09.06.2013 Views

9. Treatment of Amatoxin Poisoning-20 year retrospective analysis

9. Treatment of Amatoxin Poisoning-20 year retrospective analysis

9. Treatment of Amatoxin Poisoning-20 year retrospective analysis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ARTICLE<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Journal <strong>of</strong> Toxicology<br />

CLINICAL TOXICOLOGY<br />

Vol. 40, No. 6, pp. 715–757, <strong>20</strong>02<br />

<strong>Treatment</strong> <strong>of</strong> <strong>Amatoxin</strong> <strong>Poisoning</strong>:<br />

<strong>20</strong>-Year Retrospective Analysis<br />

Françoise Enjalbert,* Sylvie Rapior,<br />

Janine Nouguier-Soulé, Sophie Guillon,<br />

Noël Amouroux, and Claudine Cabot<br />

Laboratoire de Botanique, Phytochimie et Mycologie, Faculté de<br />

Pharmacie, Université Montpellier 1, Montpellier Cedex 5, France;<br />

Laboratoire de Physique Moléculaire et Structurale, UMR-CNRS 5094,<br />

Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14 491, 34093<br />

Montpellier Cedex 5, France; and Centre Anti-Poisons, Hôpital Purpan,<br />

Place du Docteur Baylac, 31059 Toulouse Cedex, France<br />

ABSTRACT<br />

Background: <strong>Amatoxin</strong> poisoning is a medical emergency characterized by a long<br />

incubation time lag, gastrointestinal and hepatotoxic phases, coma, and death. This<br />

mushroom intoxication is ascribed to 35 amatoxin-containing species belonging to<br />

three genera: Amanita, Galerina, and Lepiota. The major amatoxins, the a-, b-, and<br />

g-amanitins, are bicyclic octapeptide derivatives that damage the liver and kidney<br />

via irreversible binding to RNA polymerase II. Methods: The mycology and clinical<br />

syndrome <strong>of</strong> amatoxin poisoning are reviewed. Clinical data from 2108 hospitalized<br />

amatoxin poisoning exposures as reported in the medical literature from North<br />

America and Europe over the last <strong>20</strong> <strong>year</strong>s were compiled. Preliminary medical<br />

care, supportive measures, specific treatments used singly or in combination, and<br />

liver transplantation were characterized. Specific treatments consisted <strong>of</strong><br />

detoxication procedures (e.g., toxin removal from bile and urine, and extracorporeal<br />

purification) and administration <strong>of</strong> drugs. Chemotherapy included<br />

benzylpenicillin or other b-lactam antibiotics, silymarin complex, thioctic acid,<br />

*Corresponding author. Dr. Françoise Enjalbert, Laboratoire de Botanique, Phytochimie et Mycologie, Faculté de Pharmacie,<br />

Université Montpellier 1, 15 avenue Charles Flahault, UM 1/CNRS-UPR A 9056, BP 14 491, 34093 Montpellier Cedex 5, France.<br />

Fax: þ33-467-411-940; E-mail: fenjalbert@ww3.pharma.univ-montp1.fr<br />

715<br />

DOI: 10.1081/CLT-1<strong>20</strong>014646 0731-3810 (Print); 1097-9875 (Online)<br />

Copyright q <strong>20</strong>02 by Marcel Dekker, Inc. www.dekker.com


716<br />

antioxidant drugs, hormones and steroids administered singly, or more usually, in<br />

combination. Supportive measures alone and 10 specific treatment regimens were<br />

analyzed relative to mortality. Results: Benzylpenicillin (Penicillin G) alone and in<br />

association was the most frequently utilized chemotherapy but showed little efficacy.<br />

No benefit was found for the use <strong>of</strong> thioctic acid or steroids. Chi-square statistical<br />

comparison <strong>of</strong> survivors and dead vs. treated individuals supported silybin,<br />

administered either as mono-chemotherapy or in drug combination and Nacetylcysteine<br />

as mono-chemotherapy as the most effective therapeutic modes.<br />

Future clinical research should focus on confirming the efficacy <strong>of</strong> silybin, Nacetylcysteine,<br />

and detoxication procedures.<br />

Key Words: Amanita; <strong>Amatoxin</strong>s; Galerina; Lepiota; <strong>Poisoning</strong>; <strong>Treatment</strong><br />

INTRODUCTION<br />

The hunting and eating <strong>of</strong> wild higher fungi is a<br />

traditional activity in many European countries and has<br />

become an increasingly popular pastime in the United<br />

States. Despite warnings on the risks <strong>of</strong> eating wild<br />

mushrooms, collectors continue to confuse edible and<br />

toxic species. There are few data defining the number <strong>of</strong><br />

worldwide mushroom exposures; [1 – 11] but poisonings are<br />

a relatively common medical emergency. Among severe<br />

mushroom intoxications, the amatoxin syndrome is <strong>of</strong><br />

primary importance because it accounts for about 90% <strong>of</strong><br />

fatality. [12]<br />

<strong>Amatoxin</strong> poisoning is characterized by a long<br />

asymptomatic incubation delay (from 6 to 12 hours)<br />

and three clinical phases. The first phase, or gastrointestinal<br />

phase (12–24 hours), consists <strong>of</strong> cholera-like<br />

diarrhea, vomiting, abdominal pain, and dehydration.<br />

During the second phase, or hepatotoxic phase (24–<br />

48 hours), clinical signs and biochemical evidence <strong>of</strong><br />

hepatic damage leading to a progressive and irreversible<br />

coagulopathy appear. With the development <strong>of</strong> hepatorenal<br />

syndrome (third phase), hemorrhages, convulsions,<br />

and fulminant hepatic failure (FHF) occur resulting in<br />

coma and death (4–7 days). Symptoms and clinical<br />

course <strong>of</strong> amatoxin-containing mushroom poisoning<br />

have been thoroughly reported. [13 – 23] Damage to the<br />

liver is characterized by massive centrilobular necrosis,<br />

vacuolar degeneration, and a positive acid–phosphatase<br />

reaction. The kidney shows signs <strong>of</strong> acute tubular<br />

necrosis and hyaline casts in the tubules. [24]<br />

<strong>Amatoxin</strong> poisoning is caused by mushroom species<br />

belonging to three genera, Amanita, Galerina, and<br />

Lepiota [12,25,26] with the majority <strong>of</strong> lethal mushroom<br />

exposures attributable to Amanita species. Some<br />

Amanitas contain two major groups <strong>of</strong> toxins, amatoxins,<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

and phallotoxins. Both are bicyclic peptides composed <strong>of</strong><br />

an amino acid ring bridged by a sulfur atom. The<br />

chemical structures <strong>of</strong> nine amatoxins have been<br />

elucidated as bicyclic octapeptide derivatives; the major<br />

ones are the a-, b-, and g-amanitins (a-Ama, b-Ama, g-<br />

Ama). The three amanitins are also present in some<br />

Galerina and Lepiota species responsible for deceased<br />

persons. Phallotoxins, detected only in Amanita species,<br />

have only slight absorption after oral administration and<br />

should not contribute to amatoxin poisoning.<br />

Enjalbert et al.<br />

[27 – 31]<br />

The molecular mechanism <strong>of</strong> toxicity has been<br />

studied in detail. <strong>Amatoxin</strong>s bind with eukaryotic<br />

DNA-dependent RNA polymerase II, and inhibit the<br />

elongation essential to transcription. Pharmacokinetic<br />

studies have shown that amatoxins use the physiological<br />

transport system for biliary acids to reach the liver, the<br />

site <strong>of</strong> irreversible binding to RNA polymerase II.<br />

Enterohepatic circulation perpetuates high toxin concentration<br />

in the hepatocytes. [32,33]<br />

Our survey based on the literature over the last two<br />

decades lists 2108 detailed cases <strong>of</strong> amatoxin poisoning<br />

from North America and Europe. <strong>Treatment</strong> strategies<br />

were characterized as preliminary medical care, supportive<br />

measures, and specific therapies. Specific therapies<br />

included toxin removal from the digestive, biliary, and<br />

urinary systems, and blood as well as the administration<br />

<strong>of</strong> drugs. Experimental investigations and hypotheses<br />

concerning the hepatoprotective properties <strong>of</strong> each<br />

therapeutic modality justifying its use in human<br />

amatoxin intoxication were also described. The use <strong>of</strong><br />

liver transplantation (LT) in amatoxin-induced FHF was<br />

also characterized as a specific therapy among this<br />

<strong>retrospective</strong> patient group.<br />

The aim <strong>of</strong> this review is a critical <strong>analysis</strong> <strong>of</strong> the<br />

different treatments that were applied to amatoxin<br />

poisoned patients by determining for each therapeutic


mode its use and its efficacy. Two complementary<br />

statistical analyses were carried to compare the number<br />

<strong>of</strong> survivors and dead for each group <strong>of</strong> patients, which<br />

received a particular mode <strong>of</strong> therapy, liver transplant<br />

cases being either included as fatalities or excluded from<br />

each analyzed series. These data enabled a classification<br />

<strong>of</strong> therapeutic modalities based on relatively effective,<br />

ineffective, or unproven asset.<br />

AMATOXIN-CONTAINING MUSHROOM<br />

SPECIES<br />

According to the currently available literature,<br />

[12,25,26,34] 35 species belonging to the genera<br />

Amanita, Galerina, and Lepiota contain amatoxins.<br />

There is agreement on amatoxin-containing Amanita and<br />

Galerina species but the occurrence <strong>of</strong> amatoxins in<br />

some species <strong>of</strong> Lepiota genus is uncertain.<br />

In the genus Amanita, the nine amatoxin-containing<br />

mushrooms are (1) Amanita phalloides (Fr.) Secr. [26] and<br />

the related species, the so-called “deadly white Amanita<br />

species,” (2) A. bisporigera Atk., (3) A. decipiens<br />

(Trimbach) Jacquetant, (4) A. hygroscopica Coker, (5) A.<br />

ocreata Peck, (6) A. suballiacea Murr., (7) A. tenuifolia<br />

Murr., (8) A. verna (Bull.:Fr.) Lamarck, and (9) A. virosa<br />

(Lamarck) Bertillon. [12,25,26,34] A. magnivelaris Peck was<br />

suspected <strong>of</strong> containing amatoxins since intoxications<br />

with a 24-hour latency, liver failure, and hepatic necrosis<br />

were reported for patients from Guatemala and Rhode<br />

Island. [35,36] However, amatoxins have never been<br />

detected in the mushroom tissue. [25,37]<br />

In the genus Galerina, nine amatoxin-containing<br />

species are reported: (1) G. autumnalis (Pk.) Sm. and<br />

Sing., (2) G. badipes (Fr.) Kühn., (3) G. beinrothii Brsky,<br />

(4) G. fasciculata Hongo, (5) G. helvoliceps (Berk. and<br />

Curt.) Sing., (6) G. marginata (Batsch) Kühner, (7) G.<br />

sulciceps (Berk.) Boedjin, [38] (8) G. unicolor (Fr.) Sing.,<br />

[12,26,34,39 – 41]<br />

and (9) G. venenata A. H. Smith.<br />

In the mycological literature on Lepiotas,<br />

[12,25,26,42 – 45]<br />

24 species are presumed to be amatoxin-producing mushrooms<br />

and listed alphabetically as follows. The asterisk<br />

indicates those 16 Lepiota species in which amatoxins<br />

[46 – 49]<br />

were detected by thin layer chromatography.<br />

L. brunneoincarnata Chodat and Martin*<br />

L. brunneolilacea Bon and Boiffard*<br />

L. castanea Quélet*<br />

L. citrophylla (Berk. and Br.) Sacc.<br />

L. clypeolaria (Bull.:Fr.) Kummer [42]<br />

L. clypeolarioides Rea*<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 717<br />

L. felina (Pers.:Fr.) Karsten*<br />

L. fulvella Rea* [43] (by semiquantitative Meixner<br />

test [50,51] )<br />

L. fuscovinacea Moeller and Lange<br />

L. griseovirens Maire*<br />

L. heimii Locq.*<br />

L. helveola Bres.*<br />

L. helveoloides Bon ex Bon and Andary<br />

L. josserandii Bon and Boiffard*<br />

L. kuehneri Huijsm. ex Hora*<br />

L. langei Locq.*<br />

L. lilacea Bres. [44]<br />

L. locanensis Espinosa<br />

L. ochrace<strong>of</strong>ulva Orton*<br />

L. pseudohelveola Kühner ex Hora*<br />

L. pseudolilacea Huijsm. [45]<br />

L. rufescens Lge. [44]<br />

[47 – 49]<br />

L. subincarnata Lge.*<br />

L. xanthophylla Orton* [46]<br />

Although a-Ama was detected in North American<br />

Pholiotina (Conocybe) filaris Fr., [52] investigations <strong>of</strong><br />

German collections <strong>of</strong> this species and other Pholiotinas<br />

reported the amatoxins neither in the mushrooms nor in<br />

cases <strong>of</strong> hepatotoxic poisoning. [12] The available<br />

information thus identifies 35 species containing<br />

amatoxins (10 Amanitas, 9 Galerinas, and 16 Lepio-<br />

[46 – 49,51]<br />

tas.<br />

OCCURRENCE OF AMATOXIN<br />

POISONING<br />

<strong>Amatoxin</strong>-containing species and, consequently,<br />

[53 – 56]<br />

amatoxin poisonings occur worldwide: Africa,<br />

America, [25,26,35,57,58] Asia, [46,59 – 66] Europe, [12,67,68] and<br />

Oceania. [63,69 – 71] Given the few reports <strong>of</strong> the amatoxin<br />

syndrome from the African, Asian, and Oceanian<br />

continents, [55,60,61,69,70,72] our review focused on human<br />

cases (Tables 1–6) from North American and European<br />

countries. [73 – <strong>20</strong>4] The sites include the Canadian<br />

province Ontario, [97] Mexico, [35,78,84,85] and 21 different<br />

U.S. states namely Alabama, [89] Arkansas, [93] California,<br />

[42,74,79,90,93,102,109,119,1<strong>20</strong>,151,193,<strong>20</strong>5 – <strong>20</strong>7] Florida, [112]<br />

Georgia, [91,118] Indiana, [132] Kansas, [<strong>20</strong>8] Kentucky, [<strong>20</strong>9]<br />

Michigan, [108,199,<strong>20</strong>9] Minnesota, [122] Mississippi, [118]<br />

Missouri, [118,141] New Jersey, [73,139,<strong>20</strong>5,<strong>20</strong>9] New<br />

York, [93,140,<strong>20</strong>0,<strong>20</strong>6,<strong>20</strong>8] Ohio, [36,<strong>20</strong>7] Oregon, [<strong>20</strong>6,<strong>20</strong>9] Pennsylvania,<br />

[124] Rhode Island, [36,104,<strong>20</strong>6] Virginia, [<strong>20</strong>8]<br />

Washington, [<strong>20</strong>7] and Wisconsin [178] as well as 22<br />

European countries namely Austria, [127,128] Belgium,<br />

[168,190] Bulgaria, [179,210,211] Croatia, [117] Czech


718<br />

Republic, [105,157] Denmark, [154,165,<strong>20</strong>2] Finland, [95,106,<br />

152] France, [75,80,86,103,121,136 – 138,146,148,169,191,192,194 –<br />

198,212] Germany, [87,88,130,133,155,156,163,164,166,167,<strong>20</strong>1]<br />

Hungary, [<strong>20</strong>3,<strong>20</strong>4,213]<br />

Italy, [76,83,92,94,96,100,111,116,125,126,<br />

131,143 – 145,147,161,176,177,181,185,186]<br />

the Netherlands, [159]<br />

Norway, [153] Poland, [99,170 – 173,175,214] Portugal, [162] Slovak<br />

Republic, [113,114,129,160,180,215] Slovenia, [110,174]<br />

Spain, [43,50,77,98,115,182 – 184,187 – 189] Sweden, [101,149]<br />

Switzerland, [158,216,217] Turkey, [81,82,107,134,135,142] and<br />

United Kingdom. [123]<br />

The amatoxin poisoning cases found in the literature<br />

were divided into three groups. The first group comprised<br />

2108 amatoxin poisoning cases that were adequately<br />

documented by hospital reports with detailed therapeutic<br />

information including 32 LTs (Tables 1–6). A second<br />

[11,36,89,93,97,108,118,199,<strong>20</strong>5 –<br />

group from North American<br />

<strong>20</strong>9,218,219] [24,103,111,136,142,160,181,<br />

and European sources<br />

212 – 217,2<strong>20</strong>]<br />

consisted <strong>of</strong> 169 amatoxin poisonings that<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Table 1<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated with Supportive Measures Alone with/without Liver Transplant<br />

Enjalbert et al.<br />

Date/Country T/E Cases Mushroom LT Survivors References<br />

1981 New York 1/3 a.sp 0 1 [73]<br />

1981 California 1/10 A.ph 0 0 [74]<br />

1981 California 4/10 a.sp 0 3 [74]<br />

1982 France 1/1; child G.mar 0 0 [75]<br />

1982 Italy 2/2 L.bi 0 1 [76]<br />

1983–1986 Spain 7/85 a.sp 0 7 [43,50]<br />

1986 Spain 1/3 L.bi 0 1 [77]<br />

1987 Guatemala 19/19; (children) A.mag 0 11 [35]<br />

1987 Mexico 8/8; 2 children A.vi 0 6 [78]<br />

1988 California 4/4 A.ph 0 0 [79]<br />

1988 France 1/1; child A.ph 1 1 [80]<br />

1988 Turkey 11/11; 8 children L.hel 0 0 [81]<br />

1988 Turkey 3/27 L.cas, L.hel 0 2 [82]<br />

1990 Italy 1/2 L.bi 0 1 [83]<br />

1990 Mexico 7/7 A.vi 0 2 [84,85]<br />

1992 France 1/3 L.bi 0 1 [86]<br />

1992 France 2/3; 1 child L.bi 2 2 [86]<br />

1992 Germany 2/3 A.ph 0 1 [87]<br />

1992 Germany 1/3; child A.ph, amat 1 1 [87]<br />

1994 Germany 9/12 A.ph 0 9 [88]<br />

1996 Alabama 1/4; child A.ve 0 0 [89]<br />

1997 California 1/4 a.sp 0 1 [90]<br />

1997 Georgia 1/1 A.ph 1 1 [91]<br />

1998 Italy 1/1 A.ph 1 1 [92]<br />

1999 Arkansas 1/1 A.bis 0 1 [93]<br />

T/E Cases ¼ treated/exposed individuals; LT ¼ liver transplant; amat ¼ amatoxins in biological fluids; a.sp ¼ amatoxin-containing species;<br />

A.bis ¼ Amanita bisporigera; A.mag ¼ A. magnivelaris; A.ph ¼ A. phalloides; A.ve ¼ A. verna; A.vi ¼ A. virosa; G.mar ¼ Galerina marginata;<br />

L.bi ¼ Lepiota brunneoincarnata; L.cas ¼ L. castanea; L.hel ¼ L. helveola; undefined cases are reported in brackets.<br />

were cited in clinical reports but had no treatment<br />

information. A third group contained cases <strong>of</strong> mushroom<br />

exposures reported only as “cyclopeptide intoxication<br />

with hepatotoxic effects” and with incomplete clinical<br />

data. [3 – 9,11,210,211,221] The majority <strong>of</strong> the cases in the<br />

second and third groups were either mildly intoxicated or<br />

asymptomatic individuals who shared the poisoned meal<br />

and did not necessarily require hospital admission. Only<br />

the cases in the first group were included in the data<br />

<strong>analysis</strong>.<br />

Of the 35 amatoxin-containing species, 14 were<br />

responsible for most <strong>of</strong> the intoxications listed in Tables<br />

1–6: A. bisporigera, A. magnivelaris, A. ocreata,<br />

A. phalloides, A. verna, A. virosa, G. autumnalis, [<strong>20</strong>8]<br />

G. marginata, L. brunneoincarnata, L. brunneolilacea,<br />

L. castanea, L. fulvella, L. helveola, and L. josserandii.<br />

The small number <strong>of</strong> species identified may be an artifact<br />

<strong>of</strong> incomplete information; in less than 5% <strong>of</strong> the


Table 2<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated with Detoxication Procedures with/without Liver Transplant<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

Date/Country T/E Cases Mushroom Oral C/GA Urin. FD ECP HD–HP/ PL LT Surv. References<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 719<br />

1975–1990 Italy 93/93; children a.sp 0/0 93 0–0/0 0 86 [94]<br />

1978 Finland 2/2 G.mar 0/0 2 0–0/0 0 2 [95]<br />

1981 California 3/10 a.sp 3/0 0 0–0/0 0 3 [74]<br />

1981 Italy 1/1; pregnant A.ph, amat 0/0 1 0–0/1 0 1 [96]<br />

1982 Canada 1/2 A.bis, A.vi 0/0 0 1–1/1 0 1 [97]<br />

1982 Canada 1/2 A.vi 0/0 0 1–0/0 0 0 [97]<br />

1982 Spain 2/8 A.ph 0/0 0 0–0/2 0 2 [98]<br />

1982–1983 California 11/21 a.sp 11/0 0 0–0/0 0 11 [42]<br />

1982–1983 California 4/21 A.o, amat 4/0 0 0–0/0 0 4 [42]<br />

1982–1983 California 1/21; child A.ph, amat 1/0 0 0–0/0 0 1 [42]<br />

1982–1986 Poland 7/7 A.ph 0/0 0 0–0/7 0 4 [99]<br />

1982–1991 Italy 2/8; 1 child A.ph 0/0 0 0–0/2 0 1 [100]<br />

1983–1986 Sweden 93/93 A.ph, A.vi, a.sp, amat 0/0 93 93–93/0 0 93 [101]<br />

1988 Turkey 3/27; 1 child L.cas, L.hel 3/0 0 0–0/0 0 3 [82]<br />

1988 Turkey 6/27; children L.cas, L.hel 0/0 0 6–0/0 0 0 [82]<br />

1989 California 2/2 A.ph 2/2 0 2–0/0 2 2 [102]<br />

1990 France 1/1 A.ph 0/0 0 1–0/0 1 1 [103]<br />

1990 Rhode Island 1/1 A.vi 1/0 0 0–0/0 0 0 [104]<br />

1990–1991 Czech 35/35 A.ph 0/0 0 0–35/0 0 28 [105]<br />

1990–1991 Czech 38/38 a.sp 0/0 0 0–38/0 0 38 [105]<br />

1991–1999 Italy 6/8 A.ph 0/0 0 0–0/6 1 6 [100]<br />

1994 Finland 1/1 A.vi 0/0 0 1–0/0 1 1 [106]<br />

1994–1995 Turkey 52/60 A.ph 0/0 0 0–52/0 0 52 [107]<br />

1994–1995 Turkey 8/60 A.ph 0/0 0 8–0/0 0 4 [107]<br />

1995 Michigan 1/1 A.vi 1/0 0 0–0/0 0 1 [108]<br />

1996 Alabama 3/4 A.ve 3/0 0 0–0/0 0 3 [89]<br />

1996–1997 California 2/10 A.ph, a.sp 1/0 0 2–0/0 0 0 [109]<br />

1997 California 1/4 a.sp 0/0 0 1–0/0 0 0 [90]<br />

1997 Slovenia 1/1; child a.sp 0/0 1 0–0/1 0 0 [110]<br />

1998 Italy 2/2 a.sp 0/0 0 2*–2/0 0 2 [111]<br />

<strong>20</strong>00 Florida 1/1 a.sp 1/0 0 0–0/0 1 1 [112]<br />

T/E Cases ¼ treated/exposed individuals; Oral ¼ oral detoxication using C ¼ activated charcoal and GA ¼ gastroduodenal aspiration; Urin. ¼ urinary detoxication by FD ¼ forced diuresis;<br />

ECP ¼ extra-corporeal detoxication including * ¼ continuous venovenous hem<strong>of</strong>iltration, HD ¼ hemodialysis, HP ¼ hemoperfusion, and PL ¼ plasmapheresis; LT ¼ liver transplant;<br />

Surv. ¼ survivors; amat ¼ amatoxins in biological fluids; a.sp ¼ amatoxin-containing species; A.bis ¼ Amanita bisporigera; A.o ¼ A. ocreata; A.ph ¼ A. phalloides; A.ve ¼ A. verna;<br />

A.vi ¼ A. virosa; G.mar ¼ Galerina marginata; L.cas ¼ Lepiota castanea; L.hel ¼ L. helveola.


7<strong>20</strong><br />

Table 3<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated with Mono-chemotherapy, with/without Detoxication Procedures and with/without Liver Transplant<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

Date/Country T/E Cases Mushroom Drugs Oral C/GA Urin. FD ECP HD–HP/PL LT Surv. References<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

1988 Turkey 1/27; child L.cas, L.hel 1ATB 0/0 0 1–0/0 0 0 [82]<br />

1971–1995 Slovak Republic 103/103; 14 children A.ph, a.sp B.pen 0/0 (FD) (HD–HP)/0 0 95 [113,114]<br />

1981 Spain 2/2 A.ph B.pen 0/2 0 2–0/0 0 2 [115]<br />

1982 Spain 6/8 A.ph B.pen 0/0 0 0–0/6 0 5 [98]<br />

1982–1986 Spain 13/85; 1 child 5 A.ph, 2 A.ve, 3 L.bi, B.pen 2/2 9 0–1/2 0 12 [43,50]<br />

3 a.sp; amat<br />

1986 Spain 2/3 L.bi B.pen 0/0 0 0–0/0 0 2 [77]<br />

1986–1989 Italy 12/12 A.ph B.pen 12/0 0 12–0/0 0 9 [116]<br />

1988 Croatia 18/18; (children) A.ph B.pen 18/18 18 2–0/16 0 14 [117]<br />

1991 Ohio 1/1 G.sp B.pen 1/0 0 0–0/0 0 1 [36]<br />

1994 Missouri 2/2 A.bis B.pen 0/0 0 0–0/0 0 1 [118]<br />

1996 California 3/3 A.ph B.pen 0/0 0 0–0/0 1 a<br />

3 [119,1<strong>20</strong>]<br />

1998 France 1/1 A.ph B.pen 1/0 0 0–0/0 0 1 [121]<br />

1998 Minnesota 1/1; child A.vi B.pen 1/0 0 0–0/0 0 1 [122]<br />

1982 U.K. 2/2 A.ph Cimetid 0/0 0 0–2/0 0 0 [123]<br />

1999 Pennsylvania 1/6 a.sp Cimetid 1/0 0 0–0/0 0 1 [124]<br />

1987–1993 Italy 86/86 A.ph NAC 86/0 86 0–0/0 0 80 [125]<br />

1994 Italy 1/1; pregnant A.ph, amat NAC 1/0 1 0–0/1 0 1 [126]<br />

1996–1997 California 1/10 A.ph NAC 1/0 0 0–0/0 0 1 [109]<br />

1997 California 1/4 a.sp NAC 1/0 0 0–0/0 0 1 [90]<br />

1980–1986 Europe 25/252 A.ph, a.sp Silybin 0/0 (FD) (HD–HP)/0 0 24 [127,128]<br />

1991–1999 Slovak Republic <strong>20</strong>/<strong>20</strong>; (children) A.ph, a.sp Silybin <strong>20</strong>/0 <strong>20</strong> 0–0/0 0 <strong>20</strong> [129]<br />

1993 Germany 26/154 a.sp Silybin 0/0 0 0–0/0 0 26 [130]<br />

1994 Germany 3/12 A.ph Silybin 0/0 0 0–0/0 3 2 [88]<br />

1981 California 1/10 A.ph Steroid 0/0 0 0–0/0 0 1 [74]<br />

1982–1983 California 2/21 a.sp, amat Steroid 2/0 0 0–2/0 0 0 [42]<br />

1982–1983 California 3/21 a.sp Steroid 3/0 0 0–0/0 0 3 [42]<br />

1988 Turkey 1/27 L.cas, L.hel Steroid 0/0 0 0–0/0 0 1 [82]<br />

1997 Italy 1/1 A.ph Steroid 0/0 0 0–0/1 0 1 [131]<br />

1981 New York 2/3 a.sp Thioc.a 0/0 0 1–0/0 0 2 [73]<br />

1981 California 1/10 a.sp Thioc.a 0/0 0 0–0/0 0 0 [74]<br />

1982 Indiana 1/1 A.vi Thioc.a 0/0 0 0–0/0 0 1 [132]<br />

1982–1986 Spain 4/85; 1 child A.ph, amat Thioc.a 2/3 3 0–2/0 0 4 [43,50]<br />

Enjalbert et al.<br />

T/E Cases ¼ treated/exposed individuals; Oral ¼ oral detoxication using C ¼ activated charcoal and GA ¼ gastroduodenal aspiration; Urin. ¼ urinary detoxication by FD ¼ forced diuresis;<br />

ECP ¼ extra-corporeal detoxication including HD ¼ hemodialysis, HP ¼ hemoperfusion, and PL ¼ plasmapheresis; LT ¼ liver transplant; Surv. ¼ survivors; amat ¼ amatoxins in<br />

biological fluids; undefined cases are reported in brackets.<br />

Drugs: ATB ¼ antibiotic agent; B.pen ¼ benzylpenicillin; Cimetid ¼ cimetidine; NAC ¼ N-acetylcysteine; Thioc.a ¼ thioctic acid.<br />

a.sp ¼ amatoxin-containing species; A.bis ¼ Amanita bisporigera; A.ph ¼ A. phalloides; A.ve¼A. verna; A.vi ¼ A. virosa; G.sp ¼ Galerina species; L.bi ¼ Lepiota brunneoincarnata;<br />

L.cas ¼ L. castanea; L.hel ¼ L. helveola.<br />

a<br />

Auxiliary liver transplant.


poisoning cases is the mushroom species actually<br />

identified. [222] When the species attribution is uncertain<br />

the onset <strong>of</strong> clinical symptoms may be a useful indicator<br />

<strong>of</strong> potential amatoxin ingestion.<br />

<strong>Amatoxin</strong> exposures were more frequently caused by<br />

A. phalloides in Central and Southern Europe, A. virosa<br />

in Northern Europe, and A. phalloides and related deadly<br />

white Amanitas in North America. Unidentified amatoxin-containing<br />

species caused 21% <strong>of</strong> poisonings and<br />

are listed as a.sp. in Tables 1–6.<br />

STATISTICAL ANALYSIS<br />

An overall table (189 rows, 12 columns) was<br />

constituted from Tables 1–6 with the actual or coded<br />

values <strong>of</strong> the following parameters: date; country; modes<br />

<strong>of</strong> care, number <strong>of</strong> exposed individuals and treated<br />

patients; number and percentage <strong>of</strong> survivors and<br />

nonsurvivors; mushroom or mixture <strong>of</strong> mushrooms;<br />

single drug or drug combination; and LTs. A general<br />

frequency table was constructed <strong>of</strong> the observed<br />

frequencies for each mode <strong>of</strong> care. Eleven modes <strong>of</strong><br />

care had a sufficient representation for <strong>analysis</strong>: one<br />

treatment mode (supportive measures alone, Table 1) and<br />

10 specific treatments: detoxication procedures (Table 2)<br />

and nine chemotherapies from Tables 3–6 (monochemotherapies:<br />

benzylpenicillin, N-acetylcysteine<br />

(NAC), silybin; bi-chemotherapies: benzylpenicillin/<br />

antioxidant drug, b-lactam antibiotic (benzylpenicillin<br />

or ceftazidime)/silybin, benzylpenicillin/steroid, benzylpenicillin/thioctic<br />

acid; and tri- and poly-chemotherapies:<br />

benzylpenicillin combinations with any before<br />

mentioned drug, with or without silybin).<br />

Due to small numbers <strong>of</strong> treated victims, 13 other<br />

specific chemotherapies were not analyzed: monochemotherapy<br />

with cimetidine, vitamin C, thioctic acid,<br />

steroid or antibiotic agent (<strong>20</strong> cases from Table 3); and<br />

bi-, tri-, and poly-chemotherapies with silybin/thioctic<br />

acid, antibiotic/antiseptic/vitamin C, steroid/thioctic<br />

acid/vitamin C, antibiotic/thioctic acid/vitamin C, two<br />

antibiotics/steroid, two antibiotics/NAC, antiseptic/silybin/steroid/vitamin<br />

C and three antibiotics/steroid (26<br />

cases from Tables 5 and 6).<br />

Outcome without surgery for the 32 cases who received<br />

liver transplant (LT . 0) combined with one or more from<br />

the 11 analyzed therapeutic modes cannot be known.<br />

Therefore, in order to assess the effectiveness <strong>of</strong> the<br />

nontransplant therapies in preventing the fatal stage <strong>of</strong> the<br />

disease, statistical analyses were performed both with and<br />

without the transplanted cases. The suffixes LTi and LTe<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 721<br />

were added to all numbers, percentages, and probabilities<br />

listed or calculated including or excluding the LT cases,<br />

respectively. For each observation (line <strong>of</strong> the general<br />

table) with LT . 0, the number <strong>of</strong> treated patients,<br />

survivors, and deceased persons were corrected as follows:<br />

(i) for mortality rate excluding the transplant cases<br />

(MRLTe), the LT cases were removed from the data set,<br />

i.e., both treated patient and survivor numbers were<br />

decreased by the number <strong>of</strong> transplants, (ii) for mortality<br />

rate including the transplant cases (MRLTi), each LT<br />

patient was considered as a deceased person; only survivor<br />

numbers were decreased by the number <strong>of</strong> transplants.<br />

Complementary statistical analyses were carried out<br />

for <strong>20</strong>62 LTi patients (2108 victims minus 46<br />

nonanalyzed-treatment cases) and <strong>20</strong>31 LTe cases<br />

(<strong>20</strong>62 victims minus 31 LT cases); one LT case was in<br />

an unanalyzed mode <strong>of</strong> care.<br />

The global performance evaluation <strong>of</strong> each therapeutic<br />

mode was achieved by a statistical comparison <strong>of</strong><br />

the number <strong>of</strong> survivors and nonsurvivors using a Chisquare<br />

calculation from the two rows (survivors,<br />

fatalities) and six columns (six tables) contingency<br />

table. The effect <strong>of</strong> each mode <strong>of</strong> care was studied by<br />

comparison <strong>of</strong> survivor and dead numbers in the 2 £ 2<br />

tables constituted from the general table.<br />

The Chi-square test applied to the general frequency<br />

tables rejected the hypothesis that outcome and treatment<br />

were independent; the distribution <strong>of</strong> survivors and<br />

deceased persons was statistically different for Tables<br />

1–6, both including and excluding the LT patients. When<br />

the p-value was #0.05, the null hypothesis was rejected<br />

at the 95% confidence level. The Yates’ correction was<br />

applied when the number <strong>of</strong> survivors or deceased<br />

patients was #5, and the Fischer’s exact test was<br />

calculated in the case <strong>of</strong> contingency table 2 £ 2 with<br />

less than 100 observations. The statistical <strong>analysis</strong> was<br />

carried out using STATGRAPHICS w PLUS s<strong>of</strong>tware<br />

version 3.3 (Manugistics, Inc., Rockville, MD, USA).<br />

DESCRIPTION OF TREATMENTS<br />

The management <strong>of</strong> amatoxin poisoning involves four<br />

main categories <strong>of</strong> therapy: preliminary medical care,<br />

supportive measures, specific treatments, and LT. Since<br />

there is a relative consensus <strong>of</strong> opinion about<br />

the preliminary medical care and supportive<br />

measures, [14,18 – <strong>20</strong>,23,223 – 228] only their major features<br />

are described. The specific treatments consisting <strong>of</strong><br />

detoxication procedures, chemotherapies, and LT are<br />

described below in detail.


