}} \\
& =2.67 \times 10^{40} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{21}
\end{aligned}
$$

The sign is positive because the revolution is counfer dockwise.

5.8 LAW OF CONSERVATION OF ANGULAR MOMENTUM

The law of conservation of angular momentum states that If no extemal torque acts on a system, the total angular momentum of the system remains constant.

$$
\mathbf{L}_{\mathrm{ew}}=\mathrm{L}_{1}+\mathbf{L}_{2}+\ldots, \ldots \text { constant }
$$

The taw of consarvation of angular momentum is one of the fundamental principles of Physics. It has been verified from the cosmotogical to the submicroscopic level. The effect of the law of conservation of angular momentum is readily apparent if a single isolated spinning body alters its moment of inertia. This is illustrated by the diver in Fig.5.13. The diver pushes off the board with a smatl angutar velocity about a horizontal axis through his centre of gravity. Upon iffing off from the board, the diver's legs and arms are fully extended which means that the diver has a large moment of inertia f, about this axis. The moment of inertia is considerably reduced to a new value l_{2}. when the legs and arms are drawn into the closed tuck position. As the angular momentum is conserved, so

$$
I_{1} \omega_{1}=I_{2} \omega_{2}
$$

Hence, the diver must spin faster when moment of inertia becomes smaller to conserva angular momentum. This enables the diver to take extra somersautts.

The angular momentum is a vector quantity with drection along the axis of rotation. In the above example, we discussed the conservation of magnitude of angular momentum. The direction of angular momentum along the
axis of rotation also remain fixed. This is illustrated by the fact given below

The axis of rotation of an object will not change its orientation unless an external torque causes it to doso.

This fact is of great importance. for the Earth as it moves around the Sun. No other sizeable torque is experienced by the Earth, because the major force acting on it is the pult of the Sun. The Earth's axis of rotation, therelore, remains fixed in one direclion with raferences to the universe around us.

5.9 ROTATIONAL KINETIC ENERGY

If a body. Is spinning about an axis with constant angular velocily a each point of the body is moving in a circular path and, therefore, has some K.E. To determine the total K.E. of a spinning body, we Imagine it to be composed of tiny pieces of mass m_{1}, m_{2}, \ldots, If a piece of mass m is at a distance r, from the axis of rotation, as shown in Fig. 5.14, it is moving in a circle with speed

$$
V_{1}=n \pi
$$

Thus the K.E of this piece is

$$
\begin{aligned}
K \cdot E_{1} & =\frac{1}{2} m v^{2}=\frac{1}{2} m(r \cdot \omega)^{2} \\
& =\frac{1}{2} m r^{2} m^{2}
\end{aligned}
$$

The rotational K.E of the whole body is the sum of the kinetic energies of all the parts. So we have

$$
\begin{aligned}
K E_{m t} & =\frac{1}{2}\left(m_{1} n_{1}^{2} \omega^{2}+m_{2} r_{2}^{2} \omega^{2}+\ldots \ldots\right) \\
& =\frac{1}{2}\left(m_{1} r_{7}^{2}+m_{r_{2}^{2}}{ }^{2}+\ldots \ldots\right) \omega^{2}
\end{aligned}
$$

We at once recognize that the quantity within the brackets is the moment of inertia t of the body. Hence, rotational Innetic enargy is given by

Do Youk Know?

The law of ocecorvifion ot anguimonertiati it ieportart in many aports, purticularty in diving. gymnastics andion-6katns

Fis -1.14

Rovatond coblice me he chtch

Where v is the ortital velocity and R is the radius of the Earth (6400 km). From Eq. 5.25 wo get,

$$
\begin{aligned}
v & =\sqrt{g R} \\
& =\sqrt{9.8 \mathrm{ma}^{-2} \times 6.4 \times 10^{6} \mathrm{~m}} \\
& =7.9 \mathrm{kms}^{-1}
\end{aligned}
$$

This is the minimum velocity necessary to put a satelite into the orbit and is called ontical velocity. The period T is given by

$$
\begin{aligned}
T & =\frac{2 \pi R}{V}=2 \times 3.14 \times \frac{6400 \mathrm{wn}}{7.9 \mathrm{~km} \mathrm{~s}^{-1}} \\
& =5060 \mathrm{~s}=84 \mathrm{~min} \text { approx. }
\end{aligned}
$$

R75 514

Trabits

The mowent you swen oil your motila phepob, your locilioncenthe trucked immetitey py glotal poeltoring yyown

It, however, a satelite in a circular orbit is at an appreciable distance in above the Earth's surface, we must take into account the experimentaf fact that the gravitational acceleration decreases inversely as the square of the distance from the centre of the Earth (Fig. 5.16).

The higher the satellite, the slower will the required speed and longer it will take to complete one revolution around the Earth,

Close orbiting satalites orbit the Earth at a hoight of about 400 km . Twenty four such satellites form the Global PositioningSystem. An airline pilot, sailor or any other person can now use a pocket size instrumentor moble phone to find hls position on the Earth's surface to within 10n accuracy.

5.11 REAL AND APPARENT WEIGHT

We often hear that objects appear to be weightless in a apaceship circling round the Earth. In order to examine the effect in some detai, let us first define, what do we mean by the weight? The reat woight of an object is the gravitational pull of the Earth on the object. Similarty the weight of an object on the surface of the Moon is taken to be the gravitational pult of the Moon on the object.

Generally the weight of an object is measured by a spring balance - The force exerted by the object on the scale is
equal to the pull due to gravity on the object, l.e., the weight of the object. This is not always true, as will be oxphined at fittlo lator, so wh call the roading of the scale as apparent welght.

To illustrate this point, let us donsider the apparent weight of an object of mass m, suspended by a string and spring batance, In a litt as shown in Fig. 5.17 (a), When the tift is at rest, Newton's second law tells us that the acceleration of the object is zero, the resultant force on it is also zerc. If w is the gravitational force acting on it and T is the tension in the string then we have.

$$
T-w=m a
$$

As

$$
a=0
$$

hence.

$$
\begin{equation*}
F=w \tag{5.26}
\end{equation*}
$$

This situation will remain so long as $a=0$. The scale thus shows the real weight of the object. The weight of the object seems to a person in the lift to vary, depending on its motion.

When the lift is moving upwards with an acceleration a, then

$$
T-w \equiv m a
$$

or

$$
\begin{equation*}
T=w+m a \tag{5,27}
\end{equation*}
$$

the object will then weigh more than its real welght by an amount mas.

Now suppose, the lift and hence, the object is moving dowriwards with an acceleration as (Fig. 5.17 b), then we have

$$
w-T=m a
$$

which shows that

$$
\begin{equation*}
T=w-m a \tag{5.28}
\end{equation*}
$$

The zersion in the string, which is the scale reading, is less than w by an amount ma. To a person in the accelerating lift, the object appears to weigh less than w. Its apparent waight is then (w-ma).

Fig 5 tram

Fin 507 m

Let us now consider that the liff is falling freely under gravity, Then a $=g$, and hence,

$$
T=w-m g
$$

As the weight w of the body is equal to mg so

$$
T=m g-m g=0
$$

The apparent weight of the object will be shown by the scale to be zero.

It is understood from these considerations that apparent weight of the object is not equal to its true weight in an accelerating system, it is equal and opposile to the force required to stop it from falling in that frame of reference.

5.12 WEIGHTLESSNESSIN SATELLITES AND GRAVITY FREE SYSTEM

When a satelite is falling freely in space, everything within this freely falling system will appear to be weightless. It does not matter where the object is, whether it is falling under the force of attraction of the Earth, the Sun, or some distant star.

An Earth's satellite is freely falling object The statement may be surprising at first, but it is easily seen to be correct. Consider the behavigur of a projectile shot parallel to the horizontal surface of the Earth in the absence of ait friction. If the projectile is thrown at successively larger speeds, then during its free fall to the Earth, the curvature of the path decreases with increasing horzontat speeds, If the object is thrown fast enough parallel to the Earth, the curvature of its path will match the curvature of the Earth as shown in Fig, 5,18. In this case the space ship will simply circle round the Earth.
The space ship is accelerating towards the centre of the Earth at all times since it circles round the Earth. Its radiat acceleration is simply g, the free fall acceleration. In fact the space ship is falling lowards the centre of the Earth at all the fimes but due to sphencal shape of the Earth, i never strikes the surface of the Earth. Since the space ship is in free fall, all the objects within it appear to be weightless. Thus no force ts required to hold an object falling in the frame of reference of the space craft of satelite. Such a system is called gravity free system.

5.13 OREITAL VELOCITY

The Earth and some other planets rovolve round the Suin in nearly circulat paths. The artifcial saiellites launched by men also adopt nearty circular course around the Earth. This type of motion is called orbital molion.

Fig. 5.19 shows a satellite going tound the Earth in a circuitar path. The mass of the satellite is m_{z} and v is its orbital speed. The mass of the Earth is M and r represents the radlus of the orbil. A centripetal forces $\mathrm{m}_{\mathrm{p}} \mathrm{v}^{2}$ tr is fochuired to hold the satelite in orbit. This force is provided by the gravitational force of alfraction between the Earth and the satellite. Equating the gravitational force to the required centripetal force, glves

$$
\frac{G m_{2} M}{r^{2}}=\frac{m_{c} v^{2}}{r}
$$

or

$$
\begin{equation*}
v=\sqrt{\frac{G M}{r}} \tag{5.29}
\end{equation*}
$$

This shows that the mass of the satelile is unimportant in describing the satellite's orbit. Thus arry satelite orbiting at distance r from Earth's centre must have the crbilai speed given by Eq. 5.29. Any spieed less than thls with bring the satellite tumbling back to the Earth.

Example 5.6: An Earth satelife is in circular orbit at a distance of $384,000 \mathrm{~km}$ from the Earths surface. What is its period of one revolution in days? Take mass of the Earth $M=6.0 \times 10^{22} \mathrm{~kg}$ and its radius $R=6400 \mathrm{~km}$.

Solution:

As

$$
r=R+h=(6400+384000)=390400 \mathrm{~km}
$$

Using

$$
\begin{aligned}
v & =\sqrt{\frac{G M}{r}}-\sqrt{\frac{6.67 \times 10^{-11} \mathrm{Nm}^{7} \mathrm{~kg}^{-2} \times 6 \times 10^{24} \mathrm{~kg}}{390400 \mathrm{~km}^{2}}} \\
& =1.01 \mathrm{kmar}^{1}
\end{aligned}
$$

Also

$$
\begin{aligned}
T=\frac{2 \pi}{V} & 2 \times 3,14 \times 390400 \mathrm{kmx} \frac{1}{1.01 \mathrm{kmi}} \times \frac{1 \text { day }}{60 \times 10 \times 243} \\
& =27.5 \text { days }
\end{aligned}
$$

Fis 8.9

In Fias, at a heigh of 100imn above hivmat whect with a fowel of 2000 ownit ${ }^{+}$Eruce Moctanters atepped ims vacu lown apacy shuts ind twosme the fest hanarisototio of tin Earth.

Fiy: 520

The surfuce of tie robetres facm shlo poshers in an obpoct wift which If in tritest the grentery provteos the ceiriciceta forme neecot tro heepr the otfect mowng on anczar path

5.14 ARTIFICIAL GRAVITY

In a gravity free space satolitide there will be no force that will force any body to any side of the spacecrath. It this satellite is to stay in orbit over an extended period of time. this weightlessness may affect the performance of the astronauts present in that spacecraft. To over come thits difficulty, an artificial gravity is created in the spacecratt. This could enable the crew of the space ships to function in an almost normal manner. For this situation to prevail, the space ship is set into rotation around its own axis. The astronaut then is pressed towards the outer rim and exerts a force on the 'floor' of the spacesthip in much the same way as on the Earth.
Consider a spacecrat of the shape as shown in Fig. 5.20. The outer radius of the spaceship is R and it rotates around its own centrat axis with angutar speed o. then its angular acceleration a_{c} is

$$
a_{k}-R A_{u^{2}}
$$

Buto $=\frac{2 \pi}{T}$ where T is the period of cevolution of spacestip
Hence

$$
a_{c}=R \frac{(2 \pi)^{2}}{T^{2}}-R \frac{4 \pi^{2}}{T^{2}}
$$

As frequency $f=1 / T$, therefore $a_{c}=R 4 \pi^{2} f^{2}$
or

$$
r^{2}=\frac{a_{r}}{4 \pi^{2} R} \quad \text { or } \quad r=\frac{1}{2 \pi} \sqrt{\frac{a_{8}}{R}}
$$

The frequency f is increased to such an extent that d_{c} equals to g . Therefore,

$$
a_{0}=g
$$

and

$$
\begin{equation*}
f=\frac{1}{2 \pi} \sqrt{\frac{g}{R}} \tag{5.30}
\end{equation*}
$$

When the space ship rotates with this frequency, the artificial gravity like Earth is provided to the inhabitants of the space ship.

5.15 GEOSTATIONARY ORBITS

An interesling and useful example of satellite motion is the geo-synchronous or geo-stationary satellite. This type of satelite is the one whose orbital motion is synchronized with

The rotation of the Earth. In this way the synchronous satellite remains always over the same point on the equator as the Earth spins on its axls. Such a satellite ls very usefit for worldwide communication, weather observationts, navigation, and other miltary uses.

What should the orbital radius of such a satellite be so that it could stay over the same point on the Earth surface? The speed necessary for the circular orbit, given by Eq. 5.29 , is

$$
v=\sqrt{\frac{G M}{r}}
$$

but this speed must be equal to the average speed of the satelile in one day, lie.,

$$
V=\frac{3}{t}=\frac{2 \pi}{T}
$$

Where T is the period of revolution of the satellite, that is equal to one day. This means that the sateilite must movein one comptete ofbit in a time of exactly one day As the Earth rotates in one day and the satellite wilf revolve around the Earth in one day, the satellits at A will always stay over the same point A on the Earth, as shown in Fig. 521 . Equating the above wo equations, we get

$$
\frac{7 \pi r}{t}=\sqrt{\frac{G M}{r}}
$$

Squaring both sides

$$
\begin{aligned}
\frac{4 \pi^{2} r^{2}}{t^{2}} & =\frac{G M}{r} \\
r^{3} & =\frac{G M T^{2}}{4 \pi^{2}}
\end{aligned}
$$

From this we get the orbital radius

$$
\begin{equation*}
r=\left[\frac{G M T^{2}}{4 \pi^{2}}\right]_{1}^{\frac{1}{2}} \quad \ldots \ldots \ldots \tag{5,31}
\end{equation*}
$$

Substituting the values for the Earth into Eq. 5.31 we get

$$
s=4.23 \times 10^{4} \mathrm{~km}
$$

Fin $3: 4$

Agrebebonaty Eatelith ortets the Earth wroe per tay, twer the whancer io है abiemers to be stiftoraly, it is usod how for Elarhalknel commastantiges.
which is the orbital radius measured from the centre of the Earth, for a geostationary satellite. A satelite at this height will always stay directly above a particular point on the surface of the Earth. This height above the equator comes to be 36000 km .

Fig. 5.27
Thes whole Firth tav bes iovemed by ust three j00-stationnty ameltes.

Fif:523
Commuritatung sahelie NTELSATMI

5.16 COMMUNICATION SATELLITES

A satellite communication syatem can be set up by placing several geostationary satelites in orbit over different points on the surface of the Earth. One such satelite covers 120° of longitude, so that whole of the populated Earth's surface can be covered by three correctity positioned satelites as shown in Fig. 5.22. Since these geostationary satellites seem to hover over one place on the Earth, continuous communication with any place on the surface of the Earth can be made. Microwaves are used because they travel in a narrow beam, in a straight line and pass easily through the atmosphere of the Earth. The energy needed to amplify and retransmit the signals is provided by large solar cell panels fitted on the satellites. Thare are over 200 Earth stations which transmit signais to satellites and recelve signals via satalilites from other countries. You can also pick up the signal from the satellite using a dish anterina on your house. The largest satellite system is managed by 126 countries, International Telecommunication Satellito Organization (INTELSAT). An INTELSAT VI satellite is shown in the Fig 5. 23. It operates at microwave frequencies of 4, 6,11 and 14 GHz and has a capacity of 30,000 two way talophone circuits plus three TV charnels.

Example 5.7: Radio and TV signals bounco from a synchronous satelite. This satellite circles the Earth once in 24 hours. So if the satalite circles aastward abowe the equator, if stays over the same spot on the Earth because the Earth is rotating to the same rate, (a) What is the orbital radius for a synchronous satellite? (b) What is its speed?

Solution:

Do Yon Know?
$19 \mathrm{~Hz}=+0^{2} \mathrm{~Hz}$

$$
T=24 \times 60 \times .605
$$

Therefore on substitution. we:gel
a)

$$
r=\frac{667 \times 10^{4} \mathrm{Nm}^{2} \mathrm{k} 7^{2} \times 6.0 \times 10^{2} \mathrm{~kg} \times\left(24 \times 60 \times\left. 60 \mathrm{~s}\right|^{1}\right.}{4(314)^{2}}
$$

$$
=4.23 \times 10 \mathrm{~m}
$$

b) Substituting the value of r in equation

$$
v=\frac{2 \pi}{r}
$$

we get.

$$
v=\frac{2 x\left(4.23 \times 10^{2} \mathrm{~m}\right)}{88.09 \mathrm{~s}}=3.1 \mathrm{kms}
$$

5.17. NEWTON'S AND EINSTEIN'S VIEWS OF GRAVITATION

Acoording to Newton, the gravitation is the intrinsic property of matter-that every particle of matter attracts every othor particle with a force that is directly proportional to the product of their masses and is inversely proporifonal to the square of the distance between them.

According to Einstein's theory, space time is curved, especially focally near massive bodies. To visualize this, we might think of space as a thin rubber sheet; if a heavy weight is hung from it, it curves as shown in Fig 5.24. The weight corresponds to a huge mass that causes space itself to curve. Thus, in Einstein's theory we do not speak of the force of gravily acting on bodies; instead we say that bodies and light rays move along geodesics (equivalent to straight tines in plane geometry) in curved space time. Thus, a body at rest or moving slowly near the great mass of Fig. 5,24 would follow a geodesic toward that body.

Einstein's theory gives us a physical picture of how gravity works; Newton discovered the inverse square law of gravity; but explicitly said that he offered no explanation of why gravity should follow an inverse square law. Einstein's theory atso says that gravily follows an inverse square law (except in strong gravitational fiefds), but it tells us why this should be 50. That is why Einstein's theory is better than Newton's. even though it includes Newton's theory within itseif and

Do You Know?

The gravily can bend lypi. The graviy of a ster miled ber used to facienghtronstirs

Fg 5 s 2 za
Ruinber ihaet ansiogy for cuineg feranitin.

Irteresting Information

Beoping of starfiget by fur Bint. Leftatom the alur Als ophatints If perses dient to the this on fr Waylo Eirm Wo Dee Da Miarlintie apparent dhertion ll, whinact by be argle Enaikin pralionil thif. i= $=1.7 \pm 5$ lacorte nf angine ntich whe folatd bo be the minte dumht thesciaredipsozt 1010
gives the same answers as Newton's theory everywhere except where the gravitationalfieid is very strong.
Einstein inferred that if gravitational acceleration and inertial aocelaration aru precisely equivalent, gravity must bend light, by a precise amount that could be calculated. This was not entirely a starting suggestion: Newton's theory, based on the ldea of light as a stream of tiny particles, also suggested that a light beam would be deflected by gravily, But in' Einstein's theory, the deffection of light is predicted to bo exacty twice as great as it is according to Newton's theory. When the bending of starlight caused by the gravity of the Sun was measured during a solar eclipse in 1919, and found to match Einstein's prediction rather than Newton's, then Einstein's theory was hailed as a scientific triumph.

SUMMARY

- Anpular displacement is the anglo subtended at the centre of a circle by a particte moving along the circumference in a given time.
- St unit of angular measurement is radian.
- Angular accoleration is the rate of change of angular velocity.
- Relationship between angular and tangential or linear quantities:

$$
\text { A. } s=r i \quad \text { ii } \quad V_{r}=r a \quad \text { iii } \quad \Delta r=r \alpha
$$

*The force needed to move a body arouind a circular path is called centripetal force and is calculated by the expression $\quad F_{\mathrm{C}}=m \mathrm{mw}^{2}=\frac{m w^{2}}{r}$

* Mement of inertia is the rotational analogue of mass in linear motion. It depends on the mass and the distribution of mass from the axis of rotation.
* Angular momertum is the analogue of linear momentum and. is defined as the product of moment of inerlia and angular velocity.
- Total angular momentum of all the bodies in a system remains constant in the absence of an external torque.
* Artificial satellites are the objects that orbit around the Earth due to gravily.
- Orbital velocity is the tangential velocity to put a satelilite in orbit arcound the Earth.
* Attilioal gravity is the gravity like effect produced in an orbiting spaceship to overcome woightiessness by spinning the spaceship about its own sxis:
- Geo-stationary satellite is the one whose orbital motion is synchronized with the rotation of the Earth.
- Albert Einsttin viewed gravitation as a epace-time ourvature around an object.

QUESTIONS

5.1 Explain the difference between tangential velocity and the angular velocity, It one of these is given for a wheol of known radius, how will you find the other?
5.2 Expiain what is meant by centripetal force and why it must be furnished to an object if the object is to follow a circular path?
53. What is meant by moment of inertia? Exptain its significance.
5.4. What is meant by angular momenturn? Explain the law of conservation of angular momenturn.
5.5. Show that orbita anguiar momenturn $L_{8}=$ mvr.
5.6. Describe what should be the mitimum vulocity, for a satelite, to orbit ciose to the Earth around it:
5.7 Siale the drection of the following vectors in simple situations; angular momentum and angular velocity
5,8 Explain wty an object, orbiting the Earth, is said to be freely falling. Use your explanation to point out why objects appear weightess undec certain circumstances.
59 When mud flies off the tyre of a moving bicycle, in what direction does it fly? Explain.
5. 10 A disc and a hoop start moving down from the top of an inclined plane at the same fime. Which one will be moving faster on reaching the bottom?
5. 15 Why does a diver change his body positions before and affer diving in the pool?
5.12 A student hoids two dumb-bells with stretched arms while sitting on a tum table. He is given a push until he is rotating at certain angular velocity. The sfudent then pulls the dumb-bel's towards his chest (fig. 5.25). What will be the effect on rate of rotation?

nin 127
5.13 Explain how many minimum number of geo-stationary satalites are required for global coverage of TV fransmission.

NUMERICAL PROBLEMS

5.1 A tiny laser bearn is directed from the Earth to the Moon. If the beam is to have a diameter of 2.50 m at the Moon, how small must diyergence angle be for the beam? The distance of Moon from the Earth is $3.8 \times 10^{\circ} \mathrm{m}$,
(Ans: $\left.6.6 \times 10^{4} \mathrm{rad}\right)$
5.2 A gramophone record turntabie accelerates from rest to an angular velocity of 45.0 rav min in 1.60 s. What is its average angular acteleration?
(Ans. 2.95 rads $^{2}{ }^{2}$)
5.3 A body of moment of inertia $I=0.80 \mathrm{~kg} \mathrm{~m}^{2}$ about a fixad axis, rotates with a constant angular velocity of 100 rad s^{-1}. Calculate its angufar momentum L and the torque to sustain this motion.
5.4 Consider the rotating cylinder shown in Fig. 5.26. Suppose that $m=5.0 \mathrm{~kg}, F=0.60 \mathrm{~N}$ and $r=0.20 \mathrm{~m}$. Calculate (a) the torque acting on the cylinder, (b) the angular acceleration of the cylinder.
(Moment of inertia of cylinder $=\frac{1}{2} \mathrm{mr}^{2}$)

(Ans: $0.12 \mathrm{Nm}, 1.2 \mathrm{rad} \mathrm{s}^{2}$)
5.5 Calculate the angular momentum of a star of mass $2.0 \times 10^{30} \mathrm{~kg}$ and radius $7.0 \times 10^{5} \mathrm{~km}$. If it makes one complete rotation about its axls once in 20 days, what is its kinetic energy?
5.6^{-1} A 1000 kg car travelling with a speed of $144 \mathrm{~km} \mathrm{~h}^{-2}$ round a curve of radius. 100 m . Find the necessary centripetal force.
(Ans: $1.80 \times 10^{4} \mathrm{~N}$)
5.7. What is the least speed at which an aeroplane can execule a vertical joop of 1.0 km radius so that there will be no tendency for the pilot to fall down at the highest point?
(Ans: $99 \mathrm{~ms}^{-1}$)
5.8. The Moon orbits the Earth so that the same side always faces the Earth. Determine the ratio of its spin angular momentum (about its own axis) and its orbital angular momentum. (In this case, treat the Moon as a particie orbiting the Earth). Distance between the Earth and the Moon is $3.85 \times 10^{5} \mathrm{~m}$. Radius of the Moon is $1.74 \times 10^{6} \mathrm{~m}$.
(Ans: 8.2×10^{6})
59 The Earth rotates on its axis once a day. Suppose, by some process the Earth contracts so that its radius is only half as large as at present. How fast will it be rotating then? (For sphere $I=2 / 5 M R^{2}$).
(Ans: The Earth would complete its rotation in 6 hours)
5.10 What should be the orbiling speed to launch a satellite in a circular orbit 900 km above the surface of the Earth? (Take mass of the Earth as 6.0×10^{27} and its radius as 6400 km).
(Ans: $7.4 \mathrm{~km} \mathrm{E}^{-1}$)

Chapter 6

FLUID DYNAMICS

Learning Objectives

At the end of this chapter the studenta will be abble lo:

1. Understand that viscous forces in a fluid cause a rotarding forse on an object moving through it:
2. Use Stokes' law to derive an expression for terminal velocity of a spherical body falling through a viscous fluid under laminar conditions.
3. Understand the terms steady (taminat, streamline) flow, intompressble flow, non viscous flow as applied to the motion of an ideal fluid
4. Appreciate that at as sufficiently high velocity, the flow of viscous fuid undergoes a transition from laminar to turbulence conditions,
5. Apprectate the equation of continuity $A V=$ Constant for the flow of an ideal and incompressible fluid.
E. Appreciate that the equition of continuily is a form of the principle of conservation of mass,
6. Understand that the pressure difference can arise fram different rates of flow of a fluid (Bernoulli effect).
7. Derive Bernoulli's equation in form $P+1 / \rho v^{2}+\rho g h=$ constant.
8. Explain how Bernoull effect is applled in the filfer purnp, atomizers, in the flow of air over an aerofoil, Venturimeter and in blood physice
9. Give qualitative oxplanationsfor the swing of a spinning ball.

T
he study of fiuids in monon is relatively complcaled, but unalysis can be simplited by making a few assumptions, The analysis is further simpified by the use of two important oonsenvation principles; the conservation of mass and the coriservation of energy, Thelaw of consacvation of mass gives us the gquation of continuity while the law of conservation of enengy is the bisis of Bernoull's equation. The equation of continuly and the Bernoultis equation along with their applications in aeropiane and blood croulation are discussed in this chapter

For Your Information

Whecolitis of Lhavids and Baset at $10^{\circ} \mathrm{C}$

Material	Viscosity $10^{-1} \mathrm{pism}^{4}$]
A	0.929
Acmom	0295
Motarel	0.510
Bintratie	obest
Waser	Q 681
Etranel	1.000
Pheme	1.6
Cyestin	499

6.1 VISCOUS DRAG AND STOKES'LAW

The frictional effect botween different layers of a flowing fluid is described in terms of viscosity of the fiuid. Viscosity measures, how much force is required to slide one layer of the kquid over another layer. Substances that do not flow easily, such as thick tar and honey etc; have large coeflicients of viscosity, usually denoted by greak letter ' η '. Substances which flow easily, like water, have small coefficients of viscosity. Since liquids and gases have non zero viscosity, a force is required if an object is to be moved through them. Even the small viscosity of the air causes a large retarding force on a car as it travels at high speed. If you stick out your hand out of the window of a fast moving car, you can easily recognize that considerable force has to be exerted on your hand to move it through the air. These are typical examples of the following fact,

> An object moving through a fluid experiences a retarding force called a drag force. The drag force increases as the speed of the object increases.

Even in the simplest cases the exact value of the drag force is difficult to calculate. However, the case of a sphere moving through a flisid is of great importance.

The drag force F on a sphere of radius r moving slowty with speed v through a fluid of viscosity η is given by Stokes' law as under.

$$
\begin{equation*}
F=6 \pi \eta \mathrm{rV} \tag{6.1}
\end{equation*}
$$

At high speeds the ferce is no longer simply proportional to speed.

6.2 TERMINAL VELOCITY

Consider a water droplet such as that of fog falling vertically, the air drag on the wator dropiet increases with speed. The droplet accelerates rapidly under the over powering force of gravity which pulls the droplet downward. However, the upward drag force on it increases as the speed of the droplet increases. The net force on the droplet is
Net force = Weight - Drag forco

стнин+
As the speed of the droplet continues to increase, the drag foroe eventually approaches the weight in the magnitude. Finally, when the magnitude of the drag force becomes equal to the weight, the net force acting on the droplet is zero. Then the droptet wil fall with conslant speed called ferminat velocity.

To find the terminal velocily y_{t} in this case, we use Stoken Law for the drag force. Equating it to the weight of the drop, we have

$$
m g=6 \pi n r v
$$

$$
\begin{equation*}
v_{1}=\frac{m g}{\sigma i ग r} \tag{6,3}
\end{equation*}
$$

The mass of the droplet is ρV,
where volume

$$
V=\frac{4}{3}\left(v^{3}\right)
$$

Substituting this vatue in the ubove equation, we get

$$
\begin{equation*}
v_{6}=\frac{2 v^{2} p}{9 \pi} \tag{6,4}
\end{equation*}
$$

Example 6.1: A tiny waler dropiet of radius 0.010 cm desconds through air from a high building. Calculate its terminial velocity. Given that in for air $=19 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{44} \mathrm{~s}^{-4}$ and density of water $\rho=1000 \mathrm{kgm}^{-3}$,

Solution:

$$
r=1.0 \times 10^{-1} \mathrm{~m}, \quad \rho=1000 \mathrm{kgm}^{\mathrm{s}} . \quad \eta=19 \times 10^{4} \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{-1} \mathrm{~s}^{-1}
$$

Putting the abowe valuea in Eq, 6.4

$$
v_{1}=\frac{2 \times 99 \mathrm{ma}^{2} \times\left(1 \times 10^{-4} \mathrm{~m}^{2} \times 1000 \mathrm{kam}^{2}\right.}{9 \times 19 \times 10^{-5} \mathrm{kgm}^{-1} \mathrm{~s}^{4}}
$$

We get Terminal velocity $=1.1 \mathrm{~ms}$ "

Can You Do That?

A whle Bancis tiaf cort be mele suppurata in Te etrimi of ar tomin frim thin fition ef thet trys

Flat 8.1

Firmiz One mong cars have日 quamined deaign

Dophim have somuttinoit Dodias

6.3 FLUID FLOW

Moving fluids are of great importance. To learn about the behaviour of the fluid in motion, we consider their flow through the pipes. When a fluid is in motion, its flow can be thiheristreamline or fuithulent.

The flow is said to be streamline or laminar, if every particle that passes a particular point, moves along exactly the same path, as followed by particles which passed that points earlier.

In this case each particle of the fluid moves along a smooth path called a streamline as shown in Fig. 6.1 (a). The dilferent streamilines can not cross each other. This condition is called steady flow condificn. The direction of the streamlines is the same as the direction of the velocity of the fluid at that point. Above a certain velocity of the fluid flow, the motion of the fluid becomes unsteady and irregular.

Under this oondition the velocity of the fluid changes abruptly as shown in Fig 6.1 (b) In this case the exact path of the particles of the fluid can not be predicted.

> The irregular or unsteady flow of the fluld is called furbulent flow:

We can understund many features of the fuld in motion by considering the behaviour of a fluid which satisties the folowing conditions.

1. The fluid is non-viscous i.e, there is no Internal frictional force between adjacent layers of fluid.
The fluid is incompressible, i.e., its density is constant.
2. The fuid motion is steady.

6.4 EQUATION OF CONTINUITY

Consider a fluid flowing through a pipe of non-uniform size. The particles in the fluid move along the streamines in a steady state flow as shown in Fig. 6.2.

In a smail time Δt, the fluid at the lower end of the tube moves a distance $A x_{1}$, with a velocity $v_{\text {}}$, If A_{L} is the aree of cross soction of this end, then the mass of the lluid contained in the shiaded region ls:

$$
\Delta m_{T}=p_{1} A_{1} \Delta x_{t}=p_{1} A_{1} v_{1} \times \Delta t
$$

Where ρ_{1} is the density of the fluid. Similarly the fluid that moves with velocity v_{2} through the upper and of the pipe (area of cross section A_{y}) in the same time At has at mass

$$
\Delta m_{2}=\rho_{3} A_{2} V_{2} \times \Delta t
$$

If the fluid is incompnessitie and the flow is steady, the mass of the fluid is conserved. That is, the mass that flows into tha bettom of the pipe through A_{i} in a timet Δt must be equal to mass of the liquld that firyws out through A_{2} in the same time. Therefore,
or

$$
\Delta m_{1}=\Delta m_{i}
$$

$$
\text { or } \quad P_{1} A_{1} V_{1}=H_{1} A_{2} V_{2}
$$

This equation is called the equation of continuity Since density is constant for the steady flow of incompressible fluid, the equation of continuity becomes

$$
\begin{equation*}
A_{1} v_{1}=A_{1} v_{2} \tag{4}
\end{equation*}
$$

The product of crosis sectionial area of the pipe and the fluid speed at any polnt along the pipe it a constant. This constant equals the volume flow per second of the fluid or simply flow rate.

Example: 6.2: A water hose with aninternaidiameter of20 mm at the outlet discharges 30 kg of water in 60 s . Calcutate the water spoed at the oullet Assume the densily of waler is 1000 kgm and its flow is steady.

Solution:

Mass ffow per second $=\frac{30 \mathrm{~kg}}{60 \mathrm{~s}}=0.5 \mathrm{kgs}^{-1}$
Cross sectional area $\mathrm{A}=\pi r^{2}$

Fis 6

$$
1
$$

Ae Itre what Ifle; is moed increpees aritgoits crmansedicind antadecriaies in marskind ty itie

The mass of water discharging per second through area A is
or

$$
\begin{aligned}
\rho A v & =\frac{\text { mass }}{\text { second }} \\
v & =\frac{\text { mass } / \text { fecond }}{\rho A}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{0.5 \mathrm{kgs}^{-1}}{1000 \mathrm{kgm}^{-2} \times 3.14 \times\left(10 \times 10^{-3} \mathrm{~m}\right)^{2}} \\
& =1.6 \mathrm{~ms}^{1}
\end{aligned}
$$

6.5 BERNOULLI'S EQUATION

As the fluid moves through a pipe of varying cross section and height, the pressure will change along the pipe. Bernoulli's equation is the fundamental equation in fluid dynamics that retates pressure to fluid speed and height.

In deriving Bemoulli's equation, wo assume that the fluid is incompressible, non viscous and flows in a steady state manner. Let us consider the flow of the fiuid through the pipe in time t, as shown in Fig. 6.3.