722<br />

Table 4<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated as Bi- and Tri-chemotherapy with Benzylpenicillin, with/without Detoxication Procedures and with/without Liver Transplant<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

ECP HD–HP/PL LT Surv. References<br />

Urin.<br />

FD<br />

Date/Country T/E Cases Mushroom Drugs Oral<br />

C/GA<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

1977–1994 Germany 9/12 A.ph, a.sp ATB, silybin 0/9 9 9–9/0 0 8 [133]<br />

1977–1994 Germany 3/12 A.ph ATB, silybin 0/3 3 3–3/0 3 3 [133]<br />

1988 Turkey 2/27; 1 child L.cas, L.hel ATB, steroid 2/0 0 1–0/0 0 0 [82]<br />

1988 Turkey 1/3; child A.ph ATB, steroid 1/0 0 1–0/0 0 1 [134]<br />

1995 Turkey 3/3; 1 child A.ph, amat ATB, steroid 3/0 3 2–3/0 0 3 [135]<br />

1988 France 1/1 A.ph ATS, steroid 1/0 0 0–0/0 1 1 [136]<br />

1980 France 1/1 A.ph ATS, Vit.C 0/0 0 0–0/0 0 1 [137]<br />

1984 France 1/29 A.ph ATS, Vit.C 1/0 0 0–0/0 0 1 [138]<br />

1992 New Jersey 3/3 A.ph Cimetid 3/0 0 1–2/0 0 3 [139]<br />

1992–1993 New York 2/2 a.sp, amat Cimetid 2/0 0 0–0/0 0 1 [140]<br />

Enjalbert et al.<br />

1999 Pennsylvania 5/6 A.ph, a.sp Cimetid 5/0 0 0–0/0 0 5 [124]<br />

1996–1997 California 1/10 a.sp Cimetid, 1/0 0 0–0/0 0 1 [109]<br />

NAC<br />

<strong>20</strong>00 Missouri 2/2 A.ph, amat Cimetid, 2/0 0 2–2/0 0 2 [141]<br />

NAC<br />

<strong>20</strong>00 Turkey 1/1; child a.sp Cimetid, 1/0 0 0–0/1 0 1 [142]<br />

Vit.C<br />

1986–1992 Italy 73/73; (child.) A.ph, amat NAC a<br />

73/0 73 0–0/0 0 67 [143–145]<br />

1996 France 1/1 L.bi, amat NAC 0/0 0 0–0/0 0 1 [146]<br />

1996–1997 California 6/10 1A.ph, 5 a.sp NAC 6/0 0 0–0/0 0 6 [109]<br />

1996–1998 Italy 11/11 A.ph, amat NAC 11/0 0 11–0/0 1 11 [116]<br />

1997 California 1/4 A.ph NAC 1/0 0 0–0/0 0 0 [90]<br />

1990 Italy 1/1; child a.sp, amat NAC, steroid 0/0 1 0–0/0 0 1 [147]<br />

1994 France 5/29 A.ph NAC, Vit.C 5/0 0 0–0/0 0 5 [138]<br />

1979–1988 France 29/29; (child.) A.ph, amat Silybin 0/0 0 (HD)–0/0 0 26 [148]<br />

1980–1986 Europe 159/252 A.ph, a.sp Silybin 0/0 (FD) (HD–HP)/0 0 156 [127,128]<br />

1985–1994 Sweden 22/41 A.ph, A.vi, a.sp, Silybin 22/0 0 22–22/0 0 22 [149]<br />

amat<br />

1988 California/Oregon 5/5 A.ph Silybin 0/0 5 0–0/0 4 5 [150,151]<br />

1988 Finland 4/4 A.vi Silybin 0/0 1 0–3/0 0 4 [152]<br />

1988 Norway 2/2 A.vi, amat Silybin 2/0 2 0–0/0 0 2 [153]<br />

1988–1994 Denmark 8/8 A.ph, A.vi Silybin 5/8 0 0–3/1 1 6 [154]<br />

1989 Italy 1/2 a.sp, amat Silybin 1/0 1 0–0/0 0 1 [83]<br />

1992 Germany 1/1 A.ph Silybin 1/1 0 0–0/1 0 1 [155]


1992 Germany 4/4; 1 child A.ph, amat Silybin 4/0 0 0–4/0 1 4 [156]<br />

1993 Czech 1/1; child A.ph Silybin 0/0 0 0–0/0 0 1 [157]<br />

1993 Germany 128/154 a.sp Silybin 0/0 0 0–0/0 0 113 [130]<br />

1993 Switzerland 5/5 A.ph, amat Silybin 5/0 0 0–0/0 0 5 [158]<br />

1994 The Netherlands 2/2 A.ph Silybin 2/0 0 0–0/0 0 2 [159]<br />

1994 Slovak Republic 1/1; pregnant A.ph Silybin 0/0 0 1–1/0 0 1 [160]<br />

1996 Italy 3/4 A.ph Silybin 3/0 0 0–0/0 0 3 [161]<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 723<br />

<strong>20</strong>01 Portugal 4/4; 1 child A.ph, a.sp Silybin 3/2 0 0–0/2 2 4 [162]<br />

1981–1983 Germany 6/13 A.ph, amat Silybin,<br />

0/0 0 0–6/0 0 6 [163]<br />

steroid<br />

1983 Germany 3/3 A.ph Silybin,<br />

0/0 0 0–0/0 0 3 [164]<br />

steroid<br />

1986 Denmark 11/11 A.ph, amat Silybin, 0/11 11 0–0/0 0 10 [165]<br />

steroid<br />

1994 Germany 2/2 A.ph Silybin,<br />

2/0 2 0–0/0 0 2 [166]<br />

steroid<br />

1980–1986 Europe 62/252 A.ph, a.sp Silybin,<br />

0/0 (FD) (HD–HP)/0 0 62 [127,128]<br />

Thioc.a<br />

1982–1986 Spain 2/85 a.sp, amat Silybin,<br />

2/2 2 0–2/0 0 2 [43,50]<br />

Thioc.a<br />

1986 Germany 1/1 A.ph, amat Silybin,<br />

1/0 1 0–1/0 0 1 [167]<br />

Thioc.a<br />

1991 Belgium 1/1 A.ph, amat Silybin, Vit.C 0/0 0 1–0/0 0 1 [168]<br />

1992 France 1/4; 1 child L.hel Silybin, Vit.C 1/0 0 0–0/0 0 1 [169]<br />

1993 France 1/29 a.sp Silybin, Vit.C 1/0 0 0–0/0 0 1 [138]<br />

1983–1987 Poland 5/90 A.ph, a.sp, amat Steroid 5/0 5 (HD)–0/0 0 4 [170–172]<br />

1984–1985 Poland 8/30 A.ph, a.sp Steroid 0/8 0 0–8/0 0 7 [173]<br />

1984–1985 Poland 22/30 A.ph, a.sp Steroid 0/22 0 0–0/0 0 16 [173]<br />

1988 Slovenia 10/10; 1 child A.ph, amat Steroid 10/0 0 0–0/10 0 9 [174]<br />

1988 Turkey 2/3; child. A.ph Steroid 1/0 0 1–0/0 0 2 [134]<br />

1988 Turkey 1/27 L.cas, L.hel Steroid 1/0 0 0–0/0 0 1 [82]<br />

1988–1989 Poland 47/90 A.ph, a.sp Steroid 47/47 47 0–0/27 0 42 [170,175]<br />

1979–1981 Italy 64/64 a.sp Steroid, 64/0 0 0–0/0 0 58 [176]<br />

Thioc.a<br />

1981 Italy 44/44; 4 child. A.ph, amat Steroid, 44/0 0 0–0/0 0 40 [177]<br />

Thioc.a<br />

1981–1983 Germany 1/13 A.ph, amat Steroid,<br />

0/0 0 0–0/0 0 1 [163]<br />

Thioc.a<br />

1990 Wisconsin 2/2 A.vi Steroid,<br />

1/1 2 0–2/0 0 2 [178]<br />

Thioc.a<br />

1984 France 2/29 A.ph Steroid, Vit.C 0/0 0 0–0/0 0 2 [138]<br />

(continued)


724<br />

Table 4. Continued<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Urin.<br />

FD ECP HD–HP/PL LT Surv. References<br />

Oral<br />

C/GA<br />

Date/Country T/E Cases Mushroom Drugs<br />

1991–1998 Bulgaria 25/25 A.ph, a.sp Steroid, Vit.E 25/0 25 (HD–HP)/(PL) 0 15 [179]<br />

1977–1992 Slovak 58/58 A.ph Thioc.a 0/0 44 17–58/12 0 38 [180]<br />

Republic<br />

1979–1985 Sweden 19/41 A.ph, A.vi, a.sp Thioc.a 19/0 0 19–19/0 0 19 [149]<br />

1982–1984 Italy 2/6; child. A.ph, a.sp, amat Thioc.a 2/0 0 2–0/2 0 0 [181]<br />

1982–1986 Spain 59/85; (child.) 27 A.ph, 24 a.sp, 7 Thioc.a 18/15 28 0–4/2PL 3 EXE 0 56 [43,50,182–<br />

L.bi, 1 L.f<br />

184]<br />

1985 Italy 53/53; 6 child. A.ph, amat Thioc.a 53/53 (FD) (HD)–0/(PL) 0 47 [185]<br />

1986–1988 Spain 2/4 A.ph, amat Thioc.a 2/0 2 0–0/0 0 0 [182,183]<br />

1987 Italy 2/2 A.ph, amat Thioc.a 0/0 0 0–0/2 0 2 [186]<br />

1988 Spain 1/1 A.ph Thioc.a 0/0 0 0–1/0 0 1 [187]<br />

1989 Spain 10/10 3 L.bi, 7 L.hel, Thioc.a 10/0 0 0–10/0 0 8 [188]<br />

amat<br />

1990 Spain 1/1 A.ph Thioc.a 0/0 0 1–0/0 0 1 [189]<br />

b<br />

1982 Belgium 4/4; 1 child A.ph, amat Thioc.a,<br />

0/0<br />

0–0/0 0 3 [190]<br />

Vit.C<br />

1990–1994 France 11/29 5 A.ph, 6 a.sp Vit.C 4/0 0 1–0/0 0 10 [138]<br />

1992 France 3/4 L.hel Vit.C 1/0 0 0–0/0 0 3 [169]<br />

T/E Cases ¼ treated/exposed individuals; Oral ¼ oral detoxication using C ¼ activated charcoal and GA ¼ gastroduodenal aspiration; Urin. ¼ urinary detoxication by FD ¼ forced diuresis;<br />

ECP ¼ extra-corporeal detoxication including HD ¼ hemodialysis, HP ¼ hemoperfusion, and PL ¼ plasmapheresis (or EXE ¼ exsanguino transfusion); LT ¼ liver transplant;<br />

Surv. ¼ survivors; amat ¼ amatoxins in biological fluids; undefined cases are reported in brackets; ATB ¼ antibiotic agent; ATS ¼ antiseptic agent (nifuroxazide); Cimetid ¼ cimetidine;<br />

NAC ¼ N-acetylcysteine; Thioc.a ¼ thioctic acid; Vit.C ¼ vitamin C; Vit.E ¼ vitamin E; a.sp ¼ amatoxin-containing species; A.ph ¼ Amanita phalloides; A.vi ¼ A. virosa; L.bi ¼ Lepiota<br />

brunneoincarnata; L.cas ¼ L. castanea; L.f. ¼ L. fulvella; L. hel ¼ L. helveola.<br />

a<br />

Neomycin instead <strong>of</strong> benzylpenicillin.<br />

b Spironolactone.<br />

Enjalbert et al.


MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 725<br />

Table 5<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated as Bi- and Tri-chemotherapy without Benzylpenicillin, with/without Detoxication Procedures and with/without Liver Transplant<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

Date/Country T/E Cases Mushroom Drugs Oral C/GA Urin. FD ECP HD–HP/PL LT Surv. References<br />

1996 France 1/1; pregnant A.ph 2 ATB, NAC 1/0 0 0–0/0 0 1 [191,192]<br />

1983 California 1/1; child A.o 2 ATB, steroid 1/0 0 0–0/1 1 1 [193]<br />

1981 France 3/3 A.ph ATB, ATS, Vit.C a<br />

0/0 0 0–0/0 0 3 [194]<br />

1986 France 5/5; (child.) L.blil ATB, ATS, Vit.C a<br />

0/0 0 0–0/0 0 4 [195]<br />

1988 Turkey 3/27 L.cas, L.hel ATB, Thioc.a, Vit.C 3/0 0 3–0/0 0 1 [82]<br />

1989 France 6/6 A.ph, amat Ceftazid, silybin 6/0 0 0–0/0 0 6 [196]<br />

1990 France 5/5 A.ph, amat Ceftazid, silybin 5/0 0 0–0/0 0 5 [197]<br />

1994 France 1/1 L.blil Ceftazid, silybin 0/0 0 0–0/0 1 1 [198]<br />

1980–1986 Europe 6/252 A.ph, a.sp Silybin, Thioc.a 0/0 (FD) (HD–HP)/0 0 5 [127,128]<br />

1982–1984 Italy 4/6; child. A.ph, a.sp, amat Steroid, Thioc.a, Vit.C 4/4 0 0–0/4 0 4 [181]<br />

T/E Cases ¼ treated/exposed individuals; Oral ¼ oral detoxication using C ¼ activated charcoal and GA ¼ gastroduodenal aspiration; Urin. ¼ urinary detoxication by FD ¼ forced diuresis;<br />

ECP ¼ extra-corporeal detoxication including HD ¼ hemodialysis, HP ¼ hemoperfusion, and PL ¼ plasmapheresis; LT ¼ liver transplant; Surv. ¼ survivors; amat ¼ amatoxins in<br />

biological fluids; undefined cases are reported in brackets; ATB ¼ antibiotic agent; ATS ¼ antiseptic agent (nifuroxazide); Ceftazid ¼ ceftazidime; NAC ¼ N-acetylcysteine;<br />

Thioc.a ¼ thioctic acid; Vit.C ¼ vitamin C; a.sp ¼ amatoxin-containing species; A.o ¼ Amanita ocreata; A.ph ¼ A. phalloides; L.blil ¼ Lepiota brunneolilacea; L.cas ¼ L. castanea;<br />

L.hel ¼ L. helveola.<br />

a<br />

Bastien protocol.


726<br />

Table 6<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated as Poly-chemotherapy with/without Benzylpenicillin, with/without Detoxication Procedures and with/without Liver Transplant<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Date/Country T/E Cases Mushroom Drugs Oral C/GA Urin. FD ECP HD–HP/PL LT Surv. References<br />

1992 Michigan 1/1 a.sp 3 ATB, B.pen 0/0 0 0–0/0 1 1 [199]<br />

1996 Italy 1/4 A.ph 2 ATB, B.pen, Silyb 1/0 0 0–0/0 0 1 [161]<br />

1983 New York 1/1 L.jos, amat 3 ATB, Ster 0/0 0 0–1/0 0 0 [<strong>20</strong>0]<br />

1984–1993 Germany 21/21; (child.) A.ph, amat ATB, B.pen, Silyb, Ster, 10/0 0 0–0/21 0 <strong>20</strong> [<strong>20</strong>1]<br />

TA<br />

1988 Turkey 2/27 L.cas, L.hel ATB, B.pen, Ster, TA 2/0 0 0–0/0 0 2 [82]<br />

1988 Turkey 1/27 L.cas, L.hel ATB, B.pen, Ster, TA, 1/0 0 0–0/0 0 1 [82]<br />

Vit.C<br />

1988 Turkey 4/27 L.cas, L.hel ATB, B.pen, Ster, Vit.C 4/0 0 0–0/0 0 2 [82]<br />

1984 France 4/29 A.ph ATS, B.pen, Silyb, Vit.C 0/0 0 0–0/0 0 4 [138]<br />

1988 France 2/29 A.ph ATS, B.pen, Ster, Vit.C 0/0 0 0–0/0 0 2 [138]<br />

1990 France 2/29 A.ph ATS, Silyb, Ster, Vit.C 0/0 0 0–0/0 0 1 [138]<br />

1988 Denmark 4/4 1 A.ph, 1 A.vi, B.pen, Cimet, Silyb, Ster 4/0 4 0–4/0 0 3 [<strong>20</strong>2]<br />

2 a.sp<br />

1993 France 1/29 A.ph B.pen, NAC, Silyb, Vit.C 0/0 0 0–0/0 0 0 [138]<br />

1981–1983 Germany 6/13 A.ph, amat B.pen, Silyb, Ster, TA 0/0 0 0–5/0 0 5 [163]<br />

1991 Hungary 4/4; 1 pregnant A.ph, A.ve B.pen, Silyb, Ster, TA 4/0 4 0–0/0 0 3 [<strong>20</strong>3]<br />

1993 Hungary 8/8; (child.) A.ph B.pen, Silyb, Ster, TA 0/0 0 0–6/1 0 7 [<strong>20</strong>4]<br />

1983–1987 Poland 57/90 A.ph, a.sp, amat B.pen, Ster, Insul, Gluc 57/0 57 (HD)–0/0 0 47 [170–172]<br />

1988–1989 Poland 2/90 A.ph, a.sp, B.pen, Ster, Insul, Gluc 2/2 2 0–0/1 0 2 [170,175]<br />

1983–1987 Poland 28/90 A.ph, a.sp, amat B.pen, Ster, Insul, hGH 28/28 28 0–0/11 0 25 [170–172]<br />

1988–1989 Poland 41/90 A.ph, a.sp B.pen, Ster, Insul, hGH 41/41 41 0–0/29 0 33 [170,175]<br />

T/E Cases ¼ treated/exposed individuals; Oral ¼ oral detoxication using C ¼ activated charcoal and GA ¼ gastroduodenal aspiration; Urin. ¼ urinary detoxication by FD ¼ forced diuresis;<br />

ECP ¼ extra-corporeal detoxication including HD ¼ hemodialysis, HP ¼ hemoperfusion, and PL ¼ plasmapheresis; LT ¼ liver transplant; Surv. ¼ survivors; amat ¼ amatoxins in<br />

biological fluids; ATB ¼ antibiotic agent; ATS ¼ antiseptic agent (nifuroxazide); B.pen ¼ benzylpenicillin; Cimet ¼ cimetidine; Insul, Gluc ¼ insulin and glucagon; Insul, hGH ¼ insulin<br />

and human growth hormone; NAC ¼ N-acetylcysteine; Silyb ¼ silybin; Ster ¼ steroid; TA ¼ thioctic acid; Vit.C ¼ vitamin C; a.sp ¼ amatoxin-containing species; A.ph ¼ Amanita<br />

phalloides; A.ve ¼ A. verna; A.vi ¼ A. virosa; L.cas ¼ Lepiota castanea; L. hel ¼ L. helveola; L. jos ¼ L. josserandii; undefined cases are reported in brackets.<br />

Enjalbert et al.


Preliminary Medical Care<br />

Preliminary medical care consists <strong>of</strong> gastrointestinal<br />

decontamination procedures if appropriate, to make an<br />

attempt at obtaining baseline values <strong>of</strong> key biological<br />

parameters for diagnostic monitoring. When a patient<br />

develops a gastroenteritis 6–24 hours after mushroom<br />

ingestion, all asymptomatic and symptomatic persons<br />

who consumed the same meal should be immediately<br />

evaluated and treated as appropriate to prevent toxin<br />

absorption. Because <strong>of</strong> the long asymptomatic latency,<br />

the clinical utility <strong>of</strong> most gastrointestinal decontamination<br />

procedures seems limited. Although effective in<br />

inducing emesis, there is no evidence from clinical<br />

studies that ipecac syrup improves the outcome <strong>of</strong><br />

poisoned individuals; data to support or exclude its<br />

administration are insufficient. [229] Gastric lavage should<br />

be considered only when it could be performed within<br />

60 minutes after ingestion <strong>of</strong> a life-threatening amount <strong>of</strong><br />

toxin. [230] It is contraindicated if the patient has loss<br />

<strong>of</strong> airway protective reflexes or a decreased level <strong>of</strong><br />

consciousness without endotracheal intubation. [230,231]<br />

There is no conclusive evidence for the use <strong>of</strong> whole<br />

bowel irrigation (WBI), which appears to decrease the<br />

binding capacity <strong>of</strong> the activated charcoal. [232] Some<br />

authors [13,14,22,23,233] advocate the administration <strong>of</strong><br />

activated charcoal alone or with cathartics whereas<br />

others find no data supporting a cathartic in combination<br />

with activated charcoal. [234]<br />

The regional poison center can provide appropriate<br />

decontamination information and also suggest and track<br />

mycological, clinical, and biological data for each<br />

amatoxin victim. [223,231] The identification by a mycologist<br />

<strong>of</strong> any remaining mushrooms can be a key to<br />

diagnosis. The time lag between mushroom ingestion<br />

and hospital admission is an essential information.<br />

Biological parameters including blood sugar, serum<br />

transaminases (aspartate aminotransferase, ASAT; alanine<br />

aminotransferase, ALAT), lactate dehydrogenase<br />

(LDH), serum bilirubin, urea, and coagulation studies<br />

[prothrombin time (PT)] are proposed as indicators <strong>of</strong><br />

hepatotoxicity. [18,19] Ryzko et al. [235] and Parra et al. [236]<br />

noted that hypocalcemia and alkaline phosphatase<br />

isoenzyme (ALP) are also indicators <strong>of</strong> amatoxin<br />

poisoning. Horn et al. [124] recommended concurrent<br />

measurement <strong>of</strong> serum markers <strong>of</strong> hepatocellular<br />

necrosis combined with markers <strong>of</strong> hepatocellular<br />

regeneration (g-glutamyl transferase and a-fetoprotein).<br />

Analysis <strong>of</strong> diarrhea fluids has been recommended<br />

since high levels <strong>of</strong> amatoxins are eliminated in feces.<br />

<strong>Amatoxin</strong>s may also be assayed in urine and serum by<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 727<br />

radio-immunoassay, [237,238] high-performance liquid<br />

chromatography with UV detection method as reviewed<br />

by Dorizzi et al., [239] electrochemical detection, [240] and<br />

capillary electrophoresis. [241] Thin layer chromatography<br />

using a color index <strong>of</strong> amatoxins by Schiff’s test is<br />

reported by Russian authors. [242] Unfortunately, the<br />

amatoxin concentrations in biological samples do not<br />

correlate with the severity <strong>of</strong> poisoning and do not<br />

indicate intra-hepatic toxin accumulation. High individual<br />

differences in urinary amatoxin concentrations may<br />

only be <strong>of</strong> qualitative value. [243]<br />

Supportive Measures<br />

Supportive measures for the management <strong>of</strong> gastroenteritis<br />

and hepatotoxicity are so frequently used that an<br />

<strong>analysis</strong> <strong>of</strong> their utility was not attempted with this data.<br />

In the gastrointestinal phase, diarrhea and emesis can<br />

produce hypovolemic shock requiring intensive intravenous<br />

fluid resuscitation. Electrolyte abnormalities,<br />

metabolic acidosis, hypoglycemia, impaired coagulation<br />

due to decreased hepatic synthesis <strong>of</strong> Factors II, V, VII,<br />

and X are corrected. A normal or slightly high urine<br />

output is maintained during the first 48 hours to avoid<br />

acute renal failure. Parenteral nutrition with protein<br />

intake restriction is instituted.<br />

Specific recommendations for supportive treatment <strong>of</strong><br />

hepatoxicity include: (i) correction <strong>of</strong> coagulation<br />

disorders by parenteral vitamin K (10 mg daily for<br />

three consecutive days), fresh frozen plasma and<br />

antithrombin III, (ii) oral lactulose and neomycin to<br />

prevent encephalopathy, [244] and (iii) mannitol to lower<br />

intracranial pressure and avoid cerebral edema. [245]<br />

Ninety-one <strong>of</strong> the 2108 patients reported since 1980,<br />

including six LT victims, were given supportive<br />

measures alone (Table 1). A total <strong>of</strong> <strong>20</strong>17 <strong>of</strong> 2108<br />

victims were treated with supportive measures combined<br />

with specific treatments as detoxication procedures alone<br />

(Table 2) and various protocols <strong>of</strong> chemotherapy with or<br />

without detoxication procedures (Tables 3–6).<br />

Detoxication Procedures<br />

Detoxication involves two different approaches: the<br />

reduction <strong>of</strong> absorption and enhancement <strong>of</strong><br />

excretion. [246]<br />

Oral Detoxication<br />

Theoretically activated charcoal should bind amatoxins<br />

excreted via the bile into the duodenum and upper<br />

jejunum, although there is no evidence that its use


728<br />

improves clinical outcome if it is used more than 1 hour<br />

after ingestion. [247] Toxicokinetic studies in the dog<br />

suggested amatoxin absorption or reabsorption from the<br />

intestine. [248] Given the enterohepatic circulation <strong>of</strong><br />

amatoxins, administration <strong>of</strong> activated charcoal as<br />

multiple doses could reduce amatoxin absorption if in<br />

contact with toxin present in the gastrointestinal tract.<br />

Serial charcoal dosing either as a continuous nasogastric<br />

drip or pulse dosing with <strong>20</strong>–40 g every 3–4 hours (for<br />

24 hours or more) has been advocated by most authors as<br />

a relatively noninvasive enterohepatic and enteric<br />

dialysis technique. [42,74,233,249 – 251] However, clinical<br />

data are insufficient to support or exclude this oral<br />

detoxication method. [247]<br />

Gastroduodenal aspiration (GA) from the upper<br />

portion <strong>of</strong> the small intestine through a nasogastric tube<br />

has been recommended as a sole technique or combined<br />

with activated charcoal to remove bile fluids and<br />

interrupt enterohepatic circulation [252] but the actual<br />

benefit <strong>of</strong> these procedures is not documented.<br />

<strong>Amatoxin</strong>s are present in the gastroduodenal fluids<br />

until 60 hour after mushroom ingestion. [253] Long term<br />

intubation may lead to side effects <strong>of</strong> bleeding and<br />

pancreatitis and is not always recommended. [14]<br />

Urinary Detoxication<br />

Toxicokinetic reports <strong>of</strong> human mushroom poisoning<br />

have shown that diuresis substantially enhances the<br />

amatoxin elimination rate. Large amounts <strong>of</strong> amatoxins<br />

(60–80%) are filtered through the glomeruli. [254] Urinary<br />

elimination <strong>of</strong> amatoxins has been detected within the<br />

first 8 hours and for 3–4 days after mushroom<br />

ingestion. [167] <strong>Amatoxin</strong> concentrations in the urine are<br />

from 100 to 150 times higher than those <strong>of</strong> serum and can<br />

be quantified even when no serum circulating amatoxins<br />

are detectable. [50,51,255 – 257] Maintenance <strong>of</strong> early and<br />

adequate urine output is theoretically important even<br />

though there is no re-absorption in the proximal tubules<br />

or tubular secretion; “forced diuresis (FD)” with fluids<br />

plus a loop diuretic cannot increase amatoxin elimination.<br />

[14,248] According to Jaeger et al., [257] there is no<br />

pro<strong>of</strong> that FD decreases the amount <strong>of</strong> amatoxins bound<br />

to the hepatocytes or is more efficient than the<br />

maintenance <strong>of</strong> an adequate diuresis (from 100 to<br />

<strong>20</strong>0 mL/h). Furthermore, FD is difficult to maintain in a<br />

patient with a severe dehydration.<br />

Extra-corporeal Purification Procedures<br />

<strong>Amatoxin</strong>s are detected in the serum from 24 to<br />

48 hours after mushroom ingestion but at very low<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

[253,256 – 258]<br />

concentrations when compared to the urine.<br />

Extra-corporeal elimination includes hemodialysis (HD),<br />

hemoperfusion (HP), plasmapheresis (PL), and related<br />

methods. HP and HD are theoretically helpful since the<br />

amatoxins are easily dialyzable due to their free<br />

circulation in the serum and their small molecular<br />

weight (about 900 Da); amatoxins also possess a high<br />

affinity for charcoal and polymers used for HP cartridges<br />

and dialyzer membranes. [249] HD initiated as sole<br />

treatment has been reported to be ineffective in the<br />

management <strong>of</strong> amatoxin syndrome [82,97] but should be<br />

instituted if renal failure occurs. [231] Given the low serum<br />

amatoxin concentration, the utility <strong>of</strong> toxin removal by<br />

extra-corporeal purification procedures is questionable.<br />

Extra-corporeal purification procedures such as HD, HP,<br />

and PL, and related methods such as continuous<br />

venovenous hem<strong>of</strong>iltration and exsanguino-transfusion,<br />

are <strong>of</strong>ten used in a combined mode; it is difficult to assess<br />

the efficacy <strong>of</strong> any single treatment.<br />

HP has been applied to amatoxin-intoxicated patients<br />

since 1978 with a possibly favorable effect. [259 – 261] It<br />

has been carried out within the first 36 or 48 hours after<br />

ingestion [246,260,262] but is proposed as most effective if<br />

applied prior to 24 hours. [231] The survival rate <strong>of</strong><br />

poisoned patients is claimed to depend on the time <strong>of</strong><br />

beginning HP. [14,140,180] Polish and Turkish <strong>retrospective</strong><br />

studies have reported increased survival for amatoxinpoisoned<br />

patients treated with HP. [107,173]<br />

Thrombocytopenia, a major side effect <strong>of</strong> HP that<br />

increases the risk <strong>of</strong> bleeding, [123,149] diminishes when a<br />

platelet protective agent such as prostacyclin is<br />

administered. [123] Other complications <strong>of</strong> HP such as<br />

hypotension due to volume loss, hypoglycemia, and<br />

hypocalcemia must be monitored and corrected. [262]<br />

Controversy centers on whether the blood level <strong>of</strong><br />

amatoxins is high enough to justify this procedure.<br />

[249,258] HP performed within 12–14 hours after<br />

ingestion <strong>of</strong> amatoxin-containing mushrooms eliminated<br />

less than 4% <strong>of</strong> the ingested toxin dose. [225] Although the<br />

benefit <strong>of</strong> HP to remove amatoxins in the early stages <strong>of</strong><br />

intoxication was debatable, [263] it may help support the<br />

patient during hepatic failure. [155] HP eliminates<br />

neurotropic and neurotoxic amino acids and mercaptans;<br />

it has been reported to ameliorate the hepatic<br />

encephalopathy in 75% <strong>of</strong> amatoxin poisoned<br />

patients. [264,265]<br />

The HP sorbent most frequently used is activated<br />

charcoal. In the United States, the only available HP<br />

sorbent is activated charcoal-coated polymer membranes.<br />

[262] The efficacy <strong>of</strong> ion-exchange resin (Amberlite<br />

XAD-4) has been experimentally demonstrated. [266]


Czechoslovakian investigations <strong>of</strong> the in vitro absorption<br />

<strong>of</strong> a- and b-Ama standards, using charcoal as well as<br />

XAD-2 and XAD-4 resin types, found Amberlite XAD-2<br />

synthetic resin the most effective and activated charcoal<br />

the least. [267,268] Positive results from in vitro experiments<br />

with Amberlite XAD-2 resin are said to justify<br />

further trials <strong>of</strong> this material in the detoxication<br />

procedures <strong>of</strong> clinical amatoxin poisonings. [269]<br />

HP is <strong>of</strong>ten combined with HD; some reports claim it<br />

is helpful. [14,159,249] American reports on the clearance <strong>of</strong><br />

amatoxins in a series <strong>of</strong> blood samples taken from<br />

poisoned patients before and after treatment as well as in<br />

the HD/HP circuits demonstrate no utility. [141] Italian<br />

authors have recently reported the combination <strong>of</strong><br />

charcoal plasmaperfusion and continuous venovenous<br />

hem<strong>of</strong>iltration (Table 2) to eliminate both low and high<br />

molecular weight toxins. This new method <strong>of</strong> toxin<br />

removal might improve the liver function <strong>of</strong> amatoxin<br />

intoxicated patients. [111]<br />

The first uses <strong>of</strong> PL in mushroom poisoning in<br />

general [270] and Amanita poisoning in particular, [271]<br />

were reported in the late 1970s. Several authors [98,272]<br />

and most recently Jander et al. [273] reviewed advantages<br />

and problems relevant to PL for amatoxin-intoxicated<br />

patients.<br />

PL performed as a single detoxication procedure [98]<br />

or in combination with other extra-corporeal purification<br />

methods such as HD/charcoal HP [97] or Amberlite XAD-<br />

2HP [215] has been reported to decrease mortality. PL<br />

plus chemotherapy are also said to improve survival<br />

as well as the general condition <strong>of</strong> poisoned patients<br />

by stabilizing biliary acid and bilirubin levels. [131,174] In a<br />

large study, mortality was 7.4% when PL plus chemotherapy<br />

was used for 68 <strong>of</strong> 180 patients and<br />

1<strong>9.</strong>6% when the PL was not used. [175] German authors<br />

also reported that early combined treatment<br />

with PL plus chemotherapy was beneficial. [273] According<br />

to 18-<strong>year</strong> Italian experience, plasma-exchange<br />

therapy associated with general intensive care<br />

may improve the health <strong>of</strong> amatoxin poisoned<br />

patients who retain sufficient capacity for liver<br />

regeneration. [100]<br />

Patterns and Frequency <strong>of</strong> Detoxication<br />

Procedures<br />

Of the <strong>20</strong>17 amatoxin-poisoned individuals administered<br />

specific treatments, 385 (1<strong>9.</strong>1%, Table 2) underwent<br />

only detoxication procedures (Detox-group) while<br />

1632 (80.9%, Tables 3–6) received chemotherapy<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 729<br />

(Chem-group) either alone or combined with detoxication<br />

procedures.<br />

Activated charcoal (C) was given to 7.5% (29/385)<br />

Detox-group patients and to 35.7% (583/1632)<br />

Chem-group patients. GA was performed in<br />

3.6% (59/1632) Chem-group patients. Combined<br />

C þ GA was reported for 2 <strong>of</strong> 385 Detox-group patients<br />

and 223 <strong>of</strong> 1632 (13.7%) Chem-group patients.<br />

FD was undertaken in 4<strong>9.</strong>4% (190/385) Detox-group<br />

patients and at least 33% <strong>of</strong> Chem-group patients.<br />

HD was reported for 30.6% (118/385) Detox-group<br />

and at least 7.1% <strong>of</strong> the 1632 Chem-group patients. HP<br />

was reported for 57.4% (221/385) Detox-group and at<br />

least 11.4% <strong>of</strong> the Chem-group patients. PL was cited for<br />

5.2% (<strong>20</strong>/385) Detox-group and at least <strong>9.</strong>6% <strong>of</strong> the<br />

Chem-group patients.<br />

The inadequate reporting <strong>of</strong> HD and extra-corporeal<br />

procedures in the sources comprised in Tables 3–6<br />

among the patients who also received chemotherapy<br />

necessitated the pooling <strong>of</strong> patients receiving the same<br />

chemotherapy with and without detoxication procedures.<br />

Chemotherapy with Specific Agents<br />

No specific amatoxin antidote is available, but<br />

therapeutic agents such as b-lactam antibiotics, silymarin<br />

complex, thioctic acid, antioxidant drugs and other<br />

drugs are used in the clinical management <strong>of</strong> amatoxin<br />

poisoning. In vitro experiments and animal model<br />

investigations have been summarized along with the<br />

purported advantages and disadvantages <strong>of</strong> their clinical<br />

use. In this survey, the 1632 patients in the Chem-group<br />

received drugs as mono-chemotherapy (Table 3), bichemotherapy<br />

with or without benzylpenicillin (part <strong>of</strong><br />

Table 4 and part <strong>of</strong> Table 5, respectively), trichemotherapy<br />

with or without benzylpenicillin (part <strong>of</strong><br />

Table 4 and part <strong>of</strong> Table 5, respectively) or polychemotherapy<br />

(.3 drugs) with or without benzylpenicillin<br />

(Table 6). Patients in the Chem-group may have<br />

also received detoxication procedures.<br />

b-Lactam Antibiotics<br />

Benzylpenicillin (Penicillin G) and ceftazidime are blactam<br />

antibiotics thought to be hepatoprotective in<br />

amatoxin poisoning. Benzylpenicillin was first used to<br />

protect mice and rats against lethal doses <strong>of</strong> either A.<br />

phalloides extracts or a-Ama. [274,275] In dogs orally<br />

poisoned with a sub-lethal dose <strong>of</strong> A. phalloides<br />

preparation, intravenous benzylpenicillin injection


730<br />

prevented both the rise <strong>of</strong> the liver enzymes and the fall<br />

<strong>of</strong> clotting factors in the blood. [276]<br />

Benzylpenicillin perfusions <strong>of</strong> isolated rat liver<br />

showed a strong inhibition <strong>of</strong> a-Ama toxicity. [277]<br />

Although most b-lactam antibiotics utilize a common<br />

carrier system for uptake into isolated hepatocytes, [278]<br />

kinetic studies <strong>of</strong> a-Ama absorption in hepatocytes<br />

proved that benzylpenicillin does not inhibit the<br />

membrane transport systems used by the toxin. An<br />

intracellular mechanism rather than interference with<br />

amanitin uptake appears responsible for the purported<br />

hepatoprotective effect. [279]<br />

Several theories have been advanced to explain the<br />

antitoxic action <strong>of</strong> benzylpenicillin. Floersheim’s<br />

hypothesis [280]<br />

that the drug could displace a-Ama<br />

from its binding site on serum protein is challenged by<br />

evidence that the toxic cyclopeptide does not bind to<br />

serum albumin. [266,281] Another hypothesis suggested<br />

that benzylpenicillin reduced or eliminated the GABAproducing<br />

intestinal flora involved in hepatic encephalopathy.<br />

[250,280] Although GABA appeared to be involved<br />

in experimental hepatic encephalopathy, the inhibitory<br />

neurotransmitter does not seem to play a role in human<br />

encephalopathy. [282]<br />

Other reports presented evidence <strong>of</strong> an anti-proliferative<br />

effect <strong>of</strong> b-lactam antibiotics on cultured<br />

eukaryotic cells including human sources and in vitro<br />

DNA replication systems. The intracellular target <strong>of</strong> blactams<br />

appears to be the replicative enzyme polymerase<br />

I. [283,284] Since the amatoxins, particularly a-Ama, are<br />

selective blockers <strong>of</strong> DNA-dependent RNA polymerase<br />

II, it is possible that the b-lactam antibiotics protect via<br />

their effects on eukaryotic DNA replication. [285]<br />

Although there is no formal pro<strong>of</strong>, in vitro experiments<br />

on chicken embryo hepatocytes and in vivo studies on<br />

mouse liver have shown that b-lactam antibiotics inhibit<br />

the toxic effect induced by a-Ama. [286]<br />

Unfortunately, benzylpenicillin commonly causes<br />

allergic drug reactions with an incidence <strong>of</strong><br />

1–10%. [126,287 – 289] The large amount <strong>of</strong> sodium ions<br />

administered with this antibiotic agent to amatoxinpoisoned<br />

patients may disrupt electrolyte balance. [290,291]<br />

Severe granulocytopenia has also been observed with<br />

high doses <strong>of</strong> benzylpenicillin. [292 – 294] Degradation<br />

products formed in vitro are <strong>of</strong>ten the causative agents<br />

<strong>of</strong> such adverse reactions rather than parent antibiotic.<br />

Use <strong>of</strong> freshly prepared single doses <strong>of</strong> benzylpenicillin<br />

prevents the majority <strong>of</strong> side effects. [295] However, given<br />

the bone narrow toxicity <strong>of</strong> b-lactams, these antibiotics<br />

[189,285] could affect all the hematopoietic cell<br />

lines. Lastly, massive benzylpenicillin therapy may<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

evoke neurotoxic symptoms in patients with nervous<br />

system disease and renal insufficiency as well as induce<br />

convulsions when cerebral edema is imminent. [14,296]<br />

Although the biological mechanism <strong>of</strong> b-lactam<br />

antibiotics in the treatment <strong>of</strong> amatoxin poisoning is still<br />

unclear and high-dose benzylpenicillin can induce<br />

adverse reactions, the literature seems to support clinical<br />

benefits. Moroni et al. [297] reported 100% recovery for 33<br />

patients treated 1 or 2 days after ingestion <strong>of</strong> Amanita<br />

mushrooms with high doses <strong>of</strong> IV benzylpenicillin plus<br />

thioctic acid and steroids. Statistical <strong>analysis</strong> <strong>of</strong> a clinical<br />

study <strong>of</strong> <strong>20</strong>5 patients from Austria, France, Italy,<br />

Switzerland, and The Netherlands from 1971 to 1980<br />

found benzylpenicillin at 300,000–1,000,000 U/kg/day<br />

IV to be significantly associated with survival. [250,298]<br />

The suggested doses for benzylpenicillin are 40,000,000<br />

and 1,000,000 U/day in adults and children, respectively.<br />

[265] Benzylpenicillin is not approved by the US<br />

Food and Drug Administration (FDA) for treatment <strong>of</strong><br />

Amanita poisonings.<br />

In this <strong>20</strong>-<strong>year</strong> survey, benzylpenicillin was the most<br />

frequently used drug in the management <strong>of</strong> amatoxin<br />

poisoning, either as mono-chemotherapy in 164<br />

cases (10.1%, Table 3) or combined with other drugs<br />

as bi-chemotherapy (797 cases, 48.8%, Table 4), trichemotherapy<br />

(263 cases, 16.1%, Table 4), and polychemotherapy<br />

(187 cases, 11.5%, Table 6). In total,<br />

86.5% <strong>of</strong> Chem-group patients (1411/1632) receiving<br />

chemotherapy were treated with benzylpenicillin.<br />

Ceftazidime, a third generation cephalosporin, is<br />

several times more effective than benzylpenicillin by<br />

DNA replication systems testing in vitro. [284,286]<br />

According to the Neftel protocol, [196] ceftazidime is<br />

administered as 4.5 g IV every 2 hours. Despite the high<br />

drug concentrations in plasma, no renal and neurological<br />

side effects were reported. [197] Ceftazidime was the<br />

second most used b-lactam but was always combined<br />

with silybin (12 cases, Table 5).<br />

Silymarin Complex<br />

Enjalbert et al.<br />

Silymarin is a hepatoprotectant complex <strong>of</strong> natural<br />

substances isolated from seeds <strong>of</strong> Mediterranean milk<br />

thistle, Silybum marianum (L.) Gaertn. (Asteraceae ). [299]<br />

This flavonolignan group includes the three isomers<br />

silydianin, silychristin, and the major compound,<br />

silybin. [300,301] The beneficial effects <strong>of</strong> silymarin on<br />

death rate and survival time in intraperitoneal (IP)<br />

administered mice with a-Ama were reported by Hahn<br />

et al. [302] Silymarin efficacy depended on both the delay<br />

between intoxication and therapy, and the degree <strong>of</strong> liver


damage. [303] Silymarin markedly increased the survival<br />

<strong>of</strong> mice poisoned with IP A. phalloides extracts. [304] In<br />

dogs, which display poisoning resembling human<br />

intoxication, silymarin suppressed both the rise <strong>of</strong> liver<br />

enzymes and the fall <strong>of</strong> clotting factors, and silybin<br />

noticeably reduced the degree <strong>of</strong> bloody necrosis in<br />

animal livers after oral A. phalloides extract. [276,305]<br />

Histochemical studies on isolated rat hepatocytes<br />

have elucidated the mechanism <strong>of</strong> silymarin hepatoprotection.<br />

The flavonolignan complex bound tightly to liver<br />

plasma membrane acts as a membrane stabilizer [306,307]<br />

whereas flavonoid substances such as taxifolin, morin,<br />

and quercetin have no effect. [308]<br />

Silymarin hindered a-Ama penetration <strong>of</strong> the cell<br />

wall. [277,303,308] Silybin competed with a-Ama for the<br />

multi-specific bile salt transport systems <strong>of</strong> the<br />

hepatocyte membrane. [279] Histoenzyme analyses <strong>of</strong><br />

liver from a-Ama poisoned mice revealed that factors<br />

disturbed by the toxin, including glucose-6-phosphatase,<br />

aminopeptidase, ATPase, glycogen, lipid, and nucleic<br />

acid, were restored by silybin. [309]<br />

Silymarin and silybin are also radical scavengers<br />

acting as chain-breaking antioxidants. [310 – 315] Silymarin<br />

complex, by preserving alkaline phosphatase activity,<br />

prevented changes in membrane phospholipid composition<br />

and inhibited the lipid peroxidation in both rat liver<br />

microsomes and isolated hepatocytes.<br />

[310 – 312,316 – 318]<br />

The action site <strong>of</strong> silymarin is the hepatocyte outer<br />

membrane where the drug maintains lipid composition<br />

and aids functional integrity. [316]<br />

Silybin in isolated rat Kupffer cells showed inhibition<br />

<strong>of</strong> the cyclooxygenase and 5-lipooxygenase pathway <strong>of</strong><br />

arachidonic acid metabolism and the subsequent<br />

synthesis <strong>of</strong> the inflammation mediator leukotriene<br />

B4. [319] Silymarin also produced a high anti-inflammatory<br />

effect in vivo by inhibition <strong>of</strong> leukocyte migration<br />

into the inflamed site. [3<strong>20</strong>] Silymarin exerted an<br />

antifibrotic activity and retarded collagen accumulation<br />

in early and advanced biliary fibrosis secondary to<br />

complete bile duct obliteration in rats.<br />

[321 – 323]<br />

Silybin favored the regenerative process <strong>of</strong> both liver<br />

and Kupffer cells <strong>of</strong> partially hepatectomized rats. [324]<br />

These results agree with the observation that silybin<br />

stimulates liver cell metabolism. [325] It increased the<br />

synthetic rate <strong>of</strong> ribosomal RNA not only in rat hepatocyte<br />

but also in the isolated hepatocyte nucleus, via<br />

activation <strong>of</strong> DNA-dependent RNA polymerase I. As a<br />

consequence <strong>of</strong> this stimulation, ribosome formation was<br />

accelerated and protein synthesis increased. Although<br />

protein and RNA syntheses are prerequisites for DNA<br />

synthesis, silybin had no effect on DNA formation in cell<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 731<br />

cultures and liver <strong>of</strong> normal rats whereas an effect could<br />

[326 –<br />

be observed in liver <strong>of</strong> partially hepatectomized rats,<br />

329]<br />

suggesting that silybin stimulates protein biosynthesis<br />

and regenerates damaged liver tissue.<br />

Levels <strong>of</strong> silymarin components are found to be low in<br />

plasma and urine after oral and IV silybin administered to<br />

rats and after oral silymarin to cholecystectomized<br />

patients. [330] The three isomers, silybin, silydianin, and<br />

silychristin (silymarin complex) were excreted mainly by<br />

the biliary route either free or as sulfate and glucuronide<br />

conjugates. [330,331] 75–90% <strong>of</strong> the administered dose <strong>of</strong><br />

silybin is metabolized to glucuronide and sulfate<br />

conjugates, which are partly hydrolyzed and cycled<br />

enterohepatically. [315] Silybin elimination is estimated as<br />

<strong>20</strong>–40% over a 24-hour period with a maximum between<br />

2 and 9-hour post-administration. [332] Thus, silybin in the<br />

bile theoretically inhibits enteric absorption and interrupt<br />

enterohepatic circulation <strong>of</strong> the amatoxins. [249,333]<br />

Silybin administration within 60 hours after a toxic<br />

mushroom meal blocked the increased alanine amino<br />

transferase (ALAT) and restored other parameters <strong>of</strong><br />

liver dysfunction. [315,334]<br />

After oral silymarin, collected bile contained high<br />

amounts <strong>of</strong> isosilybin (a silybin isomer) and very low<br />

levels <strong>of</strong> silydianin and silychristin. The low concentrations<br />

in plasma and bile <strong>of</strong> both silydianin and<br />

silychristin indicate a minor contribution <strong>of</strong> these<br />

compounds to the hepatoprotective effect <strong>of</strong> silymarin<br />

complex. [335]<br />

In order to increase silybin concentration in the bile,<br />

recent studies have combined silybin with phosphatidylcholine;<br />

this lipophilic complex is called silipide (IdB<br />

1016). Silybin concentrations in patient bile after silipide<br />

administration were several-fold higher than after oral<br />

silymarin. This suggests that such complexation<br />

increased the oral bio-availability <strong>of</strong> silybin. It is likely<br />

that drug passage through membranes <strong>of</strong> the gastrointestinal<br />

tract was facilitated, favoring hepatic delivery.<br />

[335,336]<br />

Advances in the knowledge <strong>of</strong> the hepatoprotective<br />

properties <strong>of</strong> silymarin complex have yielded convincing<br />

experimental evidence for the efficacy <strong>of</strong> silybin and<br />

justified its use in human amatoxin poisoning. However,<br />

according to Wellington and Jarvis, [315] the value <strong>of</strong><br />

silymarin relates to the toxin dose and time lag before<br />

drug administration. In a clinical series <strong>of</strong> <strong>20</strong>5 cases, all<br />

patients who received silybin survived. [298] Reviewing<br />

the recovery <strong>of</strong> 18 cases <strong>of</strong> Amanita poisoning treated<br />

with silybin, Hruby et al. [290,291] concluded that the drug<br />

administered even up to 48 hour after toxic mushroom<br />

ingestion was effective in preventing severe liver


732<br />

damage. In a <strong>retrospective</strong> study <strong>of</strong> 175 cases with a<br />

mortality rate <strong>of</strong> 8.6%, [315] 131 patients were treated with<br />

silybin/benzylpenicillin combination (14 deaths) and 44<br />

patients received silybin alone (one death). However, the<br />

mean interval between mushroom ingestion and institution<br />

<strong>of</strong> silybin therapy as well as the severity <strong>of</strong> poisoning<br />

were not identical for the two therapeutic modes.<br />

Table 3 lists 74 amatoxin-poisoning cases (4.5% <strong>of</strong><br />

1632) treated with silybin as mono-chemotherapy and<br />

Tables 4–6 list 550 cases (33.7% <strong>of</strong> 1632) treated with<br />

silybin in combination with other drugs. Some authors<br />

suggested the combination <strong>of</strong> silybin plus benzylpenicillin<br />

to be more beneficial than other combinations.<br />

[18,69,224,337] Faulstich and Zilker thought that<br />

both drugs act as competitive inhibitors <strong>of</strong> the amatoxintransporting<br />

system and should not be used in<br />

combination [14] but did not consider the disparate effects<br />

<strong>of</strong> benzylpenicillin and silybin on a-Ama uptake<br />

reported by Kröncke et al. [279] In our survey, 379, 102,<br />

and 49 <strong>of</strong> 1632 amatoxin intoxicated patients received<br />

silybin/benzylpenicillin as bi-chemotherapy (23.2%,<br />

Table 4), tri-chemotherapy (6.3%, Table 4), and polychemotherapy<br />

(3%, Table 6), respectively.<br />

The initial dose <strong>of</strong> silybin dihemisuccinate is 5 mg/kg<br />

by IV infusion over 1 hour followed by <strong>20</strong> mg/kg/day by<br />

continuous infusion for six days until transaminase levels<br />

have normalized. [315] In the United States, silymarin is<br />

available only as a food supplement; at this time there is<br />

no active Investigational New Drug (IND) application<br />

for any component <strong>of</strong> the silymarin complex in the U.S.<br />

FDA. [231,315,338]<br />

No serious side effects have been observed with<br />

silybin [225] but nausea, epigastric discomfort, arthralgia,<br />

headaches, pruritus, and urticaria have been reported.<br />

Due to a lack <strong>of</strong> adequate clinical investigations, silybin<br />

is not administered to children under 12 <strong>year</strong>s <strong>of</strong> age,<br />

unless the benefits outweigh the risks. [315] Oral<br />

silymarin, Legalon w and b-cyclodextrin silybin have<br />

been recommended as an alternative to parenteral<br />

silybin. [133,339]<br />

Hepatoprotective activity <strong>of</strong> the Extractum Silybi<br />

fluidum (fluid extract) and “Silybochol” against rat liver<br />

damage caused by CCl 4 was recently shown. This<br />

preliminary finding suggests potential utility in clinical<br />

trials <strong>of</strong> the bio-active substances from S. marianum fruit<br />

powder, fluid extract, and fatty oil. [340]<br />

Thioctic Acid<br />

Mechanistic studies on thioctic acid (a-lipoic acid;<br />

1,2-dithiolane-3-pentanoic acid) suggest a rationale for<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

potential benefit in amatoxin hepatotoxicity. Acting as a<br />

free radical scavenger, it might prevent lipid peroxidation<br />

<strong>of</strong> the cell membrane by dissociating the hydrogen<br />

ion on the sulfhydryl groups <strong>of</strong> dihydrothioctic acid, its<br />

main metabolite. [354] Due to the antioxidant activity <strong>of</strong><br />

both oxidized and reduced forms, affecting in vitro<br />

cellular metabolic processes, thioctic acid is capable <strong>of</strong><br />

regenerating directly vitamin C and indirectly vitamin E,<br />

as well as influencing the increase <strong>of</strong> intracellular<br />

glutathione content. [355,356] Thioctic acid has a therapeutic<br />

potential in the treatment <strong>of</strong> hepatic diseases<br />

induced by chemical agents in animal models as<br />

reviewed by Bustamante et al. [356]<br />

It was introduced for the treatment <strong>of</strong> amatoxin<br />

poisoning in the Czech Republic by Kubicka in 196<strong>9.</strong> [341]<br />

The successful use <strong>of</strong> a-lipoic acid was also reported<br />

from Italy [342,343] and then reviewed in the Eastern<br />

European literature. [344,345] In the United States, the first<br />

use <strong>of</strong> thioctic acid was described in 1972 in New Jersey<br />

for A. verna intoxication with apparently beneficial<br />

result. [346] The cause–effect relationship between<br />

thioctic acid administration and clinical improvement<br />

in amatoxin poisoning is not clearly established and<br />

opinion concerning efficacy is divergent. [347 – 351] Early<br />

enthusiasm in the United States waned as investigations<br />

<strong>of</strong> thioctic acid carried out in Amanita poisoned mice and<br />

dogs reported either a severe glucose imbalance [352] or<br />

ineffectiveness <strong>of</strong> the drug. [353] A controlled clinical trial<br />

was never conducted and there were too few patients<br />

enrolled in the IND study to support a claim <strong>of</strong> efficacy.<br />

This drug is unavailable for human use in the United<br />

States. Multiple authors discourage its clinical<br />

use. [74,352,357 – 359] According to Floersheim et al. [298]<br />

and Floersheim [360] the administration <strong>of</strong> thioctic acid is<br />

<strong>of</strong>ten associated with a fatal outcome and it should be<br />

removed from the therapeutic protocol. [231] Other<br />

authors support thioctic acid trials in amatoxin poisoning<br />

until its efficacy can be confirmed or refuted. [23,361,362]<br />

Given the experimental findings <strong>of</strong> hypoglycemia as a<br />

major side effect <strong>of</strong> thioctic acid, [348,352] the drug should<br />

beadministeredwithasustainedIVdrip<strong>of</strong>glucose. [349,363]<br />

In clinical use, thioctic acid was combined with glucose<br />

in IV infusions at doses <strong>of</strong> (i) 300 mg/kg/day in four<br />

divided doses and then 600 mg/kg/day [73,361] and (ii)<br />

50–150 mg/kg/day. [364] Allergic skin reactions have<br />

been reported. [355] Because it is sensitive to light and<br />

heat, bottles and infusion lines containing the solution<br />

must be wrapped in aluminum foil. [231,347,349]<br />

In this <strong>20</strong>-<strong>year</strong> case survey beginning in the 1980s,<br />

thioctic acid was used in 8 <strong>of</strong> 1632 amatoxin poisonings<br />

(0.5%, Table 3) as single chemotherapy and in 442 <strong>of</strong>


1632 (27.1%, Tables 4–6) in combined chemotherapy.<br />

Thioctic acid/benzylpenicillin was given as bi-chemotherapy<br />

(<strong>20</strong>7 <strong>of</strong> 1632, 12.7%, Table 4), tri-chemotherapy<br />

(180 <strong>of</strong> 1632, 11%, Table 4), and poly-chemotherapy (42<br />

<strong>of</strong> 1632, 2.6%, Table 6).<br />

Antioxidant Drugs<br />

In recent <strong>year</strong>s, authors have postulated that the<br />

oxidant effects <strong>of</strong> amatoxins could be counteracted by<br />

the use <strong>of</strong> antioxidants such as ascorbic acid, cimetidine,<br />

and NAC. [116]<br />

L-ascorbic acid (vitamin C) is widely distributed in the<br />

plant and animal kingdoms. Biochemistry, physiological<br />

properties, and clinical uses <strong>of</strong> this chemical agent have<br />

been extensively reviewed. [301,365] Vitamin C inhibits<br />

lipid peroxidation and is used as hepatocyte protector in<br />

damage due to acetaminophen and CCl4. [366] It was<br />

introduced in the emergency treatment <strong>of</strong> A. phalloides<br />

intoxication <strong>20</strong> <strong>year</strong>s ago as part <strong>of</strong> a multi-drug regimen<br />

(plus nifuroxazide and dihydrostreptomycin) devised by<br />

Bastien. [194,367,368] The regimen was reviewed by<br />

Chabré [369] and is still used in French poison centers. [231]<br />

Our survey found use <strong>of</strong> vitamin C, usually in<br />

combination with benzylpenicillin, in 60 cases (3.7%,<br />

Tables 4–6).<br />

Cimetidine, a cytochrome P450 inhibitor, is an<br />

antioxidant agent with cytoprotective and antifibrinolytic<br />

effects. [301,370] Therapeutic use in the management <strong>of</strong><br />

amatoxin poisoning is based on the clinical similarity <strong>of</strong><br />

this intoxication to liver damage due to other toxins<br />

affecting cytochrome P450. Histological examination <strong>of</strong><br />

livers from a-Ama poisoned mice revealed major<br />

mitochondrial changes while the hepatic mitochondria<br />

were preserved in a-Ama poisoned mice treated with<br />

cimetidine either prophylactically or within 6 hours. [371]<br />

A three-drug combination <strong>of</strong> cimetidine, benzylpenicillin,<br />

and ascorbic acid significantly improved enzymatic<br />

and histopathological changes and survival rate <strong>of</strong> a-<br />

Ama intoxicated mice. [372] Clinical cimetidine treatment<br />

was reported for only 21 amatoxin poisoned patients<br />

(1.3%, Tables 3, 4, and 6) at a dose <strong>of</strong> 300 mg IV<br />

administered every 8 hours and usually in association<br />

with benzylpenicillin.<br />

NAC acts as a glutathione precursor when natural<br />

stores are depleted and is also a scavenger <strong>of</strong> free radicals<br />

formed in paracetamol poisoning. [373,374] The similarity<br />

between the clinical toxicities <strong>of</strong> a-Ama and paracetamol<br />

suggested NAC inclusion in the management <strong>of</strong><br />

amatoxin poisoning. [125,143 – 145] Japanese authors investigating<br />

mushroom toxicity in isolated rat hepatocytes<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 733<br />

showed that Amanita extracts (in particular A. virosa )<br />

markedly decreased intracellular glutathione content.<br />

[375] However, the negative results observed with<br />

NAC treatment for amatoxin poisoned mice indicate that<br />

amatoxin metabolism is probably not identical to that <strong>of</strong><br />

paracetamol and that glutathione may play little or no<br />

role in amatoxin hepatotoxicity. [376] Over the <strong>20</strong>-<strong>year</strong><br />

period, 89 <strong>of</strong> 1632 amatoxin cases (5.5%, Table 3)<br />

received chemotherapy with NAC alone and 103 <strong>of</strong> 1632<br />

(6.3%, Tables 4–6) received NAC combined with other<br />

drugs, usually benzylpenicillin.<br />

Miscellaneous Drugs and Prospective<br />

<strong>Treatment</strong>s<br />

Other drugs such as antibiotics, antiseptic agents,<br />

hormones and steroids used in the management <strong>of</strong><br />

amatoxin intoxicated patients are listed in Tables 3–6.<br />

To our knowledge, no experimental evidence is reported<br />

<strong>of</strong> any hepatoprotective effect <strong>of</strong> antibiotics such as<br />

aminoglycoside derivatives (gentamycin, neomycin,<br />

streptomycin), cyclopeptide derivatives (vancomycin),<br />

and macrolide derivatives (clindamycin). These agents<br />

are not considered in our <strong>retrospective</strong> <strong>analysis</strong>. The<br />

antiseptic agent nifuroxazide plus dihydrostreptomycin<br />

and vitamin C is part <strong>of</strong> Bastien’s regimen. [194,367,368]<br />

The role <strong>of</strong> hormones and steroids in the management <strong>of</strong><br />

amatoxin syndrome is questionable. Other agents<br />

proposed for therapy include iridoid glycosides and<br />

immunotherapy and are discussed below.<br />

Insulin and human growth hormone (hGH) were<br />

reported to be effective in rat liver regeneration after<br />

Amanita poisoning. [377] Intravenous infusion <strong>of</strong> either<br />

insulin/glucagon or insulin/hGH, in combination with<br />

glucose, was administered to amatoxin poisoned children<br />

by clinicians in Poland in an attempt to stimulate liver<br />

cell metabolism. [172,175] A randomized clinical series <strong>of</strong><br />

FHF cases showed no effect <strong>of</strong> insulin/glucagon on liver<br />

regeneration. [378]<br />

Experiments on a-Ama uptake into hepatocytes<br />

suggested that prednisolone might exert a protective<br />

effect by competition between the steroid and toxin for<br />

the transport systems and not by nonspecific effects upon<br />

the cell membrane. [279] Investigations <strong>of</strong> steroids in mice<br />

and dogs poisoned with either A. phalloides extract or a-<br />

Ama revealed a positive effect on recovery <strong>of</strong> mice but<br />

not on survival <strong>of</strong> dogs. [276,304] Since steroids have no<br />

efficacy in acute hepatic failure, the American and<br />

European Associations for the Study <strong>of</strong> the Liver<br />

excluded these drugs for this indication 25 <strong>year</strong>s ago. [264]<br />

A 1979 double-blind randomized trial with acute hepatic


734<br />

failure cases treated by hydrocortisone confirmed that<br />

steroids improved neither hepatic function nor survival<br />

rate. [379]<br />

Although steroids were included as therapeutic agents<br />

for Amanita poisoning by Floersheim et al. in 1982, [298]<br />

he suggested removal <strong>of</strong> steroids from treatment<br />

protocols in 1985 because <strong>of</strong> lack <strong>of</strong> correlation with<br />

the outcome. [360] Despite this, in the cases published<br />

since 1980 steroids were reported in the treatment as<br />

mono-chemotherapy (8 <strong>of</strong> 1632, 0.5%, Table 3) and as<br />

bi-, tri-, and poly-chemotherapies with benzylpenicillin<br />

(443 <strong>of</strong> 1632, 27.1%, Tables 4 and 6), and without<br />

benzylpenicillin (0.5%, 8 <strong>of</strong> 1632, Tables 5 and 6).<br />

Iridoid glycosides such as aucubin and kutkin<br />

represent a group <strong>of</strong> monoterpene glycosides with a<br />

cyclopentane-(c)-pyran ring structure widely distributed<br />

in the plant kingdom. [380] Aucubin is a common iridoid<br />

glycoside isolated from Eucommia ulmoides Oliver<br />

(Magnoliaceae ), [381] Plantago asiatica L. (Plantaginaceae<br />

), [382] and Aucuba japonica Thunb. (Corna-<br />

ceae ). [383]<br />

Iridoid compounds have recently been<br />

successful in experimental amatoxin poisoning, and on<br />

the basis <strong>of</strong> the promising results, these drugs may merit<br />

clinical evaluation. Protective activities <strong>of</strong> aucubin<br />

against a-Ama have been reported in beagle dogs orally<br />

poisoned by A. virosa extract, and in mice I.P. administered<br />

with the toxin, even when the treatment was begun<br />

12 hours later. [380,382] According to these authors, the<br />

mechanism <strong>of</strong> hepatoprotection might be attenuation <strong>of</strong><br />

the continuous depression <strong>of</strong> liver m-RNA biosynthesis<br />

caused by a-Ama. [382,384] This mechanism was not<br />

confirmed in rat studies, however, aucubin enhanced<br />

excretion <strong>of</strong> a-Ama suggesting that it or one <strong>of</strong> its<br />

hydrolyzed products may displace the toxin from binding<br />

sites. [385] Oral administration is ineffective; [380,384] and<br />

the influence <strong>of</strong> the route <strong>of</strong> administration on efficacy<br />

may merit elucidation. [386] As far as we know, no<br />

investigation <strong>of</strong> aucubin in humans has been conducted.<br />

Picrosides I–III and kutkoside, known collectively as<br />

kutkin, were isolated from the roots and rhizome <strong>of</strong><br />

Picrorhiza kurroa Rogle ex Benth. (Scrophulariaceae ),<br />

an Indian plant used for the treatment <strong>of</strong> liver<br />

diseases. [387] Protective activity <strong>of</strong> kutkin was demonstrated<br />

against the hepatic damage <strong>of</strong> A. phalloides in<br />

rodent models. [388,389] Floersheim found the protective<br />

effect <strong>of</strong> kutkin comparable to that <strong>of</strong> silybin. [390]<br />