Itherit

The force on the upperend of the fuid is P_{3}, A, where P, the pressure and A, is the area of cross section at the upper end. The work done on the flud, by the fuld bahind it, in moving it through a distance Δx_{t}, will be

$$
W_{4}=F_{1} \Delta x_{1}=P_{1} A_{1} \Delta x_{1}
$$

Similarly the work done on the fuid at the lower end is

$$
W_{2}=-F_{7} \Delta x_{z}=-P_{2} A_{2} \Delta x_{z}
$$

Where P_{2} is the pressure, A_{2} is the area of cross section of lower end and Δx_{y} is the distance moved ty the fluid in the same time interval t The work W_{z} is taken to be-ive as this work is done against the fluld force.

The net work done $=W=W_{1}+W_{2}^{*}$

$$
\text { or } \quad W=P_{1} A_{i} \Delta x_{i}-P_{1} A_{2} \Delta x_{3}
$$

If v_{t} and v_{z} are the velocities at the upper and lower ends respectively, then

$$
W=P_{i} A_{i} v_{i} t-P_{>} A_{j} v s t
$$

From equation of continulty (equation 6,5)

Hence.

$$
A_{1} \cdot V_{1}=A_{i v} V_{1}
$$

So, we have

$$
\begin{equation*}
W=\left(P_{1}-P_{7}\right) \cdot V \tag{6.7}
\end{equation*}
$$

7n+4tit
If m is the mass and p is the density then $V=\frac{m}{p}$
So equation 6.7 becomes

$$
\begin{equation*}
W=\left(P_{1}-P_{2}\right) \frac{m}{p} \tag{6.8}
\end{equation*}
$$

Part of this work is utivzed by the fluid in changing its K.E. and a part is used in changing its gravitationial P.E.

$$
\begin{equation*}
\text { Change in KE. }=A\left(K E_{.}\right)=\frac{1}{2} m v_{3}^{2}-\frac{1}{2} m v_{1}^{2} \quad \quad \ldots \tag{69}
\end{equation*}
$$

Change in PE $=\Delta(P \cdot E)=m g h_{z}-m g h_{1}$

$$
\begin{equation*}
-\ldots \tag{6.10}
\end{equation*}
$$

Where h_{1} and h_{z} are the heights of the upper and lower ends respectively

Applying, the lew of conservation of energy to this, volume of the fluid, we get

Intaristime imharmangen

A atruan of ar pasaing Ovar a habes Sppodina souf wif caume the ligut 1) fise in thes tithe ate sexownt Thte effect in uted in pecture botise wil pointapreper

A crumby, wurlas lest when il is hat ans mpotod torar tarrurns whict fodouec thim bramane in the top int

$$
\begin{equation*}
\left(P_{1}+P_{2}\right) \frac{m}{\Gamma}=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}+m g h_{2}-m g h_{1} \tag{6.11}
\end{equation*}
$$

rearranging the equation (6.11)

$$
P_{1}+\frac{1}{2} p V_{1}^{z}+\rho g h_{1}=P_{i}+\frac{1}{2} \rho V_{7}^{2}+\rho g h_{7}
$$

This is Bernoullis equation and is often expressed as:

Fryal

For yout information
Whater

Afiur jaitphas a conatricioninter
 lig Tomin tusor hein. This civite ê stre in prentius noer it and arc; thensiore, hom in from fer side hes. The air and water lapremer ane mipetlis inmugt the lower part iof theparyly

$$
P+\frac{1}{2} p v^{2} * p p_{h}=\text { constant }
$$

(6.12)

6.6 APPLICATIONS OF BERNOULLI'S EQUATION

Torriceliis Theorem

A simple application of Bernoulli's equation is shown in Fig. 6.4. Suppose a large tank of fuid has two small orifices A and B on it, as shown in the figure, Let us find the speed with which the water flows from the orfice A.

Since the orifices are so-small, the efflux speeds v_{2} and v_{3} will be much larger than the speed v_{1} of the top surface of water. We can therelore, take v_{1} as approximately zero. Hence, Bemoulli's equation can be written as:

$$
P_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho V_{2}^{2}+p g h_{2}
$$

But

$$
P_{1}=P_{2}=\text { atmospheric pressure }
$$

Therefore, the above equation becomes

$$
\begin{equation*}
v_{z}=\sqrt{2 a\left(h_{1}-h_{2}\right)} \tag{6.13}
\end{equation*}
$$

This is Torricelli's theorem which states that;

The speed of offitux is equal to the velocity gained by the fluid in falling through the distance $\left(h_{1}-h_{3}\right)$ under the action of gravity.

Notice that the speed of the efflux of liquid is the same as the speed of a ball that falls through a height $\left(h_{1}-h_{2}\right)$. The
top level of the tank has moved down-a little and the PE has been transfarred into K.E. of the offlux of fluid. If the orffice had been polnted upward as at B shiows in Fin. 6.4, this KE. would allow the liquid to rise to the -tevel of water tank. in practice, viscous-energy losses would alter the result to some exfent.

Relation between Speed and Pressure of the Fluid

A result of the Bernoulli's equation is that the pressure will be fow where the speed of the fluid is high. Suppose that water flows through a pipe rystem as shown in Fig. 6.5. Clearly, the water will fow faster it B than it does at A or C. Assuming the flow speed at A to be $0.20 \mathrm{~ms}^{1}$ and at B to be $2.0 \mathrm{~ms}^{-1}$, we compare the pressure at B with that at A.

Applying Bernoullis equation and noting that the average PE, is the same at both places, We heve,

$$
P_{d}+\frac{1}{2} p v_{n}^{7}=P_{a}+\frac{1}{2} \omega V_{n}^{?}
$$

Substituting $v_{x}=0.20 \mathrm{~ms}^{-1}, v_{\theta}=2.0 \mathrm{~ms}^{-1}$
And
We get

$$
P_{A}-P_{B}=1980 \mathrm{Nm}^{2}
$$

This shows that the pressure in the narrow pipe where stroamiines are closer togather is much smaller than in the wider pipe. Thus,

Whare the speed is high, the pressure will be low.

The lif on an aeroplane is due to this effect The flow of air around an aeroplane wing is ilustrated in Fig. 68. The wing is designed to deflect the air sid that struamtines are toser together above the wing than below it. We have seen in Fig. 6.6 that whire the streamines are forced closer together, the speed is faster. Thus, air is travelling faster on the uppor side of the wing than on the lower. The pressure will be iowar at the top of the wing, and the wirig wit be forced upward.

Similarly, when a tennin ball is hit by a racket in such a way that it spint as weil as moves forward, the velocity of the

Eil EI

Fin \ddagger B

Interenting marmaneotia

The corburtor of a car argive uas a Vernurid dact 0 o foed the comed nis of eif and potral in the cyintees. Air \&s divem through the duat ind atong apion be the cphoders. A any livet at the shbe of duct shed weth. petres. The afe frough tfe doct mives vwy fat, ereating how prenture in tor oud, entich dinwe protril vingour ivto puatristrum:
air on one side of the ball increases (Fig. 6.7) due to spin and air speed in the same direction as at B and hence, the pressure decreases. This gives an extra curvature to thee ball known as swing which decerves an opponent player.

Venturi Relation

If one of the pipes has a much smaller diameter than the other, as shown in Fig. 6.8, we write Bemoullis equation in a more convenient form. It is assumed that the pipes are horizontal so that ρ gh terms become equal and can, therefore, be dropped. Then

$$
\begin{equation*}
P_{1}-P_{2}=\frac{1}{2} p v_{2}^{2}+\frac{1}{2} p v_{2}^{2}=\frac{1}{2} p\left(v_{2}^{2}-v_{1}^{2}\right) \tag{6.15}
\end{equation*}
$$

As the cross-sectional area A is small as compared to the area A_{3}, then from equation of continuily $v_{1}=\left(A_{1} / A_{1}\right) v_{2}$, will be small as compared to v_{2}. Thes for flow from a large pipe to a small pipe we can neglect v, on the right hand side of equation 6.15. Hence,

$$
\begin{equation*}
P_{1}-P_{2}=\frac{1}{2} \nabla V_{2}^{2} \tag{6}
\end{equation*}
$$

This is known as Venturi rolation, which is used in Venturimeter, a device used to measure speed of llquid flow.

Example 6.3: Water flows down hill through a closed vertical funnet. The flow speed at the top is $12.0 \mathrm{cms}^{-1}$. The How speed at the bottom is twice the speed at the top. If the funnel is 40.0 cm long and the pressure at the top is $1.013 \times 10^{5} \mathrm{Nm}^{-2}$, what is the pressure at the bottom?

Solution: Using Bernoulti's equation

$$
\begin{aligned}
P_{1}+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2} & =P_{2}+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2} \\
P_{2} & =P_{1}+\rho g h^{2}+\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)
\end{aligned}
$$

Or
where $h=h_{1}-h_{7}=$ the length of the funnel $P_{z}=\left(1.013 \times 10^{5} \mathrm{Nm}^{2}\right)+\left(1000 \mathrm{kgm}^{-2} \times 9.8 \mathrm{mg}^{-2} \times 0.4 \mathrm{~m}\right)$ $+1 \frac{1}{2}\left(1000 \mathrm{kgm}^{-3}\right) \times\left\{\left(0.12 \mathrm{~ms}^{-4}\right)^{2}-\left(0.24 \mathrm{~ms}^{-1}\right)^{2} \mathrm{H}\right.$

$$
=1.05 \times 10^{5} \mathrm{Nm}^{2}
$$

A stathoscope detects the instant at which the external pressure becomes equal to the syatolic pressure. At this point the first sumpes of blood flow through the namow stricture produces a high fiow speed. As a result the flow is initiaily turbolent.

As the pressure drops, the extemal pressure eventually equals the diastolic pressure. From this point, the vessel no longer collapse during any portion of the flow cycle. The How swiltches from turbulent to laminar, and the purgle in the stethoscope disappears. This is the signal to record dlastolic pressure.

SUMMARY

An object moving through a fluid experflencas a retarding focce known as drag force, It increases as the speed of object increases.
A sphere of redius f moving with speed y through a fluid of viscosity η experiences a viscous drag force F given by Stokes' law $F=6 \mathrm{knry}$.
The maximum and constant velocity of an object falling vertically downward is called terminal velocity.
An ideal fluid is incompressible and has no viscosity. Bolh ait and water at low speeds approximate to ideai fluid behaviout:
In laminar flow, layers of fluid side moothly pest each other.

- In turbulent flow there is great disordor and a constantly changing flow pattern.
- Conservation of mass in an incompressible fluid is expressed by the equation of conilinuily $A_{1} V_{4}=A_{3} V_{3}=$ constant
Applying the pringlies of consaryation of mechanical enargy to the steedy flow of an ideal fiud laads to Bemoulis equation.

$$
p+\frac{1}{2} \rho v^{2}+p g h=\text { constant }
$$

- The effect of the decrease in pressure with the increase in speed of the fluid in a borizontal pipa is known at Venturi effect.

Blood Flow

Blood is an incompressible fluid having a density nearly equal to that of water. A high concentration ($\sim 50 \%$) of red blood cellis increases its viscosity from three to five times that of water. Blood vessels are not rigid. They stretch like a rubber hose. Under normal circumstances the volume of the blood is sufficient to keep the vessels inflated at all times, even in the relaxed state between heart beats. This means there is tension in the walls of the blood vessels and consequently the pressure of blood inside is greater than the extornal atmosptheric pressure. Fig, 6.9 shows the variation in blood prossure as the heart beats. The pressure varies from a high (systolic pressure) of 120 torr (1 torr $=133.3 \mathrm{Nm}^{12}$) to a low diastolic pressure) of about 75-80 tor between beats in normat, healthy person. The numbers tend to increase with age, corresponding to the decrease in the flexibility of the vessel walls.
The unit torr or mm of Hg is opted instead of SI unit of pressure because of its extensive use in medical equipments.
An instrument called a sphygmomanometer measures blood pressure dynamically (Fig. 6,10).

Fo. An

An infatable bag is wound around the arm of a pasent and oxternal pressure on the arm is increased by inflating the bag. The effect is to squeeze the arm' and compress the blood vessels inside. When the external pressure applied becomes larger than the systolic pressure, the vessels collapse, cutting off the flow of the blood Opering the release valve on the bag gradually decreases the Extiephal pres

QUESTIONS

0.1 Explain what do you understand by the term viscosity?
E. 2 What is meant by drag force? What are the factors upon which drag force acting upon a smali aphore of radius r, moving down through a liquid, depend?
63
Why fog droplets appear to be suspended in air?
44 Explain the difference between laminar flow and turbulent flow.
610 Sunte Bernoulli's relation for a liquid in motion and describe some of its applications:
0.6. A person is standing near a tast moving train. Is there any danger that he will fail towards il?
B.7 Identify the correct answer. What do you infer from Bernoullis theorem?
(1) Where the speed of the fluid is high the pressure will be low.
ih. Where the speed of the fluid is high the pressure is also high.
(w) This theorem is valid only for turbulent flow of the liquid.
4. Two fow boats moving paraifel in the same direction are pulled towards each other. Explain.
(19) Explain, how the swing is produced in a fast moving cricket ball.
U. 10 Explain the working of a carburetor of a motorcar using by Bemoullis principle,

111 For which position will the maximum blood pressure in the body have the smallest value. (a) Standing up right (b) Sitting (c) Lying horizontally (d) Standing on one's head?
6.12 In an orbiting space station, would the blood pressure in major arteries in the leg ever be greater than the blood pressure in major arferies in the neck?

NUMERICAL PROBLEMS

61 Certain globular protein particle has a density of $1246 \mathrm{~kg} \mathrm{~m}^{-3}$, It fals through pure water ($\mathrm{m}^{288.0 \times 10^{-4}} \mathrm{Nm}^{3}$) wht a terminal speed of $3.0 \mathrm{~cm} \mathrm{~h}^{-1}$. Find the radius of the particte.
(Ans: $1 . \overline{6} \times 10^{-1} \mathrm{~m}$)

Q2 Water flows through a hose, whose internal diameter is 1 cm at a speod of $1 \mathrm{~ms}^{-1}$, What should be the diameter of the nozzle if the water is to emerpe at $21 \mathrm{~ms}^{-1}$?
(Ans: 0.2 cm)

63 The pipe near the lower end of a large wator storage taink develops a small leak and a stream of water shoots from it. The top of water in the tank is 15 m above the point of leak.
a) With what speed does the water nish from the hole?
b) If the hole has an area of $0.060 \mathrm{~cm}^{2}$, how much water flows out in one second?

$$
\text { (Ans: (a) } 17 \mathrm{~m} \mathrm{~s}^{-1} \text {, (b) } 102 \mathrm{~cm}^{3} \text {) }
$$

1. 4. Water is flowing amoothly through a closed pipe system. At one point the speed of water is $3.0 \mathrm{~ms}^{-1}$, while at another point 3.0 m higher, the speed is $4.0 \mathrm{~ms}^{-1}$, If the pressure is 80 tp Pa at the lower point, what is pressure at the upper point?
(Ans: 47 kPa)
6.5 An airplane wing is designed so that when the speed of the air across the top of the wing is $450 \mathrm{~ms}^{-1}$. the speed of air below the wing is $410 \mathrm{~ms}^{-1}$. What is the pressure difference between the top and bottom of the wings? (Densily of air $=1.29 \mathrm{kgm}^{-2}$)
(Ans: 22 kPa)
The radius of the aorta is about 1.0 cm and the blood flowing through it has a speed of about $30 \mathrm{cms}^{+1}$. Caloulate the average speed of the blood in the capillaries using the fact that although each capillary has a diametar of about $8 \times 10^{4} \mathrm{~cm}$, there are fiterally millions of them so that their total cross section is about $2000 \mathrm{~cm}^{2}$.
(Ans: $5 \times 10^{2} \mathrm{~ms}^{-1}$)
How large must a heating duct be if air moving $3.0 \mathrm{~ms}^{-1}$, along it can replenish the air in a room of $300 \mathrm{~m}^{3}$ volume every 15 min ? Assume the air's density remains constant.
(Ans: Radius $=19 \mathrm{~cm}$)
An airplane design calls for a lift' due to the net force of the moving air on the wing of about $1000 \mathrm{Nm}^{2}$ of wing area. Assume that air flows past the wing of an aircratt with streamline flow. If the speed of flow past the lower wing surface is 160 ms , what is the required speed over the upper surface to give a "lift" of 1000 Nm "? The density of air is $1.29 \mathrm{kgm}^{-1}$ and assume maximum thickness of wing to be one metre.
(Ans; $165 \mathrm{~ms}^{-3}$)
60 What gauge pressure is required in the city mains for a stream from a fire hose connected to the mains to reach a vertical hoight of 15.0 m ?
(Ans: $1.47 \times 10^{5} \mathrm{~Pa}$)

Chapter 7

OSCILLATIONS

Learning Objectives

At trie end of thiti chaptie the students wal be abie to:
Investigate the motion of an oscilator using experimental, analytical and graphical methods.
Understand and describe that when an object novess in a cifcle the motion of is projection on the diamieter of the circle is:simple hammonic:
Show that the motion of mass attached to a sping is slimple harmonio.
Understand that the motion of simplo pendulum is simple harmonic and to calculate its time perfiod.
Understand and use the lermis amplitude, time period, frequency, anguiar frequency and phase difference.
Knaw and use of riclutions in the form of $x=x_{0}$ cos at of $y=y_{0}=1 n_{n}$ of.
Describe the interchange between kinetic and potemtial energies during SHM
Describe practical examples of fise and forcod osciliations.
Describe practical examples' of damped osciliations with particular relerence to the effects of the degree of demping and the importance of critical damping in

Many a times, we come across a type of motion in which a body moves to and fro about a mean position. It is called oscillatory or vibratory motion. The oscillatory motion is called. periodic when it repeats itself affer equal intervais of time:

Some typical vibrating bodies are shown in Fig. 7. . It is our common observation that
a) a mass, suspended from a spring, when pulled down and then released, starts oscilating (Fic. 7.1 a),
b) the bob of a simple pendulum when displaced from its reat position and released, vibrates ($\mathrm{Fig} \mathrm{g}, 7.1 \mathrm{~b}$)

(6)

Whonting objectal

Flatil

c) a steel ruler clampad at one end to a bench cascillates when the free end is displaced sideways (Fig. 7.1 c),
d) a steel ball rolling in a curved dish, oscillates about its rest position (Fig. 7.1 d).
Thus to get oscillations, a body is pulled away from its rest or equilibrium position and then released. The body oscillates due to a restoring force. Under the action of this restoring force, the body accelerates and it overstoots the rest position due to inertia. The restoring force then pults it back. The restoring force is always directed fowards the rest position and so the acceleration is also directed towards the rest or mean position.
It is observed that the vibrating bodies produce waves. For example, a violin string produces sound waves in air. There are many phenomena in nature whose explitnation requires the understanding of the concepts of vibretions and waves. Although many large structures, such as skyscrapers and bridges, appear to be rigid, they actually vibrate. The architects and the engineers who design and bulld them, take this fact into account.

7.1 SIMPLE HARMONIC MOTION

Let us consider a mass m attached to one end of an elastic spring which can move freely on a frictionless horizontal surface as shown in Flg. 7.2 (a). When the mass is displaced towards right through a distance \times (Fig. 7.2 b), the force F at that instant is givan by Hooke's law F = $=h x$ whore k is a constant known as spring constant. Due to elasticly, spring opposess the applied force which produces the displacement. This opposing force is called restoring force Fr. which is equal and opposite to the applied force within elastic limit of the spring. Hence

$$
\begin{equation*}
F_{i}=-k x \tag{7,1}
\end{equation*}
$$

The negative sign indicates that F_{t} is directed opposite to x. Le., towards the equilibrium position. Thus we see that in a system obeying Hooke's Taw, the restoring force F, is directly proportional to the displacement x of the system from its equilitrium position and is always directed towards it. When the mass is released, it bogins to oscillate about the equitibrium position (Fig. 7.2 ㅇ), The osollatory motion taking place under the action of such a restoring force is
known as simple harmonio motion (SHM). The acceleration a produced in the mass m due to restoring force can becatculated uising second law of motion

F $=$ ma		
Then,	$-k x=m a$	
α	$\mathrm{A}=-\frac{h}{m} x$	(7.2)
or	$a x-x$	

The aeceleration at any instant of a body executing SHM is proportional to dieplacement ind Is alwaym directed towards its mean position.

We wis now discuss various terms which are very oflen used in describing SHM.

(i) Instantaneous Displacement and Amplitude of Vibration

It can be seen in Fig. 7.2 that when a body is varating, its displacement from the mean position changes with time. The value of its distance from the mean posilion at any time is known as ils instantaneous displacement. It is zero at the instant when the body is at the mean position and is maximum at the extreme positions. The maximum value of displacement is known as amplitude,
The arrangement shown in Fig. 7.3 can be used to record the variations in displacement with lime for a mass-spring system. The strip of paper is moving at a constant speed from right to left, thus providing a time scale on the strip. A pen attached with the vitrating mass records ita displacement against-time as shown in Fig. 7.3. It can be seen that the curve showing the variation of displacement with time is a sine curve it is usually known as wave-form of SHM The points B and D correspond to the extreme positions of The vibrating mass and points A, C and E show its mean position. Thus the lines ACE represents the level of mean position of the mass on the strip. The amplitude of vibration la thus a measure of the line Bb or Dd in Fig. 7.3.

4. ? 2

(ii) Vibration

A vibration means one complete round trip of the body in mobion. In Fig. 7.3, it is the motion of mass from its mean position to the upper extreme position, from upper extreme position to lower extremet position and back to its mean position. In Fig. 7.3, the curve ABCDE correspond to the different positions of the pen during one complete vibration. Alternatlively the vibration can also be defined as motion of the body from its one extreme position back to the same extreme position. This will correspond to the portion of curve from points B io F or fram points D to H .

(III) Time:Period

It is the time Trequired to complete one vibration.

(iv) Frequency

Fraquency f is the number of vibrations executed by a body in one second and is expressed as vibrations per second or cycles per second or hertz (Hz).
The definitions of T and f show that the two quantities are related by the equation

$$
\begin{equation*}
f=\frac{1}{F} \quad+\quad+\cdots \cdots+\ldots \tag{7.3}
\end{equation*}
$$

Angular Frequency

If T is the time period of a body executing SHM, its angular frequency wift be

$$
\begin{equation*}
\oint=\frac{2 \pi}{T}=2 \pi f \tag{7.4}
\end{equation*}
$$

Angular Irequency ea is basically a characteristic of circular motion. Here it has been introduced in SHM because it provides an easy method by which the value of instantaneous displacement and instantaneous velocity of a body executing SHM can be computed.

7.2 SHM AND UNIFORM CIRCULAR MOTION

Let a mass m, attached with the end of a vertically suspended spring, wbrate simple harmonically with period $I_{\text {, frequency } f \text { and amplitude } x_{o} \text {. The motion of the mass is }}^{\text {. }}$ displayed by the pointer P; on the line BC with A as mpan position and B, C as extreme positions. (Fig. 7.4a). Assuming A Bs the position of the pointer at $t=0$, it will move so that it is at B,A.C and back to A at
instants T74, T72. 374 and T respectively. This will complele one cycle of vibration with ampiltude of vibration boing $x_{0}=A B=A C$.
The concept of circular motion is introduced by consideringa point P moving on a circle of radius x_{4}, with a uniform angular frequency $e=2 \pi / T$. where T is the time period of the vibration of the pointer it may be noted that the radius of the circlo in squal to the amplaide of the pointer's motion. Consider the motion of the point N , the projection of P on the diametse DE drawn parallei to the ine of vitration of the pointarin Fig. 7.4 (b) Note that the level of points D and E

i5 the same as the points B and C. As P describes uniform circular motion with a constant angular speed om, N Gscilfates to and fro on trie diametar DE wilh fime period T. Assuming O_{3}, to be the position of P at $\mathrm{t}=0$, the position of the point N at the instants $0,744,72,37 / 4$ and T will be at the points O, D, O, E and O respectively. A comparison of the motion of N with that of the pointer P , shows that it is a repilica of the pointar's motion. Thus the expressions of displacernent, velooly and acceleration for the motion of N also hold good for the pointer Ps, enxecuting SHM.

(i) Displacement

Reterring to Fig. 7,4 (b). If we count the time $t=0$ from the instant whon P is passing through O_{i}, the angla which the radlus OP sweeps out in time t is $\angle \mathrm{O}, \mathrm{OP}=\theta=\mathrm{m} t$. The displacement x of N at the instant f will be

$$
x=O N=O P \sin \angle O, O P
$$

$$
x=x_{0} \sin \theta
$$

or

$$
\begin{equation*}
x=x_{\sigma} \sin \text { uf } \tag{7.5}
\end{equation*}
$$

This will be also the displacement of the pointer $\mathrm{P}_{\text {t }}$, at the instant t.
The value of x as a functions of 0 is shown in Fig. 7.4 (c). This is the wave-form of SHM. In Fig. 7.3, the same waveform was traced experimentally but here, we have traced it thearetically by linking SHM with circular motion through the concept of angular frequency. The angle 0 gives the states of the system in its vibrational cycle. For example, at the start of the cycle $\theta=0$. Haif way through the cycle, is 180° (π radians). When $\theta=270^{\circ}$ (or $3 \pi / 2$ radians), the sycle is three-fourth completed. We call il as the phase of the vibration. Thus when quarter of the cycle is compieted,

Fieg 7 ind phase of vibration is 90° (orस/2 radlan). Thus phase is also related with the circular motion aspect of $\mathbf{S H M}$.

(ii) Instantaneous Velocity

The velocity of point P, at the instant t, will be directed along the tangent to the circle at P and its magnitude will be

$$
\begin{equation*}
v_{\mu}=x_{0} 09 \tag{7.6}
\end{equation*}
$$

thn!
As the motion of N on the diameter DE in due to motion of P on the circle, the velocity of N is actually the component of the velocily ve in a direction parattet to the diameter DE. As shown in Fig. 7.5 (a), this component is

$$
v_{p} \sin \left(90^{\circ}-\theta\right)=v_{p} \cos \theta=x_{a} \omega \cos \theta .
$$

Thus the magnitude of the velocity of N or its speed v is

$$
\begin{equation*}
v=x_{a} \omega \cos \theta=x_{a}, \omega \cdot \cos \omega t \tag{7.7}
\end{equation*}
$$

The direction of the velocity of N depends upon the value of the phase angle θ. When θ is between 0° to 90° the direction is from O to D , for a between 90° to 270°, its direction is from D to E . When θ is between 270° to 360°, the direction of motion is from E to D .
From Fig. $7.5, \cos \theta=\cos \angle \mathrm{NPO}=\mathrm{NP} / O P=\frac{\sqrt{x_{0}^{2}-x^{2}}}{x_{s}}$.
Substituting the value of $\cos 0$ in Eq. 7.7

$$
\begin{equation*}
v=\frac{x_{0}{ }^{\text {e }}}{x_{0}} \sqrt{x_{0}^{2}-x^{2}}=-\sqrt{x_{0}^{2}-x^{2}} \tag{7.8}
\end{equation*}
$$

As the motion of N on the diameter $D E$ is fust the replica of the motion of the pointer executing. SHM (Fig. 7.4), so velocity of the point P or the vefocity of any body execuling SHM is given by equations 7.7 and 7.8 in terms of the angular froquency 0. Eq. 7.8 shows that at the mean position, whete $x=0$, the velocity is maximum and at the extreme positions whire $x=x_{n}$. the velocily is zero.

(iii) Acceleration in Terms of :1.

When the point P is moving on the circle, it has an acceleration $A_{2}=x_{c-11^{2}}$, always directed towards the centre O of the circle.
At instant t, its direction will be along PO . The aiccoleration of the point Nwill be component of the acculorationat, atong the diameter DE on which N moves due to motion of P. As shown in Fig. 7.5 (b). the value of this component is

$$
a_{F} \sin \theta=x_{0} \omega^{2} \sin \theta:
$$

Thus the acceleration a of N is $\quad a=x, \omega^{2} \sin 6$ and it is directed from N to O , Le., directed towards the mean position O (F g. 7.5 b). In this figure $\sin \theta=\mathrm{ON} / \mathrm{OP}=$ $x x_{0}$. Theretore,

$$
a=x_{0} \omega^{2}=\frac{x}{x_{0}}=\omega^{2} x
$$

Comparison of Fig. 7.5 (b) and 7.4 (b) shows that the direction of accoleration a and displacement x are oppotite. Consldering the direction of x as reference, the acceleration a will be ropresented by

Eq. 7.9 shows that the accoleration is proportional to the displacement and is directed fowards the mean position which is the charactaristic of SHM. Thus the polnt N is executing SHM with the same amplifude, period and instantaneous displacament as the pointer P_{4}. This confiems our assertion that the motion of N is just a raplica of the pointer's motion.

7.3 PHASE

Equations 7.5 and 7.7 indicate that displacoment and velocity of the point executing SHM are determined by the angle $\theta=$ out Note that this angle is obtained when SHM is related with circular motion, it is the argle which the rotating

$$
a=-u^{2} x
$$

F4. 7.5 허
radius OP makes with the reference direction OO, at any instant t (Fig .7 .4 b),

> The angle $\mid \theta=01$ which specifies the displacement as well as the direction of motion of the point executing SHM is known as phase.

The phase determines the state of motion of the vibrating point. If a body starts its motion from mean position, its phase at thls point would be 0 . Simiarly at the extreme positions. its phase would be $\pi / 2$:

In Fig. 7.4 (b), we have assumed that to start with at $t=0$, the position of the rotating radius $O P$ is along $O O$, so that the point N is at its mean position and the displacement at $t=0$, is zero. Thus it represents a apecial case. In general at $t=0$, the rotating radius OP can make any angle φ with the reference 00 , as shown in Fig. 7.6 (a). In time t, the redius wilf rotate by at. So now the radus of would make an angle ($0 \mathrm{t}+\varphi$) wilh $O \mathrm{O}_{\text {, at the instant } \mathrm{f} \text {, and the }}$ displacement $\mathrm{ON}=x$ at instant t would be given by

$$
\begin{aligned}
O N & =x=O P \sin (\omega t+\varphi) \\
& =x_{i} \sin (\omega t+\varphi)
\end{aligned}
$$

Now the phase angle is $w f+\varphi$ i.e.,

$$
\theta=\cot +\theta
$$

when $t=0, \theta=0$. So φ is the initial phase. If we take initial phase as $\pi / 2$ or 90°, the displacement as given by Eq 710 is

$$
\begin{align*}
x & =x_{0} \sin \left(\omega t+90^{\circ}\right) \\
& =x_{0} 009 \omega t \tag{7,11}
\end{align*}
$$

Thus Eq. 7.11 also gives the displacement of SHM , but in this case the point N is sturting its motion from the extrome position instead of the mean position as stiown in Fio. 7.6 (b).

7.4 A HORIZONTAL MASS SPRING SYSTEM

Practically, for a simple harnonic system, consider again the vibrating mass attached to a spring as shown in Fig. 72 (a, b and c) whose acceleration at any instant is given by Eq. 7.2 whichis

$$
a=-\frac{k}{m} x
$$

As k and m are constant, we see that the acceleration is proporfional to displacement x, andits direction is towards the mosin posiltion. Thus the mass m executes SHMM between A and A^{\prime} with x_{0}-as amplitude. Comparing the above equation with Eq. 7.8 , the vibrational angular frequency is

$$
\begin{equation*}
=\sqrt{\frac{n}{m}} \tag{7:12}
\end{equation*}
$$

The time perlod of the mass is

$$
T=\frac{2 \pi}{m}=2 \pi \sqrt{\frac{m}{R}} \quad \text { (7.13) }
$$

The instanteneous displacement x-of the mass as given by Eq. 7.5 洛

$$
\begin{align*}
& x=x_{0} \sin \sin t \\
& x=x_{0} \sin \sqrt{\frac{k}{m}} t \tag{7.14}
\end{align*}
$$

+ntin.

The instantaneous velocity v of the mass in as given by Eq. 7.8 is

$$
\begin{align*}
& v=u \sqrt{x_{u}^{2}-x^{2}}=\sqrt{\frac{k}{m}\left(x_{0}^{2}-x^{2}\right)} \\
& =x \sqrt{\frac{k}{m}\left(\frac{1-x^{2}}{x_{s}^{2}}\right)} \tag{7.45}
\end{align*}
$$

Eq 7,15 shows that the velocity of the mass gets maximum equal to v_{v}, when $x=0$. Thus

$$
v_{0}=x_{0} \sqrt{\frac{h}{m}}
$$

then

$$
v=v_{e} \sqrt{1 \frac{x^{2}}{x_{e}^{2}}}
$$

The formala datived for cisplacement and velocity are also vald for verticaly suspended mass-sping systam prowided atr fletion is ngt eonsidered:

Example 7.1: A block whighing 4.0 kg extends a epring by 0.16 m from its unstratchad position. The block is removed and a 0.50 kg tody is hung from the same spring If the spring is now strotched and then relessed, what is its persod of voration?

Solution:

Appied stretching force $F=k x \quad$ or $\quad k=\frac{F}{x}$

$$
\begin{aligned}
& F=m g=4 \mathrm{~kg} \times 9.8 \mathrm{~ms}^{2}=39.2 \mathrm{kgma} \mathrm{ma}^{2}=39.2 \mathrm{~N} \\
& x=0.16 \mathrm{~m} . \quad \quad A=\frac{4 \mathrm{~kg} \times 3.8 \mathrm{~ms}}{0.2}=245 \mathrm{~kg} \mathrm{~s}^{-2}
\end{aligned}
$$

Now frne period
or

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{m}{k}} \\
& T=2 \pi \sqrt{\frac{0.6 \mathrm{~kg}}{246 \mathrm{~kg} \mathrm{y}^{-2}}}=0.20 \mathrm{~s}
\end{aligned}
$$

Flat

7.5 SIMPLE PENDULUM

A simple pendulum consists of a smal heavy mass m suspended by a light string of length / fixed at its uppor end, as shown in Fig. 7.7. When such a pendulum is displaced from its meen position through a smali angle θ to the posilion B and reteased, it starts osciltsting to and fro over the same path. The weight mg of thm mass can te resolved into two components; n ig sin et atong the tangant at B and $m g \cos \theta$ slong $C B$ to belance the tonsian of the string. The restoing force at B wif br

$$
F=-m g \sin \hat{f}
$$

Whan is is smail. sin $H=\|$

50		(7, (6)
Or	$9=-921$	
But	$\theta=$ AreA A	

When eis smail Arc $A B=O B=x$, hence $i f=\frac{\pi}{f}$
Thues

$$
A=-\frac{a r}{1}
$$

At a partioular place 'g' is constart and for a givan pendulum Yis also a constant.

Therafore, $\quad \frac{\pi}{h}=k$ (a constars)
and the motion of the aimple pendullum is simple harmonic: Comparing Eq. 7.19 wilh Eq. 7.5

$$
u=\sqrt{\frac{g}{f}}
$$

As time pariod

$$
F=\frac{2 \pi}{a}
$$

Hance $T=2 \pi \sqrt{\frac{T}{\pi}}$

Thas hlowi that thia time poriod dopands anily. on the langth of the penstuilum and the acoceleration due to gravity. it is indepondent of mase.

Example 7.2: What uhould be the length of a simple pendulum whase perfod is 10 second at i place whers $g=9.8 \mathrm{~mm}^{2}$? What it the frequency of nuch of penditum?