Constituents from P. kurroa have demonstrated antioxidant<br />

and anti-lipid peroxidation activity as well as<br />

effects on liver regeneration in research cited by<br />

Luper. [313] Further investigations should be carried out<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

to assess the place <strong>of</strong> kutkin in clinical amatoxin<br />

poisoning treatment.<br />

In vitro production and cytoprotective properties <strong>of</strong><br />

polyclonal amanitin-specific antibodies were reported in<br />

1993. [391] However, Faulstich et al. [392] reported in 1998<br />

that amatoxin-specific Fab fragments or monoclonal<br />

antibodies enhanced the activity <strong>of</strong> amatoxins and that<br />

this new therapeutic strategy should not be considered.<br />

Retrospective Data on Use <strong>of</strong> Chemotherapy<br />

Enjalbert et al.<br />

Our review <strong>of</strong> chemotherapy administered to 1632<br />

amatoxin poisoned patients underscores its typical use in<br />

combination, and makes it difficult to assess the efficacy<br />

<strong>of</strong> each therapeutic agent individually. The mechanism<br />

by which b-lactam antibiotics (benzylpenicillin, ceftazidime)<br />

afford their therapeutic effect is still scientifically<br />

uncharacterized. Considerable data support the relevance<br />

<strong>of</strong> silymarin complex in amatoxin poisoning; the<br />

mechanisms <strong>of</strong> action include an antioxidant effect,<br />

anti-lipid oxidation, enhancement <strong>of</strong> detoxication, and<br />

stimulation <strong>of</strong> the hepatic regeneration. Biochemical data<br />

suggesting hepatoprotection by antioxidants support the<br />

continued consideration <strong>of</strong> free radical scavengers such<br />

as ascorbic acid, cimetidine, and NAC in the management<br />

<strong>of</strong> amatoxin intoxication. Hepatoprotective effects<br />

<strong>of</strong> iridoid glycosides (aucubin, kutkin) have also been<br />

demonstrated with in vivo animal models; these<br />

promising findings merit further investigations.<br />

In our compilation, 80.9% (1632 <strong>of</strong> <strong>20</strong>17) amatoxin<br />

poisoned patients received chemotherapy (Chem-group)<br />

with or without detoxication procedures (Tables 3–6).<br />

Drugs were given as mono-chemotherapy in 347 cases<br />

(21.3%, Table 3) and in combination in 1285 cases<br />

(78.7%, Tables 4–6) either as bi-chemotherapy (815 <strong>of</strong><br />

1632, 4<strong>9.</strong>9%) or tri-chemotherapy (280 <strong>of</strong> 1632, 17.2%)<br />

or poly-chemotherapy (190 <strong>of</strong> 1632, 11.6%). The<br />

therapeutic agents can be classified into four groups<br />

according to the frequency <strong>of</strong> their administration as<br />

single agent or chemotherapy combinations. Frequency<br />

<strong>of</strong> use ranged from 0.7 to 86.5%. The lowest frequency<strong>of</strong>-use<br />

group among the 1632 amatoxin poisoning cases<br />

is constituted by ceftazidime (0.7%), cimetidine (1.1%),<br />

and antiseptic agent (1.2%). The second group is<br />

represented by vitamin C (3.7%), antibiotics (3.8%),<br />

and NAC (11.8%). The third group consists <strong>of</strong> thioctic<br />

acid (27.1%), steroids (27.6%), and silybin (33.7%). The<br />

highest frequency-<strong>of</strong>-use group is comprised <strong>of</strong> cases<br />

treated with benzylpenicillin (1411 <strong>of</strong> 1632 patients,<br />

86.5%). Benzylpenicillin was the most frequently<br />

administered drug used alone (164 cases, 10.1%,


Table 3) when compared to antibiotic (one case),<br />

cimetidine (three cases), NAC (89 cases), silybin (74<br />

cases), and steroids or thioctic acid (eight cases for each).<br />

It is also the agent most frequently represented in therapy<br />

combinations (1247 cases <strong>of</strong> 1632, 76.4%, Tables 4 and<br />

6). The most common combinations were benzylpenicillin<br />

plus silybin (379 <strong>of</strong> 1632, 23.2%) and benzylpenicillin<br />

plus thioctic acid (<strong>20</strong>7 <strong>of</strong> 1632, 12.0%), in<br />

contrast to the low representation <strong>of</strong> benzylpenicillin plus<br />

steroid (95 <strong>of</strong> 1632, 5.8%).<br />

Retrospective Data on Use <strong>of</strong> Specific<br />

<strong>Treatment</strong>s<br />

Specific treatments consist <strong>of</strong> detoxication procedures<br />

and chemotherapy. In our review, <strong>20</strong>17 <strong>of</strong> 2108<br />

amatoxin-poisoned patients (95.7%) were treated with<br />

either one or both <strong>of</strong> these specific therapeutic modes.<br />

Detoxication procedures alone were applied to 385 <strong>of</strong><br />

<strong>20</strong>17 cases (1<strong>9.</strong>1%, Table 2) whereas chemotherapy with<br />

or without detoxication procedures was administered to<br />

the majority <strong>of</strong> cases (1632 <strong>of</strong> <strong>20</strong>17, 80.9%, Tables 3–6).<br />

Overall survivors (1810 <strong>of</strong> <strong>20</strong>17 patients, 8<strong>9.</strong>7%) as<br />

listed in Tables 2–6 are subsequently analyzed for the<br />

relation to specific therapy and to LT.<br />

Liver Transplantation<br />

Liver transplantation has emerged as the most<br />

important advance in the therapy <strong>of</strong> FHF and is an<br />

intervention formally validated for this disease with<br />

survival rates from 60 to 80%. [282,393] Kinetic studies<br />

have shown no risk <strong>of</strong> toxicity for the transplanted<br />

liver [257] beginning day 4 after mushroom ingestion.<br />

Total Orthotopic Liver Transplantation and<br />

Auxiliary Partial Liver Transplantation<br />

Two surgical options, orthotopic liver transplantation<br />

(OLT) and auxiliary LT have been developed. Total OLT<br />

is a well-established procedure for FHF but requires long<br />

immunosuppression to maintain the graft. Because some<br />

patients with partial hepatectomy and temporary support<br />

may have complete morphological and functional<br />

recovery <strong>of</strong> their own liver, auxiliary partial liver<br />

transplantation (APOLT) represents an alternative. In<br />

APOLT only a portion <strong>of</strong> the native liver is removed and<br />

the remainder is left in situ; the transplant provides<br />

temporary assistance until the native liver recovers and<br />

the immunosuppression can be withdrawn.<br />

[394 – 397]<br />

Within the <strong>20</strong>-<strong>year</strong> period <strong>of</strong> this review, 31 amatoxin<br />

poisoned patients underwent OLT: Six received suppor-<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 735<br />

tive measures alone (Table 1), six were treated with<br />

detoxication procedures without chemotherapy (Table 2),<br />

and 19 received chemotherapy with or without<br />

detoxication procedures (Tables 3–6). The success <strong>of</strong><br />

APOLT in one young girl was also reported, [119,1<strong>20</strong>]<br />

(Table 3). These 32 LT patients represent only 1.5% <strong>of</strong><br />

2108 intoxicated cases reviewed in our survey. Twelve<br />

additional LT cases performed since 1985 were cited<br />

but due to lack <strong>of</strong> adequate data were not analyzed.<br />

[87,92,93,100,111,116,<strong>20</strong>6,<strong>20</strong>7,216,218,398,399]<br />

The early use <strong>of</strong> specific treatments (detoxication<br />

procedures and chemotherapy) and <strong>of</strong> biological<br />

parameters predicting recovery may avoid unnecessary<br />

LT. [146,159,187 – 189] Many patients who originally were<br />

candidates for LT showed improvement in hepatic<br />

function and were taken <strong>of</strong>f the transplant waiting<br />

list. [83,156,158,159]<br />

The major dilemma in emergency liver failure is the<br />

right moment to transplant. The time between “too early”<br />

and “too late” may be very short. LT is considered too<br />

late when complications such as multi-organ failure with<br />

cerebral edema or renal insufficiency become contraindications<br />

to transplant because they compromise the<br />

success <strong>of</strong> surgery. The mean delay (about 2 days)<br />

between the decision for LT and finding <strong>of</strong> a liver donor<br />

must be taken into account. The shortage <strong>of</strong> available<br />

livers limits transplantation. Recently, a living, related<br />

donor <strong>of</strong> a 1-<strong>year</strong>-old boy poisoned with amatoxin<br />

provided a partial liver transplant specimen. [57] Fulminant<br />

hepatitis is rapidly fatal; only 50–85% <strong>of</strong> patients<br />

identified as candidates for LT survive long enough to<br />

receive a transplant. [400,401] An explosive course was also<br />

reported for amatoxin poisoned patients included in the<br />

emergency list for LT who died before obtaining a<br />

donor. [89,118,138,188,<strong>20</strong>3]<br />

It is essential to establish early, reliable criteria<br />

identifying the immediate prognosis. [402,403] The number<br />

<strong>of</strong> amatoxin poisoning victims considered for LT is small<br />

and the prognostic indicators for LT are not clearly<br />

defined. [1<strong>20</strong>] Candidacy guidelines for OLT and APOLT<br />

have therefore been extrapolated from experience with<br />

FHF from other etiologies and include repeated clinical<br />

examination and biological investigations. [404]<br />

Prognostic Factors<br />

Most liver units have accepted for emergency liver<br />

transplant the King’s College criteria proposed by<br />

O’Grady et al. [405] from a <strong>retrospective</strong> <strong>analysis</strong> <strong>of</strong> 278<br />

patients with FHF not induced by acetaminophen<br />

overdose. These criteria are based on PT, age, etiology,


736<br />

time between appearance <strong>of</strong> jaundice and onset <strong>of</strong><br />

encephalopathy, and bilirubin concentration. The criteria<br />

have been recently evaluated by the University <strong>of</strong><br />

Pittsburgh for 177 patients over a 13-<strong>year</strong> period and<br />

were found to be relatively effective in predicting death<br />

and the need for transplantation. [406] French emergency<br />

liver units rely on the combination <strong>of</strong> encephalopathy<br />

stages (III and IV) with factor V concentration and<br />

age. [407 – 409] Other prognostic models reviewed by Mas<br />

and Rodés [244] based on hemodynamic disturbances and<br />

clinical course <strong>of</strong> FHF have also been developed.<br />

Furthermore, other variables such as a factor VIII/V<br />

ratio [410] as well as serial a-fetoprotein levels [245] might<br />

be useful tests for predicting survival in FHF. Lastly, a<br />

Gc level ,34 mg/mL 48 hours after admission strongly<br />

suggests a stage <strong>of</strong> liver failure beyond which recovery<br />

will not occur. [411]<br />

Despite the lack <strong>of</strong> absolute predictors, prognostic<br />

factors such as stage <strong>of</strong> encephalopathy, coagulation<br />

tests, metabolic abnormalities, and age are useful in the<br />

rational planning <strong>of</strong> LT. Of 31 transplanted patients<br />

having undertaken OLT (including 4 children below 10<br />

<strong>year</strong>s <strong>of</strong> age), the prognostic factors used for 27 cases are<br />

listed in Table 7.<br />

Encephalopathy Stages<br />

The association between encephalopathy stages<br />

(I–IV) [412] and vital prognosis is controversial. According<br />

to Bernuau et al. [413] and Frohburg et al., [399]<br />

encephalopathy does not always reflect liver function<br />

deterioration. Since advanced encephalopathy typically<br />

occurs late in the course <strong>of</strong> the FHF, the stage <strong>of</strong><br />

encephalopathy may be <strong>of</strong> limited use. [403] Other authors<br />

promote encephalopathy stage as the most powerful<br />

clinical indicator <strong>of</strong> the severity <strong>of</strong> liver disease.<br />

[244,409,414,415] According to Gill and Sterling, [245]<br />

patients with a stage II encephalopathy have a mortality<br />

<strong>of</strong> 30% while those who progress to stage IV have a<br />

mortality rate greater than 80%. In the early use <strong>of</strong> OLT<br />

for amatoxin poisoning, encephalopathy stages (III and<br />

IV) were the major decision factors for this surgery.<br />

[80,103,106,136,154,193,199]<br />

However, Klein’s experience [102] indicated a clinical<br />

course <strong>of</strong> amatoxin poisoning characterized by slow<br />

deterioration over a week that then worsens quickly. This<br />

pattern may lead to an early underestimation <strong>of</strong> liver<br />

damage. Consequently, several authors think that LT<br />

should be considered with the onset <strong>of</strong> mild encephalopathy<br />

(stages I and II) before the onset <strong>of</strong> progressive and<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

pr<strong>of</strong>ound neurological signs resulting from severe<br />

amatoxin intoxication [86,156,198,199] (Table 7).<br />

Coagulation Factors<br />

No definitive conclusion can be drawn about the<br />

usefulness <strong>of</strong> the degree <strong>of</strong> coagulopathy as an indication<br />

for LT because too few patients are included in clinical<br />

data, and prophylactic administration <strong>of</strong> fresh frozen<br />

plasma modifies or prevents interpretation <strong>of</strong> coagulation<br />

factors. [401] The PT is considered the most satisfactory<br />

test <strong>of</strong> hepatocellular necrosis and prognosis. [405,414,415]<br />

Some authors suggest that factor V level is more sensitive<br />

and reliable than PT and a better indicator <strong>of</strong> recovery<br />

than other biological factors. [158,407,416,417] According to<br />

Izumi et al., [418] the predictive accuracy <strong>of</strong> plasma factor<br />

V is less than that <strong>of</strong> international normalized result<br />

(INR) as advocated by Harrison et al. [419] A factor VIII/V<br />

ratio <strong>of</strong> more than 30% can be associated with a poor<br />

prognosis. [410] The dynamics <strong>of</strong> a biological marker<br />

could be <strong>of</strong> greater predictive value than the minimum or<br />

maximum level <strong>of</strong> the variable itself. The progressive<br />

prolongation <strong>of</strong> PT was noted as an outcome predictor <strong>of</strong><br />

the patients with FHF and its evolution over 4 days after<br />

the poisonous mushroom meal was suggested as a<br />

reliable indicator <strong>of</strong> recovery or death. [14]<br />

Metabolic Abnormalities<br />

Enjalbert et al.<br />

Metabolic abnormalities such as lactic acidosis,<br />

hypoglycemia, hyperbilirubinemia, and increased aminotransferases<br />

seen in FHF may also provide foundation<br />

for LT decisions. [244] Lactic acidosis and hypoglycemia<br />

are cited as prognostic factors associated with encephalopathy<br />

stage II and prolonged PT that determine urgent<br />

LT. [99,151,156,199] Several studies have shown that a high<br />

level <strong>of</strong> bilirubin (.300 mmol/L) is a sign <strong>of</strong> fatal<br />

prognosis. [399,405,4<strong>20</strong>] On the basis <strong>of</strong> their own<br />

experience, Faulstich and Zilker [14] suggested that LT<br />

be performed when an amatoxin poisoned patient<br />

exhibits a PT below <strong>20</strong>% associated with both high<br />

bilirubin and creatinine (.5 and .2 mg/dL, respectively),<br />

on day 3. Patients with progressive failure have<br />

continued rise in the bilirubin and prolongation <strong>of</strong> PT<br />

despite declining aminotransferases. [245] Recent results<br />

support the hypothesis that a sustained elevation in<br />

markers <strong>of</strong> regeneration (a-fetoprotein, g-glutamyl<br />

transferase) for more than 10–12 hours combined with<br />

a similarly maintained decline in markers <strong>of</strong> necrosis<br />

(ASAT, ALAT, alkaline phosphatase, LDH) levels could<br />

aid in prediction <strong>of</strong> recovery. [124]


Table 7<br />

Prognosis Factors for Liver Transplant<br />

Coagulation Factors<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 737<br />

Date/References No. <strong>of</strong> cases Encephalopathy Stage P.T. Factor V(%) Lactic Acidosis Hypoglycemia (mg/dL) Hyperbilirubinemia a (mmol/L)<br />

1985 [193] 1/1; child III coma 34.2 sec NI NI 161 3<strong>9.</strong>3<br />

1988 [136] 1/1 Coma ,<strong>20</strong>% ,<strong>20</strong> NI NI 180<br />

1989 [80] 1/1; child III–IV ,10% ,<strong>20</strong> NI NI NI<br />

1989 [102] 1/2 III 50 sec NI NI NI 427.3<br />

1/2 III 30 sec NI NI NI 341.9<br />

1990 [151] 2/4 I 81 sec NI þ þ <strong>20</strong>8.9<br />

2/4 II 81 sec NI þ þ NI<br />

1991 [103] 1/1 IV coma ,10% ,10 þ þ NI<br />

1992 [199] 1/1 III–IV .100 sec NI NI þ 556.5<br />

1994 [156] 1/1 I–II ,9% 6 NI NI 136.8<br />

1994 [106] 1/1 IV 28% b<br />

32 NI NI 364<br />

1994 [198] 1/1 I ,10% ,8 NI NI NI<br />

1995 [86] 2/2; 1 child II–III ,10% ,10 NI NI NI<br />

1995 [154] 1/1 III–IV ,10% b<br />

NI NI NI 144<br />

1996 [133] 2/2 II ,10% ,10 No prognosis values<br />

1997 [88] 3/3 III–IV ,<strong>20</strong>% NI NI NI 78.6<br />

1997 [91] 1/1 II–III 47.3 sec NI NI NI 124.8<br />

<strong>20</strong>00 [112] 1/1 III–IV 106 sec NI NI 19 158.9<br />

<strong>20</strong>01 [162] 2/2; 1 child NI 49 sec 7 NI NI 4<strong>9.</strong>7<br />

2<strong>9.</strong>1 sec 15 NI NI NI<br />

P.T. ¼ prothrombin test (sec) or (%); NI ¼ not indicated; þ¼presence.<br />

a<br />

Normal bilirubinemia level ranges from 2 to 17 mmol/L.<br />

b Thrombotest (factors II, VII, and X).


738<br />

Age <strong>of</strong> Patient<br />

The age <strong>of</strong> the amatoxin mushroom victim is another<br />

prognostic factor. Fatal outcomes are usually associated<br />

with age less than 10 <strong>year</strong>s. [112,244] In the series <strong>of</strong> <strong>20</strong>5<br />

and 83 patients reported by Floersheim et al., [298] and<br />

Lambert and Larcan, [19] the death rates were 51 and 22%<br />

for children below 10 <strong>year</strong>s and 16.5 and 8.8% for adults,<br />

respectively. The high mortality rate in children is likely<br />

related to the larger dose <strong>of</strong> the toxins per unit <strong>of</strong> body<br />

weight.<br />

Retrospective Liver Transplantation Data<br />

In the absence <strong>of</strong> definitive medical treatment for<br />

amatoxin poisoning, LT has changed the outlook for<br />

severe poisoning and can be the single best option<br />

for selected patients. Since 1985, 32 LTs (31 OLT and 1<br />

APOLT) have been performed for amatoxin mushroom<br />

victims representing 1.5% <strong>of</strong> 2108 intoxicated individuals.<br />

Liver transplant increases the survival rate <strong>of</strong><br />

amatoxin poisoning considering the LT patient was<br />

presumed as a fatal case. Easily applicable criteria are<br />

needed to identify patients for whom transplantation is<br />

indicated. Prognostic indicators such as encephalopathy<br />

stages, coagulation factors, metabolic abnormalities, and<br />

age have to be taken into account in the decision to<br />

perform liver transplant (OLT and APOLT) but do not<br />

replace intensive medical experience. Serious amatoxin<br />

intoxication must no longer be considered only as an<br />

acute disease with massive necrosis whose prognosis<br />

depends only on the early course <strong>of</strong> the poisoning. The<br />

progression <strong>of</strong> severely poisoned cases towards either<br />

massive necrosis or chronic active hepatitis from <strong>20</strong> to<br />

70% [176,177] should be considered factors determining<br />

LT.<br />

Statistical Analysis <strong>of</strong> Retrospective Data<br />

Two general frequency tables were established<br />

including and excluding the LT cases, and composed<br />

for a systematic <strong>analysis</strong>. Statistical comparison <strong>of</strong> the<br />

2 £ 2 tables determined significant differences in the<br />

mortality rates <strong>of</strong> the 11 modes <strong>of</strong> care; the applied<br />

treatments were sorted by increasing efficacy, i.e.,<br />

decreasing mortality rates (MR) combining MRLTi and<br />

MRLTe. Table 8 shows the 11 modes <strong>of</strong> care in order <strong>of</strong><br />

increasing efficacy/decreasing mortality rates from #1 to<br />

#11 and the number <strong>of</strong> cases in each group including and<br />

excluding the liver transplanted patients with the related<br />

mortality rates. Then to further evaluate significant<br />

comparison between the 11 analyzed therapeutic<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

modalities (#1 to #11), five pooled therapies from #12<br />

to #16 have made up.<br />

The mortality rates <strong>of</strong> the 10 analyzed specific<br />

therapeutic modes varied from 5.4 to 16.9% (MRLTi)<br />

and from 1.4 to 16.9% (MRLTe) for the <strong>20</strong>62 LTi and<br />

<strong>20</strong>31 LTe amatoxin victims, respectively. Mortality rates<br />

were 47.3% ðNo: ¼ 91 LTiÞ and 43.5% ðNo: ¼ 85 LTeÞ<br />

for amatoxin poisoned patients receiving supportive<br />

measures alone (Fig. 1).<br />

First, the mortality rates <strong>of</strong> supportive measures alone<br />

(#11) were significantly higher than those found for the<br />

group <strong>of</strong> combined 10 specific therapies (#14, detoxication<br />

procedures plus nine chemotherapies) as reported in<br />

Tables 8 and <strong>9.</strong> Then, the MR <strong>of</strong> detoxication procedures<br />

(#5) compared with #13, the nine combined chemotherapies,<br />

were not statistically different, but were significantly<br />

lower than those <strong>of</strong> two chemotherapies:<br />

BpThioca (#1) and BpwSilybTriPoly (#2). More<br />

importantly, the MRLTe <strong>of</strong> detoxication-proceduresalone<br />

(#5) was significantly higher than those <strong>of</strong> silybin<br />

plus benzylpenicillin (#8) and silybin (#10) as monochemotherapy<br />

(<strong>9.</strong>0 vs. 6.0 and 1.4%, respectively).<br />

Finally, the differences between the 9 individual applied<br />

chemotherapies were evaluated. The chemotherapies<br />

exhibiting the highest mortality rates were the combination<br />

<strong>of</strong> benzylpenicillin and thioctic acid (#1.<br />

BpThioca) followed by benzylpenicillin in drug<br />

combinations without silybin as tri- and poly-chemotherapies<br />

(#2. BpwSilybTriPoly), and by the combination<br />

<strong>of</strong> benzylpenicillin and steroids (#3. BpSter).<br />

The chemotherapies with the lowest mortality rates<br />

were silybin as mono-chemotherapy (#10. Silyb) and<br />

silybin plus benzylpenicillin without and with other<br />

drugs (#8. BpSilyb, #<strong>9.</strong> BpSilybTriPoly) and NAC as<br />

mono-chemotherapy (#7. NAC). Both MRLTi and<br />

MRLTe <strong>of</strong> BpThioca (#1), BpwSilybTriPoly (#2), and<br />

BpSter (#3) were not statistically different between them<br />

(Table 9), and were significantly higher than those <strong>of</strong><br />

BpSilyb (#8), BpSilybTriPoly (#9), and Silyb (#10).<br />

Moreover no significant difference was observed<br />

between the MR <strong>of</strong> the four best therapies with the lowest<br />

mortality rates: NAC (#7), BpSilyb (#8), BpSilybTriPoly<br />

(#9), and Silyb (#10). The MR <strong>of</strong> #6, benzylpenicillin<br />

plus one or more antioxidant drug (cimetidine, NAC, or<br />

vitamin C), were significantly lower only than those <strong>of</strong><br />

BpThioca (#1). The MR <strong>of</strong> NAC (#7) were significantly<br />

lower than those <strong>of</strong> both BpThioca (#1) and BpwSilyb-<br />

TriPoly (#2).<br />

On the other hand, the statistical data were not<br />

significant for certain treatment groups whose mortality<br />

rates appear to be different in part due to the disparity <strong>of</strong>


the group size and the small number <strong>of</strong> analyzed cases:<br />

(i) the MRLTs <strong>of</strong> benzylpenicillin as mono-chemotherapy<br />

(#4) were not statistically different from those <strong>of</strong><br />

NAC (#7) and (ii) the MRLT <strong>of</strong> mono-chemotherapies,<br />

benzylpenicillin (#4), and silybin (#10) was comparable,<br />

11.6 vs. 5.4%, whereas the MRLTe <strong>of</strong> benzylpenicillin<br />

was significantly higher than that <strong>of</strong> silybin, 11.0 vs.<br />

1.4% (Table 9). Furthermore, benzylpenicillin plus<br />

antioxidant (#6. BpantiOx, No: ¼ 111 LTi treated;<br />

MRLTi <strong>9.</strong>1%; No: ¼ 110 LTe treated; MRLTe 8.2%)<br />

was not statistically different from benzylpenicillin plus<br />

other drugs without silybin as tri- and poly-chemotherapies<br />

(#2. BpwSilybTriPoly, No: ¼ 299 LTi treated;<br />

MRLTi 15.4%; No: ¼ 297 LTe treated; MRLTe<br />

14.8%): the Chi-square values were 0.08 and 0.06,<br />

respectively; more data are needed to prove whether any<br />

statistical differences in the fatality rate between these<br />

groups were truly.<br />

To further assess the role <strong>of</strong> silybin in affecting<br />

mortality, the three chemotherapies with the worst<br />

mortality rates (#16. BpThioca, BpwSilybTriPoly and<br />

BpSter) were pooled and compared with the pooled<br />

therapies including silybin (#12. BpSilyb and BpSilybTriPoly);<br />

the MR <strong>of</strong> #12 were significantly lower<br />

than those <strong>of</strong> #16 (MRLTi 7.9 vs. 15.8% and MRLTe<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 739<br />

Table 8<br />

Statistical Analysis <strong>of</strong> <strong>Amatoxin</strong>-<strong>Poisoning</strong> Therapies<br />

5.8 vs. 15.5%). This finding supports silybin benefit in<br />

amatoxin poisoning treatment.<br />

Regarding benzylpenicillin, the most frequently<br />

therapeutic agent used among the reported cases, the<br />

bi-chemotherapies with this drug and without silybin<br />

were pooled (#15. BpThioca, BpSter, and BpantiOx),<br />

the MR found for this group were significantly higher<br />

than those <strong>of</strong> BpSilyb (#8) as reported in Table <strong>9.</strong> In<br />

addition, the MR <strong>of</strong> BpwSilybTriPoly (#2) were<br />

significantly higher than those <strong>of</strong> BpSilybTriPoly (#9)<br />

(MRLTi 15.4 vs. 7.3%; MRLTe 14.8 vs. 5.4%). All<br />

these results suggest that benzylpenicillin administered<br />

with any drug except silybin as bi-, tri-, and polychemotherapies<br />

was not beneficial in treatment <strong>of</strong><br />

amatoxin poisoning when mortality and/or liver<br />

transplant was used as the endpoint.<br />

Our statistical <strong>analysis</strong> underscores that the hepatoprotective<br />

effect <strong>of</strong> the flavonolignan complex, silymarin,<br />

and the antioxidant property <strong>of</strong> NAC play a<br />

crucial role in the recovery <strong>of</strong> amatoxin-poisoned<br />

patients. The limitations <strong>of</strong> this data include its<br />

<strong>retrospective</strong> nature and the lack <strong>of</strong> standardized severity<br />

scoring by which to judge the patient mix in each<br />

treatment group. However, these analyses and literature<br />

review point out the most fruitful avenues for future<br />

# No. LTi No. LTe MRLTi (%) MRLTe (%)<br />

Applied therapies<br />

1 BpThioca <strong>20</strong>7 <strong>20</strong>7 16.9 16.9<br />

2 BpwSilybTriPoly 299 297 15.4 14.8<br />

3 BpSter 95 95 14.7 14.7<br />

4 Bp 164 163 11.6 11.0<br />

5 Detox alone 385 379 10.4 <strong>9.</strong>0<br />

6 BpantiOx 111 110 <strong>9.</strong>1 8.2<br />

7 NAC 89 89 6.7 6.7<br />

8 BpSilyb 391 382 8.2 6.0<br />

9 BpSilybTriPoly 151 148 7.3 5.4<br />

10 Silyb 74 71 5.4 1.4<br />

11 Supportive measures alone 91 85 47.3 43.5<br />

Pooled therapies<br />

12 Bp/Silybin combinations (8, 9) 542 530 7.9 5.8<br />

13 Combined nine chemotherapies (1–4, 6–10 above) 1586 1,567 11.2 10.1<br />

14 Combined 10 specific therapies (1–10 above) <strong>20</strong>62 2,031 12.6 11.3<br />

15 Bp bi-chemotherapies without Silybin (1, 3, 6) 413 412 14.3 14.1<br />

16 Combined three worst chemotherapies (1–3) 601 599 15.8 15.5<br />

No. LTi ¼ number <strong>of</strong> patients including liver transplants; No. LTe ¼ number <strong>of</strong> patients excluding liver transplants; MRLTi ¼ mortality rate including<br />

liver transplants; MRLTe ¼ mortality rate excluding liver transplants.


740<br />

Figure 1. Effect <strong>of</strong> the modes <strong>of</strong> care (supportive measures<br />

alone and 10 specific treatments) on the distribution <strong>of</strong> treated<br />

patients in terms <strong>of</strong> survivors and deceased (histograms<br />

including liver transplants), and percentages <strong>of</strong> deceased<br />

patients vs. treated with and without liver transplants (curves).<br />

survLT: survivors including liver transplants; decLT: deceased<br />

including liver transplants; MRLTi: mortality rate including<br />

liver transplants; MRLTe: mortality rate excluding liver<br />

transplants. Supportive M. ¼ supportive measures alone<br />

(Table 1); BpThioca ¼ benzylpenicillin/thioctic acid; Bpw-<br />

SilybTriPoly ¼ benzylpenicillin/drugs without silybin as triand<br />

poly-chemotherapies; BpSter ¼ benzylpenicillin/steroid;<br />

Bp ¼ benzylpenicillin; Detox ¼ detoxication procedures alone<br />

(Table 2); BpantiOx ¼ benzylpenicillin/antioxidant drug<br />

(cimetidine, N-acetylcysteine or vitamin C); Nac ¼<br />

N-Acetylcysteine; BpSilyb ¼ benzylpenicillin/silybin;<br />

BpSilybTriPoly ¼ benzylpenicillin/drugs with silybin as triand<br />

poly-chemotherapies; Silyb ¼ silybin.<br />

clinical research to pursue, and provide a basis for the<br />

discontinuation <strong>of</strong> the clearly less effective therapies.<br />

Investigations for amatoxin treatment should focus on<br />

detoxication procedures, silybin, and NAC. Assessment<br />

<strong>of</strong> more cases would be useful to confirm their benefit.<br />

Clinical data from this <strong>20</strong>-<strong>year</strong> period do not show<br />

benzylpenicillin to be an effective drug; this antibiotic<br />

agent did not enhance the efficacy <strong>of</strong> either silybin or<br />

NAC in the treatment <strong>of</strong> amatoxin syndrome. Perhaps<br />

benzylpenicllin, thioctic acid, and steroids should be<br />

abandoned as therapeutic modalities.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

SUMMARY<br />

Enjalbert et al.<br />

Although the treatment <strong>of</strong> patients exposed to<br />

amatoxin-containing mushrooms has become more<br />

sophisticated, the optimal management <strong>of</strong> the poisoning<br />

is still not determined. Options include various detoxication<br />

procedures, chemotherapies, and liver transplant in<br />

case the hepatic disease reaches a potentially fatal stage.<br />

The clinical efficacy <strong>of</strong> any modality <strong>of</strong> treatment for<br />

amatoxin poisoning is difficult to demonstrate since<br />

randomized, controlled clinical trials verified within the<br />

frame <strong>of</strong> multicenter studies have not been reported. The<br />

use <strong>of</strong> drug combinations also limits the evaluation <strong>of</strong><br />

individual efficacy <strong>of</strong> the therapeutic modalities. The<br />

theoretical and experimental bases for antitoxic action <strong>of</strong><br />

most <strong>of</strong> these agents are not clearly established. Silymarin<br />

complex and free radical scavengers (cimetidine, NAC,<br />

vitamin C) have respective hepatoprotective and antioxidant<br />

properties that yield convincing support for their use.<br />

LT is accepted as a life-saving procedure in amatoxin<br />

poisoning cases leading to acute massive hepatic<br />

necrosis. Early identification <strong>of</strong> liver dysfunction, rapid<br />

evaluation <strong>of</strong> suitability for transplant, immediate listing,<br />

and an available donor research are crucial. It is<br />

important to verify that the prognostic indications for LT<br />

are defined and met.<br />

Our <strong>retrospective</strong> data determined the use and the<br />

mortality rate for each treatment in this overall<br />

compilation <strong>of</strong> heterogeneous subjects. For statistical<br />

<strong>analysis</strong> relative to MR, the 32 amatoxin victims<br />

receiving LT were considered as special cases and<br />

were either excluded from the group <strong>of</strong> treated patients<br />

(MRLTe), or since their outcome was considered<br />

virtually fatal without transplantation, were included as<br />

deadly cases (MRLTi).<br />

Benzylpenicillin, despite mechanism <strong>of</strong> its action<br />

poorly argued, was the most frequently administered<br />

agent (86.5%). Silybin was given to 38.2% <strong>of</strong> patients.<br />

Among the antioxidant drugs, NAC was the most<br />

frequently prescribed agent, utilized in 11.8% <strong>of</strong> cases.<br />

Comparison <strong>of</strong> the mortality rates <strong>of</strong> 11 modes <strong>of</strong> care<br />

representing sufficient numbers <strong>of</strong> patients for statistical<br />

<strong>analysis</strong> showed that supportive measures alone resulted<br />

in high mortality comparable to historical data (.40%).<br />

The mortality rates <strong>of</strong> detoxication procedures alone<br />

were comparable to those <strong>of</strong> the nine combined<br />

chemotherapies suggesting a benefit due to amatoxin<br />

removal after initial absorption. Case data and numbers<br />

were insufficient to allow a comparison <strong>of</strong> the MR <strong>of</strong> the<br />

nine chemotherapies used with and without detoxication


Table 9<br />

Comparison <strong>of</strong> Mortality Rates Relative to the Different Therapies <strong>of</strong> the <strong>Amatoxin</strong>-<strong>Poisoning</strong>: (a) Including Liver Transplants (MRLTi) and (b) Excluding Liver<br />

Transplants MRLTe<br />

# Therapies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 741<br />

(a) Including liver transplants (MRLTi)<br />

1. BpThioca 16.9 * * * ** * * **<br />

2. BpwSilybTriPoly 15.4 * * ** ** * **<br />

3. BpSter 14.7 * ** * **<br />

4. Bp 11.6 **<br />

5. Detox alone * * 10.4 **<br />

6. BpantiOx * <strong>9.</strong>1 **<br />

7. NAC * * 6.7 **<br />

8. BpSilyb ** ** * 8.2 ** **<br />

<strong>9.</strong> BpSilybTriPoly * ** ** 7.3 **<br />

10. Silyb * * * 5.4 **<br />

11. Supportive measures alone ** ** ** ** ** ** ** ** ** ** 47.3 ** ** ** ** **<br />

12. Bp combinations with Silybin (8, 9) ** 7.9 **<br />

13. Combined nine chemotherapies (1–4, 6–10 above) ** 11.2<br />

14. Combined 10 specific therapies (1–10 above) ** 12.6<br />

15. Bp bi-chemotherapies without Silybin (1, 3, 6) ** ** 14.3<br />

16. Combined three worst chemotherapies (1–3) ** ** 15.8<br />

(b) Excluding liver transplants (MRLTe)<br />

1. BpThioca 16.9 ** * * ** * ** **<br />

2. BpwSilybTriPoly 14.8 * * ** ** ** **<br />

3. BpSter 14.7 ** ** ** **<br />

4. Bp 11.0 * **<br />

5. Detox alone ** * <strong>9.</strong>0 * * **<br />

6. BpantiOx * 8.2 **<br />

7. NAC * * 6.7 **<br />

8. BpSilyb ** ** ** * 6.0 ** **<br />

<strong>9.</strong> BpSilybTriPoly * ** ** 5.4 **<br />

10. Silyb ** ** ** * * 1.4 **<br />

11. Supportive measures alone ** ** ** ** ** ** ** ** ** ** 43.5 ** ** ** ** **<br />

12. Bp combinations with Silybin (8, 9) ** 5.8 **<br />

13. Combined nine chemotherapies (1–4, 6–10 above) ** 10.1<br />

14. Combined 10 specific therapies (1–10 above) ** 11.3<br />

15. Bp bi-chemotherapies without Silybin (1, 3, 6) ** ** 14.1<br />

16. Combined three worst chemotherapies (1–3) ** ** 15.5<br />

Significant comparisons <strong>of</strong> mortality rates (*: p # 0:05; **: p # 0:01Þ;1. 5 (MRLTi*, MRLTe**); 1 . 6 and 1 . 7 (MRLTi*, MRLTe*); 1 . 8 (MRLTi**, MRLTe**); 1 . 9 (MRLTi*,<br />

MRLTe*); 1 . 10 (MRLTi*, MRLTe**); 2 . 5 (MRLTi*, MRLTe*); 2 . 7 (MRLTi*, MRLTe*); 2 . 8 (MRLTi**, MRLTe**), 2 . 9 (MRLTi**, MRLTe**); 2 . 10 (MRLTi*,<br />

MRLTe**); 3 . 8 (MRLTi*, MRLTe**); 3 . 9 (MRLTi**, MRLTe**); 3 . 10 (MRLTi*, MRLTe**); 4 . 10 (MRLTe*); 5 . 8 and 5 . 10 (MRLTe*); 11 . 1 to 10 (MRLTi**,<br />

MRLTe**); 12 . 16 (MRLTi**, MRLTe**); 15 . 8 (MRLTi**, MRLTe**); 16 . 8 (MRLTi**, MRLTe**).


742<br />

procedures in order to assess a beneficial toxin<br />

elimination for each applied chemotherapy.<br />

A ranking <strong>of</strong> therapies was based on significant<br />

differences in effectiveness as measured by decreasing<br />

mortality rates (Fig. 1, Tables 8 and 9). The highest<br />

mortality/lowest efficacy was observed with combinations<br />

<strong>of</strong> benzylpenicillin with thioctic acid, steroid,<br />

and other drugs except silybin as bi-, tri-, and polychemotherapies.<br />

The lowest mortality rates were<br />

observed with silybin and NAC both administered as<br />

mono-chemotherapy, and silybin associations with<br />

benzylpenicillin as bi, tri-, and poly-chemotherapies.<br />

Since no significant difference between silybin singly<br />

and silybin/benzylpenicillin combinations was found,<br />

it appears that the flavonolignan complex is effective<br />

in reducing mortality and/or avoid LT whereas<br />

benzylpenicillin singly is ineffective. Similarly, NAC<br />

statistically appears to be a potentially more effective<br />

chemotherapy than the other drug options.<br />

Review <strong>of</strong> the modes <strong>of</strong> care reported for amatoxinintoxicated<br />

patients over the last <strong>20</strong> <strong>year</strong>s demonstrates<br />

wide variability in treatment and response to treatment.<br />

Of particular interest in the environment <strong>of</strong> evidencebased<br />

medicine is the prevalent use <strong>of</strong> a therapy,<br />

benzylpenicillin, which has little theoretical foundation<br />

and little evidence <strong>of</strong> efficacy when compared to<br />

treatment alternatives. It exemplifies the fallacy <strong>of</strong><br />

consensus judgments and recommendations based solely<br />

on widespread use <strong>of</strong> a treatment. These case analyses<br />

and literature review have a number <strong>of</strong> limitations due to<br />

the disparity in severity grades. However, our work<br />

suggests the most successful orientation for prospective<br />

clinical research and provides a basis for the discontinuation<br />

<strong>of</strong> the clearly less effective chemotherapies.<br />

Efficacy <strong>of</strong> several drugs is not supported in this review:<br />

the most widely used agent, benzylpenicllin, as well as<br />

thioctic acid and steroids; perhaps their use should be<br />

discontinued. <strong>Amatoxin</strong> poisoning cases whose treatment<br />

focuses on detoxication procedures, silybin, and<br />

NAC would be useful to confirm their relevance revealed<br />

by our statistical <strong>analysis</strong>. Future research should be<br />

directed towards the iridoid glycosides being potential<br />

agents to inhibit amatoxins and stimulate hepatocyte<br />

regeneration.<br />

ACKNOWLEDGMENTS<br />

The authors are grateful to J. ApSimon (Canada),<br />

S. Badalian (Armenia), R. Courtecuisse (France),<br />

J. Elguero (Spain), G. Eyssartier (France), E. Florac<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

(France), F. Fons (France), A. Fraiture (Belgium),<br />

J. Guillot (France), D. Guez (Japan), J. Guinberteau<br />

(France), G. Guzman (Mexico), M. Heil (Germany),<br />

G. Konska (Poland), M. J. Mauruc (France), J. Melot<br />

(Iceland), P. A. Moreau (France), and G. Redeuilh<br />

(France) for providing literature data.<br />

REFERENCES<br />

Enjalbert et al.<br />

1. De Haro, L.; Prost, N.; Perringue, C.; Arditti, J.; David,<br />

J.M.; Drouet, G.; Thomas, M.; Valli, M. Intoxications<br />

par Champignons: Expérience du Centre Anti-Poisons<br />

de Marseille en 1994 et 1998. Bull. Épidémiol.<br />

Hebdomadaire 1999, 30, 1–8.<br />

2. Jacobs, J.; VonBehren, J.; Kreutzer, R. Serious Mushroom<br />

<strong>Poisoning</strong>s in California Requiring Hospital<br />

Admission, 1990–1994. West. J. Med. 1996, 165,<br />

283–288.<br />

3. Litovitz, T.L.; Clark, L.R.; Soloway, R.A. 1993 Annual<br />

Report <strong>of</strong> the American Association <strong>of</strong> Poison Control<br />

Centers Toxic Exposure Surveillance System. Am.<br />

J. Emerg. Med. 1994, 12 (5), 546–584.<br />

4. Litovitz, T.L.; Felberg, L.; Soloway, R.A.; Ford, M.;<br />

Geller, R. 1994 Annual Report <strong>of</strong> the American Association<br />

<strong>of</strong> Poison Control Centers Toxic Exposure Surveillance<br />

System. Am. J. Emerg. Med. 1995, 13 (5), 551–597.<br />

5. Litovitz, T.L.; Felberg, L.; White, S.; Klein-Schwartz,<br />

W. 1995 Annual Report <strong>of</strong> the American Association <strong>of</strong><br />

Poison Control Centers Toxic Exposure Surveillance<br />

System. Am. J. Emerg. Med. 1996, 14 (5), 487–537.<br />

6. Litovitz, T.L.; Smilkstein, M.; Felberg, L.; Klein-<br />

Schwartz, W.; Berlin, R.; Morgan, J.L. 1996 Annual<br />

Report <strong>of</strong> the American Association <strong>of</strong> Poison Control<br />

Centers Toxic Exposure Surveillance System. Am.<br />

J. Emerg. Med. 1997, 15 (5), 447–500.<br />

7. Litovitz, T.L.; Klein-Schwartz, W.; Dyer, K.S.; Shannon,<br />

M.; Lee, S.; Powers, M. 1997 Annual Report <strong>of</strong> the<br />

American Association <strong>of</strong> Poison Control Centers Toxic<br />

Exposure Surveillance System. Am. J. Emerg. Med.<br />

1998, 16 (5), 443–497.<br />

8. Litovitz, T.L.; Klein-Schwartz, W.; Caravati, E.M.;<br />

Youniss, J.; Crouch, B.; Lee, S. 1998 Annual Report <strong>of</strong><br />

the American Association <strong>of</strong> Poison Control Centers<br />

Toxic Exposure Surveillance System. Am. J. Emerg.<br />

Med. 1999, 17 (5), 535–587.<br />

<strong>9.</strong> Litovitz, T.L.; Klein-Schwartz, W.; White, S.; Cobaugh,<br />

D.J.; Youniss, J.; Drab, A.; Benson, B.E. 1999 Annual<br />

Report <strong>of</strong> the American Association <strong>of</strong> Poison Control<br />

Centers Toxic Exposure Surveillance System. Am.<br />

J. Emerg. Med. <strong>20</strong>00, 18 (5), 517–574.<br />

10. Persson, H.E.; Sjöberg, G.K.; Haines, J.A.; Pronczuk de<br />

Carbino, J. <strong>Poisoning</strong> Severity Score. Grading <strong>of</strong> Acute<br />

<strong>Poisoning</strong>. Clin. Toxicol. 1998, 36 (3), <strong>20</strong>5–213.


MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 743<br />

11. Trestail, J.H. Mushroom <strong>Poisoning</strong> in the United<br />

States—An Analysis <strong>of</strong> 1989 United States Poison<br />

Center Data. Clin. Toxicol. 1991, 29 (4), 459–465.<br />

12. Bresinsky, A.; Besl, H. A Colour Atlas <strong>of</strong> Poisonous<br />

Fungi; Wolfe Publishing Ltd.: Stuttgart, Germany, 1990;<br />

295.<br />

13. Fanton, L.; Perrot, D.; Miras, A.; Achache, P.; Malicier,<br />

D. Intoxications par les Champignons. Rev. Prat. 1995,<br />

45, 1327–1332.<br />

14. Faulstich, H.; Zilker, T. <strong>Amatoxin</strong>s. In Handbook <strong>of</strong><br />

Mushroom <strong>Poisoning</strong>, Diagnosis and <strong>Treatment</strong>;<br />

Spoerke, D.G., Rumack, B.H., Eds.; CRC Press, Inc.:<br />

Boca Raton, FL, 1994; 233–248.<br />

15. Godfrank, L.R. Mushrooms: Toxic and Hallucinogenic.<br />

In Godfrank’s Toxicologic Emergencies; Godfrank,<br />

L.R., Ed.; Appleton & Lange: Norwalk, CT, 1998;<br />

1<strong>20</strong>5–121<strong>9.</strong><br />

16. Jaeger, A.; Vale, J.A. Intoxications Aiguës; Elsevier:<br />

Paris, 1999; 393–415.<br />

17. Kohn, R.; Motovska, Z. Otrava Hubami—Klasifikacia,<br />

Symptomatoza a Liecba (Mushroom <strong>Poisoning</strong>—<br />

Classification, Symptomatology and <strong>Treatment</strong>). Vnitr.<br />

Lék. 1997, 43 (4), 230–233.<br />

18. Lambert, H. Le Syndrome Phalloïdien. Les Intoxications<br />

Aiguës, Collection Anesthésie et Réanimation<br />

d’Aujourd’hui; Arnette: Paris, France, 1993; 495–517.<br />

1<strong>9.</strong> Lambert, H.; Larcan, A. Intoxications par les Champignons.<br />

Encyclopédie Médico-Chirurgicale; Elsevier<br />

Publishers/Editions Scientifiques et Médicales: Paris,<br />

France, 1989; Vol. 3, 1–14.<br />

<strong>20</strong>. Larcan, A. A Propos de la Néphropathie Phalloïdienne.<br />

Presse Méd. 1999, 28 (5), 231.<br />

21. Vetter, J. Toxins <strong>of</strong> Amanita phalloides (Review).<br />

Toxicon 1998, 36 (1), 13–24.<br />

22. Wiernikowski, A.; Sczepanek, M. Zatrucie Muchomoren<br />

Sromotnikowym—Rozpoznawanie, Klinika, Leczenie<br />

(Amanita phalloides <strong>Poisoning</strong>—Diagnosis, Clinical<br />

Course, <strong>Treatment</strong>). Przegl. Lék. 1999, 56 (6), 450–454.<br />

23. Zachoval, R.; Günther, C.; Scheurlen, C.; Klüppelberg,<br />

U.G.; Zilker, T.; Pape, G.R. Ein 27Jähriger Patient mit<br />

Wäßrigen Durchfällen, Ubelkeit und Erbrechen 10 h<br />

nach Genuß Eines Pilzgerichtes. Internist 1994, 35,<br />

385–391.<br />

24. Fineschi, V.; Di Paolo, M.; Centini, F. Histological<br />

Criteria for Diagnosis <strong>of</strong> Amanita phalloides <strong>Poisoning</strong>.<br />

J. Forensic Sci. 1996, 41 (2), 429–432.<br />

25. Ammirati, J.F.; Traquair, J.A.; Horgen, P.A. Poisonous<br />

Mushrooms <strong>of</strong> Canada Including Other Inedible Fungi;<br />

Fitzhenry & Whiteside: Markham, Canada, 1985; 396.<br />

26. Linc<strong>of</strong>f, G.H. National Audubon Society Field Guide to<br />

North American Mushrooms; Alfred A. Knopf: New<br />

York, 1998; 926.<br />

27. Enjalbert, F.; Cassanas, G.; Andary, C. Variation in<br />

Amounts <strong>of</strong> Main Phallotoxins in Amanita phalloides.<br />

Mycologia 1989, 81 (2), 266–271.<br />

28. Enjalbert, F.; Gallion, C.; Jehl, F.; Monteil, H.;<br />

Faulstich, H. Simultaneous Assay for <strong>Amatoxin</strong>s and<br />

Phallotoxins in Amanita phalloides Fr. by High-<br />

Performance Liquid Chromatography. J. Chromatogr.<br />

A 1992, 598, 227–236.<br />

2<strong>9.</strong> Enjalbert, F.; Gallion, C.; Jehl, F.; Monteil, H.;<br />

Faulstich, H. <strong>Amatoxin</strong>s and Phallotoxins in Amanita<br />

Species: High-Performance Liquid Chromatographic<br />

Determination. Mycologia 1993, 85 (4), 579–584.<br />

30. Wieland, T. The Toxic Peptides from Amanita<br />

Mushrooms. Int. J. Pept. Protein Res. 1983, 22,<br />

257–276.<br />

31. Wieland, T.; Faulstich, H. Peptide Toxins from Amanita.<br />

In Handbook <strong>of</strong> Natural Toxins; Keeler, R.F., Tu, A.T.,<br />

Eds.; Marcel Dekker, Inc.: New York, 1983; Vol. 1,<br />

585–635.<br />

32. Faulstich, H.; Wieland, T. New Aspects <strong>of</strong> Amanitin and<br />

Phalloidin <strong>Poisoning</strong>. In Natural Toxins II. Advances in<br />

Experimental Medicine and Biology; Singh, B.R., Tu,<br />

A.T., Eds.; Plenum Press: New York, 1996; 309–314.<br />

33. Wieland, T.; Faulstich, H. Fifty Years <strong>of</strong> Amanitin.<br />

Experientia 1991, 47, 1186–1193.<br />

34. Courtecuisse, R.; Duhem, B. Guide des Champignons de<br />

France et d’Europe; Delachaux et Niestlé: Lausanne,<br />

Switzerland, <strong>20</strong>00; 476.<br />

35. Logemann, H.; Argueta, J.; Guzman, G.; Montoya Bello,<br />

L.; Bandela Munoz, V.; Leon Chocooj, R. Evenamiento<br />

Mortal por Hongos en Guatemala. Rev. Mex. Micol.<br />

1987, 3, 211–216.<br />

36. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry: North<br />

American Mycological Association Report 1991.<br />

McIlvainea 1992, 10 (2), 51–5<strong>9.</strong><br />

37. Benjamin, D.R. Mushrooms Poisons and Panaceas;<br />

Freeman, W.H. and Company: New York, 1995; 422.<br />

38. Besl, H. <strong>Amatoxin</strong>s in Greenhouses, Galerina sulciceps,<br />

a Tropical Toxic Mushroom. Z. Mykol. 1981 (Received<br />

1982), 47 (2), 253–256.<br />

3<strong>9.</strong> Singer, R. The Agaricales in Modern Taxonomy; Koeltz<br />

Scientific Books: Koenigstein, Germany, 1986; 981.<br />

40. Muraoka, S.; Fukamachi, N.; Mizumoto, K.; Shinozawa,<br />

T. Detection and Identification <strong>of</strong> Amanitins in the<br />

Wood-Rotting Fungi Galerina fasciculata and Galerina<br />

helvoliceps. Appl. Environ. Microbiol. 1999, 65 (9),<br />

4<strong>20</strong>7–4210.<br />

41. Muraoka, S.; Shinozawa, T. Effective Production <strong>of</strong><br />

Amanitins by Two-Step Cultivation <strong>of</strong> the Basidiomycete,<br />

Galerina fasciculata GF-060. J. Biosci. Bioeng.<br />

<strong>20</strong>00, 89 (1), 73–76.<br />

42. Pond, S.M.; Olson, K.R.; Woo, O.F.; Osterloh, J.D.;<br />

Ward, R.E.; Kaufman, D.A.; Moody, R.R. <strong>Amatoxin</strong><br />

<strong>Poisoning</strong> in Northern California, 1982–1983. West.<br />

J. Med. 1986, 145 (2), <strong>20</strong>4–<strong>20</strong><strong>9.</strong><br />

43. Piqueras, J. Nuevas Aportaciones al Conocimiento de la<br />

Etiologia, Fisiopatologia, Clinica y Terapeutica de las<br />

Intoxicaciones por Hongos Macromicetos Hepatotoxicos


744<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

(Amanitas y Lepiotas). Tesis Doctoral, Universitat de<br />

Barcelona: Spain, 1988, 51<strong>9.</strong><br />

44. Klan, J. Prehleb hub Obsahujicich Amanitiny a<br />

Faloidiny (the Survey <strong>of</strong> Fungi Containing Amanitins<br />

and Phalloidins). Cas. Lék. Cesk. 1993, 132 (15),<br />

449–451.<br />

45. Esteve-Ravantos, F.; Altés, A. Tres Interesantes<br />

Lepiotas Toxicas en la Provincia de Madrid. Bol. Soc.<br />

Micol. Madrid 1990, 14, 161–168.<br />

46. Besl, H.; Mack, P.; Schmid-Heckel, H. Gifpilze in den<br />

Gattungen Galerina und Lepiota (New Toxic Fungi in<br />

the Genera Galerina and Lepiota ). Z. Mykol. 1984, 50<br />

(2), 183–192.<br />

47. Gérault, A. Les Champignons Supérieurs et Leurs<br />

Intoxications. Le Genre Lepiota (au sens Ancien<br />

Classique). Thèse d’Etat ès Sciences Pharmaceutiques,<br />

Université de Rennes: France, 1976, 302.<br />

48. Gérault, A.; Girre, L. Recherches Toxicologiques sur le<br />

Genre Lepiota Fries. C. R. Acad. Sci. Paris 1975, 280<br />

(25), 2841–2843.<br />

4<strong>9.</strong> Gérault, A.; Girre, L. Mise au Point sur les Intoxications<br />

par les Champignons Supérieurs. Bull. Soc. Mycol. Fr.<br />

1977, 93 (3), 373–405.<br />

50. Piqueras, J. Hepatotoxic Mushroom <strong>Poisoning</strong>: Diagnosis<br />

and Management. Mycopathologia 1989, 105,<br />

99–110.<br />

51. Piqueras, J. Terapeutica de la Intoxicacion por Amanita<br />

phalloides. Farm. Clin. 1992, 9 (3), 221–228.<br />

52. Brady, L.R.; Benedict, R.G.; Tyler, D.E.; Stuntz, D.E.;<br />

Malone, M.H. Identification <strong>of</strong> Conocybe filaris as a<br />

Toxic Basidiomycete. Lloydia 1975, 38, 172–173.<br />

53. Bertault, R. Amanites du Maroc. Bull. Soc. Mycol. Fr.<br />

1965, 81, 345–371.<br />

54. Bertault, R. Amanites du Maroc. Bull. Soc. Mycol. Fr.<br />

1980, 96, 273–284.<br />

55. Flegg, P.J. Mushroom <strong>Poisoning</strong>. Cent. Afr. J. Med.<br />

1981, 27 (7), 125–12<strong>9.</strong><br />

56. Reid, D.A.; Eicker, A. South African Fungi: The Genus<br />

Amanita. Mycol. Res. 1991, 95, 80–95.<br />

57. D’Agostino, D.E.; Garcia Roig, C.; Telenta, M.; Duca,<br />

P.; Steinberg, C.E.; de Santibanes, E. Liver Transplantation<br />

in Amanita phalloides Intoxication. Hepatology<br />

1998, 28, (2326) 744A.<br />

58. Villegas, M.; Cifuentes, J.; Aroche, R.M.; Fuentes, P.<br />

Primer Registro de Amanita phalloides en Mexico. Bol.<br />

Soc. Mex. Micol. 1982, 17, 140–146.<br />

5<strong>9.</strong> Gurevich, L.S.; Zhurkovitch, I.K. Toxins <strong>of</strong> Some<br />

Species <strong>of</strong> the Genus Amanita Pers. Mikol. Fitopatol.<br />

1995, 29, 41–50.<br />

60. Lim, J.G.; Kim, J.H.; Lee, S.I.; Kim, Y.S. Amanita<br />

virosa Induced Toxic Hepatitis: Report <strong>of</strong> Three Cases.<br />

Yonsei Med. J. <strong>20</strong>00, 41 (3), 416–421.<br />

61. Omidynia, E.; Rashidpourai, R.; Quaderi, M.T.; Ameri,<br />

E. Mycetismus in Hamadan <strong>of</strong> West Iran. Southeast<br />

Asian J. Trop. Med. Health 1997, 28, 438–43<strong>9.</strong><br />

Enjalbert et al.<br />

62. Oztekin-Mat, A. Les Intoxications par les Champignons<br />

en Turquie. Ann. Pharm. Fr. 1998, 56, 233–235.<br />

63. Seeger, R.; Stijve, T. Occurrence <strong>of</strong> Toxic Amanita<br />

Species. In <strong>Amatoxin</strong>, Toxins and <strong>Poisoning</strong>s; Faulstich,<br />

H., Kommerell, B., Wieland, T., Eds.; Lubrecht Cramer:<br />

New York, 1980; 3–17.<br />

64. Ying, J.; Mao, X.; Ma, Q.; Zong, Y.; Wen, H. Icones <strong>of</strong><br />

Medicinal Fungi from China; Science Press: Beijing,<br />

China, 1987; 575.<br />

65. Yin, W.; Yang, Z.R. A Clinical Analysis <strong>of</strong> Twelve<br />

Patients with Galerina autumnalis <strong>Poisoning</strong>. Chunghua<br />

Nei K’o Tsa Chih 1993, 32 (12), 810–812.<br />

66. Zu, Y. Acute Mushroom <strong>Poisoning</strong> with Amanita virosa.<br />

Chung-hua Yu Fang I Hsueh Tsa Chih 1987, 21 (6),<br />

335–337.<br />

67. Edward, J.N.; Henry, J.A. Medical Problems <strong>of</strong> Mushroom<br />

Ingestion. Mycologist 1989, 3 (1), 13–16.<br />

68. Pegler, D.N.; Watling, R. British Toxic Fungi. Bull. Br.<br />

Mycol. Soc. 1982, 16, 66–75.<br />

6<strong>9.</strong> Barbato, M.P. <strong>Poisoning</strong> from Accidental Ingestion <strong>of</strong><br />

Mushrooms. Med. J. Aust. 1993, 158, 842–847.<br />

70. Cole, F.M. Amanita phalloides in Victoria. Med. J. Aust.<br />

1993, 158 (12), 849–850.<br />

71. Trim, G.M.; Lepp, H.; Hall, M.J.; McKeown, R.V.;<br />

McCaughan, G.W.; Duggin, G.G.; Le Couteur, D.G.<br />

<strong>Poisoning</strong> by Amanita phalloides (“deathcap”) Mushrooms<br />

in the Australian Capital Territory. Med. J. Aust.<br />

1999, 171 (5), 247–24<strong>9.</strong><br />

72. Chaiear, K.; Limpaiboon, R.; Meechai, C.; Poovorawan,<br />

Y. Fatal Mushroom <strong>Poisoning</strong> Caused by Amanita<br />

virosa in Thailand. Southeast Asian J. Trop. Med. Public<br />

Health 1999, 30 (1), 157–160.<br />

73. Hanrahan, J.P.; Gordon, M.A. Mushroom <strong>Poisoning</strong>:<br />

Case Reports and a Review <strong>of</strong> Therapy. J. Am. Med.<br />

Assoc. 1984, 251 (8), 1057–1061.<br />

74. Olson, K.R.; Pond, S.M.; Sewards, J.; Healey, K.; Woo,<br />

F.; Becker, C.E. Amanita phalloides-Type Mushroom<br />

<strong>Poisoning</strong>. West. J. Med. 1982, 137 (4), 282–28<strong>9.</strong><br />

75. Bauchet, J.M. <strong>Poisoning</strong> Said to Be Due to Galerina<br />

unicolor. Bull. Br. Mycol. Soc. 1983, 17, 51.<br />

76. Furia, A.; Bernicchia, A.; Alberton, F. Intossicazione<br />

Parafalloidea da Lepiota brunneoincarnata. Micol. Ital.<br />

1982, 3, 29–33.<br />

77. Calonge, F.D.; Lopez-Herce, J.A. Tres Casos de<br />

Envenenamiento Grave en Madrid por Ingestion de<br />

Lepiota brunneo-incarnata Chodat & Martin (Three<br />

Cases <strong>of</strong> <strong>Poisoning</strong> by Lepiota brunneo-incarnata<br />

Chodat & Martin in Madrid). Bol. Soc. Micol. Madrid<br />

1987, 11 (2), 287–290.<br />

78. Gúzman, G. Un Caso Especial de Evenamiento Mortal<br />

Producido por Hongos en el Estado de Veracruz. Rev.<br />

Mex. Micol. 1987, 3, <strong>20</strong>3–<strong>20</strong><strong>9.</strong><br />

7<strong>9.</strong> McClain, J.L.; Hausse, D.W.; Clark, M.A. Amanita<br />

phalloides Mushroom <strong>Poisoning</strong>: A Cluster <strong>of</strong> Four<br />

Fatalities. J. Forensic Sci. 1989, 34, 83–87.


MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 745<br />

80. Boudjema, K.; Wolf, P.; Burtscher, A.; Juif, J.G.; Steib,<br />

A.; Ellero, B.; Jaeck, D.; Cinqualbre, J. Hépatite<br />

Fulminante par Intoxication Phalloïdienne. Une Indication<br />

d’Allotransplantation Hépatique. Presse Méd.<br />

1989, 18 (18), 937.<br />

81. Isiloglu, M.; Watling, R. <strong>Poisoning</strong> by Lepiota helveola<br />

Bres. in Southern Turkey. Edinb. J. Bot. 1991, 48 (1),<br />

91–100.<br />

82. Paydas, S.; Kocak, R.; Erturk, F.; Erken, E.; Zaksu, H.S.;<br />

Gurcay, A. <strong>Poisoning</strong> Due to <strong>Amatoxin</strong>-Containing<br />

Lepiota Species. Br. J. Clin. Pharmacol. 1990, 44 (11),<br />

450–453.<br />

83. Ronzoni, G.; Vesconi, S.; Radrizzani, D.; Corbetta, C.;<br />

Langer, M.; Iapichino, G. Guarigione Dopo Intossicazione<br />

Grave da Funghi Selvatici (Encefalopatia di IV<br />

Grado) con Sola Terapia Medica Intensiva e Senza<br />

Trapianto di Fegato Caso Clinico. Minerva Anestesiol.<br />

1990, 57, 383–387.<br />

84. Pérez-Moreno, J.; Pérez-Moreno, A.; Ferrara-Cerrato, R.<br />

Multiple Fatal Mycetism Caused by Amanita virosa in<br />

Mexico. Mycopathologia 1994, 125 (1), 3–5.<br />

85. Pérez-Moreno, J.; Ferrera-Cerrato, R. A Review <strong>of</strong><br />

Mushroom <strong>Poisoning</strong> in Mexico. Food Addit. Contam.<br />

1995, 12 (3), 355–360.<br />

86. Meunier, B.C.; Camus, C.M.; Houssin, D.P.; Messner,<br />

M.J.M.; Gérault, A.M.; Launois, B.G. Liver Transplantation<br />

After Severe <strong>Poisoning</strong> Due to <strong>Amatoxin</strong>-<br />

Containing Lepiota—Report <strong>of</strong> Three Cases. Clin.<br />

Toxicol. 1995, 33 (2), 165–171.<br />

87. Kern, C.; Zilker, T.; Van Clarman, M. Successful Liver-<br />

Transplantation in a Child After Amanita <strong>Poisoning</strong>.<br />

Congress <strong>of</strong> Anti-Poisons Centre, Istanbul, Turkey, May<br />

24–27, 1992; 37.<br />

88. Beckurts, K.T.E.; Hölscher, A.H.; Heidecke, C.D.;<br />

Zilker, T.R.; Natrath, W.; Siewert, J.R. Die Rolle der<br />

Lebertransplantation im Behandlungskonzept des Akuten<br />

Leberversagens nach Knollenblätterpilzvergiftung<br />

(The Place <strong>of</strong> Liver Transplantation in the <strong>Treatment</strong> <strong>of</strong><br />

Acute Liver Failure Caused by Amanita phalloides <strong>Poisoning</strong>).<br />

Dtsch. Med. Wochenschr. 1997, 122, 351–355.<br />

8<strong>9.</strong> O’Brien, B.L.; Khuu, L. A Fatal Sunday Brunch:<br />

Amanita Mushroom <strong>Poisoning</strong> in a Gulf Coast Family.<br />

Am. J. Gastroenterol. 1996, 91 (3), 581–583.<br />

90. Zevin, S.; Dempsey, D.; Olson, K. Amanita phalloides<br />

Mushroom <strong>Poisoning</strong>—Northern California, January<br />

1997. Morb. Mortal. Wkly Rep. 1997, 46 (22), 489–492.<br />

91. Skaare, V.K. Mushroom <strong>Poisoning</strong>: An Indication for<br />

Liver Transplantation. J. Transplant. Coord. 1997, 7 (3),<br />

141–143.<br />

92. Scocco, P.; Rupolo, G.; De Leo, D. Failed Suicide by<br />

Amanita phalloides (Mycetismus) and Subsequent Liver<br />

Transplant: Case Report. Arch. Suicide Res. 1998, 4,<br />

<strong>20</strong>1–<strong>20</strong>6.<br />

93. Cochran, K.W. 1999 Annual Report <strong>of</strong> the North<br />

American Mycological Association’s Mushroom<br />

<strong>Poisoning</strong> Case Registry. McIlvainea <strong>20</strong>00, 14 (2),<br />

34–40.<br />

94. Chiossi, M.; Di Pietro, P.; Marchi, A.; Messi, G.;<br />

Gallone, G.; Peisino, M.G. Mushroom <strong>Poisoning</strong> in<br />

Children. Vet. Hum. Toxicol. 1993, 35 (4), 331.<br />

95. Elonen, E.; Härkönen, M. Myrkkynääpikän (Galerina<br />

marginata ) Aiheuttama Myrkytys (<strong>Poisoning</strong> with<br />

Galerina marginata ). Duodecim 1978, 94, 1050–1053.<br />

96. Belliardo, F.; Massano, G.; Accomo, S. <strong>Amatoxin</strong>s<br />

Do Not Cross the Placental Barrier. Lancet 1983,<br />

1, 1381.<br />

97. Kendrick, B.; Shimizu, A. Mushroom <strong>Poisoning</strong>—<br />

Analysis <strong>of</strong> Two Cases and a Possible New <strong>Treatment</strong>,<br />

Plasmapheresis. Mycologia 1984, 76 (3), 448–453.<br />

98. Fort, J.; Rodriguez, J.A.; Cantarell, C.; Bartolomé, J.;<br />

Boveda, J.L.; Olmos, A.; Piera, L. Plasmaseparacion en<br />

la Intoxicacion por Amanita phalloides. Med. Clin.<br />

(Barc.) 1984, 82, 748–775.<br />

9<strong>9.</strong> Boron, P.; Prokopowicz, D.; Miegoc, H. Plazmafereza w<br />

Leczeniu Zatruc Grzybami (Plasmapheresis in the<br />

<strong>Treatment</strong> <strong>of</strong> <strong>Poisoning</strong> with Mushrooms). Pol. Tyg.<br />