Solution:

Time period,

$$
T=2 \pi \sqrt{\frac{T}{g}}
$$

$$
T=1.0=\quad \quad \quad, \quad g=3.0 \mathrm{~ms}^{2}
$$

Squaring both sides

$$
\begin{gathered}
T^{2}=4 \pi^{2} \frac{1}{g} \\
I=\frac{g T^{2}}{4 \pi^{2}}
\end{gathered}
$$

or

Frequency $\quad f=\frac{1}{T}=\frac{1}{1 \mathrm{~s}}=1 \mathrm{~Hz}$

7.6 ENERGY CONSERVATION IN SHM

Let us consider the case of a vibrating mass-spoing system. When the mass m is pulled slowly, the sipring is stretched by an amount x_{0} against the elastic restoring force F. it is assumed that strotching is done slowly so that acceleration is zoro. According to Hooke's law

$$
E=k x_{a}
$$

When

$$
\text { displacement }=0
$$

$$
\text { force }=0
$$

When
displacement $=x_{\sigma}$
force $=k x_{0}$
Average force

$$
F=\frac{0+k x_{e}}{2}=\frac{1}{2} t x_{\varphi}
$$

Work done in displacing the męss m through x_{a} is

$$
W=F d=\frac{1}{2} k x_{0}-x_{2}=\frac{1}{2} k x_{0}
$$

This work appears as elastic potential energy of the spring.
Hence

$$
P E=\frac{1}{2} k x_{0}^{2}
$$

The Eq 7.21 gives the maximum PE at the extreme position. Thus

$$
P . E_{\max }=\frac{1}{2} k x_{0}^{2}
$$

At any instant t, if the displacement is x, then P.E. at that instant is given by

$$
\begin{equation*}
R E=\frac{t}{2} h x^{2} \tag{7,22}
\end{equation*}
$$

The velocily at that inslant is given by Eq, 7.15 which is

$$
v=x_{0} \sqrt{\frac{n}{m}\left(1-\frac{x^{2}}{x_{0}^{5}}\right)}
$$

Hence the K.E at thet instant is
K.E. of the mass $=\frac{1}{2} m v^{2}=\frac{1}{2} m x_{0}=\left(\frac{n}{m}\right)\left(1-\frac{x^{2}}{x_{s}^{2}}\right)$

$$
\begin{equation*}
K E:=\frac{1}{2} k x_{2}^{2}\left[1-\frac{k^{2}}{k_{0}^{2}}\right] \tag{7.2.2}
\end{equation*}
$$

Thus, kinetio energy is maximum when $x=0$, te, when the mass is at equilibrium or mean position (Fig. 7.8)

$$
\begin{equation*}
K E=n=\frac{9}{2} \cdot N C_{c}^{2} \tag{7,24}
\end{equation*}
$$

For any displacement x, the energy is partly P.E. and partly K.E. Hence,

$$
\begin{aligned}
E_{\text {mam }} & =P \cdot E_{.}+K \cdot E_{:} \\
& =\frac{1}{2} k x^{2}+\frac{1}{2} d x_{0}^{2}\left(1-\frac{x^{2}}{x_{2}^{2}}\right)
\end{aligned}
$$

Total $\operatorname{anergy}=\frac{1}{2} x_{0}^{2}$
$+4+1$
(725)
Thus the total energy of the vibiating mess and upring is constant. When the K.E. of the mass is maximum, the PE of the spring is zern. Conversely, when the PE of the spring is maximum, the K.E. of the mass is zero. The interchange ocrurs continuousty from ono form to the other as the spring is compressed and released altemately The variation of P.E. and K.E. with displacemont is essential for maintaining oscillations: This periodic exchange of anergy is a traslc propenty of all oscillatory systems. In the case of simple pendilum gravitational PE. of the mass, when displaced, is panverted into K.E. at the

equilibrium position. The K.E. is ponverted into P.E. as the mass rises to the top of the awing. Because of the frictional forces, energy is issipated and consequently, the systems do not pscilate indofinitely.

Example 7.3: A sprug, whose spring constant is 80.0 Nm vertically supports a mass of 1.0 kg in the rest poaltion. Find the distance ty which the mass must be pulled down, so that on being released, it may pass the mean postion with a velocity of $1.9 \mathrm{ma}^{-1}$.

Solution:

$$
k=80.0 \mathrm{Nm}^{-1} \quad, \quad m=1.0 \mathrm{~kg}
$$

Since $\quad \omega^{2}=\frac{h}{m}$

$$
\text { or } \quad \quad \omega=\sqrt{\frac{K}{m}}
$$

$$
=\sqrt{\frac{801 \mathrm{~km}^{-1}}{5 \mathrm{~kg}}}-\sqrt{\frac{80 \mathrm{~kg} \mathrm{~ms}^{-2} \times \mathrm{m}^{-1}}{1 \mathrm{~kg}}}=8.94 \mathrm{~s}^{-1}
$$

Let the amplitude of vibration be xu
Than

$$
y=x_{0} 29
$$

or

$$
x_{0}=\frac{v}{a}
$$

$8 t$

$$
v=1.0 \mathrm{~ms}^{-1} \quad \text { and }
$$

$$
\omega=8.945^{\prime}
$$

Distance through which mis puled $=x_{5}=\frac{1 \mathrm{mis}^{-1}}{8.94 \mathrm{~s}^{-1}}=0.11 \mathrm{~m}$

7.7 FREE AND FORCED OSCILLATIONS

A bodyis said to be oxpcuting free vibratons whenil oscilsles without the interference of un external force. The frequancy of these free vibrations is known as its natural frequency. For example, a simple pendutum when slightiy displaced from its mean posilion vibratas freely with its naturni fropuency that depends anly upon the length of the peodulum.
On the other hand. if a freely oscilating system is subjected to an external periodic force, then forced vbrations will take place Such as when the mass of a vibrating pendulum is struck repeatedly, then forced vibrations aro produced.

A physical systom under going forced vibrations is known at drivan harmonic oscillator,

The vilications of a vehicle body caused by the numing of engine is an example of forced vibrations. Another example of foreed vibnation is loud music produced by sounding wooden boands of string instruments.

7.8 RESONANCE

Associated with the motion of a driven harmonic oscilator, there is a very striking phenomenon, known as resonance. It arises if the extemsl driving force is periodic with a period comparabie to the naturas period of the csoillator.
In a resonance aituation, the driving force may be feeble, the amplitude of the motion may become extra ordinarily targe. In the case of oscillating simpie pendulum, if we blow to push the pendulum whenever it comes in front of ouir mouth, it is fournd that the amplitude stpadily increasess.

To demonstrate this resonance effect, ant apparatus is shown in Fig. 7.9. A horizontal rod AB is supported by two strings S_{7}, and S_{2}. Three pairs of pendiames ac, bb and oc are suspended to this rod. The length of each pair is the same but is different for different pairs. If one of these pendulums, say C , is displaced in a direction perpendicufar to the plane of the paper, then its resultant ascitatory motion causes in rod AB a very slight disturbing motion, whose perlod is the same as thot of c^{\prime}. Due to this sllight motion of the rod, each of the semaining pendutume (ae; bb^{\prime}, and cc) under go a slight periodic motion. This causes the pendulum C, whose fength and, hence, period is exactly the same as that of c , to oscillate back and forth with stoadily increasing amplitude. However, the ampiftudes of the other pendulums remain small through out the suibeequent motions of 0 and c^{\prime} 'because their haturat perlods arn not the same as that of the disturbing force due lo rod AB.
The energy of the oscillation oomes from the driving source: At resonarice, the trasisfer of energy is maximum.

Thus rusuarce oceus whien the trequancy of the applied periodie forced ie equil to one of the natural fimpumcles of vibration of the forcoid or Jrin th hamonic osethator.

Fie. 73

Do You Know?

Wherutiven ane fisery to mporymy Al ste के mare hwownams. The
 thtuntint to tent wit itit
 ubuglatas FabDOIEtas in at aerthinely niti is a hetrceim

Interesting information

The eulingee of Taum Narmut matpe [USAft is auspinfod io Le due tovederifobstanchtob fimina.

Graph hetweet arfailiale and Grme

Advantages And Disadvantages of Resonance

We come across many examples of resonance in every day lie. A swing is a good example of mechanical resonance It is like a penoulum with a siegle natural frequency depending on its length. If a series of rogular pushes are given to the swing. Its motion can be built up enormously. If pushes are giver irregulary, the swing will hardly vibrate:
The column of soidions, while marthing on a bidge of long spen are advised to break their sieps. Their thythmic march might sot up oscillations of dangerously large amplitude in the bridge structure:

Tuning a radio is the best example of electrical resonance. When we turn the knob of a radia, to tune a atation, we are changing the natural frequency of the blectric circuit of the recelver, to make it equal to the transmission frequency of the radio station. When the two frequencies match, energy absorption is maximum and this is the ony station we heat.
Another good example of resonance is the heating and cooking of food very efficiently and evenly by microwave oven (Fig. 7 ib). The waves produced in this type of oven have a wavelength of 12 cm at a frequency of 2450 MHz At thie frequency, the wives ate absorbed due to resonance by water and fat molecules in the food, heating them up and so cooking the food.

7.9 DAMPED OSCILLATIONS

This is a common observation that the ampiftude of an oscilating simple pendulum decreases gradually with tirne illl it becomes zero Such oscillations, it which the amplitude decreases stendity with time, are called damped oscillations:

We know from our everyday experience that the motion of any macroscopic system is acoompanied by frictional offects. While describing the motion of a simple pendulum, this effect was completely ipnored. As the bob of the perctutum moves to and tro, then in addition to the weight of the bob and the tension in the string, bob experiences viscous drag due to its motion through the air. Thus simple harmonic motion is an idealization (Fig 7.11 a). In practice, the ampliude of this motion gradually becomes smaller
and smaller because offiction and air resistance because the energy of the oscillator is used up in doing work against the residilive forces, Fig, 7iti (b) shows how the a miptitude of a damped simple tamanic wave changes with time as compared with an ideat un-damped harmonic wave Thus we sae that

> Darmping is the procass whereby energy Is dissipsted from the osciliating system

An application of damped osoilations is the shock absorber of a car which providen a damping force to prevent excesslve oucittations (Fig. 7,12).

7.10 SHARPNESS OF RESONANCE

We have seen thet at resorince, the ampltude of the csollater becomes very large, If the amplituch decrasses mpidy ot a fequency alghty cifferent from the rescrant fixquancy, the rescnance wit be sharp. The amplituda as well as its shompnoss, both dapend upon the danying. Smales the damping peatro wil be the amplitude and more shap will be the resonanon

> A henvily dumped system has a faily flut resonance curve as is shown in an ampitude frequency oraph in Fig. 7.13 .

The effect of damping can be observed by attaching a pendufom having light mass wich as a pith hall as its bob and another of the sbame length carrying a heavy masis such as a lead bob of equal alee, to a rod as shown in Fig. 7,9. They ate set into vibritions by a third pendulum of equal length, attached to the same rod. It is obserwod that amplitude of the fead bot is much grobter than that of the pith-ball, The darnpime sffoct far the pith-ball due to air resistance is much greater than for the lead boh

Gryn tehwent ancilude und time

Finters

1974

SUMMARY

- Oscilatorymolion is to and fro motion abouf a mean position.
- Periodic motion is the one that tepeats itself after aqual intervais of fime.
* Restoring force opposes the change in shape or length of a body and is equal and opposite to applied force.
- A vibratory motion in which acueleration is direcily proportional to displacement from mean position and is always directed towards the mean position is known as simple harmonic motion.
*The projection of a particle moving in a circle executes SHM. It time period T is $\frac{2 \varepsilon}{i 0}$,
* Phase of vibration is the quantity which indicates the state of motion of a vorating particle generally raferred by the phase angle.
* The vibratory motion of a mass attached to an elastic spring is SHM and its time period is $T=2 \pi \sqrt{\frac{m}{k}}$
* The vibratory motion of the bob of sirmie pendulum is also SHM and its time period is given by

$$
T=2 \pi \sqrt{\frac{g}{g}}
$$

In an oscillating systam P.E. and K.E, inforchange and total energy is conserved A body is said to be executing frae oscillation it it vibrates with its qwin natural frequency without the interference of an external force.
*"When a frealy oscilating system la subjected to an external periodic force, then forced vibrations take place.

- Resonance is the specific response of a Eystam to a penodic force acting with the natural vibrating period of the system.
- Damping is the process whereby energy is dissipatod from the oscillating system.

QUESTIONS

7.1 Name two characteristics of simple harmonic motion.
7.2 Dons frequency depends on amplitude for harmonic oscillators?
7.3 Can we realize an ideal simple pendulum?
7.4 What is the total distance travelled by an object moving with SHM in a time equal to its period, if its ampiltude is A?
Iis What happens to the period of a simple pendulum if its length is doublod? What happens if the suspenderdmass is doubled?
F. 6 Does the acceleration of a simple harmonic osollator remain constant during its motion? 's the acceloration ever zero? Explain.
7.7 What is meant by phass anglo? Does it deline angle between maximum dieplacement and the driving force?
Fi8 Under what conditions does the addition of two simple hamonic motions produce a resultant, which is also simple harmonic?
7.9 Shicw that in SHM the acceleration is zero when the velocity is greatest and the volocity is zaro when the acceleration is greatest?
7.19 In relation to SHM, explain the equationst:

$$
\begin{align*}
& y=A \sin (\omega t+\varphi) \tag{i}\\
& a=-\omega^{2} x \tag{ii}
\end{align*}
$$

7.11 Explain the relation between total energy, potential energy and kinetic energy for a body ascillating with SHM.
7.12Describe some common phenornena in which resonance pkays an important role.
7.13 If a mass spring system is hung vertically and sof into osoilations, why does the motion eventually stop?

NUMERIGAL PROELEMS

7.1 A. 100.0 g body hurig on a spring elongates the spring by $4,0 \mathrm{~cm}$. When a certain object is hung on the spring and set vibrating, its period is:0.588:5. What is the mass of the object pulling the spring?
(Ans0.20 kg)
7.2 A load of 15.0 g slongates a spring by 2.00 cm . If body of mass 294.9 is attached to the spring and is set into vibration with an amplitude of 10.0 cm , what will be its (1) period (7) spring constant (ii) maximum speed of its vibration.
[Ans: (i) 1.26 s , (ii) $7.35 \mathrm{Nm}^{-1}$, (ilij $49.0 \mathrm{~cm} \mathrm{~s}^{-1}$]
73 An 8.0 kg body executes SHM with amplitude 30 cm . The restoring force is 60 N when the displacpment is 30 cm . Find
(1) Period
(ii) Acceleration, speed, kinetic energy and potential energy when the displacement is 12 cm .
[Ans: (11 1.3 s, (1I $\left.3.0 \mathrm{~ms}^{-2}, 1.4 \mathrm{~ms}^{-1}, 7.6 \mathrm{~J}, 1.44 \mathrm{~J}\right]$
7. A block of mass 4.0 kg is dropped trom a height of 0.80 m on to a spering of spring constant $\mathrm{k}=1960 \mathrm{Nm}^{1}$, Find the maximum distance through which the -spring will the compressed.
(Ans:0.18 m)
,
A simple pendulum is 50.0 cm long. What will be its trequency of varation at a place where $g=9.8 \mathrm{~ms}^{2}$?
(Ans: 0.70 Hz)
75 A block of mass $1,6 \mathrm{~kg}$ is attached to a spring-wth fipring oonstant $1000 \mathrm{Nm}^{\dagger}$, as shown in Fig. 7.14. The spring is compressed through a distance of $2,0 \mathrm{~cm}$ and the block is released from rest. Calculate the velocity of the block an it passes through the equilibrium pogition: $x=0$, if the surface is frictionloss:

Fla. 7,54

77 A car of mass 1300 kg is construcled using a frame supported by four springs. Each Epring has a spring constant $20,000 \mathrm{Nm}^{-1}$. If two people riding in the car have a combined mass of 160 kg . Find the frequency of vibration of the car, when it is driven cyer a pot hole in the road. Assume the weight is evenly distrouted.
(Ane $1,18 \mathrm{~Hz}$)
7.8. Find the amplitude, frequency and period of an object vibrating at the end of a spring. if the equation for its pasition, as a function of time, is

$$
x=0.25 \cos \left(\frac{\pi}{3}\right) t
$$

What is the displacement of the object after 2.0 s ?

$$
\text { (Ans: } 0,25 \mathrm{~m}, \frac{1}{16} \mathrm{~Hz}, 165, x=0,18 \mathrm{~m} \text {) }
$$

Chapter 8

WAVES

Learning Objectives

At the end of this eftapter tha staderito will be adole to:

1. Rpeall the generation and propayation of waves.

2 Dericribe the nature of the mations in transvins and iongitudinal wayes.
9. Understand and use the turno wavolength froquency and speed of wave:
4. Understand and use the equation $V=f \alpha$

5 Understand and stescrita Newtrn's frimida of speed of sound
6 Derive Laplace correction in Niemton's formula of speed- of en pund for air.
7. Derve the fismuli $\quad y=v_{1}+0.151$.
8. Recoonlas und teacrite ihe faclofs on which vpoud of oound in air depends.

- Explain and ture the orinolple of ouperpasition

10. Undersiand the terms inferference and bestil.
11. Deiecribe the ghenintena at interference and beats giving exarmples of sound Havers.
12. Understend and dnteribes rellection of wsvers.

18, Gescribe expumments, whieh rhemonstrate ntatianiary Waves for stretched strings and vibrating air colomint
14. Explain the fommation of is atatian ary wave uaing graphical thethod.

15v Underatand the tenna node and antinode.
19. Understand and deseribe modes:of vibotion of thing
17. Understand and detente Doppteris effict and its causes.
til Fecognize the applications of Doppin's affoct in rudar, sphac, istronomy, satellite and radar mpesd trap:

Do You Know?

Uhasonk airees are sarticulaty usehi for underies commumication amd onteution symemi High frequarcy ratio waven: insed in move tirvel jusk a fow cuefinimpla Iniwitor, wheress hicitij tirectionsi Bearts of ulymancip woven amion inadeto trounimary b/iomplre

Waves transport energy without transporling matter, The eriergy transportation is carried by a disturbance, which spreads out from a source. We are well familiar with different types of waves such as water waves in the ocean, or gently formod ripptes on a still pond due to rain drop. When a musician plucks a guitar-string, sound waves are generated which on reaching our ear, produce the sensation of music. Wave disturbances may also come in a concentrated bundle fike the shock waves from an seroplane flying at suipersonic speed. Whatever may be the nature of waves; the mechanism by which it transports energy is the same. A succession of oscillatory motions are always involved. The wave is generatod by an oscitation in the vibrating body and propagation of wave through space is by means of oscillations. The waves which propagate by the oscillation of material particles are frow as mechanical waves.

There is another class of waves which, instead of matenial particies, propagate out in space due to ascilations of electric and magnetic fieids. Such waves are known as electromagnetic waves. We will undertake the study of electromagnetic waves at a later stage Here we will consider the mechanical waves only. The waives generated in ropes, strings, poit of springs, waler and air are atl mechanical waves.

So fir we have been considering motion of individwal particles but in case of mechantical waves, we suidy the collective motion of particies. An example will hielp us liere, If you look at 4 black and white pretues in a newspaper with a magnifying glass, you will discover that the picture is made up of many elosely spaced dotn, It you do not use the magnifier, ysu do not see the duts. Whit you see is the collective effect of dote in the form of a pieture Thus what we see as mechanizal wave is actually the cffect of escillations of a very large number of particles of the medium through which the wave is passing

8.1 PROGRESSIVE WAVES

Drop a pebble into water. Rippless will be produced and spread out across the water. The nipples are the examples of progressive wavers because they carry energy across
the water surface. A wave, which translers energy by moving away from the source of disturbanice, is called a progressive of travelling wave. There are two kinds of progressive waves - transverse waves and longitudinal waves.

Transverse and Longitudinal Waves

Consider two persons holding opposite ends of a rope or a hosepipe. Suddenlyone person gives one up and down jerk to the rope. This disturbs the rope and craates a humpin it which travelsalonp the ropetlowartsthe other person (Fig-8.1 a \& b)

Fig

When tisis hump reachen the other person, it causes his hand to move up (Fig, 8:1 c). Thus the energy and momentum imparfed to the and of the rape by tho first person has reached the other end of the rope by travelling through the rope i, 6 , a wave has been set up on the rope in the form of a moving hump. We call this type of wave at puise. The forward motion of the pulse from one end of the rope to the other is an example of progressive wave. The hand jerking the end of the rope is the source of the wave. The ropo is the medium in which the wave movel.

Hy 177 m

Iergisplinal wevet

Fig s.ent:

A large and loose spoing coil (slinky spring) can be usud to demonstrats the effect of the motion of the source in generating waves in a medturn, it is better that the spring is laid on a smooth table with its one end fixed so that the spring does not sag under gravity.
If the free end of the spring is viltruted from side to side. ap pulse of wave huving a diaplacement pattem Hhown in Fig. 8.2 (d) will be generated which will shate alome the नoptup.
If the end of the spring in moved back and forth, along the direction of the spring nisell as shown in Fig. 8.2 (b) a wave with back and lorth displacement will travel alang the spying: Waves like those in Fig.-B. 2 (a) in which displacament of the spring ls perpendicular to the direction of the waves aru calted transverse waves. Waves like those in Fig, 8.2 (b) in which displacements are in the direction of propeggtion of waves are called fongitudinalwaves. In this example the coil of spring is the medium, so in-general we can say that

Transverse waven are those in which particles of the medium are displaced in a direction perpendicular to the difection of propagation of waves and longitudinal waves are those in which the particles of the medium have displacements along the direction of propagation of waves:

Both types of waves can beset up in solide in fiuids, however, transverse waves die out very quidkly and usually cannot be produced at all. That is wity, Sound waves in aif are longitudinaf in nature,

8.2 PERIODIC WAVES

Upto now wo have considered wave in the form of a pulse which is set up by a single diaturbence in a medipm like the snapping of one end of a rope or a coil spring. Continuous, regular and myttmic diaturbarices in a modum Tesult from periodic vibrations of a source which cause periodic waves in that medium: A good example of a periodic vibrator is an oscilating mase-spring system (Fig 8.3 a), We have already atuded in the previous chapter that the mass of such a system execuths SHM.

Transverse Periodic Waves

tmagine an experiment where one and of a rope is fastened to नi mass apring vibrator As the mass vibrstes up and down, we chserve a transverse penofic wave travelling Mtong the tangth of topo ifhe : 8.3 ut . The wave conslists of crests and troughs. The crast is a flattern in which the rope if dieptachd abive its equilibrim position, and in troughis. iltuas a displaoement bolow iti equilbrium position:

As the suince exacutes hamonic inotern ap and down with amplitude A and frequency f deally every point along the length of the rope executee SHM in fum, with the same ampfiftion and frequency. The wave trmels tewards right as cresto and troughis in lurn, replace ane another, but the points on the tope simply asciltates up and down. The ampitude of the wave is tinn maximum value of the Thiphicement in a crest de trough and it lis equat 'to the amplitude of the viltrator, The distante between any two conseculive crepte or troughts in the same all along the fength of the rope. This distance is called the wovetength of the pertodie wave and is usuaty danuted by the Greak tettar lambiar A (Fig 83 b)
In principle, the speed of the weqve can be measured by fining the molion of al wave crest over a measured Whbtance But it is not Elways tormenient to otserve the mosion of the crest. As discirssed below, howevar, the speod of a periodic wave can be found indirectly from its fraquency and wavelenith.

As a wave progmesises, each point in the medium oscillates periodically with the frequency and period of the sourse. Fild 8.4 illustrales a pariodic wive moving to the Eight, as it might fook in photographic snapstiots tafien every $1 / 4$ period. Follow the progress of the crmst that stariod out from the extrome leff at $t=0$. The lime that this crest takes to move a distance of one wavelength is equal to the time required for a point in thie modrim to go, through one complete oscillation. That is the crest moves one wavolength x in one period of oecillation T.The speed v of the erest is thereftome,

$$
v=\frac{\text { distince moved }}{\text { comenponding lime interval }}=\frac{\lambda}{T}
$$

Fig (131)

Find

All parts of the wave pattern move with the same speed, sc the speed of any one crest is just the speed of the wivel We can thersfore, say that the speod v of the waves is

$$
\begin{equation*}
v=\frac{\lambda}{T} \tag{8,7}
\end{equation*}
$$

but $\frac{1}{T}=f$, where f is the frequency of the wave. It is the same as the frequency of the vibrator, generating the waves. Thus Eq. 8.1 becomes

$$
\begin{equation*}
v=f x \tag{8.2}
\end{equation*}
$$

Fan 85

Phasa Relationship between two Points on a Wave

The profle of periodic waves generated by a source executing SHM is represented by a sine curve. Figure 8.5 shows the snapshot of a periodic wave passing through a medium. In this figure, set of points are shown which are moving in unison as the periodic wave passes. The points C and C^{\prime}, as they move up and down, are always in the same state of vibration i.e., they aiways have identical displaciments and velocities. Alternativaly, we can say that as the wave passes, the points C ad C . move in phase. We may also say that C' leads C by one time period or 2π radian. Any point at a distance x, C fags behind by phase angle $\quad \varphi=\frac{2 \pi x}{\lambda}$
So is the case with points D and D^{\prime}. Indeed there are infinitely many such points along the medium which are vibrating in phase. Points aeparated from one another through distances of $\lambda, 2 \lambda, 32, \ldots \ldots$ are all in phase with each other. These points can be anywhere along the wave and need not correspond with only the highest anid lowest points. For example, points such as P. P', $\mathrm{P}^{\prime \prime}, \ldots \ldots \ldots$. are all in phase. Each is segarated from the next by a distance λ,
Some of the points are exactly out of step. For example, When point C reaches its maximum upward displacement, at the same time D reaches its maximum downward displacement. At the instant that C begins to go down, D begins to move up. Points such as these are called one half period out of phase. Any two points separated from one another by $\frac{\lambda}{2}, 3 \frac{\lambda}{2}, 5 \frac{\pi}{2}, \ldots . .$. are cut of phase.

Longitudinal Periodic Waves

In the previout section we have considered the ganeration of transverse periodic waves. Now we will see how the longitudinal periodic weves can be goneriatod.
Consider a coil of spring as shown in Fig. 8.6. It is suispended by tircads so that it can vibcale horizontally. Suppose an oscillating force F is appiled to lis and as indicated. The force will afternately stretoh and compress the spring, therety sanding a serfes of stretched regions (cilled rarefaction) and compressions diwn the spring We will see the osolifaling force cautes a iongitudinal wave to mowe dowh the epring Thls typs of wave generated in springs is also called an compressional wave. Clearly in a compressional wave, the particles in the path of wave move back and forth along the line of propegution of the wave.
Notice in Fig, 8.6, the supporting threads would be exactly vertical it the spring were undisturbed. The disturbance passing down the spring causes displacemonts of the elementer of the spring from thair equilibrium positions In Fig. 8.6, the displacements of the thread from the vertical are a direct measure of the displacements of the spring olements, It is. therefore, ain easy why to graph the displacements of the spring elements from their oquititrium positions and this is done in the lower part of the figure.

8.3 SPEED OF SOUND IN AIR

Sound waves ste the mest important examples of Iongtudinal or compressional waves. The speed of sound waves dopends on the compressibitity and inertia of the medium through which they are travelling. If the merfium has the elasticmodulus E and dernity ρ then, speed vis given by

$$
\begin{equation*}
v=\sqrt{\frac{E}{\rho}} \tag{8.3}
\end{equation*}
$$

As seen fram the ubbie \&.1, the speed of sound is much higher in solids than in gases. This makess sense because the molecutes in as solid are closer than in a pas and hence, respond more quickly to a disturbance.

In general, sound travels more slowly in gases than in solid's because gaset are tmore compressible and hence

Table 8.1
Ipsod of sound in diftermet nedis

Mefum	Speend
Sctle Lisiif Copper Alutiotion lean G2m	$\begin{aligned} & 1900 \\ & 3000 \\ & 5100 \\ & 5130 \\ & 5500 \end{aligned}$
Lavishat arc Meithianof Witer	$\begin{aligned} & 1200 \\ & 1483 \end{aligned}$
Gatueneste cirwen axod Oncosin AT Hewn tridngan	$\begin{aligned} & 282 \\ & 316 \\ & 319 \\ & 952 \\ & 1286 \end{aligned}$

have al smaller alastic modulus. For the calculation of elastic modulus for air, Newton assumed that when a sound wave travetis through air, the tempersture of the air during compression romains conistant and pressure changes from P to $(P+\Delta P)$ and therefore, the volume changes fiom V to (V-AV). According to Boyle's law

$P V$	$=\{P+\triangle P(V-\Delta V) \quad$ or $\quad P V$
or	$P V-P \Delta V+V \Delta P \cdot \triangle P \Delta V$

The product $\triangle P$ ov is very mall and can be neglected. So, the above equation tecomes

$$
P \Delta V=V \Delta P \quad \text { or } \quad F=\frac{\Delta P}{\Delta V} \times V=\frac{\Delta P}{\Delta V / V}=E
$$

The exgression $\left(\frac{\Delta P}{\Delta Y / V}\right)$ is the elastic modulus E at constant

For Your Intormation

Vhbes of consinnt

Trpes of gas	r
Monchrome	181
Dialomic	1.46
Folyotoric	1.8

temperature. So, substituting P for E in equation 8.3, we get Newion's formula for the speed of sound in air. Hence

$$
\begin{equation*}
v=\sqrt{\frac{P}{P}} \tag{8.5}
\end{equation*}
$$

On substititing the values of atrosphenic pressure anddensity of air at S.T.P. in equation 8.5, we find that the speed of sound waves in air comes out to be 280 ms ", whereas its experimentai value is $332 \mathrm{~ms}^{-1}$,
To account for this difference, Laplace pointed out that the compressions and rarafactions oocar so rapidly that heat of compresslons remains confined to the rogion where it is genorated and soes not have time to fow fo the neighbouing cooler regions which have undergone an expansion. Hence the tomperature of the medium does not remain coristant in such case Boyle's law takes the form

$$
\begin{equation*}
P V^{\prime}=\text { Constant } \tag{8.6}
\end{equation*}
$$

+n+mer
where

$$
\text { y }=\frac{\text { Molar spocinichant of gas at coristant pressure }}{\text { Molir specific hoout of gas at constant volume }}
$$

If Be prossure of a given mass of a gas is changied from P to $(P+\Delta F)$ and velume changes from V to $(V-\Delta V)$, then using Eq. 8.6

$$
\begin{aligned}
& P V^{\prime}=(P+\Delta F)\langle V-\Delta V)^{\prime} \\
& P V^{\prime}=\left(P+\Delta P V^{\prime}\left(1+\frac{\Delta V}{V}\right)^{\gamma}\right.
\end{aligned}
$$

Applying Binomial theorem

$$
\left(1-\frac{\Delta v}{V}\right)=1-7 \frac{\Delta v}{V}=\text { onghaibde tarms }
$$

Hencs

$$
P=(P+\Delta P)\left[1-x \frac{\Delta V}{V}\right]
$$

or

$$
P=f-y P \frac{\Delta V}{V}+\Delta R-Y P \frac{\Delta V}{V}
$$

where $\left(y \Delta p \frac{\Delta V}{V}\right)$ is negligible, Hence, we heve

$$
0=-\nabla P \frac{\Delta y}{V}+\Delta R
$$

of

$$
\frac{\Delta P}{\Delta V / V}=P P_{a} E
$$

For Your information Ranges at Hearing	
Organisme	Frpupunsies (tel
Domm	170-150,007
Bial	10005.720 509
Cat	+0-73.000
Dap	55-9000
Himar	20-32085

Thus elastic modulues $\left(\frac{\Delta P}{\Delta / N}\right)$ equals $T P$.
Hence zubatihuting the walue of claatie modules in Eq. 8.3, we get Laplace exprestion for the spoed of spund in a gas

$$
v=\sqrt{\frac{9 P}{p}}
$$

(8.7)

For air

$$
\begin{aligned}
& T=1.4 \quad \text { so at S.T.P. } \\
& v=\sqrt{1.4} \times 280 \mathrm{~ms}^{-1}=333 \mathrm{~ms}^{-1}
\end{aligned}
$$

This yalue es very close to the experimental value.

Tidbils

Found wives caune the cantie flame to Ficker.

Efrect of Variation of Pressure, Density and Temperature on the Speed of Sound in a Gas

1. Effect of Pressure: Since density is proportional to the pressure, the speed of sound is not affecled by a variation in the pressure of the gas.
2. Effect of Density: At the same tomperature and pressure for the gases having the same value of $\%$, the speed is inversely proportional to the square root of their dorsities Eq. 87 . Thus the speed of sound in hydrogen is four times its speed in oxygen as density of axygen is 16 times that of hydrogen.
3. Effect of Temperature: When a gas is healed at constant pressure, its volume is increased and hence its densily is docreased. As

$$
v=\sqrt{\frac{Y P}{\rho}}
$$

So, the speed is increased with rise in temperature.
Let
$v_{0}=$ Speed of sound at 0 " $\mathrm{C} \quad, \rho_{0}=$ Density of gas at $0^{\circ} \mathrm{C}$
$v_{l}=$ Speed of sound at $t^{\circ} \mathrm{C} \quad, \quad P_{1}=$ Density of gas at $l^{\circ} \mathrm{C}$
then

$$
\begin{equation*}
v_{e}=\sqrt{\frac{3 P}{\rho_{0}}} \quad \text { and } \quad v_{1}=\sqrt{\frac{Y P}{\rho_{k}}} \tag{8.8}
\end{equation*}
$$

Hence, $\quad \frac{v_{t}}{v_{\beta}}=\sqrt{\frac{P_{0}}{P_{1}}}$
We have studied the volume expansion of gases in previous classes. If W_{0} is the volume of a gas at temperature $0^{\circ} \mathrm{C}$ and V_{i} is volume at $t^{4} \mathrm{C}$, then

$$
V_{\mathrm{s}}=V_{0}(1+\beta)
$$

Where 1 is the coofficient of volume expansion of the gas.
For all gases, its value is about $\frac{1}{273}$. Hence

$$
V_{1}=V_{0}\left(1+\frac{t}{273}\right)
$$

Since

$$
\text { Volume }=\frac{\text { mass }}{\text { density }}
$$

Hence

$$
\frac{m}{p_{r}}=\frac{m}{p_{s}}\left(1+\frac{t}{273}\right)
$$

or

$$
\rho_{a}=\rho_{x}\left[1+\frac{t}{273}\right]
$$

Do You Know?

Stheer then the apues of mund

Faibur than tha apeed of sound.

What hoppora whan a fet plame Eu Goncritie fies fiown frant the Hentufninds
A pogical mirlime of chnoctames covint anmery tweepti byn the jpurif an emiparsarfic jomas
 tonicboaty

Example 8.1: Find the temperature at which the vetocity of sound in air is two times its velocity at $10^{\circ} \mathrm{C}$.

$$
\text { Solution: } \quad 10^{\circ} \mathrm{C}=10^{\circ} \mathrm{C}+273=283 \mathrm{~K}
$$

Suppose at $T K$, the velocity is two times its value at 283 K .

Fige 3.7

For Your Hfarmation

Fapraposert
*

Buquepresten af two wever at the sarse

Where 1 art 2 aviper posed

Penhant mapy
$\psi-0$

[^0]Since

$$
\frac{v_{i}}{v_{\cos }}=\sqrt{\frac{\overline{7}}{28 j k}}
$$

Therefare.

$$
\frac{v_{1}}{v_{\text {an }}}=\sqrt{\frac{\tau}{283 k}}=2
$$

$$
\bar{T}=1132 \mathrm{~K} \text { or } 859^{\circ} \mathrm{O}
$$

8.4 PRINCIPLE OF SUPERPOSITION

So far, we have considered single whyos. What happens when two waves encounter each pther in the-same medium? Suppose two waves approach each other on a colt of spring, one traveling towards the riglt and the ofther travelling towards lef. Fig. B.7 thowes what you would see happening on the spring. The waver pass through each other without being modified. After the encourder, each wive shape looks just as it did betore and as tiavelling along just as it was before.

This phenomenon of passing through each other unchanged can be observed with all types of waves. You can easlly see thut it is truc for surface ripples.
But what is going on during the time when the two waves overlap? Fig ©. 7 (c) shows that the displacements they produce just add up. At each instant the apring's digptacement at ary point in the avardap reblon if)lyst the sum of the cisplacements that wruld be calissd by each of the two waves separately.

Thus, il a particie of a medium is simultaneously acted upon by n waves such that ite digplacement due to esch of
 tesultant displacement of the particit, unider the simultanecus action of these in waves is the aloebraic sum of all the displacements lie.

$$
Y=y_{1}+y_{2}+\cdots \quad+y_{n}
$$

This is called principie of sumerpoxition.

Again, If two waves which cross sach other have opposite phase, their treuftant digplacement will be

$$
\gamma \pm y_{1}-y_{2}
$$

Particularly if $y_{1}=y_{1}$ - then result displacement $\gamma=0$. Principle of superposition leads to many interesting phenamone sith woves.
I) Two waves, having samie frequency and traveliing in the same direction (interference)
ii) Two wives of slightity differont irequences and travelting in the same direction (Begth)
iii) Two waves of equil froquericy traveiling is opposite direction (Stationary weves)

8.5 INTERFERENCE

Superposition of two wavis having lhe same fequency and travaling in the same diroction results in a phenoinenon callied interference.

An experimental sat up to observe interference effect in sound waves is thown in Fig B.8 (a)

(4) 8 青((0)
fixartevance of sumid weves

Two loud speakers 'S, and $8_{\text {s }}$ act as two sources of harmonic sound waves of in fixed froquency produced by

Fig, 8.8(c)
Conciradive imsolommon timpe ifaptacemont in id quaputar the crat moreen

Fig. $6.8($ (d)
Deabriative sobedironce Zempidaplacemark atilipleytuiton therro ronien

An audio generator. Since the two speakers are driven from the same generator, they vibrate in phase. Such sources of waves are called coherent sources. A microphone attachiod to a sensitive cathode ray oscilloscope (CRO) acts us a detector of sound waves. The CRO is a device to display the input signal into waveform on its sereen. The microphone is placed at various points, tum by turn, in front of the loud speakers as shown in the Fig. 8.8 (b):
At points P_{4}, P_{5} and P_{5} a large signal is seen on the CRO [Fig. $8.8(c)$], whereas at points P_{2} and P_{4} no signal is displayed on CRO screen (Fig. 8.8 (d)).This effect is explained in Fig. 8.8 (b) in which compressions and tarelaclions are altemately emitted by both speakers. Contiruous lines show compression and dotted lines show rarefactions, At points P_{4}, P_{3} and P_{52} we find that compression meets with a compression and rarefaction meets a raretaction. So, the displacement of two waves are added up at these points and a large resultant displacement is produced which is seen on the CRO screen Fig. 8.8 (c).
Now fram Fig. 8.8 (b), we find that the path difference ΔS between the waves at the point P_{t} is

$$
\Delta S=S_{2} P_{1}-S_{1} P_{1} \quad \text { or } \quad \Delta S=4 \frac{5}{2} \lambda-3 \frac{1}{2} \lambda=\lambda
$$

Similarly at points P_{3} and P_{5}, path differance is zero and $-\lambda$ respectively,
Whenever path difference is an indegral multiple of wavsiength, the two waves are sedded tip. This effect is calsed constructive interference.

Therefore, the condition for constructive interference can be written as

$$
\begin{equation*}
\Delta S=n \lambda \tag{8.12}
\end{equation*}
$$

Rukne

whare

$$
\mathrm{n}=0, \pm 1, \pm 2, \pm 3,
$$

\qquad
At points P_{2} and P_{2}, compression meets witt a rarefaction, so that they cancel each other's effect. The resultant diaplacement becames zero, as shown in [Fig: $B, 8\langle d\}]$.

Now let us calcitate the path differne between thas waves at points P_{2} and P_{6}. For point P_{2}

$$
4 S=S_{1} P_{2}-S_{1} P_{i} \text { or } 4 S=4 \lambda_{1}-3 \frac{1}{2} x_{2}=\frac{1}{2} \lambda_{2}
$$

Simitarly at P_{4} the path difference is $-\frac{1}{2} k$
So, af pointin where the displacements ot two waves cancul each othern effect, the puith difference is an odd integral mulliple of half the wivelengith. This effact is catied destructive interference.

Therefore, the condition for destructive interference can be written as

$$
\begin{equation*}
\Delta S=(2 n+1) \frac{1}{2} \tag{d,13}
\end{equation*}
$$

where

$$
n=0, \pm 1, \pm 2, \pm 3, \ldots \ldots
$$

8.6 BEATS

Turing forks give out pue notes (single frequency), It two tuning forks A and B of the same frequency say 32 Hz are sounded separalely, they will give out pure noles. It they are Bounded Eimultaneously, it will be difficult to differentiate the notes of one tuning fork from that of the other. The sound Wevess of the hoo will be superposed on each other and. wh be heard by the human sar as a alngle pure note If the tuning fock B is fouded with some wax or plasticene, its frequency will be lowered sfightly, say it becomes 30 Hz

If now the two tuining forks are sounded together, a notes of allemately incruasing and decreasing intensity will be heard. This note is callod beat note or a beat which is due to interference between the sound waves from tuning forks A and E. Fig. 89 (a) shows the waveform of the note emitted from a turing fork A Similarty Fig. 8.9 (b) shows the waveform of the note emitted by tuning fork B. When both the funing forks A and B are spouncod fogether, tive rèsultarts waveform is ahown in Fig. B. 9 (c).

Fig 89 (c) shows how does the beat note occur. At some instant X the dispiacement of the two waves is in the same drection. The resullanl dispiscementis large and a loud sound is heard.

Fin 8.3

[^1]After $1 / 45$ the displacement of the wave due to one tuning fork is opposite to the displacement of the wave due to the other tuning fork resilting itt a minimum displacoment at Y , hence, faint sound or no soundis heard.

Another $1 / 45$ later the displacements are again in the same direction and a loud sound is heard again at Z.

This means a loud sound is heard two times in each socond. As the difference of the frequency of the two tuning forks is aiso 2 Hz so, we find that

Number of beata per second is equal to the difference between the frequencins of the tuning forks.

When the difference between the frequencles of the two sounds is more than about 10 Hz , then it becornes difficult to recognize the beats.

One can use beats to ture a string instument, such as piano or violin, by besting a note againsta note of known frequency. The string cint then be adjustad to this destred trequency by tighteningor looseningat untif no beats are heard

Example 8.2: A turing fork. A produces 4 beats per seoond with another tuining fork B. It is found that by toiding E wath some wax, the beal frequency Increases to 6 beats per fecond if the frequancy of A is 320 Hz, determine the frequency of B when loaded.

Solution: Since the beeat frequency is 4 , the frequency of B is elther $320+4=324 \mathrm{~Hz}$ or $320-4=316 \mathrm{~Hz}$. By lopding B , 能 frequency will decrease. Thus if 324 Hz is the original frequency, the boat fraquency will reduca. On the other hand, if it is $31 \mathrm{H}_{\mathrm{t}} \mathrm{Hz}$, the beat frequericy wit inciease which is the case. So, the aripinal frequency of the tuning fork B is 316 Hz and when loaded, it is $316-2=314 \mathrm{~Hz}$.

8.7 REFLECTION OF WAVES

In an extenslive medium, a wave travels in all directions from its source with a velocity depending upon the properties of the modium. Howover, when the wave comes
across the boundary of two medis, a part of it is refected back. The reflected wave hes the same wavelength and frequency but its phase may change depending upon the nature of the boundary.

Now we will discuss two most common cases of reflection at the boundary. These cases will be explained with the help of waves traveling in sllinky spring. (A stinky spring is a loose spring which has small iniliat length but a relatively large extended length).
One end of the slinky spring is lied to a ripid support on a smooth horizontal table. When a sharp jerk is givenup to the free end of the siliky spring towards the side A a displacement or a crest will travel from free end to the boundary (Fig .8 .10 a) It will exert a force on bound end towards the side A. Since this end is rigitly Bound and acts as a denser medium, it will exert a reaction force on the spring in opposite direction. This force will produce displacement downwards B and a trough will travel backwards along the spring (Fig B. 10 b).
From the above discussion it can be concluded that whenever a transverse wave, fraveling in a rarer medium, encounters a denser medium, it bounces back such that the direction of its displacement is reversed. An incident crest on reflection becomes a trough:
This experiment is repeated with a little variation by attaching one end of a light atring to as sinkiky spring and the other end to the rigid support as shown in Fig. 8 11. If now the spring is given a sharp lerk towards A a crest travels along the spring as shown in Fig. 8,11, When this crest reaches the springstring boundary, it exert a force on the string towards the side A since the string has a small mass as compared to spring. it does not oppose the motion of the spring. The end of the spring, therefore, continues its disptacement towards A The spring behaves as if it has been plucked up. In other words a crest is again created at the boundary of the apring-string syslem, which travels backwads along the spring From this It can be conduded that whorn a transverse waid fraveling in a denser medium, is reflected from the boundaty of a rarer medium, the direction of its displacement comains the same. An incident crest is reflected as a crest. We are akeady familar with the fact that the directlon of displacement is

*
f4.1.11

Fig. 1 HIN
reversed when there is change of 180^{3} in the phase of vibration. So, the above conclusion can be written as follows.
(1) If a transverse wave travelling in a rarer medium is incident on a denser medium, it is reflected such that it undergoes a phase change of 180°.
ii) If a transverse wave travelling in a denser medium is incident on a rarer medium, it is reflected without any change in phase.

8.8 STATIONARY WAVES

Now let us consider the superposition of two waves moving along a string in opposite directions. Fig. 8.12 (a,b) shows the profile of two such waves at instants $t=0, T 14,3 / 4 T$ and T, where T is the time period of the wave. We are interested in finding out the displacements of the points $1,2,3,4,5,6$ and 7 at these instants as the waves superpose. From the Fig. $8.12(a, b)$, it is obvious

that the points $1,2,3$, etc are distant $\lambda / 4$ apart, λ being the wavelength of the waves. We can deternine the resultant displacement of these points by applying the principle of superposition. Fig 8.12 (c) shows the resultant dispiscement of the points $1,3,5$ and 7 at the instants $t=0, T / 4, T / 2,3 T / 4$ and T. it can be seen that the resultant displacement of these points is always zero. These points of the medium are known as nodes; Fig. 8.12 (c) shows that the distance between two
consecutive nodes is $2 . / 2$. Fig, $8: 12$ (d) shows the resultant displacement of the points 2.4 and 6 at the instants $t=0, T / 4, T / 2,3 T / 4$ and T The flgure shows that these points are moving with an amplifude which is the sum of the amplitudes of the component waves. These points are known as antinodes. They are situated mictway between the nodes and ate also 2/2 apart The distance between a node and the next antinode is . ./4 Such a pattern of nodes and anti-nodes is known as a stititionary or standing wave:
Energy in a wave moves because of the motion of the particles of the medium. The nodes always remain at rest, 30 energy cannot fow past these points. Hence energy remains "standing" in the medium between nodes, although it alternates between potential and kinetic forms: When the antinodes are all at their extreme displacements; the energy stored is wholly potentiat and when they are simultaneousty passing through their equilibrium positions, the energy is wholly kinetic,
An easy way to generate a stationary wsive is to superpose a waves travelling down a string with its retiection travelling in opposite direction as explsined in the next section:

8.9 STATIONARY WAVES IN A STRETCHED STRING

Consider a string of length / which is kept stretchied by clamping its ends so that the fension in the string is F. If the string is plucked at its middle point, two transverse waves will origintate from this point. One of them will move towards the left end of the string and the other towards the right end. When these waves reach the two clamped ends, they are refloctod tack thus giving rise to stationary waves: As the two ends of the string are clamped, no motion will take place there. So nodes wili be formed at the two ends and one mode of vibration of the string will bee as shown in Fig. 8.13 with the two ends as nodes with one antinode in between. Visually the string seems to vibrate in one loop. As thie distance between two consecutive nodes is one half of the wavelength of the waves set up in the string, so in this mode of vibration, the length / of the string is

$$
\begin{equation*}
t=\frac{x_{1}}{2} \quad \text { or } \quad x_{1}=2 t \tag{8.14}
\end{equation*}
$$

700. 3×12
where λ_{1} is the wavelength of the waves set up in this mode.

The speed v of the waves in the string depends upon the tension F of the string and m, the mass per unit length of the string. It is given by $\quad v=\sqrt{\frac{F}{m}}$
Knowing the speed v and wavelength λ, the frequency f, of the waves is given by

$$
\begin{equation*}
t_{1}=\frac{v}{\sigma_{1}}=\frac{v}{a l} \tag{8,16}
\end{equation*}
$$

Substituting the value of $k \quad f_{1}=\frac{1}{2 v} \sqrt{\frac{E}{m}}$

Fiy. a . 14

Thus in the first mode of vibration shown in Fig. 8.13, waves of frequency f, only will be set up in the given string. If the same string is pluciked from one quarter of its lengith. again stationary waves will be set up with nodes and antinoder as shown in Fig. 8.14. Note that now the string vibrates in two loops. This particular configuration of nodes and antinodes has developed because the string was plucked from the position of an antinode. As the distance between two consecutive nodes is half the wavelengith, 50 the Fig. 8.14 shows that the length/ of string is equal to the wavelength of the waves set up in this mode. If λ_{2} ts the measure of wavelength of these waves, then,

$$
\begin{equation*}
\lambda_{2}=1 \tag{8.18}
\end{equation*}
$$

whtrm
A comparison of this equation with Eq. 8.14 shows the wavelength in this case is half of that in the first case.
Eq. 8.16 shows that the speed of waves depends upon the tension and mass per unit length of the string. It is independent of the point from where the string is plucked to genierate the waves. So the speed v of the waves wflf be same in two cases.
If f_{7} is frequency of vibration of string in its second mode, then by Eq. 8.2

$$
\begin{equation*}
v=f_{2} x_{2}=f_{2} 1 \quad \text { or } \quad f_{2}=\frac{v}{1} \tag{8,19}
\end{equation*}
$$

Comparing it with Eq. 8.16, we get

$$
t_{2}=2 t
$$

Thus when the string vibrales in two loops, its frequency becomes double than when it vibrates in one ioop.
Similatly by plucking the string properly, it can be made to vibrate in 3 loops, with nodes and antinodes as ahown in Fig. 8.:15

In this case the frequency of waves will be $f_{2}=3 f_{t}$ and the wsvelengit will be equal to $2 / / 3$. Thus we can say that if the string is made to vibrate in n loops, the frequency of stationary waves set up on the string will be

$$
f_{\mathrm{p}}=n f_{7}
$$

and the wavelength

$$
\begin{equation*}
x_{n}=\frac{3}{n} t \tag{8.21}
\end{equation*}
$$

It is clear that as the string vibrates in more and more loops, its frequency goes on increasing and the Wavolengith gots correspondingly shortor. However the product of the frequency and wavelength is always equal to w the speed of waves:

The above discussion, clearty establishes that the stationary waves have a discrete set of frequencies $/ 4.2 f_{1}$ $3 F_{1}, \ldots . . ., n f_{1}$ which is known as harmonic series. The fundamental frequency ficorresponds to the first harmonic, the frequency $t_{2}=2 t_{1}$, corresponds to the second harmonic and so on. The stationary waves can be set up on the string only with the froquencies of harmonic series determined by the terision, length and mass per unit length of the string. Weves not in harmonict series are quickly damped out.

The frequency of a string on a musical instrument can be charged elther by varying the tension or by changing the length. For exampla, the tension in gutar and vtolin strings is varied by lightening the pegs on the neck of the instrument. Once the instrument is funed, the musicians vary the frequency by moving their fingers along the neck, thereby changing the tength of the vibrating portion of the string.

Fig. K 1 F

A standing wave pattem io formed when the leogth of the string is at trogral multiple of haf whetfangth; othonise to standing wayn is formed.

For Your Intormation

In an organ pipe the promary driving mochariam an wavering. Ghout that fot of br tumf fitertht which interacts with the upper ip and the air cotumn ir the pipe to maintein a stsody obecitiofion

Example 8.3: A steel wire hangs vertically from a fixed point, supporting a weight of 80 N at its lower end. The diameter of the wire is 0.50 mm and its length from the fixed point to the weight is 1.5 m . Calculate the fundamental frequency emitted by the wire when it is plucked?
(Density of steel wire $=7.8 \times 10^{3} \mathrm{kgm}^{3}$)

Solution:

$$
\begin{aligned}
\text { Volume of wire } & =\text { Length } \times \text { Area of cross section } \\
\text { Mass } & =\text { Volume } \times \text { Density }
\end{aligned}
$$

therefore
Mass of wre $=$ Length \times Area of cross section \times Density So. mass per unit length m is given by

$$
m=\text { Density } \times \text { Area of cross section }
$$

Diameter of the wire $=D=0.50 \mathrm{tmm}=0.5 \times 10^{-3} \mathrm{~m}$

$$
\text { Radius of the wire }=r=\frac{0}{2}=0.25 \times 10^{\circ} \mathrm{m}
$$

Area of cross section of wire $=\pi r^{2}=3.14 \times\left(0.25 \times 10^{-3} \mathrm{~m}\right)^{2}$

$$
F=w
$$

therefore

$$
\begin{aligned}
& m=7.8 \times 10^{3} \mathrm{kgm} \times 3.14 \times\left(0.25 \times 10^{23} \mathrm{~m}\right)^{2} \\
& m=1.53 \times 10^{-3} \mathrm{kgm} \\
& \text { Weight }=80 \mathrm{~N}=80 \mathrm{kgms} \text {. }
\end{aligned}
$$

Using the equistion (8.17), we get

$$
\begin{aligned}
& f_{1}=\frac{1}{21} \sqrt{\frac{F}{m}} \\
& f_{1}=\frac{1}{2 \times 1.5 \mathrm{~m}} \sqrt{\frac{80 \mathrm{kgms}^{2}}{1.53 \times 10^{3} \mathrm{kgm}^{2}}}=76 \mathrm{~s}^{.1} \\
& f_{1}=76 \mathrm{~Hz}
\end{aligned}
$$

8.10 STATIONARY WAVES IN AIR COLUMNS

Stationary waves can be set in other media also, such as air column. A common example of vibrating air column is in the
organ pipe. The metationship between the incident wave and the reflected wavo depends on whether the rotecting end of the pipe is open or closed. If the reflecting and is open, the sir molecules have complete freedom of motion and this behaves as an antinode. If the reflecting end is closed, then it behaves as a node because the movement of the molecules is restricted. The modes of vitration of an alr column in a pipe open at both ends are shown in Fig. 8.16.

In figure, the longitudinai waves set up in the pipe have been represented by transverse curved lines indicating the varying amplitude of vibration of the alr particles at points along the axis of the pipe. However, it must be kept in mind that air vibrations are lonigitudinal abong the length of the pipe. The wavelength' 2 ' of nith harmonic and its frequency ' F ,' of any harmonic is given by

$$
\begin{equation*}
-\lambda=\frac{2 i}{n} \quad+\quad f_{m}=\frac{v}{\lambda_{1}}=\frac{m v}{2 t} \tag{8.22}
\end{equation*}
$$

"w+t.".

$$
n=1,2,3,4,
$$

\qquad
where V ' is the speed of sound in air and ' T is the length of the pipe. The equation 8.22 can also be written as

$$
\begin{equation*}
f_{\mathrm{n}}=\mathrm{n} f_{\mathrm{i}} \tag{8.23}
\end{equation*}
$$

- $1+$....te

If a pipe is closed at one end and open at the other, the closed end is a node. The modes of vibration in this case are shown in Fig.8.17.

In case of fundamental nole, the distance between a node and antinode is one fourth of the wavelength,

Hence,

$$
I=\frac{\lambda_{1}}{4}
$$

$$
\text { or } \quad \lambda_{1}=41
$$

Since

$$
v=f \lambda
$$

Hence

$$
f_{1}=\frac{v}{\lambda_{1}}=\frac{v}{4 l}
$$

It can be proved that in a pipe closed at one end, only odd barmonica are generated, which are given by the equation

Sedoniry brytainut wime in a pree ormitit bot andi

Flos. 11
Berorwa lot ghicinal waves in a pioe clesed at one ond Ovy opd hatwore ant phent.

Echolocalion alows tolghins to detret arrat diteryicas in the itutes, sime and ficlitwos ofollocis.

$$
\begin{equation*}
f_{n}=\frac{n v}{4!} \tag{8.24}
\end{equation*}
$$

where

$$
n=1,3,5, \ldots \ldots \ldots \ldots
$$

$\mathrm{n}=1,3,5, \ldots \ldots \ldots .$.
This shows that the pipe, which is open at both ends, is richer in harmonics.

Example 8.4: A pipe has a length of 1 m . Determine the frequencies of the fundamental and the first two harmonics (a) if the plpe is open it both ends and (b) if the pipe is closed at one and.
(Speed of sound in air $=340 \mathrm{~ms}^{-1}$)

Solution:

a)

$$
f_{1}=\frac{n v}{2 l}=\frac{1 \times 340 \mathrm{~ms}^{-1}}{2 \times 1 \mathrm{~m}^{2}}=170 \mathrm{~s}^{-1}=170 \mathrm{~Hz}
$$

$$
f_{2}=2 f_{1}=2 \times 170 \mathrm{~Hz}=340 \mathrm{~Hz}
$$

and
b)

$$
f_{1}=\frac{n v}{4 l}=\frac{1 \times 340 \mathrm{ma}^{-1}}{4 \times 1 \mathrm{~m}}=85 \mathrm{~s}^{-1}=85 \mathrm{~Hz}
$$

In this case only odd harmonics are present, so

$$
\begin{aligned}
& f_{2}=3 f_{1}=3 \times 85 \mathrm{~Hz}=255 \mathrm{~Hz} \\
& f_{5}=5 f_{1}=5 \times 85 \mathrm{~Hz}=425 \mathrm{~Hz}
\end{aligned}
$$

and

8.11 DOPPLER EFFECT

An important phenomenon observed in waves is the Doppler effect. This effect shows that if there is some relative motion between the source of waves and the observer, an apparent change in frequency of the waves is observed.

This effect was observed by Johann Doppler while he was observing the frequency of light emitted from distant stars. In some cases, the frequency of light emitted from a star was found to be slightly different from that omitted from a similar source on the Earth. He found that the change in
frequency of light depends on the motion of star relative to the Earth.

This effect can be observed with sound waves also. When an obsorver is standing on a raliway platform, the pitch of the whistle of an approaching tocomotive is heard to be higher. But when the same locomotive moves away, the pitch of the whistle becomes lower.

The change in the frequency due to Doppler elfoct can be calculated aasily if the relative motion between the source and the observer is along if stralght line joining them. Suppose y is the velocity of the sound in the medium and the source emits a sound of froquency f and wavelength x. II both the source and the observer are stationary, then the waves received by the observer in one second are $f=\frac{v}{\lambda}$, if an observer A moves towards the source with a velocity u_{a} (Fig. 8.18), the relative velocity of the waves and the observer is increased to $\left(v+u_{0}\right)$. Then the number of waves received in one second or modified frequency f_{h} is

$$
h_{h}=\frac{v+u_{e}}{\lambda}
$$

Putting the value of $\lambda=\frac{v}{f}$, the above equation becomes

$$
\begin{equation*}
f_{a}=f\left(\frac{v+w_{e}}{v}\right) \tag{8.25}
\end{equation*}
$$

For an observer B receding from the source (Fig. 8.19), the retative velocity of the waves and the observer is diminishod to $\left(v-u_{0}\right)$. Thum the observer receives waves at a reduced rate. Hence, the number of waves recelved in one second in this case is $\left(\frac{v-u_{e}}{\lambda}\right)$

If the modified frequency, which the observer hears, is f_{0} then

Fa 27.18
An ibserver rooveg wath mbact is towards a stiforwy woyexithes a fuquancyt, thes is goster trai fre sinace livisioy.

Fig 新 17
inn reberfer moning with velooty if, woy from atationary woure hears a froqeecy t, that is smasior tiven the foume triquency

Fig. 8.20
A asuree moving whin voldcty is bownds a stationaly obopever C ind iwhy Dem stakonvy coocever D_{1} Cbonver C lvats ant incinasad ind otbosryur D taters an dotressent Besworcy.

$$
\begin{align*}
f_{5} & =\left(\frac{v-u_{0}}{\lambda}\right) \\
\text { or } \quad f_{B}=\left(\frac{v-u_{0}}{v / r}\right) & =f\left(\frac{v-u_{0}}{v}\right) \tag{8.26}
\end{align*}
$$

Now, if tee source is moving towards the observer with velocity u_{3} (Fig. 8.20), then in one second, the waves are compressed by an amount known as Doppler shift represented by Δx.

$$
\Delta \lambda=\left(\frac{u}{\frac{u}{f}}\right)
$$

The compression of waves is due to the fact that same number of waves are contained in a shorter space depending upon the velocity of the source.

The wavelength for observer C is then

$$
\begin{aligned}
& \lambda_{c}=\lambda-\Delta \lambda \\
& \lambda_{c}=\left(\frac{v}{f}-\frac{u_{s}}{f}\right)=\left(\frac{v-u_{s}}{f}\right)
\end{aligned}
$$

For the observer D, there will an increase in the wivelength given by;

$$
\begin{aligned}
& \lambda_{0}=\lambda+\Delta \lambda \\
& \lambda_{0}=\left(\frac{\nu}{f}+\frac{u_{c}}{f}\right)=\left(\frac{v+u_{2}}{f}\right)
\end{aligned}
$$

The modified frequency for observer C is then

$$
\begin{equation*}
t_{c}=\frac{v}{\lambda_{c}}=\left(\frac{v}{v-u_{x}}\right) t \tag{8.27}
\end{equation*}
$$

and for the observer D. will be

$$
\begin{equation*}
f_{0}=\frac{v}{\lambda_{0}}=\left(\frac{v}{v+u_{k}}\right) \tag{8.28}
\end{equation*}
$$

This means that the observed frequency increases when the source is moving towards the observer and decreases when source is moving away from the observer.

Example 8.5: A train is approaching a station at $90 \mathrm{kmh}^{-1}$ sounding a whistle of trequency 1000 Hz . What will be the apparent frequency of the whistle as heard by a listener sitting on the platform? What will be the apparent frequency heard by the same listener if the train moves away from the station with the same speed?
(speed of sound $=340 \mathrm{~ms}^{-1}$)

Solution:

$$
\text { Frequency of souroe }=f_{0}=1000 \mathrm{~Hz}
$$

$$
\text { Speed of sound }=340 \mathrm{~ms}^{-1}
$$

$$
\text { Speed of train }=u_{0}=90 \mathrm{kmh}^{-1}=25 \mathrm{~ms}^{-1}
$$

When train is approaching towards the listener, then using the relation

$$
\begin{aligned}
& f^{\prime}=\left(\frac{v}{y-u_{s}}\right) f \\
& f^{\prime}=\left(\frac{340 \mathrm{~ms}^{-1}}{340 \mathrm{~ms}^{-1}-25 \mathrm{~ms}^{-1}}\right) \times 1000 \mathrm{~Hz}=1079.4 \mathrm{~Hz}
\end{aligned}
$$

When train is moving away from the listener, then using the relation

$$
f=\left(\frac{v}{v+u_{s}}\right) f
$$

Da You Know?

The Dopplar effect can be used to mpriber bleod fiow through major erteriter Ulinamund wives of trequencife FMHze to 10MHz ans drected wownde fie artory and a receiver detecto the bock seathered signa. The appwert fratumer tepente on the vilocity offow of ihe bload

Fisill
A bopurncy atil bs uoct in in tabar io ouboclitiemoloniof an aertiona

Fig: $8: 2$

$$
f^{*}=\left(\frac{340 \mathrm{~ms}^{-1}}{340 \mathrm{~ms}^{-3}+25 \mathrm{~ms}^{-1}}\right) \times 1000 \mathrm{~Hz}=931.5 \mathrm{~Hz}
$$

Applications of Doppler Effect

Doppler effect is also applicable to electromagnetic waves. One of its important applications is the radar system, which uses radio waves to determine the elevation and speed of an aeroplane. Radar is a device, which transmits and receives radio waves. If an aeroplane approaches towards the radar, then the wavalength of the wave reflected from aeroplane woutd be shoiter and if it moves away, then the wavelength would be larger as shown in Fig. 8.21. Similarly speed of satellites moving around the Earth can also be determined by the same principle.

Sonar is an acronym derived from "Sound navigation and ranging". The general name for sonic or ultrasonic underwater echo-ranging and echo-sounding system. Sohar is the name of a technique for detecting the presence of objects underwater by acoustical echo.

In Sonar, "Doppler detection" rolies upon the relative speed of the target and the detector to provide an indication of the target speed. It employs the Doppler eftect, in which an apparent change in frequency occurs when the soutce and the observer are in relative motion to one another, Its known military applications include the detection and location of submarines, control of antisubmarine weaports, mine hunting and depth measurement of sea.

Astronomers use the Doppler effect to calculate the speeds of distant stars and galaxies. By comparing the line spectrum of light from the star with light from a laboratory source, the Doppler shift of the star's light can be measured. Then the speed of the star can be calculated.

Stars moving towards the Earth show a blue shift. This is because the wavelength of light emitted by the star are shorter than if the star had been at rest. So, the spectrum is shifted towards shorler wavelength, i.e., to the blue end of the spectrum (Fig. 8.22).

Stars moving away from the Eath show a red shilt. The emilted waves have a longer wavelength than if the star had boen at rest. So the spectrum is shifted towards longer wavelength, l.e., towards the red end of the spectrum. Astronomers have also discovered that all the distant galaxies are moving away from us and by measuring ther red shifts, they have eatimated their speeds:

Another important application of the Doppter shilt using electromagnetic waves is the radar speed trap. Microwavess are emitted from a transmitter in shoit bursts. Each burst is reflected off by any car in the path of microwaves in between sending out bursts. The transmitter is opened to delect reflected microwaves. if the reffection is caused by a moving obstacle, the refiectad microwaves are Doppler shifted. By measuring the Doppler shift, the speed at which the car moves is calculated by computer programme.

Ans navigoté aod ind food by etfoiocation

SUMMARY

- Waves carry energy and this energy is carried out by a disturbance, which spreads out from the souroe.
- If the particles of the medium vibrate perpendicular to the direction of propagaton of the wave, then such wave is called transverse wave, e. .g. light waves
* If the particie of the medium vibrate parallel to the direction of propagation of the wave, then such wave is called longitudinal wave, e.g. sound wavas.
- If a particle of the medium is simutteneously acted upon by two waves, then the resultant displacement of the paricle is the atgebraic sum of their individual displacements. This is called principie of superposition
* When two waves meet each other in a medium then at some points they reinforce the effect of each other and at some other points they cancel each others offect. This phenomenon is called interference:
- The periodic variations of sound between maximum and minimum loudness are called beats.
- Stationary waves are produced in a medium when two identical waves travelling in opposite directions interfere in that medium
- The apparent change in the pitch of sound caused by the relative motion of either the sourca of sound or the listener 35 called Doppler effect.

QUESTIONS

8.1 What features do longitudinal waves have in common with transverse waves?
8.2. The five possible waveforms obtained, when the output from a microphone is fed into the Y-input of cathode ray oscilloscope, with the time base on, are shown in Fig.8.23. These waveforms are obtained under the same adjustment of the cathode ray oscilfoscope controls. Indicate the waveform
a) which trace represents the loudest note?
b) which trace represents the highest frequency?

Fg. 8.23

A.

B.

C

D

E
$8: 3$ Is it possible for two identical waves travelling in the same direction along a string to give rise to a stationary wave?
8.4 A wave is produced along a stretcher ytring but some of its particles permaneritly show zero displacement. What type in wave is it?
8.5 Explain the terms crest, trough, node and antinode.
8.6 Why does sound travel faster in solids than in gases?
8.7 How are beats useful in tuning musical instruments?
8.8. When two notes of frequencies f, and f_{z} are sounded together, beats are formed, if $f_{1}>f_{2}$, what will be the frequency of beats?
i) $f_{5} \cdot l_{2}$
ii) $\frac{1}{2}\left(f_{1}+f_{2}\right)$
iii) $f_{1}-f_{7}$
iv) $\frac{1}{2}\left(f_{1}-f_{2}\right)$

89 As a result of a distant explosion, an observer sanses a ground tremor and then hears the explosion. Explain the time difference.
8.10 Explain why sound travels faster in warm air than in cold air.
8. 11 How should a sound source move with respect to an observer so that the frequency of its scund does not change?

NUMERICAL PROBLEMS

8.1 The wavelength of the slgnals from a radio transmitter is 1500 m and the frequency is 200 kHz . What is the wavetength for a transmitter operating at 1000 kHz and with what speed the radio waves travel?
(Ans: $300 \mathrm{~m}, 3 \times 10^{2} \mathrm{~ms}^{-1}$)
82. Two speakers are arranged as shown in Fig. 8.24. The distance between them is 3 m and they emit a constant tone of 344 Hz . A microphono P ts inoved along a line parailel to and $4,00 \mathrm{~m}$ from the line connecting the two speakers. It is found that tone of maximum loudness is heard and displayed on the CRO when microphone is on the coritre of the line and directly opposite each speakers. Caicutate the speed of sound.