Lék. 1987, XLII (39), 1215–121<strong>9.</strong><br />

100. DeSilvestro, G.; Marson, P.; Brandolese, R.; Pittoni, G.;<br />

Ongaro, G. A Single Institution’s Experience (1982–<br />

1999) with Plasma-Exchange Therapy in Patients with<br />

Fulminant Hepatic Failure. Int. J. Artif. Organs <strong>20</strong>00,<br />

23 (7), 454–461.<br />

101. Ohrn, M.; Jörgensen, B.; Gréen, K.; Karlson-Stiber, C.;<br />

Persson, H. <strong>Amatoxin</strong>analys vid Svampförgiftning<br />

(<strong>Amatoxin</strong> Analysis in Mushroom <strong>Poisoning</strong>). Laekartidningen<br />

1987, 84 (34), 2581–2583.<br />

102. Klein, A.S.; Hart, J.; Brems, J.J.; Goldstein, L.; Lewin,<br />

K.; Busuttil, R.W. Amanita <strong>Poisoning</strong>: <strong>Treatment</strong> and<br />

the Role <strong>of</strong> Liver Transplantation. Am. J. Med. 1989, 85,<br />

187–193.<br />

103. Pouyet, M.; Caillon, P.; Ducerf, C.; Berthaud, S.;<br />

Bouffard, Y.; Delafosse, B.; Thomasson, A.; Pignal, C.;<br />

Pulce, C. Transplantation Orthotopique du Foie pour<br />

Intoxication Grave par Amanite Phalloïde. Presse Méd.<br />

1991, <strong>20</strong> (41), <strong>20</strong>95–<strong>20</strong>98.<br />

104. Gazzero, R.C.; Goos, R.D. A Case <strong>of</strong> Mushroom<br />

<strong>Poisoning</strong> Involving Amanita virosa. McIlvainea 1991,<br />

10 (1), 45–46.<br />

105. Pelclova, D.; Rakovcova, H. Intoxikace Houbou<br />

Amanita phalloides v Dotazech Toxikologickeho<br />

Informacniho Strediska v Praze (Mushroom Amanita<br />

phalloides in the Inquiries <strong>of</strong> the Poison Information<br />

Centre). Cas. Lék. Cesk. 1993, 132, 470–472.<br />

106. Doepel, M.; Isoniemi, H.; Salmela, K.; Penttilä, K.;<br />

Höckerstedt, K. Liver Transplantation in a Patient with<br />

Amanita <strong>Poisoning</strong>. Transplant. Proc. 1994, 26 (3),<br />

1801–1802.<br />

107. Karakullukçu, F.; Besler, M.; Yurdun, T.; Sifoglu, Z.;<br />

Yuksel, K.; Hacikaptan, E.; Onsun, K.; Karakullukçu,<br />

B. Hemoperfusion Is Life Saving in Amanita phalloides


746<br />

Intoxication. XXXIIIrd Congress <strong>of</strong> EDTA, Amsterdam,<br />

Holland, 1996; 316.<br />

108. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry:<br />

NAMA Report 1995. McIlvainea 1996, 12 (2), 98–104.<br />

10<strong>9.</strong> Yamada, E.G.; Mohle-Boetani, J.; Olson, K.R.; Werner,<br />

S.B. Mushroom <strong>Poisoning</strong> Due to <strong>Amatoxin</strong>. West.<br />

J. Med. 1998, 169, 380–384.<br />

110. Langer, M.; Gridelli, B.; Piccolo, G.; Markovic, S.;<br />

Quarenghi, E.; Gatti, S.; Ghio, L.; Ginevri, F. A Liver-<br />

Transplant Candidate (Fulminant Hepatic Failure from<br />

Amanita phalloides <strong>Poisoning</strong>) as a Multiorgan Donor.<br />

Transplant. Proc. 1997, 29, 3343–3344.<br />

111. Splendiani, G.; Zazzaro, D.; Di Pietrantonio, P.D.;<br />

Delfino, L. Continuous Renal Replacement Therapy and<br />

Charcoal Plasmaperfusion in <strong>Treatment</strong> <strong>of</strong> Amanita<br />

Mushroom <strong>Poisoning</strong>. Artif. Organs <strong>20</strong>00, 24 (4),<br />

305–308.<br />

112. Pomerance, H.H.; Barness, E.G.; Kobli-Kumar, M.;<br />

Arnold, S.R.; Steigelfest, J. A 15-Year-Old Boy with<br />

Fulminant Hepatic Failure. J. Pediatr. <strong>20</strong>00, 137 (1),<br />

114–118.<br />

113. Jaros, F. Incidence <strong>of</strong> Fungal Intoxications Including<br />

Amanita phalloides in Last Four Decades in the District<br />

<strong>of</strong> Trencia in Slovakia. Ceska Mykol. 1992 (Received<br />

1993), 46 (3–4), 256–262.<br />

114. Jaros, F.; Simurka, P.; Ehsanova, M. Incidencia, Sucasna<br />

Liecba a Prognoza Otrav Hubami u Deti a Dospelych<br />

(Incidence, Contemporary <strong>Treatment</strong> and Prognosis <strong>of</strong><br />

Mushroom <strong>Poisoning</strong> in Children and Adults). Cs.<br />

Pediatr. 1998, 53 (2), 90–93.<br />

115. Cosme Jimenez, A.; Zabaleta Arrizabalaga, S.; Izaguirre<br />

Boneta, A.; Diago Ferrero, A.; Alzate Saez de Heredia,<br />

L.F.; Orive Cura, V.; Arenas Mirave, J.I. Intoxication no<br />

Mortal por Amanita phalloides. A Proposito de dos<br />

Casos. Rev. Clin. Esp. 1983, 171 (4), 261–264.<br />

116. Montanini, S.; Sinardi, D.; Pratico, C.; Sinardi, A.U.;<br />

Trimarchi, G. Use <strong>of</strong> Acetyl-Cysteine as the Life-Saving<br />

Antidote in Amanita phalloides (Death Cap) <strong>Poisoning</strong>.<br />

Case Report on 11 Patients. Arzneim.-Forsch. 1999,<br />

49 (12), 1044–1047.<br />

117. Kacic, M.; Dujsin, M.; Puretic, Z.; Slavicek, J.<br />

Micetizam u Djece-u Povodu Jedne Epidemije Otrovanja<br />

(Mycetismus in Children, with Special Reference<br />

to One Outbreak <strong>of</strong> Mushroom <strong>Poisoning</strong>). Lijec. Vjesn.<br />

1990, 112 (11–12), 369–373.<br />

118. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry:<br />

NAMA Report 1994. McIlvainea 1995, 12 (1), 68–73.<br />

11<strong>9.</strong> Rosenthal, P.; Roberts, J.P.; Ascher, N.L.; Edmond, J.C.<br />

Auxiliary Liver Transplant in Fulminant Failure.<br />

Pediatrics 1997, 100 (2), 100–111.<br />

1<strong>20</strong>. Rosenthal, P.R. Auxiliary Liver Transplantation for<br />

Toxic Mushroom <strong>Poisoning</strong>. J. Pediatr. <strong>20</strong>01, 138 (3),<br />

44<strong>9.</strong><br />

121. Beaudreuil, S.; Sharobeem, R.; Maître, F.; Karsenti, D.;<br />

Crezard, O.; Pierre, D. Toxicité Rénale de L’amanite<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

phalloïde. Une Observation avec Ponction Biopsie<br />

Rénale. Presse Méd. 1998, 27 (28), 1434.<br />

122. Cochran, K.W. 1998 Annual Report <strong>of</strong> the North<br />

American Mycological Association’s Mushroom <strong>Poisoning</strong><br />

Case Registry. McIlvainea 1999, 14 (1), 93–98.<br />

123. Gimson, A.E.S.; Braude, S.; Mellon, P.J.; Canalese, J.<br />

Earlier Charcoal Haemoperfusion in Fulminant Hepatic<br />

Failure. Lancet 1982, 681–683.<br />

124. Horn, K.D.; Wax, P.; Schneider, S.M.; Martin, T.G.;<br />

Nine, J.S.; Moraca, M.A.; Virji, M.A.; Aronica, P.A.;<br />

Rao, K.N. Biomarkers <strong>of</strong> Liver Regeneration Allow<br />

Early Prediction <strong>of</strong> Hepatic Recovery After Acute<br />

Necrosis. Am. J. Clin. Pathol. 1999, 112, 351–357.<br />

125. Butera, R.; Locatelli, C.; Maccarini, D.; Candura, S.M.;<br />

Manzo, L. Emploi de la N-Acetylcystéine dans<br />

L’intoxication par Amanita phalloides: Résultats Cliniques.<br />

Résumés des Communications. XXXIème Congrès<br />

de la Société de Toxicologie Clinique, Nancy,<br />

France, Sept 16–17, 1993; 2<strong>9.</strong><br />

126. Dolfi, F.; Gonnella, R. Intossicazione Acuta da Amanita<br />

phalloide nel Secondo Trimestre di Gravidenza. Minerva<br />

Anestesiol. 1994, 60, 153–154.<br />

127. Hruby, K. Knollenblätterpilzvergiftung. Intensivmedizin<br />

1987, 24, 269–274.<br />

128. Hruby, K. <strong>Treatment</strong> <strong>of</strong> Death Cap Fungus with<br />

Silibinin. 10th Congress <strong>of</strong> the International Society<br />

for Human and Animal Mycology, Barcelona, Spain,<br />

Jun 1988; 361–363.<br />

12<strong>9.</strong> Plackova, S.; Caganova, B. Acute Intoxications by<br />

Mushrooms and Plants in Slovakia. Clin. Toxicol. 1998,<br />

36, 452–453.<br />

130. Zilker, T.R.; Felgenhauer, N.J.; Michael, H.; Strange-<br />

Hesse, A. Grading <strong>of</strong> Severity and Therapy <strong>of</strong> 154 Cases<br />

<strong>of</strong> Amanita <strong>Poisoning</strong>. Vet. Hum. Toxicol. 1993, 35 (4),<br />

331.<br />

131. Russo, G.E.; Giusti, S.; Maurici, M.; Bosco, M.;<br />

Vitaliano, E.; Caramiello, M.S.; Bauco, B.; De Marco,<br />

C.M.; Marigliano, V. Plasmapheresi e Avvelenamento<br />

da Funghi: Presentazione di un Caso di Intossicazione da<br />

Amanita phalloides. Clin. Ter. 1997, 148 (5–6),<br />

277–280.<br />

132. Plotzker, R.; Jensen, D.M.; Payne, J.A. Case Report<br />

Amanita virosa Acute Hepatic Necrosis: <strong>Treatment</strong><br />

with Thioctic Acid. Am. J. Med. Sci. 1982, 283 (2),<br />

79–81.<br />

133. Bektas, H.; Schlitt, H.J.; Böker, K.; Brunkhorst, R.;<br />

Oldhafer, K.J.; Pichlmayr, R. Indikationsstellung zur<br />

Lebertransplantation bei Schwerer Knollenblätterpilzvergiftung<br />

(Indication for Liver Transplantation in<br />

Severe Amanita phalloides Mushroom <strong>Poisoning</strong>).<br />

Chirurg 1996, 67, 996–1001.<br />

134. Pehlivanoglu, E.; Lawrence, R.A.; Canpolat, C. <strong>Treatment</strong><br />

<strong>of</strong> Amanita phalloides Intoxication. A Report <strong>of</strong> 3<br />

Cases and Review <strong>of</strong> the Literature. Int. Pediatr. 1991, 6<br />

(4), 366–370.


135. Aji, D.Y.; Caliskan, S.; Nayir, A.; Mat, A.; Can, B.;<br />

Yasar, Z.; Ozsahin, H.; Cullu, F.; Sever, L. Haemoperfusion<br />

in Amanita phalloides <strong>Poisoning</strong>. J. Trop. Pediatr.<br />

1995, 41, 371–374.<br />

136. Favarel-Garrigues, J.C.; Saric, J.; Janvier, F.; Wickers,<br />

F.; Masson, B.; Winnock, S.; Couzigou, P.; Lugrin, D.;<br />

Penouil, F.; De Mascarel, A. Intoxication Phalloïdienne<br />

Grave—Transplantation Hépatique: Un Recours Possible<br />

(à Propos d’une Observation). Soc. Fr. Toxicol.<br />

1988, 8, 62.<br />

137. Rangé Grasland, L. Intoxication Volontaire par L’amanite<br />

phalloïde (à Propos d’un Cas). Thèse de Médecine,<br />

Université de Rennes 1: France, 1986, 96.<br />

138. Pescador Guiral, C. Intoxications Phalloïdiennes: À<br />

Propos de 29 Cas Recensés par le Centre Anti-Poisons<br />

de Toulouse Entre 1983 et 1994. Propositions Thérapeutiques.<br />

Thèse de Médecine, Université de Toulouse<br />

III: France, 1995, 17<strong>9.</strong><br />

13<strong>9.</strong> Cappell, M.S.; Hassan, T. Gastrointestinal and Hepatic<br />

Effects <strong>of</strong> Amanita phalloides Ingestion. J. Clin.<br />

Gastroenterol. 1992, 15 (3), 225–228.<br />

140. Feinfeld, D.A.; M<strong>of</strong>enson, H.C.; Caraccio, T.; Kee, M.<br />

<strong>Poisoning</strong> by <strong>Amatoxin</strong>-Containing Mushrooms in<br />

Suburban New York—Report <strong>of</strong> Four Cases. Clin.<br />

Toxicol. 1994, 32 (6), 715–721.<br />

141. Mullins, M.E.; Horowitz, B.Z. The Futility <strong>of</strong> Hemoperfusion<br />

and Hemodialysis in Amanita phalloides<br />

<strong>Poisoning</strong>. Vet. Hum. Toxicol. <strong>20</strong>00, 42 (2), 90–91.<br />

142. Saltik, I.N.; Soysal, A.; Sarikayalar, F.; Topalgu, R.;<br />

Gurakan, F. Amanita <strong>Poisoning</strong> in a Child Treated with<br />

Plasma Exchange. Indian Pediatr. <strong>20</strong>00, 37, 1028–102<strong>9.</strong><br />

143. Locatelli, C.; Maccarini, D.; Ferruzi, M.; Olibet, G.;<br />

Ruggerone, M.L. Intossicazioni Acute da Amanita phalloides:<br />

Proposta di Terapia con N-Acetilcisteina. Ann.<br />

Mus. Civ. Rovereto 1989, 4 (1988, Suppl.), 211–212.<br />

144. Locatelli, C.; Travaglia, A.; Sala, G.; Maccarini, D.;<br />

Ruggerone, M.L. Ruolo Dell’ N-Acetilcisteinia e Della<br />

Diuresi Forzata nel Trattamento Dell’intossicazione<br />

Falloidea: Casistica Clinica. Minerva Anestesiol. 1990,<br />

56, 1361–1363.<br />

145. Locatelli, C.; Maccarini, D.; Travaglia, A.; Manzo, L.<br />

Prolonged High Dose N-Acetylcysteine <strong>Treatment</strong> <strong>of</strong><br />

Amanita phalloides and Chlorinated Hydrocarbon<br />

<strong>Poisoning</strong>. Pharmacol. Res. 1992, 26, <strong>20</strong>1.<br />

146. Gayol, S.; Tournoud, C.; Flesch, F.; Berton, C.;<br />

Rusterholtz, T.; Raguin, O.; Liegeon, M.N.; Sauder,<br />

P.; Jaeger, A. <strong>Amatoxin</strong> <strong>Poisoning</strong> Due to Lepiota<br />

brunneoincarnata. Congrès Européen de Toxicologie,<br />

Marseille, France, Jun 4–7, 1966; 14.<br />

147. Pertile, N.; Galliani, E.; Vergerio, A.; Turrin, A.; Caddia,<br />

V. Sindrome Falloidea-Descrizione di un Caso in Una<br />

Bambina di due Anni. Ped. Med. Chr. (Med. Surg. Ped.)<br />

1990, 12, 411–414.<br />

148. Benvenuto, V. Intoxication Phalloïdienne: Aspects<br />

Botanique, Toxicologique, Clinique, Thérapeutique et<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 747<br />

Préventif. Thèse de Médecine, Université de Saint<br />

Etienne: France, 1989, 172.<br />

14<strong>9.</strong> Sabeel, A.I.; Kurkus, J.; Lindholm, T. Intensive<br />

Hemodialysis and Hemoperfusion <strong>Treatment</strong> <strong>of</strong> Amanita<br />

Mushroom <strong>Poisoning</strong>. Mycopathologia 1995, 131,<br />

107–114.<br />

150. Daya, M.R.; Norton, R.L.; Fields, R.D.; Kao, R.; Lake,<br />

J.R.; Ascher, N.L.; Pinson, C.W.; Benner, K.G.; Keefe,<br />

E.B. Liver Transplantation in Amanita phalloides<br />

<strong>Poisoning</strong>. Vet. Hum. Toxicol. 1989, 31 (4), 360.<br />

151. Pinson, C.W.; Daya, M.R.; Benner, K.G.; Norton, R.L.;<br />

Deveney, K.E.; Ascher, N.L.; Roberts, J.P.; Lake, J.R.;<br />

Kurkchubasche, A.G.; Ragsdale, J.W.; Alexander, J.P.;<br />

Keefe, E.B. Liver Transplantation for Severe Amanita<br />

phalloides Mushroom <strong>Poisoning</strong>. Am. J. Surg. 1990,<br />

159, 493–49<strong>9.</strong><br />

152. Iivanainen, A.; Valtonen Ja Pertti, M.; Pentikäinen, J.<br />

Sienimyrkytys—Syksyn Sairaus (Mushroom <strong>Poisoning</strong>—A<br />

Disease <strong>of</strong> Autumn). Duodecim 1989, 105 (15),<br />

1313–1317.<br />

153. Madsen, S.; Jenssen, K.M. Forgiftning Med Hvit<br />

Fluesopp (Amanita virosa )—Symptomer, Diagnose og<br />

Behandling. Tidsskr. Nor. Laegeforen. 1990, 110 (14),<br />

1828–182<strong>9.</strong><br />

154. Schiodt, F.V.; Ott, P.; Bondesen, S. Forgiftning Med<br />

Gron og Hvid Fluesvamp pä en Hepatologisk Specialafdeling,<br />

1989–1994 (<strong>Poisoning</strong> with Amanita phalloides<br />

and Amanita virosa Treated at a Department <strong>of</strong><br />

Hepatology, 1989–1994). Ugeskr. Laeg. 1995, 157 (31),<br />

4350–4354.<br />

155. Nieter, B.; Frille, J. Plasmaaustausch bei Knollenblätterpilzvergiftung<br />

(Plasma Exchange in Amanita phalloides<br />

Mushroom <strong>Poisoning</strong>—A Case Report). Nieren-Hochdruckkr.<br />

1992, 21 (1), 8–10.<br />

156. Scheurlen, C.; Spannbrucker, N.; Spengler, U.;<br />

Zachoval, R.; Schulte-Witte, H.; Brensing, K.A.<br />

Amanita phalloides Intoxications in a Family <strong>of</strong> Russian<br />

Immigrants. Case Reports and Review <strong>of</strong> the Literature<br />

with a Focus on Orthotopic Liver Transplantation.<br />

Z. Gastroenterol. 1994, 32, 399–404.<br />

157. Rambousek, V.; Janda, J.; Sikut, M. Severe Amanita<br />

phalloides <strong>Poisoning</strong> in a 7-Year-Old Girl. Cesk.<br />

Pediatr. 1993, 48 (6), 332–333.<br />

158. Christen, Y.; Minazio, P.; de Moerloose, P. Monitoring<br />

<strong>of</strong> Haemostatic Parameters in Five Cases <strong>of</strong> Amanita<br />

phalloides <strong>Poisoning</strong>. Blood Coagul. Fibrinolysis 1993,<br />

4, 627–630.<br />

15<strong>9.</strong> Serné, E.H.; Toorians, A.W.F.T.; Gietema, J.A.;<br />

Bronsveld, W.; Haagsma, E.B.; Mulder, P.O.M.<br />

Amanita phalloides, a Potentially Lethal Mushrooms:<br />

Its Clinical Presentation and Therapeutic Options. Neth.<br />

J. Med. 1996, 49 (1), 19–23.<br />

160. Jaros, F.; Kascak, M. Incidencia a Sucasna Liecba<br />

Cytotoxickych Cyclopeptidovych (Faloidnych) Otrav u<br />

Gravidnych Zien (Incidence and Contemporary Treat-


748<br />

ment <strong>of</strong> Cytotoxic Cyclopeptide (Phalloid) Intoxications<br />

in Pregnant Women). Vnitr. Lék. 1996, 42 (6), 414–417.<br />

161. Carducci, R.; Armellino, M.F.; Volpe, C.; Basile, G.;<br />

Caso, N.; Apicella, A.; Basile, V. Silibinina e<br />

Intossicazione Acuta da Amanita phalloides. Minerva<br />

Anestesiol. 1996, 62 (5), 187–193.<br />

162. Alves, A.; Ferreira, M.G.; Paulo, J.; França, A.;<br />

Carvalho, A. Mushroom <strong>Poisoning</strong> with Amanita<br />

phalloides. Eur. J. Int. Med. <strong>20</strong>01, 12, 64–66.<br />

163. Marugg, D.; Reutter, F.W. Die Amanita phalloides-<br />

Intoxication Moderne Therapeutische Massnahmen und<br />

Klinischer Verlauf (Amanita phalloides <strong>Poisoning</strong>—<br />

Modern Therapeutic Procedures and Clinical Course).<br />

Schweiz. Rundsch. Med./Prax. 1985, 74 (37), 972–982.<br />

164. H<strong>of</strong>er, J.F.; Egermann, G.; Mach, K.; Sommer, K.<br />

Therapie der Knollenblät-Terpilzergiftung mit Silibinin<br />

in Kombination mit Penicillin und Cortison. Wien. Klin.<br />

Wochenschr. 1983, 95 (7), 240–243.<br />

165. Hallas, J.; Jensen, K. Forgiftning Med Gron Fluesvamp.<br />

Ugeskr. Laeg. 1988, 150 (16), 975–978.<br />

166. Molling, J.; Pohle, W.; Klein, H.; Welte, T. Stellenwert<br />

Therapeutischer Maßnahmen bei Vergiftung mit dem<br />

Grünen Knollenblätterpilz (The Different Stages in the<br />

<strong>Treatment</strong> <strong>of</strong> Amanita phalloides <strong>Poisoning</strong>). Intensivmedizin<br />

1995, 32 (1), 37–42.<br />

167. Homann, J.; Rawer, P.; Bleyl, H.; Matthes, K.J.;<br />

Heinrich, D. Early Detection <strong>of</strong> <strong>Amatoxin</strong>s in Human<br />

Mushroom <strong>Poisoning</strong>. Arch. Toxicol. 1986, 59,<br />

190–191.<br />

168. Bourgeois, F.; Bourgeois, N.; Gelin, M.; Van de Stadt,<br />

J.; Doutrelepont, J.M.; Adler, M. Hépatite Aiguë et<br />

Intoxication à L’amanite Phalloïde. Acta Gastroenterol.<br />

Belg. 1992, LV, 358–363.<br />

16<strong>9.</strong> Soyez, C.; Autret, E.; Laugier, J.; Broué P.; Crèche,<br />

J. Intoxication Familiale par Lepiota helveola. Résumés<br />

des Communications. XXXIème Congrès de la Société<br />

de Toxicologie Clinique, Nancy, France, Sept 16–17,<br />

1993; 28.<br />

170. Jankowska, I.; Malenta, G.; Rysko, J.; Socha, J.;<br />

Wozniewicz, M. Analiza Kliniczno–Morfologiczna<br />

Dzieci Zmarlych z Powodu Zatrucia Muchomorem<br />

Sromotnikowym (The Clinical–Morphological Analysis<br />

<strong>of</strong> Children Dying <strong>of</strong> Intoxication with Amanita<br />

phalloides ). Wiad. Lék. 1992, XLV, 21–22.<br />

171. Ryzko, J.; Jankowska, I.; Socha, J. Ostra Nierwydolnosci<br />

Watroby po Zatruciu Muchomorem Sromotnikowym<br />

(Acute Hepatic Liver Failure After <strong>Poisoning</strong> with<br />

Amanita phalloides). Wiad. Lék. 1987, 40 (21),<br />

1453–1458.<br />

172. Socha, J. Mushroom <strong>Poisoning</strong> in Children. 10th<br />

International Congress <strong>of</strong> the Society for Human and<br />

Animal Mycology, Barcelona, Spain, June, 1988;<br />

356–360.<br />

173. Pach, J.; Zajac, J.J.; Chrostek-Maj, J.; Wiernikowski, A.<br />

Porownanie Skutecznosci Rosnych Modeli Postepowa-<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

nia Leczniczego w Ostrym Zatruciu Muchomorem<br />

Sromotnikowym (Comparison <strong>of</strong> the Effectiveness <strong>of</strong><br />

Various Models <strong>of</strong> Therapeutic Man Amanita <strong>Poisoning</strong>).<br />

Pol. Tyg. Lék. 1987, XLII (11), 322–324.<br />

174. Ponikvar, R.; Drinovec, J.; Kandus, A.; Varl, J.; Gucek,<br />

A.; Malovrh, M. Plasma Exchange in Management <strong>of</strong><br />

Severe Acute <strong>Poisoning</strong> with Amanita phalloides. Apher<br />

1990, 327–32<strong>9.</strong><br />

175. Jankowska, I.; Grenda, R.; Rysko, J.; Litwin, M.;<br />

Prokurat, S.; Rychlik, G.; Smirska, E.; Kaliszan, A.;<br />

Socha, J. Ocena Przydatnosci Plazmaferezy w Leczeniu<br />

Zatruc Muchomorem Sromotnikowym (Evaluation de la<br />

Plasmaphérèse dans le Traitement de l’intoxication par<br />

Amanita phalloides ). Pol. Tyg. Lék. 1993, XLVII<br />

(18–19), 427–42<strong>9.</strong><br />

176. Bartoloni St Omer, F.; Giannini, A.; Botti, P.; Caramelli,<br />

L.; Ledda, F.; Peruzzi, S.; Zorn, M. Amanita <strong>Poisoning</strong>:<br />

A Clinical–Histopathological Study <strong>of</strong> 64 Cases <strong>of</strong><br />

Intoxication. Hepatogastroenterology 1985, 32,<br />

229–231.<br />

177. Fantozzi, R.; Ledda, F.; Caramelli, L.; Moroni, F.;<br />

Blandina, P.; Masini, E.; Botti, P.; Peruzzi, S.; Zorn, M.;<br />

Mannaioni, P.F. Clinical Findings and Follow-Up<br />

Evaluation <strong>of</strong> an Outbreak <strong>of</strong> Mushroom <strong>Poisoning</strong>—<br />

Survey <strong>of</strong> Amanita phalloides <strong>Poisoning</strong>. Klin.<br />

Wochenschr. 1986, 64, 38–43.<br />

178. Piering, W.F.; Bratanow, N. Role <strong>of</strong> the Clinical<br />

Laboratory in Guiding <strong>Treatment</strong> <strong>of</strong> Amanita virosa<br />

Mushroom <strong>Poisoning</strong>: Report <strong>of</strong> Two Cases. Clin.<br />

Chem. 1990, 36 (3), 571–574.<br />

17<strong>9.</strong> Iliev, Y.; Andonova, S.; Akabaliev, V. Our Experience<br />

in the <strong>Treatment</strong> <strong>of</strong> Acute Amanita phalloides <strong>Poisoning</strong>.<br />

Folia Med. 1999, XLI (4), 30–37.<br />

180. Mydlik, M.; Derzsiova, K.; Mizla, P.; Beno, P. Pouzitie<br />

Hemoperfuzie pri Otrave Hubami. Klinicky Rozbor 58<br />

Chorych (Use <strong>of</strong> Haemoperfusion in Mushroom<br />

<strong>Poisoning</strong>. Clinical Analysis <strong>of</strong> 58 Patients). Cas. Lék.<br />

Cesk. 1993, 132 (15), 464–466.<br />

181. Buffoni, L.; Chiossi, M.; De Santis, L.; Galletti, A.;<br />

Lattere, M.; Pesce, F.; Reboa, E.; Renna, S.; Rosati, U.;<br />

Tarateta, A.; Tasso, L. l’Avvelenamento nell’Infanzia da<br />

Amanita velenosa “Mortale”. Minerva Pediatr. 1986, 38,<br />

1155–117<strong>9.</strong><br />

182. Sanz, P.; Reig, R.; Borras, L.; Martinez, J.; Manez, R.;<br />

Corbella, J. Disseminated Intravascular Coagulation and<br />

Mesenteric Venous Thrombosis in Fatal Amanita<br />

<strong>Poisoning</strong>. Hum. Toxicol. 1988, 7, 199–<strong>20</strong>1.<br />

183. Sanz, P.; Reig, R.; Piqueras, J.; Marti, G.; Corbella, J.<br />

Fatal Mushroom <strong>Poisoning</strong> in Barcelona, 1986–1988.<br />

Mycopathologia 1989, 108, <strong>20</strong>7–<strong>20</strong><strong>9.</strong><br />

184. Sese Torres, J.; Piqueras Carrasco, J.; Morlans Molina,<br />

G. Intoxicacion por Amanita phalloides: Diagnostico<br />

por Radioinmunoanalisis y Tratamiento con Diuresis<br />

Forzada (<strong>Poisoning</strong> with Amanita phalloides.<br />

Diagnosis by Radioimmunoassay and <strong>Treatment</strong>


with Forced Diuresis). Med. Clin. 1985, 84 (16),<br />

660–662.<br />

185. Vesconi, S.; Langer, M.; Iapichino, G.; Constantino, D.;<br />

Busi, C.; Fiume, L. Therapy <strong>of</strong> Cytotoxic Mushroom<br />

Intoxication. Crit. Care Med. 1985, 13, 402–406.<br />

186. Capellaro, L.; Lupo, F.; Tiboldo, F.; Belotti, M.T.;<br />

Spagarino, E. Esperienza Riguardo All’uso Della<br />

Plasmaferesi in Patologie di Interesse Rianimatorio.<br />

Minerva Med. 1987, 78, 1565–1570.<br />

187. Lopez, A.; Jerez, V.; Rebollo, J.; Lombardo, A.G.; Julia,<br />

J.A. Fulminant Hepatitis and Liver Transplantation.<br />

Ann. Intern. Med. 1988, 108, 76<strong>9.</strong><br />

188. Ramirez, P.; Parrilla, P.; Bueno, F.S.; Robles, R.; Pons,<br />

J.A.; Bixquert, V.; Nicolas, S.; Nunez, R.; Alegria, M.S.;<br />

Miras, M.; Rodriguez, J.M. Fulminant Hepatic Failure<br />

After Lepiota Mushroom <strong>Poisoning</strong>. J. Hematol. 1993,<br />

19, 51–54.<br />

18<strong>9.</strong> Castiella, A.; Lopez Dominguez, L.; Txoperena, G.;<br />

Cosme, A.; Aramburu, V.; Arenas, J.I. Indication de la<br />

Transplantation du Foie en Cas d’Intoxication par<br />

Amanite Phalloïde. Presse Méd. 1993, 22 (4), 177.<br />

190. Van Cauter, J.; Quarre, J.P.; Demay, M.; Pollart, C.;<br />

Ligny, C. Intoxication Familiale par Amanite Phalloïde.<br />

Acta Gastroenterol. Belg. 1984, XLVII, 47–54.<br />

191. Boyer, J.C.; Hernandez, F.; Estorc, J.; De La Coussaye,<br />

J.E.; Bali, J.P. Management <strong>of</strong> Maternal Amanita<br />

phalloides <strong>Poisoning</strong> During the First Trimester <strong>of</strong><br />

Pregnancy: A Case Report and Review <strong>of</strong> the Literature.<br />

Clin. Chem. <strong>20</strong>01, 47 (5), 971–974.<br />

192. Perrier, A.L. Syndrome Phalloïdien: à Propos d’une<br />

Intoxication chez la Femme Enceinte à Treize Semaines<br />

d’Aménorrhée. Thèse de Médecine, Université Montpellier<br />

I: France, 1998, 116.<br />

193. Woodle, E.S.; Moody, R.R.; Cox, K.L.; Cannon, R.A.;<br />

Ward, R.E. Orthotopic Liver Transplantation in a Patient<br />

with Amanita <strong>Poisoning</strong>. J. Am. Med. Assoc. 1985, 253<br />

(1), 69–70.<br />

194. Dumont, A.M.; Chennebault, J.M.; Alquier, P.; Jardel,<br />

H. Management <strong>of</strong> Amanita phalloides <strong>Poisoning</strong> by<br />

Bastien’s Regimen. Lancet 1981, 1, 722.<br />

195. Boiffard, J. Une Intoxication Familiale par Lepiota<br />

brunneolilacea. Doc. Mycol. 1987, XVIII (69), 21–23.<br />

196. Daoudal, P.; Noirot, A.; Wagschal, G.; Neftel, K.; Hany,<br />

M.; Clément, D.; Floriot, C.; Delacour, J.L. Traitement<br />

de l’intoxication Phalloïdienne par Silymarine et<br />

Ceftazidime. Presse Méd. 1989, 18 (27), 1341–1342.<br />

197. Heurtebize, P. Intoxication Phalloïdienne: À Propos de<br />

Cinq Cas Traités par Ceftazidime et Silymarine. Thèse<br />

de Médecine, Université de Besançon: France, 1990, 192.<br />

198. Meunier, B.; Messner, M.; Bardaxoglou, E.; Spiliopoulos,<br />

G.; Terblanche, J.; Launois, B. Liver Transplantation<br />

for Severe Lepiota helveola <strong>Poisoning</strong>. Liver<br />

1994, 14, 158–160.<br />

19<strong>9.</strong> Galler, G.W.; Weisenberg, E.; Brasitus, T.A. Mushroom<br />

<strong>Poisoning</strong>: The Role <strong>of</strong> Orthotopic Liver<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 749<br />