Fy 1324
(Ans: $344 \mathrm{~ms}^{-1}$)
83. A stationary wive is established in a string which is 120 cm long and foxed at both ends. The string vibrates in four segments, at a frequency of 120 Hz . Delermine its wavelength and the fundamental frequency?
(Ans: $0.6 \mathrm{~m}, 30 \mathrm{~Hz}$)
8.4. The frequency of the note emitted by a strotched string is 300 Hz . What will be the frequency of this note when;
(a) the length of the wave is reduced by one-third without changing the tension.
(b) the tension is increased by one-third without changing the-length of the wire:
(Ans: $450 \mathrm{~Hz}, 346 \mathrm{~Hz}$)
8,5 An organ pipe has a length of 50 cm . Find the frequency of its fundamental note and the next harmonic when it is
(a) open at both ends:
(b) closed at one end.
(Speed of sound $=350 \mathrm{~ms}^{-1}$)
[Ans: (a) $350 \mathrm{~Hz}, 700 \mathrm{~Hz}$ (b) $175 \mathrm{~Hz}, 525 \mathrm{~Hz}$]
8.6. A church organ consists of pipes, each open at one end, of different lengths. The minimum length is 30 mm and the longest is 4 m . Calculate the frequency range of the fundamentat noter.
(Speed of sound $=340 \mathrm{~ms}^{-1}$)
(Ans: 21 Hz to 2833 Hz)
8.7 Two tuning forks exhibit beats at a beat frequency of 3 Hz . The frequency of one fork is 256 Hz its frequency is then lowered slightly by adding a bit of wax to one of its prong. The fwo forks then exhibit a beat frequency of 1 Hz . Determine the frequency of the second turing fork.
(Ans: 253 Hz)
B.8 Two cars P and Q are travelling along a motorway in the same direction. The leading car P travels at a steady speed of $12 \mathrm{~ms}^{-1}$; the other car Q, travelling at a steady speed of $20 \mathrm{~ms}^{-1}$, sound its hom to emit a steady note which Ps driver estimates, has a frequency of 830 Hz . What froquency does Q s own driver hear?
(Speed of sound $=340 \mathrm{~ms}^{-1}$)
(Ans: 810 Hz)
8.9. A train sounds its hom before it sets off from the station and an observer wating on the plateform estimates its frequency at 1200 Hz . The train then moves off and accelerates steadily. Fifty seconds after departure, the driver sounds the hom again and the plateform observer estimates the frequency at 1140 Hz . Caiculate the train speed 50 s after departure. How far from the stabion is the train alter 50 s?
(Speed of sound $=340 \mathrm{~ms}^{-1}$)
(Ans: $17.8 \mathrm{~ms}^{-1}, 448 \mathrm{~m}$)
8.10 The absorption spectrum of faint galaxy is measured and the wavelength of one of the lines identifed as the Calcium α line is found to be 478 nm . The same line has a wavelength of 397 nm when measured in a laboratory,
a) Is the galaxy moving towards of away from the Earth?
b) Caiculate the speed of the galaxy relative to Earth. (Speed of light $=3.0 \times 10^{8} \mathrm{~ms}$)
[Ans: (a) away from the Earth, (b) $6.1 \times 10^{7} \mathrm{~ms}^{-1}$]

Chapter

PHYSICAL OPTICS

Learning Objectives

At the end of this chapter the students will be able to'
Undecstand the concept of wavefront.
State Huygen's principle.
Use Huyger's principle to explain linear superposition of light.
Understand interference of light.
Describe Young's double slit experiment and the evidence it provided to support the waye theory of light,
Recognize and express colour patterns in thin films.
Describe the formation of Newton's rings.
Understand the working of Michelson's interferometer and its uses.
Explain the meaning of the term diffraction.
Describe diftraction at a singie silit.
Derive the equation for angular position of first minimum.
Defive the equation of sinh $=m$.
Carry out caloulations using the diffraction grating formula
Describe the phenomenon of diffraction of X-rays by trystals,
Appreciate the use of diffraction of X-rays by crystals.
Understand polarization as a phenomenon associated with transverse waves.
Reoognize and express that polarization is produced by a Polaroid.
Understand the effect of rotation of Polareid on polarization.
Understand how plane polanized light is produced and detected.

Light is a type of anergy which produces sensation of vision. But how does this energy propagate? In 1678, Huygen's, an eminent Dutch scientist, proposed that

Wiventorts

08

Fig. 8.1
Epharioad yiave flonts (a) and giane wivelrombltapisetif a wavelaryth gicat The sirmes mpretert rint

Dowbu Know?
STat segments ar targe sphwhat wartionti eppoodriate a plone wabitrent
light energy from a luminous source travels in space as waves. The experimental evidence in support of wave theory in Huygen's time was not convincing. However, Young's inderferencs experiment performed for the first tirne in 1801 proved wave nature of light and thus established the Huygen's wave theory. In this chapter you will sludy the properties of light associated with its wave nature.

9.1 WAVEFRONTS

Consider a point source of light at S (Fig. 9.1 8). Waves emitted from this source will propagate outwards in all directions with speed c. After time t, they will reach the surface of an imaginary sphere with centre as $\$$ and radius as ct. Every point on the surface of this sphere will be set into vibration by the waves reaching there, As the distance of all these points from the source is the same, their state of vibration will be identicat. In other words, all the points on the surface of the sphere will have the same phase.

Such a surface on which all the points have the same phase of vibration is known as wavefront.

Thus in case of a point source; the wavefront is spherical in shape. A line normal to the wavefront, showing the direction of propagation of light is called at ray of fight.

With time, the wave moves farther giving rise to new wavefronts. Al these wavefronts will be concentric spheres of increasing radil as shown in Fig. 9.1 (a). Thus the wave propagatas in space by the motion of the wavefronts The distance between the consecutive wavefronts is one wavelength. It can be seen that as we move away at greater distance from the source, the wavefrorits are parts of spheres of very large radil. A limited region taken on such a wavefront can be regardod as a plane wavelront (Fig.9.1b): For example, Ightfrom the Sun reaches the Earth with plane wavefronts
In the study of interference and diffraction, plane waves and plane wavefronts are considered. A usual way to obtain a
plane wave is to place a point source of light at the focus of a convex lons. The rays coming out of the lens will constitute plane waves.

9.2 HUYGEN'S PRINCIPLE

Knowing the shape and location of a wavefront at any instant f. Huygen's principle enables us to determine the shape and location of the new wavefront at a later time $t+\Delta t$. Thisprinciple consists of two parts:
(1) Every point of a wavefront may be considered as a source of secondary wavelets which spread out in forward direction with a speed equal to the speed of propagation of the wave:
(ii) The now position of the wavefront affer a certain interval of time can be found by constructing a surface that touches all the secondary wavelets.

The principle is illustrated in Fig. 9.2 (a): AB represents the wavefront at any instant t. To determine the wavatront at time it Δt, draw seciondary wavelets with centre at various points an the wavetront $A B$ and radius as cAt where C is speed of the propagation of the wave as shown in Fig.9.2 (a), The new wavefront at time $t+\Delta t$ is $A B^{\prime}$ which is a tangent envelope to at the secondary wavelets.
Figure 92 (b) shows a similar construction for a plane wavefront.

9.3 INTERFERENCE OF LIGHT WAVES

An oil film floating on water surface exhibits beautful colour patterni. This happens due to interference of light waves, the phenomenon, which is being discussed in this section.

Oonditions Ior Deteatablo Interforences

It was atudied in Chapter 8 that when two waves travel in the sume medium, they would interfere constructively or destructively. The amplitude of the resultant wave will be greater then either of the individual waves, if they interfere conntructively. In the case of destructive interference, the

(i) Sthericas weveltork

(p) Plone wivietort

H15
Huygens conatruction tor tabortuing the poetion of the

* Wantrovis AE and CD aher a tims
 Hengeshinsuften wowomts.

For Your Information

Manochumatic Light
Sothum shloride is a larts ques outpureyehow light Txislgikisnot a mantire of iodand green?
amplitude of the resultant wave will be less than ether of the individual wayes.

Interference of light waves is not easy to observe because of the random emission of light from a source. The following conditions mast be met, in order to observe the phenomenon.

1. The interfering beams must be monochromatic, that is, of a single wavelength.
2. The interfering beams of light must be coherent.

Consider fwo or more sources of light waves of the same wavelength. If the sources send out crests or troughs at the same instant, the Indlvidual waves maintain a constant phase difference with one another. The monochromatic sources of light which emit waves, having a constant phase difference, are called coherent sources.

A common method of producing two coherent light beams is to use a monochromatic source to llluminate a screen containing two small holes, usually in the shape of slits. The light emerging from the two slits is coherent because a single source produces the original beam and two slits serve only to split it into two parts. The points on 8 Huygen's wavefront which send out secondary wavelets are also coherent sources of light.

9.4 YOUNG'S DOUBLE SLIT EXPERIMENT

Fig. 9.3 (a) shows the experimental arrangement, similar to that devised by Young in 1801, for studying interference effects of light. A screen having two narrow slits is Bliminated by a beam of monochromatic light. The portion of the wavefront incident on the slits behaves as a source of secondary wavelets (Huygen's principle). The secondary wavelets leaving the slits are coherent Superposition of these wavelets result in a serles of bright and dark bands (fringes) which are observed on a second screen placed at some distance parallel to the first screen.

Let us now consider the formation of bright and dark bands. As pointed out earlier the two shits behave as
coherent sources of secondary wavelets. The wavelets arrive at the screen in such a way that at some points crests falt on crests and froughis on troughts resutting in constructive interference and bright fringes are formed. There are some points on the screen where crests meet troughs giving rise to destrucive interference and dark fringes are thus formed.

Fig. 21 俭 -

The tright fringes ane tarmed as maxama and dark fringes as minime.

In order to derive equations for maxima and minima, an arbitrary point P is taken on the screen on one side of the central point O as shown in Fig 9.3 (0). AP and BP are the paths of the rays reaching P. The line $A D$ is drawn such that $A P=D P$ The separation between the centres of the two slits is $A B=\mathrm{d}$. The distance of the screen from the slits is $\mathrm{CO}=\mathrm{L}$. The angle between CP and CO is θ. It can be proved that the angle $B A D=0$ by assuming that $A D$ is nearly normal to $B P$. The paith difference between the wavalets, leaving the slits and arriving at P. is BD. If is the number of wavelengthe contained within BD, that determines whether bright or dark fringe will appear at P. If the point P is to have bright fringe, the palh difference BD must be an integral muttipfe of wavelengith.

Fig 13181

[^2]Thus,

$$
\mathrm{BD}=\mathrm{m}, \quad \text { where }
$$

$\mathrm{BD}=d \sin \Theta$
Since
therefore \quad is $\sin \theta=m \lambda$
it is observed that each bright fringe on one side of O has symmetrically located bright fringe on the other side of O . The central bright fringe is obtained when $m=0$. If a dark fringe appears at point P, the path difference BD must contain hat-integral number of wavelengths.

Thus

$$
\begin{equation*}
B D=\left(m+\frac{1}{2}\right) \lambda \tag{9.2}
\end{equation*}
$$

The first dark fringe, in this case, wili obviously appear for $m=0$ and second dark for $m=1$. The inferference pattem formed in the Young's experiment ls shown in Fla, 9.3 (d):

Fe. H3

Equations 9.1 and 92 can be applied for determining the linear distance on the screen between adjacant bright or dark fringes. If the angle if is small, then

$$
\sin \theta=\tan \theta
$$

Now from Fig, 9.3 (a), $\tan \theta=y / L$, where y is the distance of the paint P from Q. If a bright fringe is obsenved at P. then, from Eq . 9.1, we get,

$$
y=m \frac{d L}{d}
$$

If P is to have dark fringe it can be proved that

$$
\begin{equation*}
y=\left(m+\frac{1}{2}\right) \frac{\lambda L}{d} \tag{anthen}
\end{equation*}
$$

In order to determine the distance between two adjacent bright fringes on the screen, mith and ($m+1$) th fringes are congidered.

For the mith bright fringe,

$$
y_{n}=m \frac{\lambda L}{d}
$$

and for the ($m+1$) th bright fringe

$$
y_{n+1}=(m+1) \frac{\lambda L}{d}
$$

If the distance between the adjacent bright fringes is Δy, then

$$
\Delta y=y_{m+1}-y_{0}=(m+1) \frac{\lambda L}{d}-m \frac{\lambda L}{\sigma}
$$

Therefore,

$$
\begin{equation*}
\Delta y=\frac{\lambda L}{\sigma} \tag{9.5}
\end{equation*}
$$

Similarly, the distance between two adjacent dark fringes canbe proved to be $\lambda . \operatorname{Lid}$. It is, therefore; found that the bright and dark fringes are of equal width and ars equally apaced

Eq. 9.5 reveals that fringe spacing increases if red light (long wavelength) is used as compared to blue light (short wavelength). The fringe spacing varies directly with distance L between the slits and screen and inversely with the separation dof the sitts.

If the separation d between the two slits. the order m of a tright: or dark fringe and fringe spacing $3 y$ are known, the wavelength x of the light used for Interference effect can be determined by applying Eq, 9,5.

Ao wheriotioc satam Arrmait

Fworecthat lifamytion

Cowisk sean pat oly water uifluou are dus to intarlarmose af inctart whielinti.

Example 9.1: The distance between the stits in Young:s doubie silt experiment is 0.25 cm . Interference fringes are formed on a screen placed at a distance of 100 cm from the slits. The distance of the enird dark fringe from the central bright fringe is 0.059 cm . Find the wavelengthot the incident light.

Solution: Given that

$$
\begin{aligned}
& d=0.25 \mathrm{~cm}=2.5 \times 10^{-3} \mathrm{~m} \\
& y=0.059 \mathrm{~cm}=5.9 \times 10^{-1} \mathrm{~m} \\
& l=700 \mathrm{~cm}=1 \mathrm{~m}
\end{aligned}
$$

For the $3^{\text {nd }}$ dark fringe $m=2$

Using

$$
\begin{aligned}
& y=\left(m+\frac{1}{2}\right) \frac{x L}{d} \\
& x=\frac{5.9 \times 10^{4} \mathrm{~m} \times 25 \times 10^{-3} \mathrm{~m}}{12+1 / 2) \times 1 \mathrm{~m}}
\end{aligned}
$$

Therefore.

$$
z_{1}=5 ; 90 \times 10^{-7} \mathrm{~m}=590 \mathrm{rm}
$$

Example 9.2: Yellow sodium light of wavelength 589 nm , emitted by a single source passes through two narrow shlis 1.00 mm apart. The interference pattern is observed on a screen 225 cm away. How far apart are two adjacent bright fringes?

Solution: Given that

$$
\begin{aligned}
& \lambda=589 \mathrm{~nm}=589 \times 10^{9} \mathrm{~m} \\
& d=1.00 \mathrm{~mm}=1.00 \times 10^{5} \mathrm{~m} \\
& L=225 \mathrm{~cm}=2.25 \mathrm{~m} \\
& \Delta y=?
\end{aligned}
$$

$$
\text { Using } \Delta y=\frac{\mu}{\sigma}
$$

$$
\Delta y=\frac{589 \times 10^{-3} \mathrm{~m} \times 2.25 \mathrm{~m}}{1.0 \times 10^{-2} \mathrm{~m}}
$$

$$
\Delta y=1.33 \times 10^{-3} \mathrm{~m} \quad \text { or }
$$

1.33 mm,

Thus, the adjacent frings will be $1,33 \mathrm{~mm}$ apart.

9.5 INTERFERENCE IN THIN FILMS

A thin film is a transparent medium whose thickness if comparable with the wavelength of light Brifiant and beautiful colours in soap bubbles and oil film on the surface of water are due to interference of light reflectod from the two surfaces of the lifm as explained below:

Consider a thin film of a rafracting medlum, A boamin AB of monochromatic light of wavelength λ. is incident on its upper surface. It is paity reflected along BC and partly refracted into the medium along BD. At D it is again partly reliected Inside the medlum slong DE and then at Erefracted alang EF as shown in Fig 9.4. The beams BC andEF, beng the parts of the same pifinary beanh heve a phata coherencle. As the film is thin, so the separation between the beams BC and EF will be very small. and they will suparpose and the result of their intederence will be celected by the eyas it can be seen in Fig 9.4. that
 thin film enter the eye after covering different lengths of pathe. Thier path ofference dopends upon (i) thickness and nature of the film and (ii) angle of ricidence If the two reffected waves reinforce each other, then the film as seen with the help of a parallef beam of monochromatic light will lock bright. However, if the thichness of the fim and angle of incidence are such that the two roflected waves cancel each other, the fifm will look dark.

If white light is incident on a film of infegular thickiness at all possible angles, we should consider the interference pattern due to each spectral colour moparately: it is quite possible that at a cerfain place on the fim, its thickness and the angle of incidence of light are such that the condition of destructive interferance of one colour is being satisfied. Mence, that partion of the fin remaining constituent colours of the white light as shown in Fig. 9.5

9.6 NEWTON'S RINGS

When a plano-convex lens of long focaf length is placed in contact with a plane glass plate (Fig: 96 a), a thin air film is enclosed between the upper surface of the glass plate-and the lower surface of the lens. The ttickness of the alf fifm is

Gtt=-tre Bi coniltiacion of mecterencout latidue io a then eil Tin

 Antiers itime mondonase it the

fylen
merferance potnm produred by $=$ thit zoap fim fuminwed ty wiri 10 Fi

Fin. 18 (a)
Expertmental artanyerneat lat ocetryanglewnarismige.

Fig. 5.6 (b)
A petiere of Newisrix myn dox la eleflarevie of menochnosevid layt

Fig 10.7
Sthenistic deprom uf a Mithemarts irtortoronister.
almost zero at the point of contaci O and it gredually increases as one proceeds towards the periphery of the lens. Thus, the points where the thickreess of air film is constant, will lie on a circle with O as centre.

By means of a sheet of glass G; a parallel beam of monochromatic light is reflecfed towards the plano-convex lens L. Any ray of monochromatic lght that strikes the upper surface of the air film nearly along normal is partly reflected and partly refracted. The ray refracted in the air fim is also reflected party at the lower surface of the fim. The two reflected rays, lie. produced at the upper and lower surfaces of the film, are coherent and interfere constructively or destructively. When the ilght refected upwards is observed through a microscope M which is focussed on the glass plate, series of dark and bright rings are seen with centre at O ($\mathrm{Fig}, 9.6$ b). These concentric rings are known as Newton's rings.

At the point of contact of the lens and the glass plate, the thickness of the film is effectively zero but due to reflection at the lower surface of air flim from denser medium, an additional peth difference of $\lambda / 2$ is introduced. Consequently, the centre of Newton rings is dark due to destructive interferance.

9.7 MICHELSON'S INTERFEROMETER

Michelson's intorforometer is an instrument that can be used to measure distance. with extremely high precision. Albert A. Michelson devised this instrument in 1881 using the idea of interference of light rays. The essentlal features of a Michelson's interferomeler are shown schernaticaly in Fig.9.7.

Monochromatic light from an extended source falls on a half silvered glass plate G, that partially reflects it and partially transmits it. The reflected portion labelled as I in the rigure travels a distance $L_{\text {r }}$ to mirror M_{1}, which reflects the beam back towards G_{i}. The half silivered plate G_{i} partally transmits this portion that finally arrives at the observer's eye. The transmitted portion of the original beam labelled as II, travels a distance L_{z} to mirror M_{2} which reflects the beam back toward G_{3}. The beam II partially reflected by G_{j} also arrives the observer's eye finally. The
plate G_{2} out from the same piece of glasa as \boldsymbol{G}_{1}, is introduced in the path of beam Il as a compensator plate G., therefore, equalizes the path langth of tha beams' I and It in glass. The two beams hiving their different paltss ape coherent. They produce interference effects when they artive at observer's eyes, The observer then zeas a series of parallet interference fringes.

In a pracical interferometer, the mirror M, can be moyad atong the direction perpendicular to its surface by meens of a precision sicrew. As the fength L_{1} Is changed, the pattorn of interference. fringes is observed to shitt. If Mi is displaced through a distance oqual to $N / 2$, a path difference of double of this displacement is produced, k.e., equal to h. Thus a tifige is sben shilfed forward across thie line of reference of oross wire in the eye piece of the telescope used to view the finges.

A tringe is shitted, each time the mirror is displaced through $2 / 2$. Hence, by counting the number m of the fringes which are shifted by the displacement L of the mirroc, we can write the eqquation,

$$
\begin{equation*}
L=m \frac{K}{2} \tag{9.6}
\end{equation*}
$$

Very precise length measurements can be made with an interferometer. The motion of mirror M_{1} by only N 44 producas a clear difference between brightness sind darkness. For $\lambda=400 \mathrm{~nm}$, this means a high precision of 100 mm or $10^{-1} \mathrm{~mm}$.

Michelson measured the length of itandard metre in terms of the wavelength of ted cadmuin light and showod that the standard metre was equivalent to $1,553,163.5$ wavelengths of this ilght.

9.8 DIFFRACTION OF LIGHT

In the interforence pattern obtained wan Young's ciouble slif experiment Figi, 93 b) the oentral region of the fringe systen! is bright. If light travels in a straight line, the central repion should appear dark Te., the shadow of the Ecreen Between the two slits. Another simple experiment can be pufformed for exhibiting the same effect.

For Yow informution

A - irptagraph if Mitheltah. invorforchatar.

Fer roar indonmation

 ifiettromem

FH.7.8
Bencing of ligts cauned by lis passexp funta spherical objuct.

Consider that a small and smooth steel ball of about 3 mm in diameter is illuminated by a point source of light. The shadow of the object is recolved on a screen as shown in Fig. 9.8. The shadow of the spherical object is not completely dark but has a bright spot at its centre. According to Huygen's principle, each point on the frim of the sphere tehaves as a source of secondary wavelets which iliuminate the central region of the shadow.
These two experiments clearly show that when light travels past an obstacie, it does not proceed exactly along a straight path, but bends around the obstacte.

> The property of bending of light around obstacles and spreading of light waves Into the geometrical shadow of an obstacle is called diffraction.

Point to ponder

Hold two fingess dpase togettine bi
 Ifrough the alt Qtinerve the potbem of light being seern ard thenk entry iss sio.

Fi- 9.8
 sil A3. The dots roperemer "A soutces of socontory warelely

The phenomenon is found to be prominent when the wavolength of light is large as companed with the size of the obstacle or aperture of the slit. The dilfraction of light occurs. in effect, due to the interference between rays coming from differont parts of the same wavefront.

9.9 DIFFRACTION DUE TO A NARROW SLIT

Fig. 9.9 shows the experimental arrangement for studying diffraction of light due to a narrow slit. The slit AB of width dis illuminated by a parallol beam of monochromatic light of wavelength 之. The screen S is placed parallel to the silt for observing the effects of the diffaction of light. A small portion of the incident wavefront passes through the narrow slit. Each point of this section of the wavefront sends out secondary waveiets to the screen. These wavelots then interfere to produce the diffraction pattern. It becomes simple to deal with rays inslead of wavefionts as shown in the figure. In this figure, only nine rays have been drawn whereas actually there are a large number of them. Let us consider rays 1 and 5 which are in phase on try wavefront $A B$ When these reach the wavefront $A C$, ray 5 would have a path difference ab say equal to 末/2. Thus, when these lwo fays reach point P on the screen, they will interfore destructively. Similarty, all other pairs 2 and 6,3
and 7,4 and 8 tiffer in path by $i / 2$ and will do the same. For the pairs of rays, the path differences ab= $\alpha / 2 \sin \theta$

The equation for the first minimum is, then

$$
\begin{array}{ll}
\frac{d}{2} \sin \theta=\frac{\lambda}{2} \\
\text { or } \quad & d \sin \theta=\lambda
\end{array}
$$

In general, the conditions for different orders of minima on either side of centre are given by

$$
\begin{equation*}
\text { if } \sin \theta=m \text { s. where } m= \pm(1,2: 3, \ldots, i) \tag{9.8}
\end{equation*}
$$

The region between any two consecutive minima both above and below 0 will be bright. A narrow slit, therefore, produces a series of bright and dark regions with the first bright region at the centre of the patiem. Such a diffraction pattorn is shown in Fig. 9.10\{a) and $\langle\mathrm{b}\rangle$.

9.10 DIFFRACTION GRATING

A diffraction grating is a glass plate having a large number of ciose parallel equidistant- slits mechanically ruied on it. The transparent spacing between the scratches on the glass plate act as slits A typical diffraction grating has about 400 to 5000 lines per centimetre.

In order to understand how a grating diffracts light, consider. a parallel beam of monochromatic light iluminating the grating at normal incldenpe (Fig 9.11) A faw of the equalty spaced narrow slits are shown in the ligure. The distance between two adjacent sitts is d, calied grating elament. Its value is obtained by dividing the length L of the grating by the total number N of the lines ruled on it. The sections of wavefront that pass through the slits behave as sources of sscondary wavelets according to. Huygen's principle.
In Fig. 9.11, consider the parallal rays which after diffraction through the grating make an angle θ with $A B$, the normal to grating. They are then brought to focus on the screen at P by a convex lens. If the path difference between rays 1 and 2 is one wavelength λ, they will reinforce each other at P. As the incident beam consists of parallel rays, the rays from any two consecutive slits will differ in path by λ when they arrive at P. They will therefore, interfere

Thas 19 [6
Diftraction pattern iof mono

 atiflotigranuttie pathem:

Fil 11160
Ofisction pathere pradiand by atis Ffotumugta antanial.

F 1811
Diffraction of Sght dua to gratige

Interestang intormation

Preling rallugs, bach 0.54 mwis. on in oompuet fioc furction as a
 sourca of Whilu Ejpt iniminater it dec, the tifnastal Ighil firm colond "aner' That are comportin of riange:

Uight swres prupodad Prouph tha diracton graing produce an
 are heteden the bapds of interpmploce?

Far your Iftarmation

Defractios of white ight by - bie mifracten jothe
constructively. Hence, the condition for constructive interference is that ab, the path difference between two consecutiverays, should the equal to 2 i.e.,

$$
\begin{equation*}
a b=\lambda \tag{9.9}
\end{equation*}
$$

From Fig. 9.11

$$
\begin{equation*}
\mathrm{ab}=d \sin \theta \tag{9,10}
\end{equation*}
$$

a being the grating element. Substituting the value of ab in Eq. 9.9

$$
\begin{equation*}
d \sin \theta=\lambda \tag{9.11}
\end{equation*}
$$

According to Eq: 9.10, when $0=0$ i.e.calong the direction of normal to the grating, the path difference between the rays coming out from the slits of the grating will be zoro. So we will get a bright image in this direction. Thes is known as zero order image formed by the grating. If we increase θ on either side of this direction, a value of θ will be arrived at which dsintowill be equal to x and according to Eq. 9.11, we will again get a bright image. This is known as tirst order image of the grating, In this way if we continue increasing 0, we will get the second, third, etc. images on either side of the zero order mrige with dark regions in between. The second, third order bright images would ocour according as $d \sin \theta$ becoming equal to 2 $2,3 \lambda$, ete. Thus Eq. 9.11 can bé witten in more general form as

$$
\begin{equation*}
d \sin 0=n k \tag{9.12}
\end{equation*}
$$

where $n=0 \pm 1 \div 2 \pm 3 \mathrm{efc}$
However if the incident, light contains different wavelengths, the image of each wavelength for a certain value of in is diffracted in a different direction. Thus, separate images are obtained corresponding to each wavelength or colour. Eq. 9.12 shows that the value of θ depends upon n, so the images of different colours are much separrated in highet orders.

9.11 DIFFRACTION OF X-RAYS BY CRYSTALS

X-rays is a type of electromagneticradiation of much shorter wavelength typically of the order of $10^{-6} \mathrm{~m}$.

In order to observe the effects of diffraction, the grating spacing must be of the order of the wavelength of the radiation used. The regutar array of atoms in a crystat forms a nafural diffraction grating with spacing that is typically $=10^{-10} \mathrm{~m}$. The scattering of X-rays from the atoms in a crystalline lattice gives rise to diffraction sflects very simlar to thase observed with visible light incldent on ordinary grating.

The study of atomic structure of crystals by X-rays was initiated in 1914 by W.H. Bragg and W.L Bragg with remarkatile achievaments. They found that a monochromatic beam of X-rays was reflected from a crystal plane as if it actod like mirror. To undorstand this affect, a series of atomic planes of congtant interplanar apacing d parallel to a crystal face are shown by lines PP $P_{1} P_{i}, P_{2} P=$ and $s 0$ on, in Fig. 9.12.

Suppose an X-rays beam is insident at an anple 8 on one of the planes. The beam can be reflected from both the upper and the lower planes of atoms. The beam retiected from lower plane travels some extra distance as campared to the beam reflected from the upper plane. The effective path difference between the two reflected beams is $2 d$ sine. Therefore, for reinforcement, the path difference should be an integral multiple of the wavelength. Thus

$$
\begin{equation*}
2 d \sin \theta=n \lambda \tag{9.13}
\end{equation*}
$$

The value of n is referred to as the order of reflection. The equation 9.13 is known as the Bragg equation. It can be Used to determine inferplanar spacing between similar parallel planes of a crystal if X-rays of known wavelength are allowed to diffract from the crystal.

X-ray diffraction has beon very useful in determining the structure of biologically important molecules such as haemdglabin; which is an important oonstituent of biood, and double helix sfructure of DNA.

Example 9.3: Light of wavelength 450 nm is incident on a diffraction grating on which 5000 lines/cm have been nuled.
(i) How mamy orders of spectra can be observed on either shde of the direct.beam?

Fighit
Dffrastion of X-rays fom the intiopponos otocoviil

Interesting Appination

Dituman of iddo warne

Interesting information

The spectrum of whtel保t if in fir

The biectrum ut whte lotis due is Ittridito jratro of $20 \mathrm{CH}-4 \mathrm{H}$

A mafloaperture dffickion pametn This is in picture of a whithlight poiff waybo whol timugh a piena of tighty woven dioth

Dilliaction pertern if 4 sinci human hur under lacer beam Thumialion:

For Your Information
lovieng trophth huy grtatran, When
 -...nent thrnut
(ii) Determine the angle corresponding to each order Solution: (i) Given that

$$
\begin{aligned}
& h=450 \mathrm{~nm}=450 \times 10 \mathrm{~m} \\
& d=\frac{1}{5000} \mathrm{em}=\frac{1}{500000} \mathrm{ft}
\end{aligned}
$$

For maximuit number of order of spectra $\sin \theta=1$
-Since

$$
d \sin \theta=n \lambda
$$

therefore, subsituting the values in the sbove equation, we pet.
$\frac{1}{300000} m \times 1=n \times 450 \times 10^{9} \mathrm{~m}$ or $\mathrm{n}=\frac{1}{500000 \times 450 \times 10^{20}}$

Dr

$$
n=4,4
$$

Hence, the maximum order of spectrum is 4.
(i) For the lirst order of spectrum, $\mathrm{n}=1$.

$$
\begin{aligned}
\frac{1}{500006} m \times \sin \theta & =1 \times 450 \times 10^{\circ} \mathrm{m} \\
\sin \theta & =(500000)\left(450 \times 10^{\circ}\right) \\
\sin \theta & =0.225 \quad \text { or } \quad \theta=13^{9}
\end{aligned}
$$

For second order spectrum $n=2$, using $\mathrm{Eq} . \mathrm{dsin} \hat{=}=\mathrm{n} \mathrm{\lambda}$

$$
\begin{aligned}
& \left.\left(\frac{1}{500000}\right) \mathrm{m}\right) \sin \theta=2 \times\left(450 \times 10^{\circ} \mathrm{m}\right) \\
& \sin i) \\
& =0.45 \\
& \text { or } \quad \theta
\end{aligned}
$$

The thirdonder spectrum ($n=3$) wif be observed $a t 4=42.5^{\circ}$

$$
\begin{aligned}
\sin \theta & =3 \times 500000 \mathrm{~m}^{-1} \times 450 \times 10^{4} \mathrm{~m} \\
& =0.675 \quad \text { Le } \quad \text { at } \theta=42.5^{4}
\end{aligned}
$$

and the fourth order spectrum ($n=4$) will occur at $\theta=64.2$

$$
\begin{aligned}
& \sin \theta=4 \times 500000 \mathrm{~m}^{11} \times 450 \times 10^{4} \mathrm{~m} \\
& \sin \theta=0.9 \text { gives } \theta=84.2^{\rho}
\end{aligned}
$$

9.12 POLARIZATION

in transverse mechanical woves, such as produced in a stretched string. the vibrations of the particles of the medium are perpendicular to the direction of propagation of the Waves. The vibration can be oriented along verticat, horizontal or any other direction (Fig. 9.137, In each of these cases, the transverse mechanicat wave is said to be polarzed. The plane of potarization is the plane containing the diraction of vibration of the particles of the medium and the direction of propagation of the wave.
A tight wave protuced by oschlfating charge consists of at perindic variation of electric field vector accompanied by themagnetic field vector at fight angle toeach ofter. Ordnary light has componerts of vibration in al possibie planes. Such a tlath is inpolarzect. On the other hanc, it the vibrations aris oonfined orly in one plane, the light is said to be polarized.

Production and Detection of Plane Polarized Light

The light emitted by an ordinary incandescent buib fand also by the Sun) is unpolarized, because ils (electrical) vibrations are rendomly oriented in space (Fig. 9.14). It is possibie to obtain piane polanized beam of light from un-polanzed sogt by comoving all waves from the beam exceps thote having vibrations along one particular direction. This can be achipved by various procusses such as selective absouption, reflection from dieferent suffaces, refraction through erystals and scattaring by small particles.
The seiective absorption method is the most common method to obtain plane polarized fight by using certain types of materiais called dichroid substinces. These mavenials transinit only those waves, whose vibrations are parallel to a particuiar direction and will absort those waves whose nbrations are in other directions: One such commerclai polarizing matorial is a palaroid.
If unepolarzed light is made incident on a sheet of polaroid, tre transmitfed iight will be plane polarzed if a second theat of pularoid tsplaced in such a wiay that the axes of the polaroids. ghown by straight lines drawn on them, are paratlet (Fig. 0.15a), the light is transmitted preough the zecond poilaroid asiso. If the second polarvid is slowly rotated atbout the beam of tight, af anta of rotation, the light emerging out of the second polaroid gets dimmer and dimmer and disappears when the axes become mutually

Fig 2 新
 (iif) maveraf glyce mint

Fig. 174
An turpasiunt iyth tile th
 ureitions

Fig. 1.15
Feqenverts arangenmili in show
 Writ Wh mmpal ifibates shectrt . Wrimeetsity Wimb.

Lightreflecred hus smocthsurfase of water is pertaly, polartzed

Interosting Intormation

Supar achution imatas the plane of polariagion of inckiwst ingt ats that 1 is ro foije horíuriá bui ail sh Eyle. Tee atakear inis stope the bft when retabed hem thie versea

perpondicular (Fig. 9.15 b). The light resppears on further rotation and becomes brightest when the axes are again paraltel to each other.

This experiment-proves that light waves are transverse waves. If the light waves were longitudinal, they would never disappear peen if the two polaroids were mutually pergendicular.

Reflection of light from waier, glass, snow and rough road surfaces, for larger angles of incidences, produces glare. Since the reflectad light is partially polarized, glare can considerably be reduced by using polaroid sunglasses.

Sunlight also becomes partially polorized because of scattering by ait molecules of the Earth's atmosphere. This effect can be olberved by looking difectly up through a pair of sunglasses made of polarizing glass. At certain orientations of the lenses, less light passes through than at others.

Optical Rofation

When a plane polarized light is passed through certain crystals, they rotate the plane of polarization. Quartz and sodium chlorate crystals are typical examples, which are fermed as optically active crystals.

A few millimeter thickness of such crystals will rotate the plane of polarization by many degrees. Certain ofganic suftstances, such as sugar and tarfaric acid, show optical rotation when they are in solution. This property of optically active substances can be used to determine their concentration in the solutions.

SUMMARY

* A surface passing through all the points undergking a similar disturbance (i.e., having the same phase) at a given instant is called a wavefront.
- When the disturbance is propagated out in all directions from a' point source, the wavefronts in this case are spherical,
= Radial lines lnaving the point source in all directions represent rays:
- The cistance between two conseculive wavefronts is called wavelength.
- Huygen's principle statesthat all points on a primary wavefront can be ocosidered as the source of secondary waveleta.
- When two or more waves overlap each other, there is a resultant wave. This phenomenon is called interference.
- Constructive interference occurs when two waves, trayelling in the same medium overiap and the amplitude of the resultant wave a gratar trian either of the individual waves.
* In case of destructivo interfarence, the ampitude of the resuiting wave is less than either of the individual weves.
- In Young's double slit experiment,
(i) for bight fringe: $d \sin \theta=m$.
iii) for dark fringe, $d \sin \theta=\left(m+\frac{1}{2}\right) h$
(iii) the dislance between two adjacent bright or dark fringes is

$$
\Delta y=\frac{b \lambda}{d}
$$

- Newtor's rings are circular fringes formed due to irfarfarence in a thin air film enclosed between a convex lons and a fiat glass plate.
* Michelson's interferometer is used for very precise length measurements. The distance L of the moving mirror when m fringes move in view is $\mathrm{mN} / 2$.
- Bending of light around obslacles is due to diffraction of light.
- For a diffraction gruting:

$$
\text { d } \sin \theta=n \lambda \quad \text { where } n \text { stands for nth order of maxima. }
$$

- For diffraction of X-raye by crystals

$$
2 d \sin \theta=n \text { n. where } n \text { is the orfer of relliection. }
$$

- Polarkation of light proves that light consists of transverse efectronagnetic waves.

QUESTIONS

81 Under what conditions two or more sources of light behave as coherent scurces?
9.2. How is the distance between interference fringes attected by the separation between the shits of Young's experiment? Can fringes disappear?
9.3 Can visible light produce interforence fringes? Explain.
9.4 In the Young's experiment, one of the slits is covered with blue filter and other with ted filter. What would be the pattern of light intensity on the screen?
Q. 3 Explain whether the Young's experiment is an experiment for studying interfocence or diffraction effects of light.

An oil film spreading over a wet footpath shows colours. Explain how does it happen?
9.7. Could you obtain Newton's rings with transmitted bight? \& yes, would the pattem be different from that obtained with reflected light?
9.8 In the white light spectrum obtained with a diffraction grating, the third order image of a wavelength coincides with the fourth order image of a second wavelength. Calculate the ratio of the two wavelengths.
20. How woufd you manage to get more orders of spectra using a diffraction grating?
9.10 Why the polaroid sunglasses are better than-ordinary suinglasses?
9.71 How world you distinguish between un-polarized and plane-polarized lights?
9. 12 Fili in tho blanks.
(i) According to \qquad principle, each point on a wavelront acts as a source of secondary \qquad $=$
(ii) In Young's experiment, the distance between two adjacent bright fringes for violet light is \qquad than that for green light.
(iii) The distance betwoen bright fringes in the interference pattem \qquad as the wavelength of light used increases.
(iv) A diffraction grating is used to make a diffraction patfom for yellow ight and then for red light. The distances between the red spots will bo \qquad than that for yollow light.
(v) The phenomenon of polarization of light reveals that light waves are \qquad waves.
(vi) A polaroid is a commercial \qquad $-$
(vii) A polaroid plass \qquad glare of light produced at a road surface.

NUMERUCAL PROBLEMS

B. 1 Light of wavelength 546 nm is allowed to illuminate the silts of Young's experiment. The separation between the slits is 0.10 mm and the distance of the screen from the slits where interference effects are observed is 20 cm . At what angle the frst minimum will fall? What will be the linear distance on the screen between adjacent maxima?
(Ans: $0.16^{\circ}, 1.1 \mathrm{~mm}$)

92 Calculate the wavelength of light, which liluminates wo slits 0.5 mm apart and produces an interferenco pattern on a screen placed 200 cm away from the alits. The first bright fringe is observed at a distance of 2.40 mm fromt the cantral bright inage.
(Ans: 600 nm)
9.3 In a double slit experiment the second order maximum occurs at $\theta=0.25^{\circ}$. The wavelength is 650 nm . Determine the sit separation.
(Ans: 0.30 mm)
9.4 A monoctromatic light of $\lambda=588 \mathrm{~nm}$ is allowed to fall on the half sitvered glass plate G_{1}, in the Micheison interferometer. If mirror M_{1} is moved through 0.233 mm , how many fringes will be observed to shitt?
(Ans: 792)
9.5 A second order spectrum is formed at an angle of 38.0° when light falls normally on a diffaction grating having 5400 lines per centimetre. Detormine wavelength of the light used.
(Ans. 570 nm)
9.6 A light is incident normally on a grating which has 2500 lines per centimetre. Compute the wavelength of a spectral line for which the deviation in second order is 15.0°.
(Ans: 518 nm)
0.7 Sodium light $(\lambda=589 \mathrm{~nm})$ is incident nomally on a graling having 3000 lines per centimetre. What is the highest order of the spectrum obtained with this grating?
(Ans: 5th)
9.8 Blue light of wavelength 480 nm illuminates a diffraction grating. The second order image is formed at an angle of 30° from the central image. How mary lines in a centimetre of the grating have been ruled?
(Ans: 5.2×10^{3} finest per cm)
9.9 X -rays of wavelength 0.150 nm are observed to undorgo a first order reflection at a Bragg angle of $13,3^{4}$ from a quartz $\left(\mathrm{SiO}_{2}\right)$ crystal. What is the interplanar spacing of the reflecting planes in the crystal?
(Ans: 0.326 nm)
9,10 An X-ray beam of wavelength λ. undergoes a first order reliection from a crystal when its angle of incidence to a crystal face is 28.5 , and an X-ray beam of wavelength 0.097 nm undergoes a third order rellection when its angle of incidence to that face is 60.0°. Assuming that the two beams reflect from the same family of planes, calculate (a) the interplanar spacing of the planes and (b) the wavelength λ.

$$
\mid A n s: \text { (a) } 0.168 \mathrm{~nm} \text { (b) } 0.150 \mathrm{nm\mid}
$$

Chapter

OPTICAL INSTRUMENTS

Learning Objectives

At the end of this chapler the students will be able to:

1. Recognize the term of least distance of distinct vision.

2 Understand the terms magnifying power and resolving power.
3 Derive expressions for magnifying power of simple microscope, compound mieroscope and astronomical telescope.
4 Understand the working of spectrometer:
B. Describe Micheisan rotating mirror method to find the speed of light.
(i) Understand the principles of optical fibre.

7 Identify the types of optical fibres.
B Appreciate the applications of optical fibros.

In this chapler, some optical instruments that are based on the principles of rellection and refraction, will be discussed. The most common of these instruments are the magnifying glass, compound microscope and telescopes. We shall also study magnification and resolving powers of these optical instruments, The spectrometer and an arrangement for measurement of speed of light are also described. An introduction to optical fibres, which has developed a great importance in medical diagnostics, telecommunication and computer netwonding, is also included.

10.1 LEAST DISTANCE OF DISTINCT VISION

The normal human eye can focus a sharp image of an object on the eye if the object is located any where from infinity to a certain point called the near point.

The minimum distance from the oye at which an object appears to be distinct is called the least distance of dirtinct vision or near point.

This distance tepresented by d is about 25 cm from the eye If the object is heid closer to the eje than this disfance the imaga formed witt be thumed and fivzy. Thie location of the near point, however, changen with age.

10.2 MAGNIFYING POWER AND RESOLVING POWER OF OPTICAL INSTRUMENTS

When an abject is placed in front of a convex lens at a point beyond its focus, a real and inverted irnage of the object is formed as show in in the Fig. 10.1.

Fwis. 1
The ratio of the size of the image to the size of the object is called magnification.

As the object is brought from a far off point to the focus, the magniflcation goes on increasing. The apparent size of an object depends on the angle subtended by it at the eye Thus, the closer the object is to the eye, the greater is the angle subtended and larger appears the size of the object (Fig.10.2). The maximum size of an object as seen by neked oye is obtained when theobject is placed at the least distance of distinct vision. For lesser distance, the image formed tooks blurred and the details of the object are not visible.

Fix 18z
Whenitie sar oo ptjoct in Viemod at ithotherdistunce, the imapit on the refina if the ever is gevier, bor the ntjact argeive larjer anf mone

The magnifying power or angular magnification is deflined as the ratio of the angtes subtended ty the fmage as sean through the optical device to that sublended by the object at the unaided eye.

The optical resclution of a microscope or a telescope telts us how close fogether the two point sources of light can be so that they are still seen as two separate sources. If twio point sources are too close, they will appear as one becatise the optical instrument makes a point source look like a small disc or spot of light with circular diffraction fringes.

Although the magnilication can be made as large as one desires by choosing appropriate focal lengths, but the magnification alone is of no use unless we can see the details of the object cfistinctily.

The mesolving powes of an instrument is its ability to reveal the minor detaits of the object under examination.

Tid-bits

If you fant t dfficil toreant amak pring, make a pintiole in a proce of pepar and hod Ef it sonit of your ayocose to lhe pogs Voowl sie thin pent cleafy

Resolving powe is expressed as the reciprocal of minmumange which two point sources subtends at the instrument so that their images are seen ass two distinct spots of light father than one. Raleigh showed that for light of wavelength \& through a lens of diameter D, the resiolving power is given by $R=\frac{1}{Q x_{\text {min }}}=\frac{D}{1,22 k}$
Where

$$
\begin{equation*}
1+22 \frac{1}{2} \tag{10,1}
\end{equation*}
$$

The smatier the value of a, groater is the resolving power because two distant objects which are close topenther can then bo seen separated through the instrument. In the case of a grating spectrometer, the resolving power R of the grating is defined as

$$
\begin{equation*}
\pi=\frac{d \lambda}{\mid 2+2 x}-\frac{2}{\Delta x} \tag{10.2}
\end{equation*}
$$

where $\lambda=\lambda_{2} * \lambda_{2}$ and $\Delta \lambda=\lambda_{2}-\lambda_{4}$. Thus, we see that a grating with high resolving power can distinguish small difference in wivelength, if N is the number of rutings on the grating, it can be shown that the resolving power in the mth-arder diffiaction equals the product $\mathrm{N} \times \mathrm{m}, 1 . \ldots$.

$$
\begin{equation*}
R=N \times m \tag{10.3}
\end{equation*}
$$

10.3 SIMPLE MICROSCOPE

As discussed above a converg gior स्ताVek arts can bul uspd to thelp the syen in fee small objects dintinctly A watch maker usee convel /eris to repsiir the fatchets. The ofject is placed inside the forat point of the lens. The màgoifer and vitum image in formed at fetset olstance of diatinct vision of or much tarther fram the lens:

Let uis, noth ealotate the meqnifeation of a simple microscope in Fig 10.3, (a) the image tómed by then object, whon plated at a distance of, on the aye is shown In Fig. $10.3(\mathrm{~b})$, a leng is placeid just in front of the eye and the object is place- ln frovt of thit whs in such a way fiat a vifual image of the objoct fa fommed at a distance of from the eye. Thie stie of the impge is new muich farger tran without the feris.

If 11 and a are the rospectivo angles subtended by the object when seen through the lens (simple microscope) and when vewed directly, then angular margification M is detinod.es

$$
\begin{equation*}
M=\frac{11}{a} \tag{10.4}
\end{equation*}
$$

When angles are small, then they are neany equal to their tangenti. From Fig. 10.3 (b) and (b), wo find

$$
\text { it }=1 \operatorname{lin} \alpha=\frac{\text { Stan en the objpat }}{\text { Etstance of thenaject }}=\frac{0}{4}
$$

and

$$
\beta=\tan \beta=\frac{\text { suen of the immpe }}{\text { Distanse of the innage }}=\frac{1}{\alpha}
$$

Since the inmpe is at the ifast distance of disanct vision.
hence:

$$
\theta=d
$$

Themaforen,

$$
p=\frac{1}{q}=\frac{1}{t}
$$

the angutiar magnification

$$
M=\frac{V d}{Q I I}=\frac{T}{0}
$$

8 818

(b)

Fial 10.1
Simple Main raticope

As we already know that

$$
\frac{t}{0}=\frac{\text { Size of the iniage }}{\text { Size of the object }}=\frac{\text { Distance of the imepe }}{\text { Distance of the objoct }}=\frac{q}{p}
$$

Therefore,

$$
\begin{equation*}
\mathrm{M}=\frac{q}{p}=\frac{d}{p} \tag{10.5}
\end{equation*}
$$

For virtual image, the lens formula is written as

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{p}-\frac{1}{q} \quad \text { But } \quad q=d \\
& a \quad \frac{1}{f}=\frac{1}{p}-\frac{1}{d} \quad \text { or } \quad \frac{d}{p}=1+\frac{d}{f}
\end{aligned}
$$

Hence
Hence the magnification of a convex lens (simple microscope) can be expressed as

$$
\begin{equation*}
M=\frac{d}{p}=1+\frac{d}{f} \tag{10.6}
\end{equation*}
$$

it is, thus, Obvious that for a lens of high angular magnification the focal length should be small. If, for example, $f=5 \mathrm{~cm}$ and $d=25 \mathrm{~cm}$, then $M=6$, the object would look six times larger when viewed through such a lens.

10.4 COMPOUND MICROSCOPE

Whenever high magnification is desired, a compound microsoope is used. It consists of two convex lenses, an object fens of very short focal length and an eye-plece of comparatively longer focal length. The ray diagram of a compound microscope is given in Fig. 10,4 (a).

Fin. $80.4(6)$.
A Cempound Mercanope

Ray disgrair of a Cenpound Microteope

The object of height h is piaced just beyond the principal focus of the objective. This produces a real, magnified image of height ih, of the object at a place situated within the focal point of the eye-piece. It is then furthor magnified by the eye-pieca. In normaliadjusiment, the eye-piece is positioned so that the linal image is formed at the near point of the bye at a distance d

The angular magnification M of a compound microscope is definied to be the ratio $\tan \phi_{0} / \tan 0$, where θ_{a} is the angle subtended by the finat image of height h_{2} and 0 is the angle that the object of height if would subtend at the eye If placed at the near point d (Fig. 10.3 a) Now

$$
\tan \theta=\frac{h}{d} \quad \text { and } \quad \tan \theta_{\mathrm{n}}=\frac{\lambda_{2}}{d}
$$

Thus, magnification

$$
M=\frac{\tan \theta_{t}}{\tan \theta}=\frac{h_{g}}{d} \times \frac{d}{h}=\frac{h_{2}}{h}
$$

$$
M=\frac{h_{1}}{h} \times \frac{b_{2}}{h_{7}}
$$

where ratio $h, / h$ is the linear miagnification M, of the objective and h_{2} / h_{1} is the magnification M_{2} of the eyeplece. Hence, total magnification is

$$
M=M_{1} M_{2}
$$

By Eq, 10.5 and Eq. $10.6, M_{1}=q / p$ and $M_{2}=1+d f_{e}$
Hence,

$$
\begin{equation*}
M=\frac{q}{p}\left(1+\frac{d}{f_{4}}\right) \tag{10.7}
\end{equation*}
$$

It is customary to refor the values of M as multiples of 5,10 , 40 otc, and are marked as $\times 5, \times 10, \times 40$ stc, on the instrument.

The limit to which a microscope can be used to resolve details, depends on the width of the objective. A wider objocive and tuse of blue light of short wavelength produces less diffraction and allows more detaits to be seen.

A. Sefetrriatth cemuy mbroathta which oovd tes risved up ardisowh in in puriont itry Abortmay of the Mascurt it the Haliry of Bownita, Firnenter

Example 10.1: A microscope has an objoctive lents of 10 mm focal fength, and an eye plece of $25,0 \mathrm{~mm}$ focal length. What is the distance between the lenses and its magnification, if the object is in sharp focus when it is 10.5 mm from the objective?

Solution: If we consider the objective alone

$$
\frac{1}{10.5 \mathrm{~mm}}+\frac{1}{\text { q }}=\frac{1}{10 \mathrm{mms}} \quad \text { or } \quad Q=210 \mathrm{~mm}
$$

If we consider the eve plece alone, with the virtuas image at the least distance of distinct vision $d=-250 \mathrm{~mm}$

$$
\frac{1}{p} \cdot \frac{1}{-250 \mathrm{~mm}}=\frac{1}{25 \mathrm{~mm}} \quad \text { or } \quad p=22.7 \mathrm{~mm}
$$

Distance betweenLenses $=q+p=210 \mathrm{~mm}+22.7 \mathrm{~mm}=233 \mathrm{~mm}$

Magnification by objective

$$
M_{1}=\frac{q}{p}=\frac{210 \mathrm{~mm}}{10.5 \mathrm{~mm}}=20.0
$$

Magrification by eye plece

$$
M_{2}=\frac{-280 \mathrm{~mm}}{22.7 \mathrm{~mm}}=-11.0
$$

Total magnification

$$
\begin{aligned}
M & =M_{1} \times M_{2} \\
& =20 \times(-11.0)=-220
\end{aligned}
$$

-ive sign indicates that the image is virtual.

10.5 ASTRONOMICAL TELESCOPE

Telescope is an optical device used for viewing cistant objects. The image of a distant object viewed through a felescope sppears larger because in subtends a bigger visual angle than when viewed with the naked eye. Initially the exdensive use of the telescopes was for astronomical observations. These telescopes are catted astronomical tefescopes. A simple astronomical telescope consists of two convex lenses, an objective of long focal length fs. and
an eye piece of short focial length h. The objective forms al real, inverted and diminished image $A^{\prime} B^{\prime}$ of a distant object $A . B$. This real image $A^{\prime} B^{r}$ acts as objoct for the eye piece which is used as a mannifyeng giass The finat imuge seen through the eye-piece in virtual, enlarged and inverted. Fig. 10.5 ahows the path of raya through an autionomical teiescope.

When a very distant object is viewed. the rays of light coming from any of ids point (say hts top) arn considered parallet and these parallel rays are converged ty the objective to form a real image $A^{\prime} B^{\prime}$ at as focus. It it is desired to see the firial image through the sye-plece without any strain on the sye, the eye-piece must be placed so that the Image $A^{\prime} \mathrm{B}^{\prime}$ hes at its tocus. This rays affer refraction through the eye-piece will become paraliel and the final image appears to be formed at infinity, In this condition the image $A^{\prime} B^{\prime}$ ' formed by the objective lies at the focus of both the objecive and the cye-piece and the telescope is said to be in normal adjustment

Let us now compote the magnifying power of an astronomical telescope in normat adjustrnent. The angle ia subtended at the unaided eye is practically the trame as subtended at the ebjective and it is oqual to \angle AOOB' Thus

$$
\alpha=\tan \alpha=\frac{A^{\prime} B^{\prime}}{O B^{\prime}}=\frac{A^{\prime} B^{\prime}}{r_{0}}
$$

The angle β subtended at the eye by the final image if equal to $\angle A^{\prime} O^{\prime} B^{\prime}$. Thus

For Your Information

$$
M=\frac{\text { Focal length of the objective }}{\text { Focal langth of the eyepiece }}
$$

It may be noted that the distance between the objective and eye-piece of a telescope in normal adjustment is $f_{0}+f_{\text {. }}$ which equals the length of the telescope.

Besides having a high magnifying power another problem which confronts the astronomers while designing a teleascope to see the distant planets and stars is that they would like to gather as much light form the object as possible. This difficulty is overcome by using the objective of large aperture so that it collects a great amount of light from the astronomical objects. Thus a good telescope has an objective of long focal length and targe aperture.

10.6 SPECTROMETER

A spectrometer is an optical device used to study spectra from different sources of light. With the heip of a spectrometer, the devlation of light by a glass prism and the refractive index of the material of the prism can be measured quite accurately. Using a diffraction grating, the spectrometer can be employed to measure the wave length of the light.

The essential components of a spectrometer are shown in
Fig, 10,6 (a).

Feg ins (a)
Sehematiz diagram of a mpAcirocoler.i

Collimator

It consists of a fixed metallic tube with a convex lens at one end and an adjustable slit, that can slide in and out of the lube, at the other end. When the siti is just at the focus of the convex. lens, the rays of light coming out of the lens become paralle:. For this reason, it is called a collimator.

Tum Table

A prism or a grating is placed on a turn table which is capable of rotating about a fixed verticat axis. A circular scale, graduated in half degrees, is attachad with it.

Telescope

A telescope is attached wath a vemier scale and is rotatable about the same vertical axis as the tum table.

Before using a spectrometer, one should be sure that the collimator is so adjusted that parallel rays of ight emerge out of its convex lens. The telescope is adjusted in such a way that the raya of light entering it are focussed at the cross wires near the eye-piece. Finally, the refracting edge of the prism must be paraliel to the axis of rotation of the talescope so that the tum tubie is levelled. This can be done by using the leveliling screws.

Fig to.7
Mighalagen minthan tor mensurement of upend of light.

10.7 SPEED OF LIGHT

Light traveis so rapidly that if is vary difficull to moasure its spead. Gatteo was the first person to make an attempt to measure its speed. Although fie did not succood in the measurement of the speed of light, yot the was convinced that the light does lake some time to fravel from one place to another. Glven below is cone of the acourste methods of delermining the speed of light which is known as Michefoon's expeniment

In this experment, the speed of light was determined by messuring the time it tock to cover a round trip-between two mountains. The cistancu between the lwo. mountains was measured accurately. The experimentaf set up la skown in Fig 10.7
An eight-sided polished mirror M is mounted on the shaft of a miotor whose veiocily can be variod. Suppose the mirror is stationary in the pobition shown In the thgure. A beam of fight from the lace 1 of the mirror M falts at the plane mirror im placed at in distance of from M. The team is reflected back from tha mirror mand latts on the face 3 of the mirror M. On raflection from fince 3, it enters the tefescope.

It the mifror M is rotated clockwise, initiatly the saurce will not be visible through tha telescope. When the mirror M filins a boftain spookt, the source s bebomiss visite This happens when the firse taken by light in moving from M to in and back to N is equat to the time taken by face 2 to move to the position of face 1.

Angle subteinded by any side of the eight-sided mirror at the contre is 2. $2 / \overline{0}$. If f is the frequancy of the mimor M, when the source 5 is vishte through the lelescope, then the ume taken by tho mirror to rotate through an angle 2π is $1 / . \mathrm{So}$, the time taken by the mirroc M to rotate through an anple $2 \tau^{\circ} \mathrm{t}^{\circ}$ is

$$
t=\frac{1}{2 \pi t} \times \frac{2 \pi}{8}=\frac{1}{3 t}
$$

The time laken by light for is passinge from M to m and back is $2 d / c$ where c is the speed of light. These twa times ary equat

180

$$
\begin{align*}
& \frac{1}{8 f}=\frac{2 d}{6} \\
& 6=16 f d \tag{10.8}
\end{align*}
$$

This equation was used to determine the speed of light by Michetson. Presently accepted value for the sipeed of light in vacuam is

$$
0=2.99792458 \times 10^{4} \mathrm{~ms}^{t}
$$

We usually round this of to $3.00 \times 10^{8} \mathrm{~ms}^{-1}$
The spood of light in other material's is atways less than of In media other than vacuum, it deperids upon the nature of the medium. However, the speed of light in air is approximately oqual to that in vacuum and generally taken 80 in calculations

10.8 INTRODUCTION TO FIBRE OPTICS

For hundreds of years man has communicated using llashes of reflected suniight by day and lantams by night. Navy sipnaimen stifl use powerfal blinker lights to trangmit coded messages to other shipts during periods of rudicsilence. Elight communication has not been confiried to simple dats and deshes. It is an interesting but litte known fact that Alexander Graham Beil inverted a device lonown It "photo phone" shoithy after his Invention of telephone. Bells photo phone sised a modulated beam of reflected sunlight, fooussed upon a Selenium detector several hundrad metres away. With the device, Bell was able to fransmit: a volce messpge vist it beam of llght. The iteo remained dormant for many years. During the recent past the idea of transmission of light through thin optical libres has been revived and is now being used in sommunication technology
The use of light as a transmission carrier wave in fibre optica has several advantages over radig wave carriers such as a much wider bandwith capability and immuinity from electromagnetic intarference.

Eact it ta Hill ointar muns is smial elorgh ion it \#trorgt itim eyt uf enoorn. Wly io the san Ithym-tifither

It is also used to trarismit light around coment and into

Fig 10.18 ($)$

Cpeicat fibpe impye

One feature of such a syatem is iss ability to transmit thousands of telephone conversationfs, saferat television programs and nimerous data slgnats batween statlons through one or two llexible, hair - thin threads of optical fibre. With the tremendous information carrying capacity called the bandwidth, fibre optic systems heve undoubtedly mase practical such services as two way televislón which was too costly before the development of fitre optics. These systems also allow word processing, image transmitting and receiving equipment to operate etticiently,

In addition to giving an extremely wide bandwidth, the fitres optic system has much thinner and light weight cables. An optical flore with its protective care may bo typically 6.0 mm In diameter, and yet it can replaca a 7.62 cm dlameter bundie of copper wires now used to carry the same amount of signalis.

10.9 FIBRE OPTIG PRINCIPLES

Propagation of light in an optical fibre requires that the light should be totally conflined within the fible.

This may be done by total internal reflection and continvious refraction.

Total Internal Reflection

One of the qualities of any optically transperant matenal is the speed at which light travels watin the materfiti, ife, it depends upon the refractive index of of the matirial. The index of refraction is merely the ratio of the speed of light c in vacuum to the speed of lighil of in thet material.

Expressed mathematically,

$$
\begin{equation*}
n=\underset{v}{E} \tag{10,10}
\end{equation*}
$$

The boundary between two optical media, 8.g. glass and air having different refractive indices can reflect or refract light fays. The amount and dirgetion of reflection or refraction is determined by the amount of difference in refractive notices as well as the angle at which the rays strike the boundary. At some angle of incidence, the angle of refraction is equal 10 90° when a ray of light is passing through glass to air. This angle of incidence is called the critical angle 0 , shown in Fig. $10.9(\mathrm{a})$ We are already familiar with Snails law

$$
n_{1} \sin \theta_{2}=n_{3} \sin \theta_{2}
$$

From Fig. $10.9(\mathrm{~s}) ; \quad$ wheen $\quad \theta_{1}=0, \quad \theta_{2}=00^{\circ}$
thus,

$$
n_{1} \sin \theta_{c}=n_{2} \text { or } \operatorname{sen} \theta_{2}=n_{2} / n_{1}
$$

For incident angles equal to or greater than the critical angle, the glass - air boundary will act as a mirror and no light escapes from the glass (Fig. 10.9 b). For glass-air boundary we have

$$
\sin \theta_{6}=\frac{n_{2}}{n_{1}}=\frac{1.0}{1.5} \text { or } \dot{\theta}=41 B^{\circ}
$$

Let us now assume that the glass is formed info a long, round rod. We know that all the light rays striking the internal surface of the glass at angles of incidence greater than 41.8^{\prime} (critical angle) will be reflected back into the glass, while those with angles less than 41.8 will escape

Fur 10.s(a)
IFMencle ot h hadivi istle ak is
 Heotigatsye

Fig. $10.2(\mathrm{xb}$
IForanales of liciduncs grabirt tortile tidal argon, at tie iris militant nate is natured mo we His from the glass (Ki g.10.109). Ray i is injected into the fold so that it strikes the glass air boundary at an angle of incidence about 30°.

Propagating al fight within a glass rock.
Since thus is less then the critical angle, it will escape from the rod and be lost. Ray 2 at 42^{\prime} will be rehected back into the rod, as will ray 3 at 60 :Since the angle of reflection equals the angle of incidence, these two lays will contrive to propagate down the rod, along paths determined by the original angles of incidence, Ray 4 is called an axial

List provaentlon whin a

 fiesitile glasizfitis

Fig, 36.11
Crupe mactipal view of (a) Muitt-mode stap indies Atre (b) Mirth-mods graded Index fors

Fing 13.12
Light propegation within a hippothatical mumiajor fers.
ray since its path is parailel to the axis of the rod. Axial rays will trayel directly down this straight and rigid rod. However, in aflexible gtass fibre they will be subjected to the laws of retlection (Fig. 10.10b).

Optical fibres that propagate light by total internal reflection are the most widaly used.

Continupus Refraction

There is another mode of propagation of light through optical Bites in which light is continuously refracted within the fibre, For this purpose central core has high refractive index (high density) and over it is a layer of a lower refractive index (less density). This layer is calted cfadding. Such a type of flore is called mult-mode step index fibre whose cross sectional view is shown in Fig. 10.11(a),

Now a days, a new type of optical fibre is used in which the central core has high refractive index (high density) and its density gradually decreases towards its periphery. This type of opticar fibre is called a mutti mode graded index fitre. Its cross sectional view is shown in Fig. 10.11 (D)-

In both these fibres the propagation of light signal is through continuous refraction. We already know that a ray passing from a donser meduim to a rarar medium bends away from the nomsial and vico versa. In step index or graded index fibre, a ray of light entering the optical fibrs, as shown in Fig. 10.12, is continuously tefracted through these gteps and is reffected from the suiflace of the outer layer. Hence light is transmitted by continuous refraction and total intemal reflection.

10.10 TYPES OF OPTICAL FIBRES

There are three types of optical fibres which are classified on the basis of the mode by which they propagate light. These are (i)single mode step index (0) muiti mode step index and (亩) multi mode graded index. The term 'mode' is described as the method by which light is propagated within the fibre, 1.e. the various paths that light can take in travalling down the fibre. The optical fiore is-also covered by a plastic jacket for protection.

(i) Singla Mode Stap index Fibre:

Single mode or mono mode step index flibre has a very thin core of about 5 lm diameter and has a relatively larger cladding (of glass or plastic) as shown in Fig. 10.13. Since it has at very thin core, a strong monochromatic light sourcos l.e., a Laser source has to be used to send light signals through it. it can carry more than 14 TV charnels or 14000 phone calls

(ii) Muilimoda Step Index Fibre:

This fype of fibre has a core of relatively larger diameter such as $50 \mu \mathrm{~m}$. It is moatly used for carrying white light but due to dispersion effects, it is useful for a short distance only. The fibre core has a constant refractive index n_{1}, such as 1.52 , from its centre to the boundarywith the cladding as shown in Fig. 10.14. The refractive index then changes to a lower value n_{2}, such as 1,48 , which remains constant throughout the cledding.

Fie. 10.64
Light propopastign truugh Whill-made stapindes fibeo.
This is called a step-index multimode fibre, bocause the cefractive index steps down from 1.52 to 1.48 at the boundary with the cladding.

(iii) Mulkimede Graded Index Fibre

Multi mode graded index firpe has core which ranges in diameter from 50 to $1000 \mu \mathrm{~m}$. It has a core of relatively high refracthe indox and the refractive index decresseut graduathy from the middle to the cuter surface of the flbere. There is no noticeable boundary between core and ctadding. This type offitro is called a multione graded-index fore (Fig. 10.15) and is usefut for long distance applicationn In which white light is used. The mode of transmission of light through this type of fibfe is also the same, I.e, continuous refraction from

(6)

Fie 10.13
Ginulbedode i lep-indes itire.

Fig. 10.15

[^3]the surfaces of amoothly decreasing refractive index and the total intemal reflection from the boundary of the outer surfaces.

ris 桹供

Forn 8nella kaw
Whaty
So:
Whian gives

$1.50 \sin \theta=1.48 \sin 99^{\circ}$
(1) $=60.89$

From the Fig. 1040
$6=107-15=44^{4}$
Again using Sneins law we inane $\frac{\text { vin it }}{\text { uirit }}=\frac{a_{1}}{n}=\frac{1.5}{7}$
Which gives $\operatorname{tin} 0=150$ sin it of $\theta=1420$
It light beam - in incident at the end of ing puplicat liber at an anglt gremer than 14.2°, whit internal collecisin woud nat take pilice.

10.11 SIGNAL TRANSMISSION AND CONVERSION TO SOUND

A fibre oplic communicatian system conslats of thrse major components: (i) a transmitter that converts electricat signals to, Eght signals, (iil) an optical fitre for quiding the signats and (ili) a recelver that captires the Kight Hignals at the other end of the fibre and reconverts them to electric signale.

The light source in the transmitter can be either a semiconductor laser or a light emitting diode (LED). With either devion, the light emitted is an invisible infra-fed signals. The typical wavelength ias $1.3 \mu \mathrm{~m}$.

Such a light will travet much fasfer through oplical fibrest than wit either visible or ultre-violet ight. The lasers and
 the nize of the thumbnail) in order to match the size of the fibion. To trmumit information by light waves, whether it is un audio algral, a tativision aignal or a computer data Fignot 'It is riecemsary to modititie the loght wivess. The most cormion meinod of modulation is called digital modutation le which the laser or LED is thashed on and off at an axiromely fast frite. A pulue of light represents the numbet 1 and fin Babence of light repesents zero. In a 2 seriae, insfaad of tlashes of light traveiling down the tibre, ories (15) and zeros (05) are nigviny down the path.

Fig. thetr
What ecmpuien lype equpment aryy commutication can be represented by a particutar pattem or code of these 15 and On. The recelver is programmed to decodethe te and Ma tus It rooemes the sound, pictures or data as required. Digitai modufation is कोरिessid in blat (tirfary dipit) of megivitis (10f bita) persecond, where a bit is a 1 or a 0 .
Despite the ultra-purity (99.99% pless) of the optical fibre, the light zignals eventually becorno dim and must be
 typleally placed about 30 im apart, but in the newer \#yeterna they may be separated by as much as 100 lum .

At the end of the fitie:- a phetoniode penverts the light nigoaln, which art then ampelied and decodud, if necessay to rocinstruat the signats orginaly transeritued (Fig. 10:17).

When a light siprial travela along fibres by muliple teflection, some light is absoroed due to impurities in the glabe: Some of ti ti scatterod by aroupt of atoma which are formed at placeis such as jaints when flires are joined logether. Carelie manulactaring can reduo the power loes by socattering and absorption,

(14)

(ib)
My. 1 tis
Luty gathe is (b) atep-indes and (bi) grasodindes tiberl.

The information recaived at the other end of a fitiore can be inaccurate due to dispersion or spreading of the light signal. Also the eight slignat moy not bi perfecty monochimastic in such a case, a narrow band of wave-lengiths are refracted in different directions when the ight eignal enters the glass fibre and the fight spreads.
Fig. 10.18 (e) shown the pathes of light of three ditierent wavelengtha λ_{1}, λ_{2} and λ_{3}. λ_{2} meets the corb-cladding at the critical angle and λ, and λ a at silighty greater angles. All the fays travel atond the fibre ty muttple reffections as explained earlier. But the light paths have different fengths. So the light of different wavelengths reaches the other end of the fibre at different times. The nighat received is, therefore, faulty or distorted.

The disadvantage of the step-index fibre (Fig. 10.18 a) can considerably be reduced by using a graded index fibre. As shown in Fig: 10.18 (b), the difforont wavelengths still take different paths and are totally infernally reflected at different layers, but still they are focussed at the same point like X and Y stc. It is posssible because the speed is Inversely-proportional to the reffactive index So the wavelength \rangle, travels a tonger path than x, or λy but at a greater speed.
Inspite of the different dispersion, all the wavnlengthn amive at the other end of the fire at the same time. With a step-index fitbe, the overalf time difference may be about 33 ns per km length of fibre. Using a graded index fibre, the time differance is reduced to about 1 ns per km .