Transplantation. J. Clin. Gastroenterol. 1992, 15 (3),<br />

229–232.<br />

<strong>20</strong>0. Haines, J.H.; Lichstein, E.; Glickerman, D. A Fatal<br />

<strong>Poisoning</strong> from an <strong>Amatoxin</strong> Containing Lepiota.<br />

Mycopathologia 1985, 93, 15–17.<br />

<strong>20</strong>1. Jander, S.; Bisch<strong>of</strong>f, J. <strong>Treatment</strong> <strong>of</strong> Amanita phalloides<br />

<strong>Poisoning</strong>: I. Retrospective Evaluation <strong>of</strong> Plasmapheresis<br />

in 21 Patients. Ther. Apher. <strong>20</strong>00, 4 (4), 303–307.<br />

<strong>20</strong>2. Olesen, L.L. <strong>Amatoxin</strong> Intoxication. Scand. J. Urol.<br />

Nephrol. 1990, 24, 231–234.<br />

<strong>20</strong>3. Nagy, I.; Pogatsa-Murray, G.; Zalanyi, S.; Komlosi, P.;<br />

Laszlo, F.; Ungi, I. Amanita <strong>Poisoning</strong> During the Second<br />

Trimester <strong>of</strong> Pregnancy. A Case Report and a Review <strong>of</strong><br />

the Literature. Clin. Investig. 1994, 72, 794–798.<br />

<strong>20</strong>4. Mikos, B.; Biro, E. Amanita phalloides <strong>Poisoning</strong> in a<br />

15-Year Case Load <strong>of</strong> a Pediatric Intensive Care Unit.<br />

Orv. Hetil. 1993, 134 (17), 907–910.<br />

<strong>20</strong>5. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry: North<br />

American Mycological Association Report 1992.<br />

McIlvainea 1993, 11 (1), 51–60.<br />

<strong>20</strong>6. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry:<br />

NAMA Report 1996. McIlvainea 1997, 13 (1), 63–67.<br />

<strong>20</strong>7. Trestail, J.H. 1997 Annual Report <strong>of</strong> the North American<br />

Mycological Association’s Mushroom <strong>Poisoning</strong> Case<br />

Registry. McIlvainea 1998, 13 (2), 86–92.<br />

<strong>20</strong>8. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry: North<br />

American Mycological Association Report 1993.<br />

McIlvainea 1994, 11 (2), 87–95.<br />

<strong>20</strong><strong>9.</strong> Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry: North<br />

American Mycological Association Report 1989–90.<br />

McIlvainea 1991, 10 (1), 36–44.<br />

210. Dimitrov, C.; Nikova, M. Intensive Care <strong>Treatment</strong> in<br />

Patients on Acute Haemodialysis/Haemoperfusion.<br />

XXXth Congress <strong>of</strong> EDTA, Vienna, Austria, 1994; 77.<br />

211. Hubenova, A.; Stankova, E. Some Recent Problems in<br />

Amanita phalloides <strong>Poisoning</strong>s. Congress <strong>of</strong> Anti-<br />

Poisons Centre, Istambul, Turkey, May 24–27, 1992;<br />

37.<br />

212. De Haro, L.; Jouglard, J.; Hayek, M.; David, J.M.;<br />

Arditti, J.; Bourdon, J.H.; Blanchard, M.; Regli, P.;<br />

Bechtel, Y.; Bechtel, P. Un Cas d’Intoxication par<br />

Amanites Printanières: Étude de l’Atteinte Hépatique.<br />

XXXIème Congrès de la Société de Toxicologie<br />

Clinique, Nancy, France, Sept 16–17, 1993; 27.<br />

213. Timar, L.; Czeizel, A.E. Birth Weight and Congenital<br />

Anomalies Following Poisonous Mushroom Intoxication<br />

During Pregnancy. Reprod. Toxicol. 1997, 11<br />

(6), 861–866.<br />

214. Misiuk-Hojio, M.; Magnowska-Wozniak, M. Powiklania<br />

Oczne w Zatruciu Muchomorem Sromotnikowym<br />

(Ocular Complications in Amanita phalloides <strong>Poisoning</strong>).<br />

Klin. Oczna 1996, 98 (1), 59–60.<br />

215. Mydlik, M.; Mizla, P.; Derzsiova, K.; Beno, P.;<br />

Matheova, E. Extracorporeal <strong>Treatment</strong> <strong>of</strong> Acute<br />

Renal Failure (ARF) and Acute <strong>Poisoning</strong> (AP) in


750<br />

Children and Adolescents—27 Year Experiences.<br />

XXXth Congress <strong>of</strong> EDTA, Vienna, Austria, 1994; 82.<br />

216. Brunelli, F. Première Suisse à Genève: Un Enfant de 7<br />

ans, Intoxiqué par Amanita phalloides, est Sauvé par une<br />

Greffe de Foie. Schweiz. Z. Pilzkd. 1992, 70 (4), 85–86.<br />

217. Römer, E. Rapport du Toxicologue de l’USSM pour<br />

1987. Schweiz. Z. Pilzkd. 1988, 66 (11), <strong>20</strong>2–<strong>20</strong>3.<br />

218. Anonymous. From the Centers for Disease Control and<br />

Prevention; Amanita phalloides Mushroom <strong>Poisoning</strong>—<br />

Northern California, January 1997. J. Am. Med. Assoc.<br />

1997, 278 (1), 16–17.<br />

21<strong>9.</strong> Nordt, S.P.; Manoguerra, A.; Clark, R.F. 5-Year<br />

Analysis <strong>of</strong> Mushroom Exposures in California. West.<br />

J. Med. <strong>20</strong>00, 173 (5), 314–317.<br />

2<strong>20</strong>. Jaeger, A.; Flesch, F.; Jehl, F.; Sauder, P.; Kopferschmitt,<br />

J. Les Intoxications par Champignons. J. Méd.<br />

Strasb. 1988, 19 (7), 381–384.<br />

221. Forgittoni, R.; Vecchiarelli, P.; Lepri, F.; Casagrande,<br />

G.C.; Quadrani, G.; Meletti, M. Le Intossicazioni<br />

Esogene Acute Presso il Centro di Rianimazione<br />

dell’Ospedale di Viterbo nel Decennio 1-10-1979/31-<br />

12-1989 (Acute <strong>Poisoning</strong> Cases in the Intensive Care<br />

Unit <strong>of</strong> the “Ospedale Grande” in Viterbo from 1-X-79<br />

to 31-XII-89). Acta Anaesthesiol. Ital. 1992, 43, 79–93.<br />

222. Pinson, C.W.; Bradley, A.L. A Primer for Clinicians on<br />

Mushroom <strong>Poisoning</strong> in the West. West. J. Med. 1996,<br />

165, 318–31<strong>9.</strong><br />

223. Anonymous. Consensus Thérapeutique Face à l’Intoxication<br />

Phalloïdienne. In Centre Anti-Poisons de Toulouse;Hôpitaux<br />

de Toulouse: Toulouse, France, 1995; 7.<br />

224. Parish, R.C.; Doering, P.L. <strong>Treatment</strong> <strong>of</strong> Amanita<br />

<strong>Poisoning</strong>: A Review. Vet. Hum. Toxicol. 1986, 28 (4),<br />

318–322.<br />

225. Köppel, C. Clinical Symptomatology and Management<br />

<strong>of</strong> Mushroom <strong>Poisoning</strong>. Toxicon 1993, 31 (12),<br />

1513–1540.<br />

226. Barriot, P.; Masson, B.; Fournier, S. Intoxications par les<br />

Champignons. Rev. Prat. <strong>20</strong>00, 50, 396–400.<br />

227. Basak, M.; Cosansel, S.; Ozer, A.; Bilgi, O.; Danaci, M.<br />

Mantar Zehirlenmeleri ve Tedavisi (Mushroom <strong>Poisoning</strong>s<br />

and Their <strong>Treatment</strong>). Sendrom 1998, 10 (9),<br />

55–5<strong>9.</strong><br />

228. Stetkova, A. Errors <strong>of</strong> Diagnostics and Therapy <strong>of</strong><br />

<strong>Poisoning</strong> with Amanita phalloides. Ceska Mykol. 1991,<br />

45, 47.<br />

22<strong>9.</strong> American Academy <strong>of</strong> Clinical Toxicology; European<br />

Association <strong>of</strong> Poisons Centres and Clinical Toxicologists;<br />

Position Statement: Ipecac Syrup. Clin. Toxicol.<br />

1997, 35 (7), 699–70<strong>9.</strong><br />

230. American Academy <strong>of</strong> Clinical Toxicology; European<br />

Association <strong>of</strong> Poisons Centres and Clinical Toxicologists.<br />

Position Statement: Gastric Lavage. Clin. Toxicol.<br />

1997, 35 (7), 711–71<strong>9.</strong><br />

231. Anonymous. Poisindex w and Identidex w Toxicology<br />

Information; Micromedex Health Care Series; Micro-<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

medex Inc. Intranet Knowledge Bases 1974–1999; Vol.<br />

99, Expires 3/9<strong>9.</strong><br />

232. American Academy <strong>of</strong> Clinical Toxicology; European<br />

Association <strong>of</strong> Poisons Centres and Clinical Toxicologists.<br />

Position Statement: Whole Bowel Irrigation. Clin.<br />

Toxicol. 1997, 35 (7), 753–762.<br />

233. Rabe, C.; Scheurlen, C.; Caselmann, W.H. Vorgehen bei<br />

Knollenblätterpilzergiftung. Dtsch. Med. Wochenschr.<br />

1999, 124, 1073–1076.<br />

234. American Academy <strong>of</strong> Clinical Toxicology; European<br />

Association <strong>of</strong> Poisons Centres and Clinical Toxicologists.<br />

Position Statement: Cathartics. Clin. Toxicol.<br />

1997, 35 (7), 743–752.<br />

235. Ryzko, J.; Jankowska, I.; Socha, J. Ocena Wybranych<br />

Parametrow Gospodarki Wapniowo-Iosioranowej w<br />

Ostrej Nierwydolnosci Watroby po Zatruciu Muchomorem<br />

Sromotnikowym (Selected Parameters <strong>of</strong> Calcium<br />

and Phosphate Metabolism in the Acute Liver<br />

Failure Following <strong>Poisoning</strong> with Amanita phalloides ).<br />

Pol. Tyg. Lék. 1990, XLV (49–50), 990–992.<br />

236. Parra, S.; Garcia, J.; Martinez, P.; De La Pena, C.;<br />

Carrascosa, C. Pr<strong>of</strong>ile <strong>of</strong> Alkaline Phosphatase Isoenzymes<br />

in Ten Patients Poisoned by Mushrooms <strong>of</strong> the<br />

Genus Lepiota. Dig. Dis. Sci. 1992, 37 (10),<br />

1495–1498.<br />

237. Faulstich, H.; Zobeley, S.; Trischmann, H. A Rapid<br />

Radioimmunoassay, Using a Nylon Support, for<br />

<strong>Amatoxin</strong>s from Amanita Mushrooms. Toxicon 1982,<br />

<strong>20</strong> (5), 913–924.<br />

238. Frei, W.; Andres, R.; Gautschi, K.; Vonderschmitt, D.<br />

Eine Neue Methode zur Raschen Bestimmung von<br />

Knollenblätterpilzgift im Urin und im Plasma (A New<br />

Method for the Rapid Detection <strong>of</strong> Amanita Toxins in<br />

the Urine and Plasma). Schweiz. Med. Wochenschr.<br />

1986, 116 (26), 892–893.<br />

23<strong>9.</strong> Dorizzi, R.; Michelot, D.; Tagliaro, F.; Ghielmi, S.<br />

Methods for Chromatographic Determination <strong>of</strong> Amanitins<br />

and Related Toxins in Biological Samples.<br />

J. Chromatogr. (Biomed. Appl.) 1992, 580, 279–291.<br />

240. Defendenti, C.; Bonacina, E.; Mauroni, M.; Gelosa, L.<br />

Validation <strong>of</strong> a High Performance Liquid Chromatographic<br />

Method for Alpha Amanitin Determination in<br />

Urine. Forensic Sci. Int. 1998, 92, 59–68.<br />

241. Brüggemann, O.; Meder, M.; Freitag, R. Analysis <strong>of</strong><br />

<strong>Amatoxin</strong>s a-Amanitin and b-Amanitin in Toadstool<br />

Extracts and Body Fluids by Capillary Zone Electrophoresis<br />

with Photodiode Array Detection.<br />

J. Chromatogr. A 1996, 744, 167–176.<br />

242. Fartushnyi, A.F.; Sukhin, A.P.; Fartushnaya, Y.A.<br />

Chemical and Toxicological Studies in Mushroom<br />

<strong>Poisoning</strong>s. Sud. Med. Ekspert. <strong>20</strong>00, 43 (2), 21–24.<br />

243. Jankowska, I.; Rysko, J.; Kuryl, T.; Socha, J.<br />

Przydatnosc Oznaczania Amanityny Metoda RIA w<br />

Diagnostyce Zatruc Muchomorem Sromotnikowym u<br />

Dzieci (Value <strong>of</strong> Amanitin Determination with RIA


Technique for the Diagnosis <strong>of</strong> <strong>Poisoning</strong> with Amanita<br />

phalloides in Childhood). Pol. Tyg. Lék. 1988, XLIII,<br />

585–588.<br />

244. Mas, A.; Rodés, J. Fulminant Hepatic Failure. Lancet<br />

1997, 349, 1081–1085.<br />

245. Gill, R.Q.; Sterling, R.K. Acute Liver Failure. J. Clin.<br />

Gastroenterol. <strong>20</strong>01, 33 (3), 191–198.<br />

246. Vesconi, S.; Langer, M.; Costantino, D.; Iapichino, G.;<br />

Macchi, R. Clinical Evaluation <strong>of</strong> <strong>Amatoxin</strong> Removal<br />

Approach in Amanita phalloides <strong>Poisoning</strong>. In Amanita<br />

Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell, B.,<br />

Wieland, T., Eds.; Lubrecht Cramer: New York, 1980;<br />

232–236.<br />

247. American Academy <strong>of</strong> Clinical Toxicology; European<br />

Association <strong>of</strong> Poisons Centres and Clinical Toxicologists.<br />

Position Statement: Single-Dose Activated Charcoal.<br />

Clin. Toxicol. 1997, 35 (7), 721–741.<br />

248. Faulstich, H.; Talas, A.; Wellhöner, H.H. Toxicokinetics<br />

<strong>of</strong> Labeled <strong>Amatoxin</strong>s in the Dog. Arch. Toxicol. 1985,<br />

56, 190–194.<br />

24<strong>9.</strong> Faulstich, H. New Aspects <strong>of</strong> Amanita <strong>Poisoning</strong>. Klin.<br />

Wochenschr. 1979, 57, 1143–1152.<br />

250. Floersheim, G.L. <strong>Treatment</strong> <strong>of</strong> Human <strong>Amatoxin</strong><br />

Mushroom <strong>Poisoning</strong>. Myths and Advances in Therapy.<br />

Med. Toxicol. 1987, 2, 1–<strong>9.</strong><br />

251. Buchwald, A. Amanita <strong>Poisoning</strong>. Am. J. Med. 1989, 87,<br />

702.<br />

252. Busi, C.; Fiume, L.; Costantino, D.; Langer, M.;<br />

Vesconi, F. Amanita Toxins in Gastroduodenal Fluid<br />

<strong>of</strong> Patients Poisoned by the Mushroom, Amanita<br />

phalloides. N. Engl. J. Med. 1979, 300, 800.<br />

253. Langer, M.; Vesconi, S.; Costantino, D.; Busi, C.<br />

Pharmacodynamics <strong>of</strong> <strong>Amatoxin</strong>s in Human <strong>Poisoning</strong><br />

as the Basis for the Removal <strong>Treatment</strong>. In Amanita<br />

Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell, B.,<br />

Wieland, T., Eds.; Lubrecht Cramer: New York, 1980;<br />

90–97.<br />

254. Vesconi, S.; Langer, M.; Costantino, D. Mushroom<br />

<strong>Poisoning</strong> and Forced Diuresis. Lancet 1980, 854–855.<br />

255. Piqueras, J.; Duran-Suarez, J.R.; Massuet, L.; Hernandez-Sanchez,<br />

J.M. Mushroom <strong>Poisoning</strong>: Therapeutic<br />

Aphereris or Forced Diuresis. Transfusion 1987, 27 (1),<br />

116–117.<br />

256. Jaeger, A.; Jehl, F.; Flesch, F.; Sauder, P.; Kopferschmitt,<br />

J.; Minck, R.; Mantz, J.M. Cinétique de l’amanitine<br />

au Cours des Intoxications Phalloïdiennes. Réanim.<br />

Soins Intens. Méd. Urgence 1985, 1, 262.<br />

257. Jaeger, A.; Jehl, F.; Flesch, F.; Sauder, P.; Kopferschmitt,<br />

J. Kinetics <strong>of</strong> <strong>Amatoxin</strong>s in Human <strong>Poisoning</strong>: Therapeutic<br />

Implications. Clin. Toxicol. 1993, 31, 63–80.<br />

258. Busi, C.; Fiume, L.; Costantino, D.; Borroni, M.;<br />

Ambrosino, G.; Olivotto, A.; Bernardini, D. Détermination<br />

des Amanitines dans le Sérum de Patients<br />

Intoxiqués par l’Amanite Phalloïde. Nouv. Presse Méd.<br />

1977, 6 (32), 2855–2857.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 751<br />

25<strong>9.</strong> Wauters, J.P.; Rossel, C.; Farquet, J.J. Amanita<br />

phalloides <strong>Poisoning</strong> Treated by Early Charcoal<br />

Haemoperfusion. Br. Med. J. 1978, 2, 1465.<br />

260. Bartels, O.; Topf, G. Amanita phalloides <strong>Poisoning</strong>—<br />

Indication for Early Haemoperfusion. In Amanita Toxins<br />

and <strong>Poisoning</strong>s; Faulstich, H., Kommerell, B., Wieland,<br />

T., Eds.; Lubrecht Cramer: New York, 1980; 147–154.<br />

261. Czygan, P.; Zimmermann, R.; Leuschner, U.; Stiehl,<br />

A.; Kommerell, B. Clinical, Biochemical and<br />

Morphological Alterations in Patients with Amanita<br />

phalloides Intoxication. In Amanita Toxins and<br />

<strong>Poisoning</strong>s; Faulstich, H., Kommerell, B., Wieland,<br />

T., Eds.; Lubrecht Cramer: New York, 1980;<br />

131–136.<br />

262. Balsam, L.; Coritsidis, G.N.; Feinfeld, D.A. Role <strong>of</strong><br />

Hemodialysis and Hemoperfusion in the <strong>Treatment</strong> <strong>of</strong><br />

Intoxications. Crit. Care Toxicol. 1991, 1 (3), 61–7<strong>9.</strong><br />

263. Lambert, H.; Laprévote-Heully, M.C.; Manel, J.;<br />

Claude, D.; Delorme, N.; Larcan, A. Bilan de<br />

l’Utilisation de l’Hémoperfusion dans le Traitement<br />

des Intoxications Aiguës. A Propos de 23 Observations.<br />

Ann. Méd. Nancy Est 1981, <strong>20</strong>, 935–946.<br />

264. Czygan, P.; Stiehl, A.; Kommerell, B. <strong>Treatment</strong> <strong>of</strong><br />

Acute Amanita phalloides Induced Hepatic Failure by<br />

Haemoperfusion. In Amanita Toxins and <strong>Poisoning</strong>s;<br />

Faulstich, H., Kommerell, B., Wieland, T., Eds.;<br />

Lubrecht Cramer: New York, 1980; 155–161.<br />

265. Lambert, H. Pronostic et Traitement de l’Intoxication. In<br />

Réanimation des Intoxications Aiguës; Baud, F., Ed.;<br />

Masson: Paris, France, 1995; 185–195.<br />

266. Langescheid, C.; Schmitz-Salue, H.; Faulstich, H.;<br />

Kramer, P.; Scheler, F. In Vitro Elimination <strong>of</strong><br />

( 3 H)Methyl-dehydroxymethyl-a-Amanitin by Four<br />

Different Extracorporeal Detoxification Methods. In<br />

Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell,<br />

B., Wieland, T., Eds.; Lubrecht Cramer: New<br />

York, 1980; 137–146.<br />

267. Monhart, V.; Balikova, M.; Tlustakova, M. Sorpcni<br />

Ucinnost Ceskych Hemoperfuznich Sorbentu pro<br />

<strong>Amatoxin</strong>y (Sorption Effectiveness <strong>of</strong> Czech Haemoperfusion<br />

Sorbents for <strong>Amatoxin</strong>s). Cas. Lék. Cesk.<br />

1994, 6, 181–183.<br />

268. Mydlik, M.; Derzsiova, K.; Klan, J.; Zima, T.<br />

Hemoperfusion with a-Amanitin: An In Vitro Study.<br />

Int. J. Artif. Organs 1997, <strong>20</strong> (2), 105–107.<br />

26<strong>9.</strong> Monhart, V. Otravy Muchomurkami a Vyznam Sorpcni<br />

Hemoperfuze pri Jejich Léceni (Toadstool Intoxications<br />

and Importance <strong>of</strong> Sorption Haemoperfusion in Their<br />

<strong>Treatment</strong>). Vnitr. Lék. 1997, 43 (10), 686–690.<br />

270. Mercuriali, F.; Sirchia, G. Plasma Exchange for<br />

Mushroom <strong>Poisoning</strong>. Transfusion 1977, 17, 644.<br />

271. Ariani, G.; Ciccarelli, P.; Ghergo, G.F.; Reverberi, R.<br />

Qualche Considerazione sul Trattamento Terapeutico di<br />

Tre Casi di Avvelenamento Acuto da Amanita Falloide<br />

(Remarks on the Therapy <strong>of</strong> the Three Cases <strong>of</strong> Acute


752<br />

Amanita phalloides <strong>Poisoning</strong>). Minerva Anestesiol.<br />

1979, 45, 335–344.<br />

272. Pigrau, C.; Martinez-Vazquez, M.; Piqueras, J. Intoxicacion<br />

por Amanita phalloides. Med. Clin. 1984, 83,<br />

342–345.<br />

273. Jander, S.; Bisch<strong>of</strong>f, J.; Woodcock, B.G. Plasmapheresis<br />

in the <strong>Treatment</strong> <strong>of</strong> Amanita phalloides <strong>Poisoning</strong>. II. A<br />

Review and Recommendations. Ther. Apher. <strong>20</strong>00, 4<br />

(4), 308–312.<br />

274. Floersheim, G.L.; Schneeberger, J.; Bucher, K. Curative<br />

Potencies <strong>of</strong> Penicillin in Experimental Amanita<br />

phalloides <strong>Poisoning</strong>. Agents Actions 1971, 2 (3),<br />

138–141.<br />

275. Floersheim, G.L. Antagonistic Effects <strong>of</strong> Phalloidin a-<br />

Amanitin and Extracts <strong>of</strong> Amanita phalloides. Agents<br />

Actions 1971, 2 (3), 142–14<strong>9.</strong><br />

276. Floersheim, G.L.; Eberhard, M.; Tschumi, P.; Duckert,<br />

F. Effects <strong>of</strong> Penicillin and Silymarin on Liver Enzymes<br />

and Blood Clotting Factors in Dogs Given a Boiled<br />

Preparation <strong>of</strong> Amanita phalloides. Toxicol. Appl.<br />

Pharmacol. 1978, 46, 455–462.<br />

277. Jahn, W.; Faulstich, H.; Wieland, T. Pharmacokinetics<br />

<strong>of</strong> ( 3 H)Methyldehydroxymethyl-a-amanitin in the Isolated<br />

Perfused Rat Liver and the Influence <strong>of</strong> Several<br />

Drugs. In Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H.,<br />

Kommerell, B., Wieland, T., Eds.; Lubrecht Cramer:<br />

New York, 1980; 79–87.<br />

278. Tamai, I.; Terasaki, T.; Tsuji, A. Evidence for the<br />

Existence <strong>of</strong> a Common Transport System <strong>of</strong> b-Lactam<br />

Antibiotics in Isolated Rat Hepatocytes. J. Antibiot.<br />

1985, 38 (12), 1774–1780.<br />

27<strong>9.</strong> Kröncke, K.D.; Fricker, G.; Meier, P.; Gerock, W.;<br />

Wieland, T.; Kurz, G. a-Amanitin Uptake into<br />

Hepatocytes: Identification <strong>of</strong> Hepatic Membrane<br />

Transport Systems Used by <strong>Amatoxin</strong>s. J. Biol. Chem.<br />

1986, 261 (27), 12562–12567.<br />

280. Floersheim, G.L. Toxins and Intoxications from the<br />

Toadstool Amanita phalloides. Trends Pharmacol. Sci.<br />

1983, 4, 263–266.<br />

281. Fiume, L.; Serti, S.; Montanaro, L.; Busi, C.; Costantino,<br />

D. Amanitins Do Not Bind to Serum Albumin. Lancet<br />

1977, 1, 1111.<br />

282. Sherlock, S.; Dooley, J. Diseases <strong>of</strong> the Liver and Biliary<br />

System, 10th Ed.; Blackwell Science Ltd.: Oxford, UK,<br />

1997; 87–102, 651–672.<br />

283. Cottagnoud, P.; Neftel, K.A. b-Lactams Act on DNA<br />

Synthesis in K-562 Cells. Cell Biol. Toxicol. 1986, 2,<br />

523–52<strong>9.</strong><br />

284. Hübscher, U.; Do Huynh, U.; Hässig, M.; Neftel, K.A.<br />

Effects <strong>of</strong> b-Lactams on DNA Replication. Cell Biol.<br />

Toxicol. 1986, 2 (4), 541–547.<br />

285. Neftel, K.A.; Hübscher, U. Effects <strong>of</strong> b-Lactam<br />

Antibiotics on Proliferating Eucaryotic Cells.<br />

Antimicrob. Agents Chemother. 1987, 31 (11),<br />

1657–1661.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

286. Neftel, K.A.; Keusch, G.; Cottagnoud, P.; Widmer, U.;<br />

Hany, M.; Gautschi, K.; Joos, B.; Walt, H. Sind<br />

Cephalosporine bei der Intoxikation mit Knollenblätterpilz<br />

Besser Wirksam als Penicillin-G? Schweiz. Med.<br />

Wochenschr. 1988, 118 (2), 49–51.<br />

287. DeSwarte, R.D. Drug–Allergy Problems and Strategies.<br />

J. Allergy Clin. Immunol. 1984, 74 (3), <strong>20</strong>9–221.<br />

288. Erffmeyer, J.E. Adverse Reactions to Penicillin. Ann.<br />

Allergy 1981, 47, 288–300.<br />

28<strong>9.</strong> Al-Ramahi, M.; Leader, A.; Léveillé, M.C. An Allergic<br />

Reaction Following Intrauterine Insemination. Hum.<br />

Reprod. 1998, 13 (12), 3368–3370.<br />

290. Hruby, K.; Csomos, G.; Furhmann, M.; Thaler, H.<br />

Chemotherapy <strong>of</strong> Amanita phalloides <strong>Poisoning</strong> with<br />

Intravenous Silibinin. Hum. Toxicol. 1983, 2, 183–195.<br />

291. Hruby, K.; Fuhrmann, M.; Csomos, G.; Thaler, H.<br />

Pharmakotherapie der Knollenblätterpilzvergiftung mit<br />

Silibinin (<strong>Treatment</strong> with Silibinin for Amanita phalloides<br />

<strong>Poisoning</strong>). Wien. Klin. Wochenschr. 1983, 95<br />

(7), 225–231.<br />

292. Neftel, K.A.; Mueller, M.R.; Waelti, M.; Erni, J.;<br />

Gugler, M.; Arrenbrecht, S. Penicilin G Degradation<br />

Products Inhibit In Vitro Granulopoiesis. Br.<br />

J. Haematol. 1983, 54 (2), 255–260.<br />

293. Neftel, K.A.; Hauser, S.P.; Mueller, M. Inhibition <strong>of</strong><br />

Granulopoiesis In Vivo and In Vitro by b-Lactam<br />

Antibiotics. J. Infect. Dis. 1985, 152 (1), 90–98.<br />

294. Neftel, K.; Mueller, M.R.; Widmer, U.; Huegin, A.W. b-<br />

Lactam Antibiotics Inhibit In Vitro Granulopoiesis and<br />

Proliferation <strong>of</strong> Some Other Cell Types. Cell Biol.<br />

Toxicol. 1986, 2 (4), 513–521.<br />

295. Neftel, K.A.; Waelti, M.; Schulthess, H.K.; Gubler, J.<br />

Adverse Reactions Following Intravenous Penicillin G<br />

Relate to Degradation <strong>of</strong> the Drug In Vitro. Klin.<br />

Wochenschr. 1984, 62 (1), 25–2<strong>9.</strong><br />

296. Smith, H.; Lerner, P.I.; Weinsten, L. Neurotoxicity and<br />

“Massive” Intravenous Therapy with Penicillin. Arch.<br />

Intern. Med. 1967, 1<strong>20</strong>, 47–53.<br />

297. Moroni, F.; Fantozi, R.; Masini, E.; Mannaioni, P.F. A<br />

Trend in the Therapy <strong>of</strong> Amanita phalloides <strong>Poisoning</strong>.<br />

Arch. Toxicol. 1976, 36, 111–115.<br />

298. Floersheim, G.L.; Weber, O.; Tschumi, P.; Ulbrich, M.<br />

Die Klinische Knollenbblätter-Pilzvergiftung (Amanita<br />

phalloides ): Prognostische Faktoren und Therapeutische<br />

Massnahmen (Clinical <strong>Poisoning</strong> with Amanita phalloides<br />

(Death Cap): Prognostic Factors and Therapeutic<br />

Measures). Schweiz. Med. Wochenschr. 1982, 112 (34),<br />

1164–1177.<br />

29<strong>9.</strong> Wagner, V.H.; Diesel, P.; Seitz, M. Zur Chemie und<br />

Analytik von Silymarin, aus Silybum marianum Gaertn.<br />

Arzneim.-Forsch. 1974, 24, 466–471.<br />

300. Halbach, G.; Trost, W. Zur Chemie und Pharmakologie<br />

des Silymarins Untersuchungen an Einigen Umsetzungsprodukten<br />

des Silybins. Arzneim.-Forsch. 1974, 24,<br />

866–868.