SUMMARY

* Least distance of distinat vision is the minimum distance fiom then eym at which an abject appoars to be diefinct.
- Magnilication is the ratio of the size of the image to the sice of the object, which equals to the ratio of the ciatance of the image ip the clisunce of the onject from thetenns of mifror.
- Magnitying powor or angular magnification it the ancle subtended by the image as seen through the optical device to that sublended by the object of the uriaided eye.
- Resotving power is the atility of an instrument to reveal the minor datails of the object under examination.
- Simple microscope ia in fact a convex leos usod to help the oye to see amall objects distinctly. The magnifying powar of a simple microscape is given by

$$
M=\frac{d}{p}=1, \frac{d}{t}
$$

Compound microscope consists of two-convex lensies, an objective lens of yery shont foral langth and an oye piece of modernte focal langth. The-magnifying power of a compound microsoope is glven ty

$$
M=\frac{g}{D}\left(T+\frac{d}{f_{k}}\right)
$$

Telescope is an optical instrument ased- to see diatant object. The magnifying power of the teiescope is given by

$$
M=\frac{t}{t}
$$

Spectrometer is an oplical device used to stuidy ipectra from different sources of light. Index of refraction is the rato of speed of light in vacuum to the speed of light in the matnial
Critcal anpe is the angle of incidence in the denser medium for which the angle of refracticn in the raror mediumis equal to 90 :
When the angle of incidence beoomes greater than the critical angle of that matorial, the incident ray it reflected in the same matarial, which is catied totai internal mafiection:

- Cladding is a layer pl lowner rufracive index (less dartity) over the contral core of high refractive index (high denaity)
- Meutr mode step index fibre is an optical fore in which a lityer of lower refractive index is overc the central core of high refracilve index.
- Mufli mode graded index fiste is:an opticat fibte in whion the centrat core has high refractive index and its dersily gradually decreases towands ils periphery.

QUESTIONS

10.1 What do you understand by linear magnitication and angular magnification? Expisin how a convex lens is usod as a magnifier?
102 Explain the cifference between angular magnification and resolving power of an optical instrument. What limits the magnification of an optical instrument?"
103 Why woukd it be advantageous to use blue light wilh a compound microscope?
104 One can buy a cheap microscope for use by the children. The images seen in such a microscope hava coloured edgen. Why is this so??
10.5. Describe with the help of diagramts, how (a) a tingle biconvex lens can be uged as a magnifying glass. (b) biconvex lenses can be attanged to form a tricruseopth.
$10 . e^{\text {If }}$ a person was looking through a telescope at the full meon, how would the appearancs of the moon be changed by covering half of the objective. Eens.
107. A magnifying glass gives a flve times enlarged image af à distance of 25 cm from the lens. Find, by ray diagram, the focal fength of thet iens.
10.8 Identify the correct answer.
(iV) The resplving power of a compound mucroscope depunds on:
a. Length of the microscope.
b. The diameter of the objoctive leris.
B. The diameter of the eyepipce.
d. The position of an observer's eye with regard to the eve lens.
(ii) The resolving power of an astronomical tolescope depends ont
a. The focal length of the objective lens.
b. The least distance of distinct vision of the observer.
c. The focal length of the eye fens.
cd. The diameter of the objective lens,
10.9 Draw shotches showing the different fight palts itrough a single-mode and a mult mode fibre. Why is the single-mode fibre preterred in tolecommunications?
10. fo How the light signal is transmitted through the optical fiore?
10.11 How the powor is lost in optical fibre through dispersion? Explain.

10. 1 A converging lens of focal iengit 5.0 cm is used as a magnifying glass, It the near point of the observer is 25 cm and the lentr is held diose to the ays, calculate (1) the distance of the object from the lens (i) the angufar magnificatom. What is the angular magn fication when the finat image is formed at inflifity?
[Ans: (i) 4.7 cm (ii) $6.0 \div 5.0]$
10.2 A telescope objective has focal length 86 cm and diameter 12 cm . Caiculate the focal length and minimum diameter of a simple eye piece lens for use with the teloscopo, it the lineat magnification required is 24 times and tht the tight trinsmitted by the objective from a distant point on the telescope axis is to fall on the aye plecen

$$
\left(A_{n 3}: t_{6}=4.0 \mathrm{~cm}, d a=0.50 \mathrm{~cm}\right)
$$

10.3 A.selescope is made of an objecteve of focal langth 20 cm and an eye pieca of 5.0 cm , both convex lenses. Find the angular magnification.
(Ant: 4.0)
10.4 A simple astronomical telescope in normal adjuatment has an objective of focat length 100 am and an cye piece of focal lengith $5,0 \mathrm{~cm}$. (i) Where is the lisal image formed? (iii) Calculate the angular magnilication.
[Ans: (i) infinity (ii) 20]
10.5. A point object is placed on the axis of and 3.6 cm from a thin convex Lene of focet length 3.0 cm . A second thin convex lens of focal length 16.0 cm is placed cexaxiat with the first and $26: 0 \mathrm{~cm}$ from it on the silde away from the object. Find the position of the finailimage produced by the two lenses.
(Ans: 16 cm from second leris)
10.6 A compound microscope has lenses of focal length 1.0 cm and 3.0 cm . An object is placed 1.2 cm from the object lens. If a vitual image is formed, 25 cm from the oye, calculate the separation of the lanses and the magnification of the instrument.
(Ans: $8.7 \mathrm{~cm}, 47$)
10.7 Sodium light of wavelength 589 nm is used to view an object under a microscope: If the aperture of the objective is 0.90 cm , (i) .lind the limiting angle of resolution, (ii) using visibie light of any wavelength, what is the maximum limit of resolution for this microscope.

$$
\left[A n s: \text { (i) } 8 . D \times 10^{-8} \mathrm{rad} \text {, (ii) } 5.4 \times 10^{-5} \mathrm{rad}\right]
$$

10.8 An astronomical talescope having magnifying power of 5 consist of two thin lenses 24 cm apart. Find the tocal lengths of the lenses.
[Ans: $20 \mathrm{~cm}, 4 \mathrm{~cm}$]
10.9 A glass light pipe in air will totally internaty reflect a light tay 1 it angle of incodence is at least 39°. What is the minimuin angle for total internal reflection if pipe is in water? (Rsfractive index of watir $=1.33$)
[Ans:57]
10.10 The refractive index of the core and cladding of an optical fore are 1.6 and 1.4 respectively. Calculate (i) the ertical angle for the intarface (i) the maximum angla of ficldence in the aif of a ray which enters the fitore and is inclident at the criticat antgle on the interface:

$$
\text { [Ans:(1) } 61^{\prime} \text {, (ii) } 61{ }^{1} \text {] }
$$

Chapter 11

HEAT AND THERMODYNAMICS

Learning Objectives

At the end of this chapter the students will be able to:

1. State the basic postulates of Kinetic theory of gases.
2. Explain how molecular movement causes the pressure exerted by a gas and derive the equation $\left.P=2 / 3 N_{0}<1 / 2 m v^{2}\right\rangle$, where N_{0} is the number of molecules per unit volume of the gas.
3. Deduce that the average translational kinetic energy of molecules is proportional to temperature of the gas.
4. Derive gas laws on the basis of Kinetic theory.
5. Describe that the internal energy of an ideal gas is due to kinetic energy of its molecules.
6. Understand and use the terms work and heat in thermodynamics.
7. Differentiate between isothermal and adiabatic processes.
8. Explain the molar specific heats of a gas.
9. Apply first law of thermodynamics to derive $C_{p}-C_{v}=R$.
10. Explain the second law of thermodynamics and its meaning in terms of entropy.
11. Understand the concept of reversible and irreversible processes.
12. Define the term heat engine.
13. Understand and describe Carnot theorem.
14. Describe the thermodynamic scale of temperature.
15. Describe the working of petrol and diesel engines.
16. Explain the term entropy.
17. Explain that change in entropy $\Delta S= \pm \frac{\Delta Q}{T}$
18. Appreciate environmental crisis as an entropy crisis.

Fig. 11.1

Let a cubical vessel of side I, contains N molecules, each of mass m (Fig.11.1). The velocity \mathbf{v}, of any one of these molecules can be resolved into three rectangular components $V_{1 x}, V_{1 y}, V_{1 z}$ parallel to three co-ordinate axes x, y and z.

Initial momentum of the molecule striking the face ABCDA is then $m v_{r x}$. If the collision is assumed perfectly elastic, the molecule will rebound from the face ABCDA with the same speed. Thus each collision produces a change in momentum, which is equal to

> Final momentum - Initial momentum
or change in momentum $=-m v_{5 x}-m v_{7 x}$

$$
\begin{equation*}
\text { Change in momentum }=-2 m v_{f x} \tag{11.1}
\end{equation*}
$$

After recoil the molecule travels to opposite face EFGHE and collides with it, rebounds and travels back to the face ABCDA after covering a distance $2 l$. The time Δt between two successive collisions with face ABCDA is

$$
\begin{equation*}
\Delta t=\frac{2 l}{v_{4 x}} \tag{11.2}
\end{equation*}
$$

So the number of collisions per second that the molecule will make with this face is $=\frac{v_{i x}}{2 l}$

Thus the rate of change of momentum of the molecule due
to collisions with face ABCDA $=-2 m v_{\text {ix }} \times \frac{v_{\text {sx }}}{2 l}=\frac{-m v_{t}^{2}}{1}$
The rate of change of momentum of the molecule is equal to the force applied by the wall. According to Newton's third law of motion, force $F_{1 x}$ exerted by the molecule on face $A B C D A$ is equal but opposite, so

$$
F_{1 \mathrm{x}}=\frac{-\left(-m v_{1 \mathrm{x}}^{1}\right)}{l}=\frac{m v_{1 \mathrm{x}}^{2}}{l} .
$$

Similarly the forces due to all other molecules can be determined. Thus the total x-directed force F_{x} due to N
number of molecules of the gas moving with velocities V_{f}, V_{2}, V_{3} \qquad V_{N} is

$$
F_{x}=F_{1 x}+F_{2 x}+F_{3 x}+\ldots \ldots \ldots \ldots+F_{N x}
$$

or

$$
F_{x}=\frac{m v_{1 x}^{2}}{l}+\frac{m v_{2 x}^{2}}{l}+\frac{m v_{j x}^{2}}{l}+\ldots \ldots+\frac{m v_{N x}^{2}}{l}
$$

As pressure is normal force per unit area, hence pressure P_{x} on the face perpendicular to x-axis is

$$
\begin{align*}
P_{x} & =\frac{F_{x}}{A}=\frac{F_{x}}{l^{2}} \\
& =\frac{1}{t^{2}}\left(\frac{m v_{x}^{2}}{l}+\frac{m v_{2 x}^{2}}{l}+\frac{m v_{x x}^{2}}{l}+\ldots \ldots \ldots+\frac{m v_{s x}^{2}}{l}\right) \\
& =\frac{m}{I^{2}}\left(v_{t x}+v_{v_{x}}^{2}+v_{2 x}^{2}+\ldots \ldots+v_{s x}^{3}\right) \ldots \ldots . . \tag{11.3}
\end{align*}
$$

As the mass of single molecule is m, the mass of N molecules will be $m \mathrm{~N}$.

$$
\text { Since density } P=\frac{\text { Mass }}{\text { Volume }}=\frac{m N}{l^{3}}
$$

Hence,

$$
\frac{m}{t^{\prime}}=\frac{\rho}{\mathrm{N}}
$$

Substituting the value of $\frac{m}{l^{2}}$ in equation (11.3)
we get

$$
\begin{aligned}
& P_{x}=\frac{P}{N}\left(v_{t k}^{7}+v_{2 x}^{2}+v_{3 x}^{2}+\ldots \ldots+v_{N k}^{z}\right) \\
& P_{x}=\rho\left(\frac{v_{t x}^{\prime}+v_{2 x}^{\prime}+v_{3 x}^{z}+\ldots \ldots \ldots+v_{t x x}^{2}}{N}\right)
\end{aligned}
$$

where $\left[\frac{v_{1 x}^{\prime}+v_{2 x}^{1}+v_{S s}^{d}+\ldots \ldots+v_{N x}^{d}}{N}\right)$ is called the mean of squared velocities of the molecules moving along x direction, known as mean square velocity, represented by
$\left\langle v_{x}^{2}\right\rangle$. Substituting $\left\langle v_{x}^{2}\right\rangle$ in parenthesis of pressure expression

$$
\begin{equation*}
P_{x}=p\left\langle v_{x}^{2}\right\rangle \tag{11.4}
\end{equation*}
$$

\qquad
Similarly pressure on the faces perpendicular to y and z axes will be $P_{y}=\rho\left\langle v_{y}^{2}\right\rangle$ and $P_{z}=\rho\left\langle v_{z}^{2}\right\rangle$

As there is no preference to one direction or another and molecules are supposed to be moving randomly, the mean square of all the component velocities will be equal. Hence

$$
\left\langle v_{x}^{2}\right\rangle=\left\langle v_{y}^{2}\right\rangle=\left\langle v_{z}^{2}\right\rangle
$$

and from vector addition $\left\langle v^{2}\right\rangle=\left\langle v_{x}^{2}\right\rangle+\left\langle v_{y}^{2}\right\rangle+\left\langle v_{2}^{2}\right\rangle$ thus,

$$
\left\langle v^{2}\right\rangle=3\left\langle v_{x}^{2}\right\rangle
$$

or

$$
\left\langle v_{x}^{2}\right\rangle=\frac{1}{3}\left\langle v_{x}^{2}\right\rangle
$$

putting this value of $\left\langle v_{x}^{2}\right\rangle$ in equation 11.4

$$
P_{x}=\frac{\rho}{3}\left\langle v^{2}\right\rangle
$$

We have considered the pressure on the face perpendicular to x-axis.

By Pascal's Law the pressure on the other sides and everywhere inside the vessel will be the same provided the gas is of uniform density. So

$$
P_{x}=P_{y}=P_{z}=\frac{\rho}{3}\left\langle v^{2}\right\rangle
$$

Thus in general

$$
P=\frac{1}{3} p\left\langle v^{2}\right\rangle
$$

Since density $P=\frac{m \mathrm{~N}}{\mathrm{~V}}$

Hence

$$
P=\frac{m N}{3 V}\left\langle v^{2}\right\rangle
$$

or

$$
P=\frac{2}{3} N \ll \frac{1}{2} m v^{2}>
$$

$$
\left.P=\frac{2}{3} N_{0}<\frac{1}{2} m v^{2}\right\rangle
$$

where N_{o} is the number of molecules per unit volume.
Thus, $\quad P=$ Constant <K.E.>
or $P x<K . E>$
While deriving the equation for pressure we have not accounted rotational and vibrational motion of molecules except the linear motion.

Hence pressure exerted by the gas is directly proportional to the average translational kinetic energy of the gas molecules.

Interpretation of Temperature

From experimental data the ideal gas law is deduced to be

$$
\begin{equation*}
P V=n R T \tag{wnown}
\end{equation*}
$$

Where n is the number of moles of the gas contained in volume V at absolute temperature T and R is called universal gas constant. Its value is $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

If N_{A} is the Avogadro number, then the above equation can be written as

$$
P V=\frac{N}{N_{\alpha}} R T
$$

or

$$
\begin{equation*}
P V=N k T \tag{11.7}
\end{equation*}
$$

...........
where $k=R / N_{A}$ is the Boltzman constant. It is the gas constantper molecule and has the value $=1.38 \times 10^{23} \mathrm{~J} \mathrm{~K}^{-1}$.
Comparing equations 11.5 and 11.7

$$
\begin{array}{ll}
\text { or } & N k T=\frac{2}{3} N<\frac{1}{2} m v^{2}> \\
\text { or } & T=\frac{2}{3 k}<\frac{1}{2} m v^{2}>\ldots \ldots \ldots . . \tag{11.8}\\
\text { so } & T=\text { constant }<K . E .> \\
\text { s. } & T \propto<K . E .>
\end{array}
$$

This relation shows that Absolute temperature of an ideal gas is directly proportional to the average translational kinetic energy of gas molecules.

We can, therefore, also say that average translational kinetic energy of the gas molecules shows itself macroscopically in the form of temperature.

Derivation of Gas Laws

(i) Boyle's Law

From kinetic theory of gases (Eq. 11.5)

$$
\left.P V=\frac{2}{3} N<\frac{1}{2} m v^{2}\right\rangle
$$

If we keep the temperature constant, average K.E. i.e., $<1 / 2 m v^{2}>$ remains constant, so the right hand side of the equation is constant.

Hence

$$
\text { PV }=\text { Constant }
$$

or

$$
P \propto \frac{1}{V}
$$

Thus pressure P is inversely proportional to volume V at constant temperature of the gas which is Boyle's law.
(ii) Charles' Law

Equation 11.5 can be written as

$$
\left.V=\frac{2}{3} \frac{N}{P}<\frac{1}{2} m v^{2}\right\rangle
$$

If pressure is kept constant

$$
V \propto<\frac{1}{2} m v^{2}>
$$

As

$$
<\frac{1}{2} m v^{2}>\propto T
$$

Hence

$$
V \propto T
$$

Thus volume is directly proportional to absolute temperature of the gas provided pressure is kept constant. This is known as Charles' law.

Example 11.1: What is the average translational Kinetic energy of molecules in a gas at temperature $27 \mathrm{C}^{\circ}$?
Solution:
Using Eq. 11.8

$$
T=\frac{2}{3 k}\langle K . E\rangle
$$

or

$$
\langle K . E,\rangle=\frac{3 k T}{2}
$$

where

$$
\begin{aligned}
& T=27+273=300 \mathrm{~K} \\
& k=1.38 \times 10^{23} \mathrm{JK}^{-1}
\end{aligned}
$$

so

$$
\begin{aligned}
\langle K . E .\rangle=\frac{3}{2} & \times 1.38 \times 10^{-23} \mathrm{JK}^{-1} \times 300 \mathrm{~K} \\
& =6.21 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

Example 11.2: Find the average speed of oxygen molecule in the air at S.T.P.
Solution: Under standard conditions
Temperature

$$
T=0^{\circ} \mathrm{C}=273 \mathrm{~K}
$$

From Eq. 11.8

$$
T=\frac{2}{3 k}<\frac{1}{2} m v^{2}>
$$

or

$$
\left\langle v^{2}\right\rangle=\frac{3 k T}{m}
$$

Using Avogadro's number $N_{A}=6.022 \times 10^{23}$, the mass m of one molecule of oxygen is

$$
m=\frac{\text { molecular mass }}{N_{A}}=\frac{32 \mathrm{~g}}{6.022 \times 10^{23}}=\frac{32 \mathrm{~kg}}{6.022 \times 10^{26}}
$$

Substituting the values of k, T and m, we get

$$
\begin{aligned}
& \left\langle v^{2}\right\rangle=\frac{3 \times 1.38 \times 10^{23} \mathrm{JK}^{-1} \times 273 \mathrm{~K} \times 6.022 \times 10^{20}}{32 \mathrm{~kg}}=212693 \mathrm{~m}^{2} \mathrm{~s}^{-2} \\
& \text { or } \quad \quad<v\rangle=461 \mathrm{~ms}^{-1}
\end{aligned}
$$

11.2 INTERNAL ENERGY

Do You Know?

> A diatomic gas molecule has both translational and rotational anergy. It also has vibrational energy associated with the spring like bond between lis atorns.

The sum of all forms of molecular energies (kinetic and potential) of a substance is termed as its internal energy. In the study of thermodynamics, usually ideal gas is considered as a working substance. The molecules of an ideal gas are mere mass points which exert no forces on one another. So the internal energy of an ideal gas system is generally the translational K.E. of its molecules. Since the temperature of a system is defined as the average K.E. of its molecules, thus for an ideal gas system, the internal energy is directly proportional to its temperature.
When we heat a substance, energy associated with its atoms or molecules is increased i.e., heat is converted to internal energy.
It is important to note that energy can be added to a system even though no heat transfer takes place. For example, when two objects are rubbed together, their internal energy increases because of mechanical work. The increase in temperature of the object is an indication of increase in the internal energy. Similarly, when an object slides over any surface and comes to rest because of frictional forces, the mechanical work done on or by the system is partially converted into internal energy.
In thermodynamics, internal energy is a function of state. Consequently, it does not depend on path but depends on initial and final states of the system. Consider a system which undergoes a pressure and volume change from P_{a} and V_{a} to P_{b} and V_{B} respectively, regardless of the process by which
the system changes from initial to final state. By experiment it has been seen that the change in internal energy is always the same and is independent of paths C_{1} and C_{2} as shown In the Fig. 11.2.

Thus internal energy is similar to the gravitational P.E. So like the potential energy, it is the change in internal energy and not its absolute value, which is important.

11.3 WORK AND HEAT

We know that both heat and work correspond to transfer of energy by some means. The idea was first applied to the steam engine where it was natural to pump heat in and get work out. Consequently it made a sense to define both heat in and work out as positive quantities, Hence work done by the system on its environment is considered +ive while work done on the system by the environment is taken as -ive. If an amount of heat Q enters the system it could manifest itself as either an increase in internal energy or as a resulting quantity of work performed by the system on the surrounding or both.

We can express the work in terms of directly measurable variables. Consider the gas enclosed in the cylinder with a moveable, frictionless piston of cross-sectional area A (Fig. 11.3 a). In equilibrium the system occupies volume V, and exerts a pressure P on the walls of the cylinder and its piston. The force F exerted by the gas on the piston is PA.
We assume that the gas expands through ΔV very slowly, so that it remains in equilibrium (Fig. 11.3 b). As the piston moves up through a small distance Δy, the work (W) done by the gas is

$$
W=F \Delta y=P A \Delta y
$$

Since

$$
A \Delta y=\Delta V \quad \text { (Change in volume) }
$$

Hence

$$
\begin{equation*}
W=P \Delta V \tag{11.9}
\end{equation*}
$$

The work done can also be calculated by area of the curve under P-V graph as shown in Fig. 11.4.

Knowing the details of the change in internal energy and the mechanical work done, we are in a position to describe the general principles which deal with heat energy and its

Fig. 11.2

Fig. 11.3
A gas sealed in a cyinder by a weightiesit, frictionaless piston. The constant downward appled force F equals $P A$, and when the pieton is displaced, downward work is done on the gas.

Fig. 11.4

Fig. 11.5
transformation into mechanical energy. These principles are known as laws of thermodynamics.

11.4 FIRST LAW OF THERMODYNAMICS

When heat is added to a system there is an increase in the internal energy due to the rise in temperature, an increase in pressure or change in the state. If at the same time, a substance is allowed to do work on its environment by expansion, the heat Q required will be the heat necessary to change the internal energy of the substance from U, in the first state to U_{2} in the second state plus the work W done on the environment.

Thus

$$
\begin{align*}
& Q=\left(U_{2}-U_{1}\right)+W \\
& Q=\Delta U+W \tag{11.10}
\end{align*}
$$

or
Thus the change in internal energy $\Delta U=U_{2}-U_{1}$ is defined as Q-W. Since it is the same for all processes concerning the state, the first law of thermodynamics, thus can be stated as,

In any thermodynamic process, when heat Q is added to a system, this energy appears as an increase in the internal energy ΔU stored in the system plus the work W done by the system on its surroundings.

A bicycle pump provides a good example. When we pump on the handle rapidly, it becomes hot due to mechanical work done on the gas, raising thereby its internal energy. One such simple arrangement is shown in Fig.11.5. It consists of a bicycle pump with a blocked outlet. A thermocouple connected through the blocked outlet allows the air temperature to be monitored. When piston is rapidly pushed, thermometer shows a temperature rise due to increase of internal energy of the air. The push force does work on the air, thereby, increasing its internal energy, which is shown, by the increase in temperature of the air.

Human metabolism also provides an example of energy conservation. Human beings and other animals do work
when they walk, run, or move heavy objects. Work requires energy. Energy is also needed for growth to make new cells and to replace old cells that have died. Energy transforming processes that occur within an organism are named as metabolism. We can apply the first law of thermodynamics,

$$
\Delta U=Q-W
$$

to an organism of the human body. Work (W) done will result in the decrease in internal energy of the body. Consequently the body temperature or in other words internal energy is maintained by the food we eat.

Example 11.3: A gas is enclosed in a container fitted with a piston of cross-sectional area $0.10 \mathrm{~m}^{2}$. The pressure of the gas is maintained at $8000 \mathrm{Nm}^{-2}$. When heat is slowly transferred, the piston is pushed up through a distance of 4.0 cm . If 42 J heat is transferred to the system during the expansion, what is the change in internal energy of the system?

Solution:

The work done by the gas is

$$
\begin{aligned}
W=P \Delta V=P A \Delta y= & 8000 \mathrm{Nm}^{-2} \times 0.10 \mathrm{~m}^{2} \times 4.0 \times 10^{-2} \mathrm{~m} \\
& =32 \mathrm{Nm}=32 \mathrm{~J}
\end{aligned}
$$

The change in internal energy is found from first law of thermodynamics,

$$
\Delta U=Q-W=42 \mathrm{~J}-32 \mathrm{~J}=10 \mathrm{~J}
$$

Isothermal Process

It is a process which is carried out at constant temperature and hence the condition for the application of Boyle's Law on the gas is fulfilled. Therefore, when gas expands or compresses isothermally, the product of its pressure and volume during the process remains constant. If P_{1}, V_{1} are initial pressure and volume where as P_{2}, V_{2} are pressure and volume after the isothermal change takes place (Fig.11.6 a), then

Fig:11,6(a)

$$
P_{1} V_{1}=P_{2} V_{2}
$$

In case of an ideal gas, the P.E. associated with its molecules is zero, hence, the internal energy of an ideal gas depends only on its temperature, which in this case remains constant, therefore, $\Delta U=0$. Hence, the first law of thermodynamics reduces to

$$
Q=W
$$

Thus if gas expands and does external work W, an amount of heat Q has to be supplied to the gas in order to produce an isothermal change. Since transfer of heat from one place to another requires time, hence, to keep the temperature of the gas constant, the expansion or compression must take place slowly. The curve representing an isothermal process is called an Isotherm (Fig. 11.6a).

Adiabatic Process

An adiabatic process is the one in which no heat enters or leaves the system. Therefore, $\mathrm{Q}=0$ and the first law of thermodynamics gives

$$
W=-\Delta U
$$

Thus if the gas expands and does external work, it is done at the expense of the internal energy of its molecules and, hence, the temperature of the gas falls. Conversely an adiabatic compression causes the temperature of the gas to rise because of the work done on the gas.

Adiabatio change occurs when the gas expands or is compressed rapidly, particularly when the gas is contained in an insulated cylinder. The examples of adiabatic processes are
(i) The rapid escape of air from a burst tyre.
(ii) The rapid expansion and compression of air through which a sound wave is passing.
(iii) Cloud formation in the atmosphere.

In case of adiabatic changes it has been seen that

$$
P V^{\varphi}=\text { Constant }
$$

where, y is the ratio of the molar specific heat of the gas at constant pressure to molar specific heat at constant volume. The curve representing an adlabatic process is calfed an adiabat(Fig. 11.6 b).

11.5 MOLAR SPECIFIC HEATS OF A GAS

One kilogram of different substances contain different number of molecules. Sometimes it is preferred to consider a quantity called a mole, since one mole of any substance contains the same number of molecules. The molar specific heat of the substance is defined as the heat required to raise the temperature of one mole of the substance through $1 . K$. In case of solids and liquids the change of volume and thence work done against extemal pressure during a change of temperature is negligibly smali. But same can not be said about gases which suffer variation in pressure as well as in volume with the rise in temperature. Hence, to study the effed of heating the gases, either pressure or volumie is kept constant. Thus; it is customary to define the molar specific heats of a gas in two ways.
(i) The molar specific heat at constant volume is the amount of heat transfer required to raise the temperature of one mote of the gas through 1 K at constant volume and is symbolized by C_{n}.
If 1 mole of an ideal gas is heated al constant volume so that its temperature rises by ΔT, the heat transferred Q, must be equal to $C_{V}, \Delta T$. Because $\Delta V=0$, no work is done (Fig 11.7, a). Applying first law of thermodynamics,

$$
\begin{array}{lr}
& Q=\Delta U+W \\
\text { Hence, } & C, \Delta T=\Delta U+0 \\
\text { or } & \Delta U=C, \Delta T
\end{array}
$$

(ii) The molar specific heat at constant pressure is the amount of heat transfer. required to raise the temperature of one mole of the gas through 1 K at constant pressure and it is represented by symbol $\mathrm{C}_{p \text {. }}$. To raise the temperature of 1 mole of the gas by ΔT at constant pressure, the heat transfer Q_{p} must be equat to $C_{n} 5 T$ (Fig 11.7 b). Thus;

Fig. 11.7

$$
\begin{equation*}
Q_{p}=C_{p} \Delta T \tag{11.12}
\end{equation*}
$$

Derivation of $C_{p}-C_{v}=R$

When one mole of a gas is heated at constant pressure, the internal energy increases by the same amount as at constant volume for the same rise in temperature $\Delta \mathrm{T}$. Thus from Eq. 11.11

$$
\Delta U=C_{v} \Delta T
$$

Since the gas expands to keep the pressure constant, so it does work $W=P \Delta V$, where ΔV is the increase in volume.
Substituting the values of heat transfer Q_{p}, internal energy ΔU and the work done W in Eq.11.10, we get

$$
\begin{equation*}
C_{p} \Delta T=C_{v} \Delta T+P \Delta V \tag{11.13}
\end{equation*}
$$

Using equation 11.6 for one mole of an ideal gas,

$$
\begin{equation*}
P V=R T \tag{11.14}
\end{equation*}
$$

At constant pressure P, amount of work done by one mole of a gas due to expansion ΔV (Fig. 11.7 b) caused by the rise in temperature ΔT is given by Eq. 11.14

$$
P \Delta V=R \Delta T
$$

Substituting for $P \Delta V$ in Eq. 11.13
or

$$
C_{p} \Delta T=C_{v} \Delta T+R \Delta T
$$

$$
C_{p}=C_{\nu}+R
$$

or

$$
\begin{equation*}
C_{\rho}-C_{v}=R \tag{11.15}
\end{equation*}
$$

It is obvious from Eq. 11.15 that $C_{p}>C_{v}$ by an amount equal to universal gas constant R.

11.6 REVERSIBLE AND IRREVERSIBLE PROCESSES

A reversible process is one which can be retraced in exactly reverse order, without producing any change in the surroundings. In the reverse process, the working substance passes through the same stages as in the direct process but thermal and mechanical effects at each stage are exactly reversed. If heat is absorbed in the direct
process, it will be given out in the reverse process and if work is done by the substance in the direct process, work will be done on the substance in the reverse process. Hence, the working substance is restored to its original conditions.

A succession of events which bring the system back to its initial condition is called a cycle. A reversible cycle is the one in which all the changes are reversible.

Although no actual change is completely reversible but the processes of liquefaction and evaporation of a substance, performed slowly, are practically reversible. Similarly the slow compression of a gas in a cylinder is reversible process as the compression can be changed to expansion by slowly decreasing the pressure on the piston to reverse the operation.

> If a process can not be retraced in the backward direction by reversing the controlling factors, it is an irreversible process.

All changes which occur suddenly or which involve friction or dissipation of energy through conduction, convection or radiation are irreversible. An example of highly irreversible process is an explosion.

11.7 HEAT ENGINE

A heat engine converts some thermal energy to mechanical work. Usually the heat comes from the burning of a fuel. The earliest heat engine was the steam engine. It was developed on the fact that when water is boiled in a vessel covered with a lid, the steam inside tries to push the lid off showing the ability to do work. This observation helped to develop a steam engine.

Do You Know?

The steam angine is a thernodynamics system.

Basically à heat engine (Fig. 11.8) consists of hot reservoir or source which can supply heat at high temperature and a cold reservoir or sink into which heat is rejected at a lower temperature. A working substance is needed which can absorb heat Q, from source, converts some of it into work W by its expansion and rejects the rest heat Q_{2} to the cold reservoir or sink. A heat engine is made cyclic to provide a continuous supply of work.

11.8 SECOND LAW OF THERMODYNAMICS

First law of thermodynamics tells us that heat energy can be converted into equivalent amount of work, but it is silent about the conditions under which this conversion takes place. The second law is concerned with the circumstances in which heat can be converted into work and direction of flow of heat.

Before initiating the discussion on formal statement of the second law of thermodynamics, let us analyze briefly the factual operation of an engine. The engine or the system represented by the block diagram Fig. 11:8 absorbs a quantity of heat Q_{1} from the heat source at temperature T_{1}. It does work W and expels heat Q_{2} to low temperature reservoir at temperature T_{2}. As the working substance goes through a cyclic process, in which the substance eventually returns to its initial state, the change in internal energy is zero. Hence from the first law of thermodynamics, net work done should be equal to the net hieat absorbed.

$$
W=Q_{1}-Q_{2}
$$

In practice, the petrol engine of a motor car extracts heat from the burning fuel and converts a fraction of this energy to mechanical energy or work and expels the rest to atmosphere. It has been observed that petrol engines convert roughly 25% and diesel engines 35 to 40% available heat energy into work.

The second law of thermodynamics is a formal statement based on these observations. It can be stated in a number of different ways.

According to Lord Kelvin's statement based on the working of a heat engine

> It is impossible to devise a process which may convert heat, extracted from a single reservoir, entirely into work without leaving any change in the working system.

This means that a single heat reservoir, no matter how much energy it contains, can not be made to perform any work. This is true for oceans and our atmosphere which contain a large amount of heat energy but can not be converted into useful mechanical work. As a consequence of second law of thermodynamics, two bodies at different temperatures are essential for the conversion of heat into work. Hence for the working of heat engine there must be a source of heat at a high temperature and a sink at low temperature to which heat may be expelled. The reason for our inability to utifize the heat contents of oceans and atmosphere is that there is no reservoir at a temperature lower than any one of the two.

11.9 CARNOT ENGINE AND CARNOT'S THEOREM

Sadi Carnot in 1840 described an ideal engine using only isothermal and adiabatic processes. He showed that a heat engine operating in an ideal reversible cycle between two heat reservoirs at different temperatures, would be the most efficient engine. A Carnot cycle using an ideal gas as the working substance is shown on PV diagram (Fig. 11.9). it consists of following four steps.

1. The gas is allowed to expand isothermally at temperature $T_{\text {t }}$, absorbing heat Q_{i} from the hot reservoir. The process is represented by curve AB
2. The gas is then allowed to expand adiabatically until its temperature drops to T_{2}. The process is represented by curve BC.
3. The gas at this stage is compressed isothermally at temperature T_{2} rejecting heat Q_{2} to the cold reservoir. The process is represented by curve CD.

Aecording to the Kelvin statennets of the $s e c o n d$ law of thermodynamion the process pictured here is impossiation Hent from a source at a single temperaturn eannot be converted entinlyinto work.

Interesting Information

A waterfall analogy for the heat engine.
4. Finally the gas is compressed adiabatically to restore its initial state at temperature T_{1}. The process is represented by curve DA.

Thermal and mechanical equilibrium is maintained all the time so that each process is perfectly reversible. As the working substance returns to the initial state, there is no change in its internal energy i.e. $\Delta U=0$.

The net work done during one cycle equals to the area enclosed by the path ABCDA of the PV diagram. It can also be estimated from net heat Q absorbed in one cycle.

$$
Q=Q_{1}-Q_{2}
$$

From $1^{\text {st }}$ law of thermodynamics

$$
\begin{aligned}
& Q=\Delta U+W \\
& W=Q_{1}-Q_{2}
\end{aligned}
$$

The efficiency η of the heat engine is defined as

$$
\eta=\frac{\text { Output (Work) }}{\text { Input (Energy) }}
$$

$$
\begin{equation*}
\text { thus, } \quad \eta=\frac{Q_{1}-Q_{2}}{Q_{1}}=1-\frac{Q_{2}}{Q_{1}} \tag{11,16}
\end{equation*}
$$

The energy transfer in an isothermal expansion or compression turns out to be proportional to Kelvin temperature. So Q_{1} and Q_{2} are proportional to Kelvin temperatures T_{1} and T_{2} respectively and hence,

$$
\begin{equation*}
\eta=\frac{T_{1}-T_{2}}{T_{1}}=1-\frac{T_{2}}{T_{1}} \tag{11.17}
\end{equation*}
$$

The efficiency is usually taken in percentage, in that case,

$$
\text { percentage efficiency }=\left(1-\frac{T_{2}}{T_{1}}\right) 100
$$

Thus the efficiency of Carnot engine depends on the temperature of hot and cold reservoirs. It is independent of the nature of working substance. The larger the
temperature difference of two reservoirs, the greater is the efficiency. But it can never be one or 100% unless cold reservoir is at absolute zero temperature ($T_{2}=0 \mathrm{~K}$).