301. Anonymous. In The Index Merck. An Encyclopedia <strong>of</strong><br />

Chemicals, Drugs, and Biologicals; Budavari, S., Ed.;<br />

Merck and Co., Inc.: Whitehouse Station, NJ, 1996;<br />

139–140, 1464.<br />

302. Hahn, V.G.; Lehmann, H.D.; Kürten, M.; Uebel, H.;<br />

Vogel, G.; Baumann, I.; Dobberstein, I.; Eisen, E.;<br />

Ersfeld, A.; Krüger, S.; Meier, E.; Walther, H. Zur<br />

Pharmakologie und Toxikologie von Silymarin, des<br />

Antihepatotoxischen Wirkprinzipes aus Silybum marianum<br />

(L.) Gaertn. Arzneim.-Forsch. 1968, 18,<br />

698–704.<br />

303. Vogel, V.G.; Trost, W.; Braatz, R.; Odenthal, K.P.;<br />

Brüsewitz, G.; Antweiler, H.; Seeger, R. Untersuchungen<br />

zu Pharmakodynamik, Angriffspunkt und Wirkungsmecha-nismus<br />

von Silymarin, dem<br />

Antihepatotoxischen Prinzip aus Silybum marianum<br />

(L.) Gaertn. (Studies on Pharmacodynamics, Site and<br />

Mechanism <strong>of</strong> Action <strong>of</strong> Silymarin, the Antihepatotoxic<br />

Principle from Silybum marianum (L.) Gaertn.).<br />

Arzneim.-Forsch. 1975, 25 (2), 179–18<strong>9.</strong><br />

304. Floersheim, G.L. <strong>Treatment</strong> <strong>of</strong> Experimental <strong>Poisoning</strong><br />

Produced by Extracts <strong>of</strong> Amanita phalloides. Toxicol.<br />

Appl. Pharmacol. 1975, 34, 499–508.<br />

305. Vogel, G.; Tuchweber, B.; Trost, W.; Mengs, U.<br />

Protection by Silibinin Against Amanita phalloides<br />

Intoxication in Beagles. Toxicol. Appl. Pharmacol.<br />

1984, 73, 355–362.<br />

306. Ramellini, G.; Meldolesi, J. Stabilization <strong>of</strong> Isolated Rat<br />

Liver Plasma Membranes by <strong>Treatment</strong> In Vitro with<br />

Silymarin. Arzneim.-Forsch. 1974, 24 (5), 806–808.<br />

307. Ramellini, G.; Meldolesi, J. Liver Protection by<br />

Silymarin: In Vitro Effect on Dissociated Rat Hepatocytes.<br />

Arzneim.-Forsch. 1976, 26 (1), 69–73.<br />

308. Vogel, G. The Anti-Amanita Effect <strong>of</strong> Silymarin. In<br />

Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell,<br />

B., Wieland, T., Eds.; Lubrecht Cramer: New<br />

York, 1980; 180–18<strong>9.</strong><br />

30<strong>9.</strong> Choppin, J.; Desplaces, A. The Action <strong>of</strong> Silybin on the<br />

Mouse Liver in a-Amanitine <strong>Poisoning</strong>. Arzneim.-<br />

Forsch. 1979, 29 (1), 63–68.<br />

310. Flora, K.; Hahn, M.; Rosen, H.; Benner, K. Milk Thistle<br />

(Silybum marianum) for the Therapy <strong>of</strong> Liver Disease.<br />

Am. J. Gastroenterol. 1998, 93 (2), 139–143.<br />

311. Leng-Peschlow, E.; Strenge-Hesse, A. Die Mariendistel<br />

(Silybum marianum) und Silymarin als Lebertherapeutikum.<br />

Z. Phytother. 1991, 12, 162–174.<br />

312. Leng-Peschlow, E. Properties and Medical Use <strong>of</strong><br />

Flavonolignans (Silymarin) from Silybum marianum.<br />

Phytother. Res. 1996, 10, S25–S26.<br />

313. Luper, S. A Review <strong>of</strong> Plants Used in the <strong>Treatment</strong> <strong>of</strong><br />

Liver Disease: Part 1. Altern. Med. Rev. 1998, 3 (6),<br />

410–421.<br />

314. Luyckx, F.; Scheen, A.J. Pharma-Clinics, le Médicament<br />

du mois: Le Legalon (Silymarine). Rev. Méd. Liège<br />

1997, 52 (12), 792–796.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 753<br />

315. Wellington, K.; Jarvis, B. Silymarin: A Review <strong>of</strong> Its<br />

Clinical Properties in the Management <strong>of</strong> Hepatic<br />

Disorders. BioDrugs <strong>20</strong>01, 15 (7), 465–48<strong>9.</strong><br />

316. Muriel, P.; Mourelle, M. Prevention by Silymarin <strong>of</strong><br />

Membrane Alterations in Acute CCl 4 Liver Damage.<br />

J. Appl. Toxicol. 1990, 10 (4), 275–27<strong>9.</strong><br />

317. Bosisio, E.; Cinzia, B.; Ondina, P. Effect <strong>of</strong> the<br />

Flavonolignans <strong>of</strong> Silybum marianum L. on Lipid<br />

Peroxidation in Rat Liver Microsomes and Freshly<br />

Isolated Hepatocytes. Pharmacol. Res. 1992, 25 (2),<br />

147–154.<br />

318. Carini, R.; Comoglio, A.; Albano, E.; Poli, G. Lipid<br />

Peroxidation and Irreversible Damage in the Rat<br />

Hepatocyte Model. Biochem. Pharmacol. 1992, 43<br />

(10), 2111–2115.<br />

31<strong>9.</strong> Dehmlow, C.; Jochen, E.; De Groot, H. Inhibition <strong>of</strong><br />

Kupffer Cell Functions as an Explanation for the<br />

Hepatoprotective Properties <strong>of</strong> Silybinin. Hepatology<br />

1996, 23 (4), 749–754.<br />

3<strong>20</strong>. De LaPuerta, R.; Martinez, E.; Bravo, L.; Ahumada, C.<br />

Effect <strong>of</strong> Silymarin on Different Acute Inflammation<br />

Models and on Leucocyte Migration. J. Pharm. Pharmacol.<br />

1996, 48, 968–970.<br />

321. Schuppan, D.; Lang, T.; Gerling, G.; Leng-Peschlow, E.;<br />

Krumbiegel, G.; Riecken, E.O.; Waldschmidt, J.<br />

Antifibrotic Effect <strong>of</strong> Silymarin in Rat Secondary<br />

Biliary Fibrosis Induced by Duct Obliteration with<br />

Ethiblock. Z. Gastroenterol. 1995, 32, 45–46.<br />

322. Fuchs, E.C.; Gressner, A.M.; Weyhem Meyer, R.;<br />

Weiner, O. Identification <strong>of</strong> the Antifibrogenic Properties<br />

<strong>of</strong> Silybin: Effect on TGF-b and Matrix Gene<br />

Expression <strong>of</strong> Hepatic Stellate Cells. Hepatology 1995,<br />

22, 286A.<br />

323. Boigk, G.; Stroedter, L.; Herbst, H.; Waldschmidt, J.;<br />

Riecken, E.O.; Schuppan, D. Silymarin Retards<br />

Collagen Accumulation in Early and Advanced Biliary<br />

Fibrosis Secondary to Complete Bile Duct Obliteration<br />

in Rats. Hepatology 1997, 26 (3), 643–64<strong>9.</strong><br />

324. Magliulo, E.; Scevola, D.; Carosi, G.P. Investigations on<br />

the Actions <strong>of</strong> Silybin on Regenerating Rat Liver:<br />

Effects on Kupffer’s Cells. Arzneim.-Forsch. 1979, 29<br />

(7), 1024–1028.<br />

325. Machicao, F.; Sonnenbichler, J. Mechanism <strong>of</strong> the<br />

Stimulation <strong>of</strong> RNA Synthesis in Rat Liver Nuclei by<br />

Silybin. Hoppe-Seyler’s Z. Physiol. Chem. 1977, 358,<br />

141–147.<br />

326. Sonnenbichler, J.; Zetl, I. Mechanism <strong>of</strong> Silybin<br />

Action V. Effect <strong>of</strong> Silybin on the Synthesis <strong>of</strong><br />

Ribosomal RNA, mRNA and tRNA in Rat Livers In<br />

Vivo. Hoppe-Seyler’s Z. Physiol. Chem. 1984, 365 (5),<br />

555–566.<br />

327. Sonnenbichler, J.; Goldberg, M.; Hane, L.; Madubunyi,<br />

I.; Vogl, S.; Zetl, I. Stimulatory Effect <strong>of</strong> Silybinin on<br />

the DNA Synthesis in Partially Hepatectomized Rat<br />

Livers: Non-response in Hepatoma and Other Malign


754<br />

Cell Lines. Biochem. Pharmacol. 1986, 35 (3),<br />

538–541.<br />

328. Sonnenbichler, J.; Zetl, I. Influence <strong>of</strong> the Flavonolignan<br />

Derivative Silibinin on Nucleic Acid and Protein<br />

Synthesis in Liver Cells. Flavonoids Bi<strong>of</strong>lavonoids<br />

1986, 361–372.<br />

32<strong>9.</strong> Sonnenbichler, J.; Zetl, I. Biochemical Effects <strong>of</strong> the<br />

Flavonolignan Silibinin on RNA, Protein and DNA<br />

Synthesis in Rat Livers. Prog. Clin. Biol. Res. 1986, 213,<br />

319–331.<br />

330. Lorenz, D.; Lücker, P.W.; Mennicke, W.H.; Wetzelsberger,<br />

N. Pharmacokinetic Studies with Silymarin in<br />

Human Serum and Bile. Methods Find. Exp. Clin.<br />

Pharmacol. 1984, 6 (10), 655–661.<br />

331. Bulles, H.; Bulles, J.; Krumbiegel, G.; Mennicke, W.H.;<br />

Nitz, D. Untersuchungen zur Verst<strong>of</strong>fwechselung und<br />

zur Ausscheidung von Silybin bei der Ratte (Investigation<br />

<strong>of</strong> the Metabolism and Excretion <strong>of</strong> Silybin in the<br />

Rat). Arzneim.-Forsch. 1975, 25, 902–905.<br />

332. Flory, P.J.; Krug, G.; Lorenz, D.; Mennicke, H.<br />

Untersuchungen zur Elimination von Silymarin bei<br />

Cholezystektomierten Patienten (Studies on Elimination<br />

<strong>of</strong> Silymarin in Cholecystectomized Patients). Planta<br />

Med. 1980, 38, 227–237.<br />

333. Faulstich, H.; Jahn, W.; Wieland, T. Silybin Inhibition <strong>of</strong><br />

<strong>Amatoxin</strong> Uptake in the Perfused Rat Liver. Arzneim.-<br />

Forsch. 1980, 30 (3), 452–454.<br />

334. Smetana, R.; Hruby, K.; Benesch, B.; Bauer, K.; Jahn, O.<br />

Laboratory Diagnosis and Surveillance <strong>of</strong> Amanitin<br />

Intoxication During Silibinin Therapy. Intensivebehandlung<br />

1986, 11 (4), 170–175.<br />

335. Schandalik, R.; Gatti, G.; Perucca, E. Pharmacokinetics<br />

<strong>of</strong> Silybin in Bile Following Administration <strong>of</strong> Silipide<br />

and Silymarin in Cholecystectomy Patients. Arzneim.-<br />

Forsch. 1992, 42 (7), 964–968.<br />

336. Barzaghi, N.; Crema, F.; Gatti, G.; Pifferi, G.; Perucca,<br />

E. Pharmacokinetic Studies on IdB 1016, a Silybin–<br />

Phosphatidylcholine Complex, in Healthy Human<br />

Subjects. Eur. J. Drug Metab. Pharmacokinet. 1990, 15<br />

(4), 333–338.<br />

337. Beer, J.H. Der Falsche Pilz (The Wrong Mushroom).<br />

Schweiz. Med. Wochenschr. 1993, 123 (17),<br />

892–905.<br />

338. MacPartland, J.M.; Vilgalys, R.J.; Cubeta, M.A. Mushroom<br />

<strong>Poisoning</strong>. Am. Fam. Physician 1997, 55 (5),<br />

1797–180<strong>9.</strong><br />

33<strong>9.</strong> Castiella, A.; Arenas, J.I. Utility <strong>of</strong> Silymarin in<br />

the Cyclopeptide Syndrome. J. Hepatol. 1994, 21,<br />

1148.<br />

340. Kurkin, V.; Lebedev, A.; Zapesochnaya, A.; Avdeeva,<br />

E.V.; Simonova, G.V.; Lebedev, P.A.; Egorov, V.A.;<br />

Mizina, P.; Bulatova, M.V. The New Possibilities <strong>of</strong> the<br />

Use <strong>of</strong> Silybum marianum (L.) Gaertn. Fruits. XIXth<br />

International Conference on Polyphénols, Lille, France,<br />

Sept 1–4, 1998; 29–30.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

341. Kubicka, J. Rozbor Smrtelnych Otrav Houbami<br />

Lécenych Kyselinou Tioktovou (Analysis <strong>of</strong> Fatal<br />

Intoxications with Mushrooms Treated with Thioctic<br />

Acid). Cas. Lék. Cesk. 1969, 108, 790–793.<br />

342. Zaffiri, O.; Centi, R.; Mastroianni, A.; Francescato, F.;<br />

Bisiani, M. Therapy <strong>of</strong> Acute <strong>Poisoning</strong> by Amanita<br />

phalloides with High Doses <strong>of</strong> Thioctic Acid. Minerva<br />

Anestesiol. 1970, 36 (1), 56–57.<br />

343. Zanninni, L.; Carbone, G.; Stelluti, A. l’Attuale Terapia<br />

Dell’avvelenamento da Amanita phalloides. Clin. Ter.<br />

1971, 56, 177.<br />

344. Dudova, V.; Kubicka, J.; Veselky, J. Thioctic Acid in the<br />

<strong>Treatment</strong> <strong>of</strong> Amanita phalloides Intoxication. In<br />

Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell,<br />

B., Wieland, T., Eds.; Lubrecht Cramer: New<br />

York, 1980; 190–191.<br />

345. Zulik, R.; Kassay, S.F. The Role <strong>of</strong> Thioctic Acid in the<br />

<strong>Treatment</strong> <strong>of</strong> Amanita phalloides Intoxication. In<br />

Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell,<br />

B., Wieland, T., Eds.; Lubrecht Cramer: New<br />

York, 1980; 192–196.<br />

346. Finestone, A.J.; Berman, R.; Widmer, B.; Markowitz, J.;<br />

Laquer, U.J. Thioctic Acid <strong>Treatment</strong> <strong>of</strong> Acute Mushroom<br />

<strong>Poisoning</strong>. PA Med. 1972, 75, 49–51.<br />

347. Becker, C.E.; Tong, T.G.; Boerner, U.; Roe, R.L.; Scott,<br />

R.; MacQuarrie, M.B.; Bartter, F. Diagnosis and<br />

<strong>Treatment</strong> <strong>of</strong> Amanita phalloides-Type Mushroom<br />

<strong>Poisoning</strong>. West. J. Med. 1976, 125, 100–10<strong>9.</strong><br />

348. Culliton, B.J. The Destroying Angel: A Story <strong>of</strong> a Search<br />

for an Antidote. Science 1974, 185, 600–601.<br />

34<strong>9.</strong> Bartter, F.C.; Berkson, B.; Gallelli, J.; Hiranaka, P.<br />

Thioctic Acid in the <strong>Treatment</strong> <strong>of</strong> <strong>Poisoning</strong> with a-<br />

Amanitin. In Amanita Toxins and <strong>Poisoning</strong>s; Faulstich,<br />

H., Kommerell, B., Wieland, T., Eds.; Lubrecht Cramer:<br />

New York, 1980; 197–<strong>20</strong>2.<br />

350. Berkson, B.M. Thioctic Acid in <strong>Treatment</strong> <strong>of</strong> Hepatotoxic<br />

Mushroom (Phalloides ) <strong>Poisoning</strong>. N. Engl. J.<br />

Med. 1979, 300, 371.<br />

351. Berkson, B.M. <strong>Treatment</strong> <strong>of</strong> Four Delayed-Mushroom<br />

<strong>Poisoning</strong> Patients with Thioctic Acid. In Amanita<br />

Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell, B.,<br />

Wieland, T., Eds.; Lubrecht Cramer: New York, 1980;<br />

<strong>20</strong>3–210.<br />

352. Alleva, F.R. Thioctic Acid and Mushroom <strong>Poisoning</strong>.<br />

Science 1975, 187, 216.<br />

353. Trost, W.; Lang, W. Effect <strong>of</strong> Thioctic Acid and<br />

Silibinin on the Survival Rate in Amanitin and<br />

Phalloidin Poisoned Mice. IRCS Med. Sci. 1984, 12,<br />

1079–1080.<br />

354. Roldan, E.J.; Pérez Lloret, A. Thioctic acid in Amanita<br />

<strong>Poisoning</strong>. Crit. Care Med. 1986, 14 (8), 753–754.<br />

355. Anonymous. Monography: a-Lipoic Acid. Altern. Med.<br />

Rev. 1998, 3 (4), 308–311.<br />

356. Bustamante, J.; Lodge, J.K.; Marcocci, L.; Tritschler,<br />

H.J.; Packer, L.; Rihn, B.H. a-Lipoic Acid in Liver


Metabolism and Disease. Free Radic. Biol. Med. 1988,<br />

24 (6), 1023–103<strong>9.</strong><br />

357. Olson, K.R.; Woo, O.F.; Pond, S.M. <strong>Treatment</strong> <strong>of</strong><br />

Mushroom <strong>Poisoning</strong>. J. Am. Med. Assoc. 1984, 252<br />

(22), 3130–3131.<br />

358. Paaso, B.; Harrison, D.C. A New Look at an Old<br />

Problem: Mushroom <strong>Poisoning</strong>. Am. J. Med. 1975, 58,<br />

505–508.<br />

35<strong>9.</strong> Vesconi, S.; Langer, M. Thioctic Acid in Amanita<br />

<strong>Poisoning</strong>. Drs. Vesconi and Langer Reply. Crit. Care<br />

Med. 1986, 14 (8), 754.<br />

360. Floersheim, G.L. <strong>Treatment</strong> <strong>of</strong> Mushroom <strong>Poisoning</strong>.<br />

J. Am. Med. Assoc. 1985, 253 (22), 3252.<br />

361. Hanrahan, J.P.; Gordon, M.A. Reply to Olson: <strong>Treatment</strong><br />

<strong>of</strong> Mushroom <strong>Poisoning</strong>. J. Am. Med. Assoc. 1984,<br />

252 (22), 3131–3132.<br />

362. Mitchel, D.H. Amanita Mushroom <strong>Poisoning</strong>. Ann. Rev.<br />

Med. 1980, 31, 51–57.<br />

363. Bartter, F.C. Thioctic Acid and Mushroom <strong>Poisoning</strong>.<br />

Science 1975, 187, 216.<br />

364. Tate, M.; Tufts, E. <strong>Treatment</strong> <strong>of</strong> Mushroom <strong>Poisoning</strong>.<br />

J. Am. Med. Assoc. 1985, 253 (22), 3252.<br />

365. Levine, M. Review <strong>of</strong> Biochemistry, Physiology and<br />

Clinical Uses <strong>of</strong> Ascorbic Acid. N. Engl. J. Med. 1986,<br />

314, 892–902.<br />

366. Jaeger, A.; Sauder, P.; Kopferschmitt, J.; Berton, C. Les<br />

Cytoprotecteurs Hépatiques. XXXème Congrès de la<br />

Société de Toxicologie Clinique, Nancy, France, Sept<br />

16–17, 1993; 2.<br />

367. Monthoux, O. Une Intoxication Volontaire par l’Amanite<br />

Phalloïde et son Traitement: l’Expérience du Dr<br />

Bastien à Genève en 1981. Schweiz. Z. Pilzkd. 1982, 60<br />

(11), 194–197.<br />

368. Bastien, P. l’Intoxication Phalloïdienne à l’Aube de<br />

1988. Bull. Trim. Féd. Mycol. Dauphiné-Savoie 1988,<br />

110, 4–7.<br />

36<strong>9.</strong> Chabré, P.A. Intoxication par l’Amanite Phalloïde: Place<br />

du Traitement Bastien. Thèse de Pharmacie, Université<br />

Lyon 1: France, 1995, 98.<br />

370. Anonymous. Symposium on Clinical Efficacy, Cytoprotection<br />

and Antifibrinolytic Effects. Scand.<br />

J. Gastroenterol. 1986, 21 (Suppl. 121), 1–62.<br />

371. Schneider, S.M.; Borochovitz, D.; Krenzelok, E.P.<br />

Cimetidine Protection Against a-Amanitin Hepatoxicity<br />

in Mice: A Potential Model Protection for the <strong>Treatment</strong><br />

<strong>of</strong> Amanita phalloides <strong>Poisoning</strong>. Ann. Emerg. Med.<br />

1987, 16 (10), 1136–1140.<br />

372. Schneider, S.M.; Vanscoy, G.J.; Michelson, E.A.<br />

Combination Therapy with Cimetidine, Penicillin and<br />

Ascorbic Acid for Alpha-Amanitin Toxicity in Mice.<br />

Ann. Emerg. Med. 1989, 18, 482.<br />

373. Dawson, J.R.; Norbeck, K.; Anundi, I.; Moldeus, P. The<br />

Effectiveness <strong>of</strong> N-Acetylcysteine in Isolated Hepatocytes<br />

Against the Toxicity <strong>of</strong> Paracetamol, Acrolein and<br />

Paraquat. Arch. Toxicol. 1984, 55 (1), 11–15.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 755<br />

374. Flanagan, R.J. The Role <strong>of</strong> Acetylcysteine in Clinical<br />

Toxicology. Med. Toxicol. 1987, 2, 93–104.<br />

375. Kawaji, A.; Sone, T.; Natsuki, R.; Isobe, M.;<br />

Takabatake, E.; Yamaura, Y. In Vitro Toxicity Test <strong>of</strong><br />

Poisonous Mushroom Extracts with Isolated Rat<br />

Hepatocytes. J. Toxicol. Sci. 1990, 15 (3), 145–156.<br />

376. Schneider, S.M.; Michelson, E.A.; Vanscoy, G.J. Failure<br />

<strong>of</strong> N-Acetylcysteine to Reduce Alpha-Amanitin Toxicity.<br />

J. Appl. Toxicol. 1992, 12 (2), 141–142.<br />

377. Usadel, K.H.; Wdowinski, J.; Schwedes, U.; Faulstich,<br />

H.; Röttger, G.; Hübner, K. Effects <strong>of</strong> Somatotropin,<br />

Insulin, “Liver Growth Factor” and Silybin on Liver<br />

Regeneration After a-Amanitin <strong>Poisoning</strong> in the Rat. In<br />

Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell,<br />

B., Wieland, T., Eds.; Lubrecht Cramer: New<br />

York, 1980; 216–224.<br />

378. Harrison, P.M.; Hughes, R.D.; Forbes, A.; Portmann, B.;<br />

Alexander, G.J.M.; Williams, R. Failure <strong>of</strong> Insulin and<br />

Glucagon Infusion to Stimulate Liver Regeneration in<br />

Fulminant Hepatic Failure. J. Hepatol. 1990, 10,<br />

332–336.<br />

37<strong>9.</strong> Rakeka, J. A Double-Blinded Randomized Trial <strong>of</strong><br />

Hydrocortisone in Acute Hepatic Failure: Acute Hepatic<br />

Failure Study Group. Gastroenterology 1979, 76, 1297.<br />

380. Chang, I.M.; Yun, H.S.; Kim, Y.S.; Ahn, J.W. Aucubin:<br />

Potential Antidote for a-Amanitin <strong>Poisoning</strong>. Clin.<br />

Toxicol. 1984, 22 (1), 77–85.<br />

381. Bianco, A.; Bonini, C.C.; Iavarone, C.; Trogolo, C.<br />

Structure Elucidation <strong>of</strong> Eucommioside (2 00 -O-b-D-<br />

Glucopyranosyl Eucommiol) from Eucommia ulmoides.<br />

Phytochemistry 1982, 21 (1), <strong>20</strong>1–<strong>20</strong>3.<br />

382. Chang, I.M.; Yamaura, Y. Aucubin: A New Antidote for<br />

Poisonous Amanita Mushrooms. Phytother. Res. 1993,<br />

7, 53–56.<br />

383. Bernini, R.; Iavarone, C.; Trogolo, C. 1-O-b-Glucopyranosyleucommiol,<br />

an Iridoid Glucoside from Aucuba<br />

japonica. Phytochemistry 1984, 23 (7), 1431–1433.<br />

384. Chang, I.M. Liver-Protective Activities <strong>of</strong> Aucubin<br />

Derived from Traditional Oriental Medicine. Res.<br />

Commun. Mol. Pathol. Pharmacol. 1998, 102 (2),<br />

189–<strong>20</strong>4.<br />

385. Lee, D.H.; Cho, I.G.; Park, M.S.; Kim, K.N.; Chang,<br />

I.M.; Mar, W. Studies on the Possible Mechanisms <strong>of</strong><br />

Protective Activity Against a-Amanitin <strong>Poisoning</strong> by<br />

Aucubin. Arch. Pharm. Res. <strong>20</strong>01, 24 (1), 55–63.<br />

386. Suh, N.J.; Shim, C.K.; Lee, M.H.; Kim, S.K.; Chang,<br />

I.M. Pharmacokinetic Study <strong>of</strong> an Iridoid Glucoside:<br />

Aucubin. Pharm. Res. 1991, 8, 1059–1063.<br />

387. Weinges, K.; Kloss, P.; Henkels, W.D. Natural Products<br />

from Medicinal Plants. XVII. Pricoside II, a New 6-<br />

Vanilloyl-catapol from Picrorhiza kuroa Royle and<br />

Benth. Justus Liebigs Ann. Chem. 1972, 759, 173–182.<br />

388. Ansari, R.A.; Aswal, B.S.; Chander, R.; Dhawan, B.N.;<br />

Garg, N.K.; Kapoor, N.K.; Kulshreshtha, D.K.; Mehdi,<br />

H.; Mehrotra, B.N.; Patnaik, G.K.; Sharma, S.K.


756<br />

Hepatoprotective Activity <strong>of</strong> Kutkin—The Iridoid<br />

Glycoside Mixture <strong>of</strong> Picrorhiza kurrooa. Indian<br />

J. Med. Res. 1988, 401–404.<br />

38<strong>9.</strong> Dwivedi, Y.; Rastogi, R.; Garg, N.K.; Dhawan, B.N.<br />

Effects <strong>of</strong> Picroliv, the Active Principle <strong>of</strong> Picrorhiza<br />

kurroa, on Biochemical Changes in Rat Liver Poisoned<br />

by Amanita phalloides. Chung-kuo Yao Li Hsueh Pao<br />

1992, 13 (3), 197–<strong>20</strong>0.<br />

390. Floersheim, G.L.; Bieri, A.; Koenig, R.; Pletscher, A.<br />

Protection Against Amanita phalloides by the Iridoid<br />

Glycoside Mixture <strong>of</strong> Picrorhiza kurroa (Kutkin).<br />

Agents Actions 1990, 29 (3/4), 386–387.<br />

391. Chen, N.; Bowles, M.R.; Pond, S.M. Polyclonal<br />

Amanitin-Specific Antibodies: Production and Cytoprotective<br />

Properties In Vitro. Biochem. Pharmacol. 1993,<br />

46 (2), 327–32<strong>9.</strong><br />

392. Faultstich, H.; Kirchner, K.; Derenzini, M. Strongly<br />

Enhanced Toxicity <strong>of</strong> the Mushroom Toxin Alpha-<br />

Amanitin by an <strong>Amatoxin</strong>-Specific Fab or Monoclonal<br />

Antibody. Toxicon 1998, 26 (5), 491–49<strong>9.</strong><br />

393. Tempé J.D.; Lutun, P.; Schneider, F.; Bilbault, P.;<br />

Marcoux, L. Hépatites Aiguës Toxiques. Indications et<br />

Résultats de la Transplantation Hépatique. XXXIème<br />

Congrès de la Société de Toxicologie Clinique, Nancy,<br />

France, Sept 16–17, 1993; Part I, 1–2<strong>9.</strong><br />

394. Gubernatis, G.; Pichlmayr, R.; Kemnitz, J.; Gratz, K.<br />

Auxiliary Partial Orthotopic Liver Transplantation<br />

(APOLT) for Fulminant Hepatic Failure: First<br />

Successful Case Report. World J. Surg. 1991, 15,<br />

660–665.<br />

395. Boudjema, K.; Siméoni, U.; Becmeur, F.; Schiffer, F.;<br />

Odeh, M.; Chenard, M.P.; Bellocq, J.P.; Wolf, P.;<br />

Gelsert, J.; Sauvage, P.; Cinquabre, J.; Jaeck, D.<br />

Transplantation Hépatique Auxiliaire dans le Traitement<br />

de l’Hépatite Fulminante chez l’Enfant: À Propos d’Une<br />

Observation. Réa. Urg. 1993, 3, 316.<br />

396. Moritz, M.J.; Jarrell, B.E.; Munoz, S.J.; Maddrey, W.C.<br />

Regeneration <strong>of</strong> the Native Liver After Heterotopic<br />

Liver Transplantation for Fulminant Hepatic Failure.<br />

Transplantation 1992, 55 (4), 952–954.<br />

397. Chenard-Neu, M.P.; Boudjema, K.; Bernuau, J.; Degott,<br />

C.; Belghiti, J.; Cherqui, D.; Costes, V.; Domergue, J.;<br />

Durand, F.; Ehrard, J.; De Hemptinne, B.; Gubernatis,<br />

G.; Hadengue, A.; Kemnitz, J.; McCarthy, M.; Maschek,<br />

H.; Mentha, G.; Oldhafer, K.; Portmann, B.; Praet, M.;<br />

Ringers, J.; Rogiers, X.; Rubbia, L.; Schalm, S.; Ten<br />

Kate, F.; Terpstra, O.; Van Hoek, B.; Williams, R.;<br />

Zafrani, E.S.; Cinqualbre, J.; Wolf, P.; Jaeck, D.;<br />

Bellocq, J.P. Auxiliary Liver Transplantation:<br />

Regeneration <strong>of</strong> the Native Liver and Outcome in<br />

30 Patients with Fulminant Hepatic Failure—A Multicenter<br />

European Study. Hepatology 1996, 23,<br />

1119–1127.<br />

398. Duffy, T.J. Liver Transplantation for Victims <strong>of</strong> Amanita<br />

Mushroom <strong>Poisoning</strong>. McIlvainea 1989, 9 (1), 4–5.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

39<strong>9.</strong> Frohburg, E.; Stölzel, U.; Lenz, K.; Schäfer, J.H.; Tung,<br />

L.C.; Riecken, E.O. Prognostic Indicators in<br />

Fulminant Hepatic Failure. Z. Gastroenterol. 1992, 30,<br />

571–575.<br />

400. Caraceni, P.; Van Thiel, D.H. Acute Liver Failure.<br />

Lancet 1995, 345, 163–16<strong>9.</strong><br />

401. Castells, A.; Salmeron, J.M.; Navasa, M.; Rimola, A.;<br />

Salö, J.; Andreu, H.; Mas, A.; Rodès, J. Liver<br />

Transplantation for Acute Liver Failure: Analysis <strong>of</strong><br />

Applicability. Gastroenterology 1993, 105, 532–538.<br />

402. Chapman, R.W.; Forman, D.; Perto, R.; Smallwood, R.<br />

Liver Transplantation for Acute Hepatic Failure? Lancet<br />

1990, 335, 32–35.<br />

403. Lake, J.R.; Sussman, N.L. Determining Prognosis in<br />

Patients with Fulminant Hepatic Failure: When You<br />

Absolutely Positively Have to Know the Answer.<br />

Hepatology 1995, 21 (3), 879–881.<br />

404. Jaeger, A.; Kopferschmitt, J.; Flesch, F.; Berton, C.;<br />

Levenos, H.; Sauder, P. Liver Transplantation for<br />

Amanita <strong>Poisoning</strong>. Congress <strong>of</strong> Anti-Poisons Centre,<br />

Istambul, Turkey, May 24–27, 1992; 103.<br />

405. O’Grady, J.G.; Alexander, G.J.M.; Hayllar, K.M.;<br />

Williams, R. Early Indicators <strong>of</strong> Prognosis in<br />

Fulminant Hepatic Failure. Gastroenterology 1989, 97,<br />

439–445.<br />

406. Shakil, A.O.; Kramer, D.; Mazariegos, G.V.; Fung, J.J.;<br />

Rakela, J. Acute Liver Failure: Clinical Features,<br />

Outcome Analysis, and Applicability <strong>of</strong> Prognostic<br />

Criteria. Liver Transplant. <strong>20</strong>00, 6 (2), 163–16<strong>9.</strong><br />

407. Bernuau, J.; Samuel, D.; Durand, F.; Saliba, F.;<br />

Bourlière, M.; Adam, R.; Gugenheim, J.; Castaing, D.;<br />

Bismuth, H.; Rueff, B.; Erfinger, S.; Benhamou, J.P.<br />

Criteria for Emergency Liver Transplantation in Patients<br />

with Acute Viral Hepatitis and Factor V (FV) Below<br />

50% <strong>of</strong> Normal: A Prospective Study. Hepatology 1991,<br />

14, 49A.<br />

408. Bismuth, H.; Samuel, D.; Gugenheim, J.; Castaing, D.;<br />

Bernuau, J.; Rueff, B.; Benhamou, J.P. Emergency Liver<br />

Transplantation for Fulminant Hepatitis. Ann. Intern.<br />

Med. 1987, 107, 337–341.<br />

40<strong>9.</strong> Bismuth, H.; Samuel, D.; Castaing, D.; Adam, R.;<br />

Saliba, F.; Johann, M.; Azoulay, D.; Ducot, B.; Chiche,<br />

L. Orthotopic Liver Transplantation in Fulminant and<br />

Subfulminant Hepatitis. The Paul Brousse Experience.<br />

Ann. Surg. 1995, 222 (2), 109–11<strong>9.</strong><br />

410. Pereira, L.M.M.B.; Langley, P.G.; Hayllar, K.M.;<br />

Tredger, J.M.; Williams, R. Coagulation Factor V and<br />

VIII/V Ratio as Predictors <strong>of</strong> Outcome in Paracetamol<br />

Induced Fulminant Hepatic Failure: Relation to Other<br />

Prognostic Indicators. Gut 1992, 33, 98–102.<br />

411. Lee, W.M.; Galbraith, R.M.; Watt, G.H.; Hughes, R.D.;<br />

McIntire, D.D.; H<strong>of</strong>fman, B.J.; Williams, R. Predicting<br />

Survival in Fulminant Hepatic Failure Using Serum Gc<br />

Protein Concentrations. Hepatology 1995, 21 (1),<br />

101–105.


412. Trey, C.; Davidson, L.S. The Management <strong>of</strong> Fulminant<br />

Hepatic Failure. In Progress in Liver Disease; Popper,<br />

H., Schaffner, F., Eds.; Grune and Stratton Publishers:<br />

New York, 1970; 282–298.<br />

413. Bernuau, J.; Benhamou, J.P. Classifying Acute Liver<br />

Failure. Lancet 1993, 342, 252–253.<br />

414. Edmond, J.C.; Aran, P.P.; Whitington, P.F.; Broelsch,<br />

C.E.; Baker, A.L. Liver Transplantation in the Management<br />

<strong>of</strong> Fulminant Hepatic Failure. Gastroenterology<br />

1989, 96, 1583–1588.<br />

415. O’Grady, J.G.; Schalm, S.W.; Williams, R. Acute Liver<br />

Failure: Redefining the Syndromes. Lancet 1993, 342,<br />

273–275.<br />

416. Bernuau, J.; Goudeau, A.; Poynard, T.; Dubois, F.;<br />

Lesage, G.; Yvonnet, B.; Degott, C.; Bezeaud, A.; Rueff,<br />

B.; Benhamou, J.P. Multivariate Analysis <strong>of</strong> Prognostic<br />

Factors in Fulminant Hepatitis B. Hepatology 1986, 6<br />

(4), 648–651.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 757<br />

417. Pauwels, A.; Mostefa-Kara, N.; Florent, C.; Levy, V.G.<br />

Emergency Liver Transplantation for Acute Liver<br />

Failure. Evaluation <strong>of</strong> London and Clichy Criteria.<br />

J. Hepatol. 1993, 17, 124–127.<br />

418. Izumi, S.; Langley, P.G.; Wendon, J.; Ellis, A.J.;<br />

Pernambuco, J.R.B.; Hughes, R.D.; Williams, R.<br />

Coagulation Factor V Levels as a Prognostic Indicator<br />

in Fulminant Hepatic Failure. Hepatology 1996, 23 (6),<br />

1507–1511.<br />

41<strong>9.</strong> Harrison, P.M.; O’Grady, J.G.O.; Keays, R.T.;<br />

Alexander, G.J.M.; Williams, R. Serial Prothrombin<br />

Time as Prognostic Indicator in Paracetamol-Induced<br />

Fulminant Hepatic Failure. Br. Med. J. 1990, 301,<br />

964–966.<br />

4<strong>20</strong>. Christensen, E.; Bremmelgaard, A.; Bahnsen, M.; Buch<br />

Andreasen, P.; Tygstrup, N. Prediction <strong>of</strong> Fatality in<br />

Fulminant Hepatic Failure. Scand. J. Gastroenterol.<br />

1984, 19 (1), 90–96.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!