Such reservoirs are not available and hence the maximum efficiency is always less than one. Nevertheless the Carnot cycle establishes an upper limit on the efficiency of all heat engines. No practical heat engine can be perfectly reversible and also energy dissipation is inevitable. This fact is stated in Camot's theorem

No heat engine can be more efficient than a Carnot

 engine operating between the same two temperatures.The Carnot's theorem can be extended to state that,

> All Carnot's engines operating between the same two temperatures have the same efficiency, irrespective of the nature of working substance.

Inmost practical cases, the cold reservoir is nearly at room temperature. So the efficiency can only be increased by raising the temperature of hot reservoir. All real heat engines are less efficient than Camot engine due to friction and other heat losses.

Example 11.4: The turbine in a steam power plant takes steam from a boiler at $427^{\circ} \mathrm{C}$ and exhausts into a low temperature reservoir at $77^{\circ} \mathrm{C}$. What is the maximum possible efficiency?

Solution:

Maximum efficiency for any engine operating between temperatures T_{1} and T_{2} is

$$
\eta=\frac{T_{1}-T_{2}}{T_{1}}
$$

where

$$
T_{1}=427+273=700 \mathrm{~K}
$$

and

$$
T_{2}=77+273=350 \mathrm{~K}
$$

Do You Know?

A refrigerator transfers heat from a low-temperature compartment to higher-temperature surroundings with the help of external work. it is a heat engine operating in reverse order.

For Your Information

Gas thermonete buth

Atripie-point cell, in which solldice, liquid witer, and water unpxeir cogxist ift themmer equdibdum. By infernational agreement, the temperature of this mixture has been defined to be $273,16 \mathrm{~K}$. The buits of it conitint-vclumie पas thurmometer is shown inserted into the well of the cell.

Fig. $11.10(\mathrm{a})$

$$
\begin{aligned}
& \eta=\frac{700 \mathrm{~K}-350 \mathrm{~K}}{700 \mathrm{~K}}=\frac{350 \mathrm{~K}}{700 \mathrm{~K}}=\frac{1}{2}=0.5 \\
& \eta=50 \%
\end{aligned}
$$

11.10 THERMODYNAMIC SCALE OF TEMPERATURE

Generally a temperature scale is established by two fixed points using certain physical properties of a material which varies linearly with temperature. The Camot cycle provides us the basis to define a temperature scale that is independent of material properties. According to it, the ratio Q_{2} / Q_{1}, depends only on the temperature of two heat reservoirs. The ratio of the two temperatures T_{2} / T_{1} can be found by operating a reversible Camot cycle between these two temperatures and carefully measuring the heat transfers Q_{2} and Q_{1}. The thetmodynamic scale of temperature is defined by choosing 273.16 K as the absolute temperature of the triple point of water as one fixed point and absolute zero, as the other. The unit of thermodynamic scale is kelvin. 1 K is defined as $1 / 273.16$ of the thermodynamic temperature of the triple point of water. It is a state in which ice, water and vapour coexists in equilibrium and it occurs uniquely at one particular pressure and temperature. If heat Q is absorbed or rejected by the system at corresponding temperature T when the system is taken through a Carnot cycle and Q_{3} is the heat absorbed or rejected by the system when it is at the temperature of triple point of water, then unknown temperature T in kelvin is given by

$$
\begin{equation*}
T=273.16 \frac{Q}{Q_{2}} \tag{11.18}
\end{equation*}
$$

Since this scale is independent of the property of the working substance, hence, can be applied at very low temperalure.

11.11 PETROL ENGINE

Although different engines may differ in their construction technology but they are based on the principle of a Camot sycle. A typical four stroke petrol engine (Fig. 11,10 a) also undergoes four successive processes in each cycle.

1. The cycle starts on the intake stroke in which piston moves outward and petrol air mixture is drawn through an inlet valve into the cylinder from the carburetor at atmospheric pressure.
2. On the compression stroke, the inlet valve is closed and the mixture is compressed adiabatically by inward movement of the piston.
3. On the power stroke, a spark fires the mixture causing a rapid increase in pressure and temperature. The burning mixture expands adiabatically and forces the piston to move outward. This is the stroke which delivers power to crank shaft to drive the llywheels.
4. On the exhaust stroke, the outlet valves opens. The residual gases are expelled and piston moves inward.
The cycle then begins again. Most motorbikes have one cylinder engine but cars usually have four cylinders on the same crankshaf (Fig 11.10 b). The cylinders are timed to fire turn by turn in succession for a smooth running of the car. The actual efficiency of properly tuned engine is usually not more than 25% to 30% because of friction and other heat losses.

Diesel Engine

No spark plug is needed in the diesel engine (Fig. 11.11). Diesel is sprayed into the cylinder at maximum compression. Because air is at very high temperature immediately after compression, the fuel mixture ignites on contact with the air in the cylinder and pushes the piston outward. The efficlency of diesel engine is about 35% to 40%.

11.12 ENTROPY

The concept of entropy was introduced into the study of thermodynamics by Rudolph Clausius in 1856 to give a quantitative basis for the second law. It provides another variable to describe the state of a system to go along with pressure, volume, temperature and internal energy. If a system undergoes a reversible process during which it absorbs a quantity of heat $\Delta \mathrm{Q}$ at absolute temperature T. then the increase in the state variable called entropy S of the system is given by

$$
\begin{equation*}
\Delta S=\frac{\Delta Q}{T} \tag{11.19}
\end{equation*}
$$

Fig. 11.10(b)

Fig. 11.11

Like potential energy or internal energy, it is the change in entropy of the system which is important.

Change in entropy is positive when heat is added and negative when heat is removed from the system. Suppose, an amount of heat Q flows from a reservoir at temperature T_{1} through a conducting rod to a reservoir at temperature T_{2} when $T_{1}>T_{2}$. The change in entropy of the reservoir, at temperature T_{1}, which loses heat, decreases by Q / T_{1} and of the reservoir at temperature T_{2}, which gains heat, increases by Q / T_{2}. As $T_{1}>T_{2}$ so Q / T_{2} will be greater than Q / T_{1} i.e. $Q / T_{2}>Q / T_{1}$.
Hence, net change in entropy $=\frac{Q}{T_{2}}-\frac{Q}{T_{1}}$ is positive.
It follows that in all natural processes where heat flows from one system to another, there is always a net increase in entropy. This is another statement of $2^{\text {nd }}$ law of thermodynamics. According to this law

If a system undergoes a natural process, it will go in the direction that causes the entropy of the system plus the environment to increase.

It is observed that a natural process tends to proceed towards a state of greater disorder. Thus, there is a relation between entropy and molecular disorder. For example an irreversible heat flow from a hot to a cold substance of a system increases disorder because the molecules are initially sorted out in hotter and cooler regions. This order is lost when the system comes to thermal equilibrium. Addition of heat to a system increases its disorder because of increase in average molecular speeds and therefore, the randomness of molecular motion. Similarly, free expansion of gas increases its disorder because the molecules have greater randomness of position after expansion than before. Thus in both examples, entropy is said to be increased.
We can conclude that only those processes are probable for which entropy of the system increases or remains constant. The process for which entropy remains constant is a reversible process; whereas for all irreversible processes, entropy of the system increases.

Every time entropy increases, the opportunity to convert some heat into work is lost. For example there is an increase in entropy when hot and cold waters are mixed. Then warm water which results cannot be separated into a hot layer and a cold layer. There has been no loss of energy but some of the energy is no longer available for conversion into work. Therefore, increase in entropy meains degradation of energy from a higher level where more work can be extracted to a lower level at which less or no useful work can be done. The energy in a sense is degraded, going from more orderly form to less orderly form, eventually ending up as thermal energy.
In all real processes where heat transfer occurs, the energy available for doing useful work decreases. In other words the entropy increases. Even if the temperature of some system decreases, thereby decreasing the entropy, it is at the expense of net increase in entropy for some other system. When all the systems are taken together as the universe, the entropy of the universe always increases.

Example 11.5: Calculate the entropy change when 1.0 kg ice at $0^{\circ} \mathrm{C}$ melts into water at $0^{\circ} \mathrm{C}$. Latent heat of fusion of ice $L_{\mathrm{t}}=3.36 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$.

Solution:

where

$$
\begin{gathered}
m=1 \mathrm{~kg} \\
T=0^{\circ} \mathrm{C}=273 \mathrm{~K} \\
L_{1}=3.36 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1} \\
\Delta S=\frac{\Delta Q}{T}
\end{gathered}
$$

$$
\begin{aligned}
& \Delta Q=m L_{r} \\
& \Delta S=\frac{m L_{+}}{T} \\
& \Delta S=\frac{1.00 \mathrm{~kg} \times 3.36 \times 10^{2} \mathrm{Jkg}}{273 \mathrm{~K}} \\
& \Delta S=1.23 \times 10^{3} \mathrm{~J} \mathrm{~K}^{4}
\end{aligned}
$$

Thus entropy increases as it changes to water. The increase in entropy in this case is a measure of increase in the disorder of water molecules that change from solid to liquid state.

Do You Know?

Approximate efficiencies of various devices	
Device	Efficiency (\%)
Electriogenerator	70.99
Efiectric mator	50-93
Dry cell battery	90
Domestic gas fumace	70-85
Storage battery	72
Hydrogen-oxygen fuel cell	60
Liquid fuel rocket	47
Stearn furbine:	35-46
Fossil-tund power plant	$30-40$
Nuclear power plant	30-35
Nuclear reactor	39
Aircraf gas turbine engine	36
Sold-state laser	30
Internal combustion gasoline engine	20-30
Gatturn arsolite solar cels	>20
Fiuprescent lamp	20
Sificon solar cell	12-16
Slearn focrmotve	8
Incandeacent lamp	5
Watts steam engine	1

11.13 ENVIRONMENTAL CRISIS AS ENTROPY CRISIS

The second law of thermodynamics provides us the key for both understanding our environmental crisis, and for understanding how we must deal with this crisis.

From a human standpoint the environmental crisis results from our attempts to order nature for our comforts and greed. From a physical standpoint, however, the environmental crisis is an entropy or disorder crisis resulting from our futile efforts to ignore the second law of thermodynamics. According to which, any increase in the order in a system will produce an even greater increase in entropy or disorder in the environment. An individual impact may not have a major consequence but an impact of large number of all individuals disorder producing activities can affect the overall life support system.

The energy processes we use are not very efficient. As a result most of the energy is lost as heat to the environment. Although we can improve the efficiency but $2^{\text {nd }}$ law eventually imposes an upper limit on efficiency improvement. Thermal pollution is an inevitable consequence of $2^{\text {nd }}$ law of thermodynamics and the heat is the ultimate death of any form of energy. The increase in thermal pollution of the environment means increase in the entropy and that causes great concem. Even small temperature changes in the environment can have significant effects on metabolic rates in plants and animals. This can cause serious disruption of the overall ecological balance.

In addition to thermal pollution, the most energy transformation processes such as heat engines used for transportation and for power generation cause air pollution. In effect, all forms of energy production have some undesirable effects and in some cases all problems can not be anticipated in advance.

The imperative from thermodynamics is that whenever you do anything, be sure to take into account its present and possible future impact on your environment. This is an ecological imperative that we must consider now if we are to prevent a drastic degradation of life on our beautiful but fragile Earth.

SUMMARY

- From the Kinetic theory of gases $P=\frac{1}{3} \rho\left\langle v^{2}\right\rangle$.
- The first law of thermodynamics states that energy is conserved.
- The sum of all forms of molecular energy present in a thermodynamic system is called its internal energy.
* Isothermal process is the process in which Boyle's law holds good.
- Adiabatic process is the one in which no thermal energy is added or extracted from the system.
- Molar specific heat at constant volume is the amount of heat required to raise the temperature of one mole of the gas through 1 K keeping volume constant.
- Molar specific heat at constant pressure is the amount of heat required to raise the temperature of one mole of the gas through 1 K keeping pressure constant.
- A heat engine is a device which converts a part of thermal energy into useful work.
- Efficiency of Camot engine is $1-\frac{T_{2}}{T_{1}}$.
- The second law of thermodynamics can be stated as
(i) There is no perpetual motion machine that can convert the given amount of heat completely into work.
(ii) The total entropy of any system plus that of its environment increases as a result of any natural process.
* Entropy change ΔS due to heat transfer ΔQ at absolute temperature T is given by

$$
\Delta S= \pm \frac{\Delta Q}{T} .
$$

* Thermal poilution is an inevitable consequence of 2nd law of thermodynamics.

QUESTIONS

11.1 Why is the average velocity of the molecules in a gas zero but the average of the square of velocities is not zero?
11.2 Why does the pressure of a gas in a car tyre increase when it is driven through some distance?
11.3 A system undergoes from state $P_{1} V_{1}$ to state $P_{2} V_{2}$ as shown in Fig 11.12. What will be the change in internal energy?

(cm^{2})
Fig. 11.12
11.4 Variation of volume by pressure is given in Fig 11.13. A gas is taken along the paths $A B C D A, A B C A$ and A to A. What will be the change in internal energy?

Fig. 11.13 (a)

Fig 11.13 (b)

Fig. 11.13(c)
11.5 Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why?
11.6 Give an example of a process in which no heat is transferred to or from the system but the temperature of the system changes.
11.7 Is it possible to convert internal energy into mechanical energy? Explain with an example.
11.8 Is it possible to construct a heat engine that will not expel heat into the atmosphere?
11.9 A thermos flask containing milk as a system is shaken rapidly. Does the temperature of milk rise?
11.10 What happens to the temperature of the room, when an airconditioner is left running on a table in the middle of the room?
11.11 Can the mechanical energy be converted completely into heat energy? If so give an example.
11.12Does entropy of a system increase or decrease due to friction?
11.13 Give an example of a natural process that involves an increase in entropy.
11.14 An adiabatic change is the one in which
a. No heat is added to or taken out of a system
b. No change of temperature takes place
c. Boyle's law is applicable
d. Pressure and volume remains constant
11.15 Which one of the following process is irreversible?
a. Slow compressions of an elastic spring
b. Slow evaporation of a substance in an isolated vessel
c. Slow compression of a gas
d. A chemical explosion
11.16 An ideal reversible heat engine has
a. 100% efficiency
b. Highest efficiency
c. An efficiency which depends on the nature of working substance
d. None of these

NUMERICAL PROBLEMS

11.1 Estimate the average speed of nitrogen molecules in air under standard conditions of pressure and temperature.
(Ans: $493 \mathrm{~ms}^{-1}$)
11.2 Show that ratio of the root mean square speeds of molecules of two different gases at a certain temperature is equal to the square root of the inverse ratio of their masses.
11.3 A sample of gas is compressed to one half of its initial volume at constant pressure of $1.25 \times 10^{5} \mathrm{Nm}^{-2}$. During the compression, 100 J of work is done on the gas. Determine the final volume of the gas.
(Ans: $8 \times 10^{-4} \mathrm{~m}^{3}$)
11.4 A thermodynamic system undergoes a process in which its internal energy decreases by 300 J . If at the same time 120 J of work is done on the system, find the heat lost by the system.
(Ans: - 420 J)
11.5 A carnot engine utilises an ideal gas. The source temperature is $227^{\circ} \mathrm{C}$ and the sink temperature is $127^{\circ} \mathrm{C}$. Find the efficiency of the engine. Also find the heat input from the source and heat rejected to the sink when 10000 J of work is done.
(Ans: $20 \%, 5.00 \times 10^{4} \mathrm{~J}, 4.00 \times 10^{4} \mathrm{~J}$)
11.6 A reversible engine works between two temperatures whose difference is $100^{\circ} \mathrm{C}$. If it absorbs 746 J of heat from the source and rejects 546 J to the sink, calculate the temperature of the source and the sink.
(Ans: $100^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$)
11.7 A mechanical engineer develops an engine, working between $327^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$ and claims to have an efficiency of 52%. Does he claim correctly? Explain.
(Ans: No)
11.8 A heat engine performs 100 J of work and at the same time rejects 400 J of heat energy to the cold reservoirs. What is the efficiency of the engine?
(Ans: 20\%)
11.9 A Carnot engine whose low temperature reservoir is at $7^{\circ} \mathrm{C}$ has an efficiency of 50%. It is desired to increase the efficiency to 70%. By how many degrees the temperature of the source be increased?
(Ans: $373^{\circ} \mathrm{C}$)
11.10 A steam engine has a boiler that operates at 450 K . The heat changes water to steam, which drives the piston. The exhaust temperature of the outside air is about 300 K . What is maximum efficiency of this steam engine?
(Ans: 33\%)
11.11336 J of energy is required to melt 1 g of ice at $0^{\circ} \mathrm{C}$. What is the change in entropy of 30 g of water at $0^{\circ} \mathrm{C}$ as it is changed-to ice at $0^{\circ} \mathrm{C}$ by a refrigerator?
(Ans: - $36.8 \mathrm{~J} \mathrm{~K}^{-1}$)

Appendix

Standard Definitions of Base Units

Metre: The unit of length is named as metre. Before 1960 it was defined as the distance between two lines marked on the bar of an alloy of platinum (90%) and iridium (10%) kept under controlled conditions at the International Bureau of Weights and Measures in France. The 11^{n} General Conference on Weights and Measures (1960) redofined the standard metre as follows: One metre is a length equal to $1,650,763.73$ wave lengths in vacuum of the orange red radiation emitted by the Krypton 86 -atom. However, in 1983 the metre was redefined to be the distance traveled by light in vacuum during a time of $1 / 299,792,458$ second. In effect, this latest definition estabishes that the speed of light in vacuum is 299,792,458 mg^{-1}.

Kilogram: The unit of mass is known as kilogram. It is defined as the mass of a platinum (90%) and iridium (10%) alloy cylinder, 3.9 cm in diameter and 3.9 cm in height, kept at the International Bureau of Weights and Measures in France. This mass standard was established in 1901:

Second: The unit of time is termed as second It is defined as $1 / 86400$ part of an average day of the year $1900 \mathrm{~A} . \mathrm{D}$. The recent time standard is based on the spinning motion of electrons in atoms. This is since 1967 when the Intemational Committee on Weights and Measures adopted a new definition of second, making one second equal to the duration in which the outer most electron of the cesium-133 atom makes $9,192,631,770$ vibrations.

Kelvin: Temperature is regarded as a thermodynamic quantity, because its equality determines the thermal equilibrium between two systems. The unit of temperature is kelvin. It is the fraction $1 / 273.16$ of the thermodynamic temperature of the triple point of water. It should be noted that the triple point of a substance means the femperature at which solid, liquid and vapour phases are in equilibrium. The triple point of water is taken as 273.16 K . This standard was adopted in 1967.

Ampere: The unit of electric curtent is ampere. It is that constant current which if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section and placed a metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length. This unit was established in 1971.

Candela: The unit of luminous intensity is candela. It is defined as the luminous intensity in the perpendicular direction of a surface of $1 / 600000$ square metre of a black body radiator at the solidification temperature of platinum under standard atmospheric pressure. This definition was adopted by the $13^{\text {th }}$ General Conference of Weights and measures in 1967.

Mole: The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kg of carbon 12 (adopted in 1971). When this unit i.e mole is used, the elementary entities must be specified; these may be atoms, molecules, ions, electrons, other particles or specified groups of such particles. One mole of any substance contains 6.0225×10^{23} entities.

Possible Error in A Compound Quantity

(i) ERROR IN THE COMPOUND QUANTITY $z=x+y$

If the errors in the quantities x and y are Δx and Δy respectively, the possible sum is then;

$$
x \pm \Delta x+y \pm \Delta y
$$

The maximum possible error is when we have
or

$$
\begin{aligned}
& x+\Delta x+y+\Delta y \\
& x-\Delta x+y-\Delta y
\end{aligned}
$$

Hence, the quantity can be expressed as

$$
x+y \pm(\Delta x+\Delta y)
$$

i.e., the errors are added

Hence,

$$
\begin{equation*}
\text { error in } z=\text { error in } x+\text { error in } y \tag{A2.1}
\end{equation*}
$$

(ii) ERROR IN THE COMPOUND QUANTITY $z=x y$

If the errors in the quantities x and y are Δx and Δy respectively, the compound quantity could be as large as $(x+\Delta x)(y+\Delta y)$ or as small as $(x-\Delta x)(y-\Delta y)$. The product is thus between about $x y+x \Delta y+y \Delta x+\Delta x \Delta y$ and $x y-x \Delta y-y \Delta x+\Delta x \Delta y$. If we neglect $\Delta x \Delta y$, as being small, then the error is between

$$
x \Delta y+y \Delta x \quad \text { and } \quad \because(x \Delta y+y \Delta x)
$$

or

$$
\pm(x \Delta y+y \Delta x)
$$

The possible fractional error is thus

$$
=\frac{ \pm(x \Delta y+y \Delta x)}{x y}= \pm\left(\frac{\Delta y}{y}+\frac{\Delta x}{x}\right)
$$

which is the sum of possible fractional errors. Since the fractional error is generally written as percentage error, hence the possible percentage error is the sum of the percentage errors for the product of the two physical quantities.

$$
\begin{equation*}
\text { i.e., } \quad \text { \% error in } z=\% \text { error in } x+\% \text { error in } y \tag{A2.2}
\end{equation*}
$$

(iii) ERROR IN THE COMPOUND QUANTITY $z=k x^{2} y^{b}$

Let z, x and y be the numerical values of the physical quantities and k be a constant. Taking log of both sides;
$\log z=\log k+a \log x+b \log y$
Differentiating:

$$
\frac{d z}{z}=0+a \frac{d x}{x}+b \frac{d y}{y}
$$

Multiply by 100

$$
\left(\frac{d z}{z}\right) 100=a\left(\frac{d x}{x}\right) 100+b\left(\frac{d y}{y}\right) 100
$$

If dx, dy and dz represent the errors in the quantities x, y, and z respectively, then

$$
\begin{equation*}
\% \text { error in } z=a(\% \text { error in } x)+b(\% \text { error in } y) \tag{A2.3}
\end{equation*}
$$

(Iv) Error or Uncertainty from Graphs

To find uncertainty in an average value obtained by plotting graphs, the first step is to draw best straight line through the plotted points using a transparent ruler. The best straight line passes through as many of plotted points as possible or which leaves almost an equal distribution of points on either side of the line. The second step is to pivot a transparent ruler about the centre of best straight line to draw greatest and least possible slopes. If slope of best straight line is m and greatest and least slopes are m_{1} and m_{2} as illustrated in Fig. A 2.1, then evaluate $m_{1}-m$ and $m_{2}-m$ which ever of these is

Flg.A 2.1

greater is the maximum possible uncertainty in the slope. If the intercept on a particular axis is required, the similar procedure can be followed.

Appendix 3

Mathematical Review

A. LINEAR EQUATION

A linear equation has the general form

$$
\begin{equation*}
y=a x+b \tag{A3.1}
\end{equation*}
$$

Where a and b are constants. This equation is referred to as being linear because the graph of y versus x is a straight line, as shown in Fig. A3.1. The constant b, called the intercept, represents the value of y at which the straight line intersects the Y -axis. The constant a is equal to the slope of the straight line and is also equal to the tangent of the angle that the line makes with the X -axis. If any two points on the straight line are specified by the coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, as in Fig. A 3.1, then the slope of the straight line can be expressed

$$
\begin{equation*}
\text { Slope } \mathrm{a}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}=\tan \theta \tag{A3.2}
\end{equation*}
$$

Note that a and b can be either positive or negative.

B. QUADRATIC EQUATION

The general form of a quadratic equation is

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{A3.3}
\end{equation*}
$$

where x is unknown quantity and a, b and c are numerical factors referred to as coefficients of the equation. This equation has two roots, given by

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{A3.4}
\end{equation*}
$$

If $b^{2}>4 a c$, the roots will be real.

C. THE BINOMIAL THEOREM

$$
\begin{equation*}
(a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2 \times 1} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3 \times 2 \times 1} a^{n-3} b^{3}+\ldots \tag{i}
\end{equation*}
$$

(ii) If $\mathrm{x}<1$, then

$$
\begin{equation*}
(1+x)^{n}=1+n x+\text { negligible terms } \tag{A3.6}
\end{equation*}
$$

D. GEOMETRY
(i) Areas and volumes of some geometrical shapes are giveh in Table A3.1.
(ii) TABLE A 3.2

Theorem

1. If $A B$ is parallel to $C D$, then $\alpha=\beta$
2. If $\mathrm{O}^{\prime} \mathrm{C}^{\prime}$ is perpendicular to OB and $O^{\prime} \mathrm{D}^{\prime}$ is perpendicular to $O A$, then $\alpha=\beta$

Table A 3.1
Areas and volumes of some geometrical shapes.

(i) Roctangie Area $1 /$ I w

(ii) Triangle Araa $=\frac{1}{2}$ bh

(iii) circle

$$
\text { Area }=m f^{\prime}
$$

(Circumference $=2 \pi r$)

(iv) Cyünder volume $=\pi r^{\prime}$?

(v) Rectangular box volume $=i w h$
(vi) Sphere

Sufface area $=4 \pi r^{2}$
volume $=\frac{4}{3} \pi r^{2}$

E. TRIGONOMETRY

$$
\begin{align*}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \tag{A3.7}\\
& \cos \left(90^{\circ}+\theta\right)=\sin \theta \tag{A3.8}\\
& \sin \left(90^{\circ}+\theta\right)=-\cos \theta \tag{A3.9}\\
& \sin \left(180^{\circ}-\theta\right)=\sin \theta \tag{A3.10}\\
& \cos \left(180^{\circ}-\theta\right)=-\cos \theta \tag{A3.11}\\
& \sin (\theta \pm \varphi)=\sin \theta \cos \varphi \pm \cos \theta \sin \varphi \tag{A3,12}\\
& \cos (\theta \pm \varphi)=\cos \theta \cos \varphi \mp \sin \theta \sin \varphi \tag{A3.13}\\
& \sin 2 \theta=2 \sin \theta \cos \theta \tag{A3.14}\\
& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \tag{A3.15}
\end{align*}
$$

According to our definitions, the trigonometric functions are limited to angles in the range $\left[0,90^{\circ}\right]$. We extend the meaning of these functions to negative or larger angles by a circle of unit radius, the unit circle (Fig.A3.2). The angle is always measured with respect to the positive x axis counter clockwise positive and clockwise negative. The hypotenuse of the right angled triangle $O A B$ is the radius of the unit circle. Its length is equal to 1, and it is always positive. The other two sides are assigned a sign according to the usual conventions i.e., positive to the right of the x-axis, and so on. With these conventions the trigonometric functions in each of the four quadrants have the signs listed in Table A 3.3.

If θ exceeds 360°, the whole pattern of signs and values repeats itself on the next pass around the circle. Thus, sine, cosine, and tangent are periodic functions of an angle with period 360°.

Fig.A 3.2

Table A 3.3			
The Sligne of the Tigonometric Functions			
Qupdrant	$\sin 4$	coeil	tane
1	$+$	+	$+$
II	$+$	-	-
II	-	-	+
IV	-	$+$	-

GLOSSARY

- Adiabatic process
- Angular acceleration
- Angular displacement
- Anguiar momentum
- Angular velocity
- Antinode
- Artificial gravity
- Average acceleration
- Average velocity
- Base quantities
- Blue shift
- Bulk modulus
- Centre of mass
- Centripetal force
- Cladding
- Compression
- Conservative field
- Constructive interference
- Core
- Crest
- Critical angle
- CRO

A completely isolated process in which no heat transfer can take place.
The rate of change of angular velocity with time.
Angle subtended at the centre of a circle by a particle moving along the circumference in a given time.
The cross product of position vector and linear momentum.
Angular displacement per second.
The point of maximum displacement on a stationary wave.
The gravity like effect produced in orbiting space ship to overcome weightlessness.
Ratio of the change in velocity, that occurs within a time interval, to that time interval.
Average rate at which displacement vector changes with time.
Certain physical quantities such as length, mass and time.
The shift of received wavelength from a star into the shorter region.
Ratio of volumetric stress to volumetric strain.
The point at which all the mass of the body is assumed to be concentrated.
The force needed to move a body around a circular path.
A layer of lower refractive index (less density) over the central core of high refractive index (high density).
The region of maximum density of a wave.
The field in which work done along a closed path is zero.
When two waves meet each other in the same phase.
The central part of optical fibre which has relatively high refractive index (high density).
The portion of a wave above the mean level.
The angle of incidence for which the angle of refraction is 90°.
A device used to display input signal into waveform.

- Damping
- Denser medium
- Derived quantities
- Destructive interference
- Diffraction
- Dimension
- Displacement
- Doppler shift
- Drag force
- Elastic collision
- Energy
- Entropy
- Escape velocity
- Forced oscillations
- Free oscillations
- Freely falling body
- Fundamental mode
- Geo-stationary satellite
- Harmonics
- Heat engine
- Ideal fluid
- Impulse
- Inelastic collision

A process whereby energy is dissipated from the oscillatory system.
The medium which has greater density.
The physical quantities defined in terms of base quantities. When two waves overlap each other in opposite phases.

Bending of light around obstacles.
One of the basic measurable physical property such as length, mass and time.
The change in the position of a body from its initial position to its final position.
The apparent change in the frequency due to relative motion of source and observer.
A retarding force experienced by an object moving through a fluid.
The interaction in which both momentum and kinetic energy conserve.
Capacity to do work.
Measure of increase in disorder of a thermodynamic system or degradation of energy.
The initial velocity of a body to escape from Earth's gravitational field.
The oscillations of a body subjected to an external force.
Oscillations of a body at its own frequency without the interference of an external force.
A body moving under the action of gravity only.
Stationary wave setup with minimum frequency.
The satellite whose orbital motion is synchronized with the rotation of the Earth.
Stationary waves setup with integral multiples of the fundamental frequency.
A device that converts a part of input heat energy into mechanical work.
An incompressible fluid having no viscosity.
The product of force and time for which it acts on a body.
The interaction in which kinetic energy does not conserve.

- Instantaneous acceleration
- Instantaneous velocity Velocity at a particular instant of time.
- Internal energy
- Isothermal process
- Kinetic energy
- Laminar flow
- Least distance of distinct vision
- Line spectrum
- Longitudinal wave
- Magnification
- Modulus of elasticity
- Molar specific heat at constant pressure
- Molar specific heat at constant volume
- Moment Arm
- Moment of inertia
- Momentum
- Multi-mode graded index fibre
- Node
- Null vector
- Orbital velocity
- Oscillatory motion
- Periodic motion
- Phase

Acceleration at a particular instant of time.

The sum of all forms of molecular energies in a thermodynamic system.
A process in which Boyle's law is applicable.
Energy possessed by a body due to its motion.
Smooth sliding of layers of fluid past each other.
The minimum distance from the eye at which an object can be seen distinctly.
Set of discrete wavelengths.
The wave in which the particles of the medium vibrate parallel to the propagation of the wave.
The ratio of the angle subtended by the image as seen through the optical device to that subtended by the object at the unaidedeye.
Ratio of stress and the strain.
Amount of heat needed to change the temperature of one mole of a gas through 1 K keeping pressure constant.
Amount of heat needed to change the temperature of one mole of a gas through 1 K keeping volume constant.
Perpendicular distance between the axis of rotation and line of action of the force.
The rotational analogue of mass in linear motion.
The product of mass and velocity of an object.
An optical fibre in which the central core has high refractive index which gradually decreases towards its periphery.
The point of zero displacement.
A vector of magnitude zero without any specific direction.
The tangential velocity to put a satellite in orbit around the Earth.
To and fro motion of a body about its mean position.
The motion which repeats itself after equal intervals of time.
A quantity which indicates the state and direction of motion of a vibrating particle.

- Pitch
- Plane wavefront
- Polarization
- Position vector
- Potential energy
- Power
- Progressive wave
- Projectile
- Radar speed trap
- Random error
- Range of a projectile
- Rarefaction
- Rarer medium
- Rays
- Red shift
- Resolving power
- Resonance
- Restoring force
- Resultant vector
- Root mean square velocity
- Rotational equilibrium
- Scalar quantity
- Scalar product
- Significant figures

The characteristics of sound by which a shrill sound can be distinguished from the grave sound.
A disturbance lying in a plane surface.
The orientation of vibration along a particular direction.
A vector that describes the location of a point.
Energy possessed by a body due to its position.
The rate of doing work.
The wave which transfers energy away from the source.
An object moving under the action of gravity and moving horizontally at the same time.

An instrument used to detect the speed of moving object on the basis of Doppler shift.
Error due to fluctuations in the measured quantity.
The horizontal distance from the point where the projectile is launched to the point it returns to its launching height.
The region of minimum density
The medium which has relatively less density.
Radial lines leaving the point source in all directions.
The shift in the wavelength of light from a star towards longer wavelength region.
The ability of an instrument to reveal the minor details of the object under examination.
A specific response of vibrating system to a periodic force acting with the natural period of the system.
The force that brings the body back to its equilibrium position.
The sum vector of two or more vectors.
Square root of the average of the square of molecular velocities.
A body having zero angular acceleration.
A physical quantity that has magnitude only.
The product of two vectors that results into a scalar quantity.
The measured or calculated digits for a quantity which are reasonably reliable.

- Simple harmonic motion
- Slinky spring
- Space time curvature
- Spherical wavefront
- Stationary wave
- System international (SI)
- Systematic error
- Terminal velocity
- Torque
- Total internal reflection
- Trajectory
- Translational equilibrium
- Transverse wave
- Trough
- Turbulent flow
- Unit vector
- Vector quantity
- Vector product
- Wavefront
- Wavelength
- Work

A motion in which acceleration is directly proportional to displacement from mean position and is afways directed towards the mean position.
A loose spring which has small initial length but a relatively large extended length.
Einstein's view of gravitation.
When the disturbance is propagated in all directions from a point source.
The resultant wave arising due to the interference of two -identical but oppositely directed waves.
The intemationally agreed system of units used almost world over.
Error due to incorrect design or calibration of the measuring device.
Maximum constant velocity of an object falling vertically downward.

The turning effect of a force.
When the angle of incidence increases by the critical angle, then the incident light is reflected back in the same material.

The path through space followed by a projectile.
A body having zero linear acceleration.

The wave in which the particles of the medium vibrate perpendicular to the propagation of wave.
The lower portion of a wave below the mean level.
Disorderly and changing flow pattern of fiuids.
A vector of magnitude one used to denote direction.
A physical quantity that has both magnitude and direction.
The product of two vectors that results into another vector.
A surface passing through all the points undergoing a similar disturbance (i.e., having the same phase) at a given instant.
The distance between two consecutive wavefronts;
The product of magnitude of force and that of displacement in the direction of force.

[^0]: Juperposifion of twn wiwea of ins sarne froquency widat of vevily vit of Dheme

[^1]: Formatis of Brats

[^2]: fermintrest ponstraction of Kanysidatbe sitmpertman!

[^3]: Liuht propopanaon Through Whentimade grided-miner hire

