09.06.2013 Views

9. Treatment of Amatoxin Poisoning-20 year retrospective analysis

9. Treatment of Amatoxin Poisoning-20 year retrospective analysis

9. Treatment of Amatoxin Poisoning-20 year retrospective analysis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ARTICLE<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Journal <strong>of</strong> Toxicology<br />

CLINICAL TOXICOLOGY<br />

Vol. 40, No. 6, pp. 715–757, <strong>20</strong>02<br />

<strong>Treatment</strong> <strong>of</strong> <strong>Amatoxin</strong> <strong>Poisoning</strong>:<br />

<strong>20</strong>-Year Retrospective Analysis<br />

Françoise Enjalbert,* Sylvie Rapior,<br />

Janine Nouguier-Soulé, Sophie Guillon,<br />

Noël Amouroux, and Claudine Cabot<br />

Laboratoire de Botanique, Phytochimie et Mycologie, Faculté de<br />

Pharmacie, Université Montpellier 1, Montpellier Cedex 5, France;<br />

Laboratoire de Physique Moléculaire et Structurale, UMR-CNRS 5094,<br />

Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14 491, 34093<br />

Montpellier Cedex 5, France; and Centre Anti-Poisons, Hôpital Purpan,<br />

Place du Docteur Baylac, 31059 Toulouse Cedex, France<br />

ABSTRACT<br />

Background: <strong>Amatoxin</strong> poisoning is a medical emergency characterized by a long<br />

incubation time lag, gastrointestinal and hepatotoxic phases, coma, and death. This<br />

mushroom intoxication is ascribed to 35 amatoxin-containing species belonging to<br />

three genera: Amanita, Galerina, and Lepiota. The major amatoxins, the a-, b-, and<br />

g-amanitins, are bicyclic octapeptide derivatives that damage the liver and kidney<br />

via irreversible binding to RNA polymerase II. Methods: The mycology and clinical<br />

syndrome <strong>of</strong> amatoxin poisoning are reviewed. Clinical data from 2108 hospitalized<br />

amatoxin poisoning exposures as reported in the medical literature from North<br />

America and Europe over the last <strong>20</strong> <strong>year</strong>s were compiled. Preliminary medical<br />

care, supportive measures, specific treatments used singly or in combination, and<br />

liver transplantation were characterized. Specific treatments consisted <strong>of</strong><br />

detoxication procedures (e.g., toxin removal from bile and urine, and extracorporeal<br />

purification) and administration <strong>of</strong> drugs. Chemotherapy included<br />

benzylpenicillin or other b-lactam antibiotics, silymarin complex, thioctic acid,<br />

*Corresponding author. Dr. Françoise Enjalbert, Laboratoire de Botanique, Phytochimie et Mycologie, Faculté de Pharmacie,<br />

Université Montpellier 1, 15 avenue Charles Flahault, UM 1/CNRS-UPR A 9056, BP 14 491, 34093 Montpellier Cedex 5, France.<br />

Fax: þ33-467-411-940; E-mail: fenjalbert@ww3.pharma.univ-montp1.fr<br />

715<br />

DOI: 10.1081/CLT-1<strong>20</strong>014646 0731-3810 (Print); 1097-9875 (Online)<br />

Copyright q <strong>20</strong>02 by Marcel Dekker, Inc. www.dekker.com


716<br />

antioxidant drugs, hormones and steroids administered singly, or more usually, in<br />

combination. Supportive measures alone and 10 specific treatment regimens were<br />

analyzed relative to mortality. Results: Benzylpenicillin (Penicillin G) alone and in<br />

association was the most frequently utilized chemotherapy but showed little efficacy.<br />

No benefit was found for the use <strong>of</strong> thioctic acid or steroids. Chi-square statistical<br />

comparison <strong>of</strong> survivors and dead vs. treated individuals supported silybin,<br />

administered either as mono-chemotherapy or in drug combination and Nacetylcysteine<br />

as mono-chemotherapy as the most effective therapeutic modes.<br />

Future clinical research should focus on confirming the efficacy <strong>of</strong> silybin, Nacetylcysteine,<br />

and detoxication procedures.<br />

Key Words: Amanita; <strong>Amatoxin</strong>s; Galerina; Lepiota; <strong>Poisoning</strong>; <strong>Treatment</strong><br />

INTRODUCTION<br />

The hunting and eating <strong>of</strong> wild higher fungi is a<br />

traditional activity in many European countries and has<br />

become an increasingly popular pastime in the United<br />

States. Despite warnings on the risks <strong>of</strong> eating wild<br />

mushrooms, collectors continue to confuse edible and<br />

toxic species. There are few data defining the number <strong>of</strong><br />

worldwide mushroom exposures; [1 – 11] but poisonings are<br />

a relatively common medical emergency. Among severe<br />

mushroom intoxications, the amatoxin syndrome is <strong>of</strong><br />

primary importance because it accounts for about 90% <strong>of</strong><br />

fatality. [12]<br />

<strong>Amatoxin</strong> poisoning is characterized by a long<br />

asymptomatic incubation delay (from 6 to 12 hours)<br />

and three clinical phases. The first phase, or gastrointestinal<br />

phase (12–24 hours), consists <strong>of</strong> cholera-like<br />

diarrhea, vomiting, abdominal pain, and dehydration.<br />

During the second phase, or hepatotoxic phase (24–<br />

48 hours), clinical signs and biochemical evidence <strong>of</strong><br />

hepatic damage leading to a progressive and irreversible<br />

coagulopathy appear. With the development <strong>of</strong> hepatorenal<br />

syndrome (third phase), hemorrhages, convulsions,<br />

and fulminant hepatic failure (FHF) occur resulting in<br />

coma and death (4–7 days). Symptoms and clinical<br />

course <strong>of</strong> amatoxin-containing mushroom poisoning<br />

have been thoroughly reported. [13 – 23] Damage to the<br />

liver is characterized by massive centrilobular necrosis,<br />

vacuolar degeneration, and a positive acid–phosphatase<br />

reaction. The kidney shows signs <strong>of</strong> acute tubular<br />

necrosis and hyaline casts in the tubules. [24]<br />

<strong>Amatoxin</strong> poisoning is caused by mushroom species<br />

belonging to three genera, Amanita, Galerina, and<br />

Lepiota [12,25,26] with the majority <strong>of</strong> lethal mushroom<br />

exposures attributable to Amanita species. Some<br />

Amanitas contain two major groups <strong>of</strong> toxins, amatoxins,<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

and phallotoxins. Both are bicyclic peptides composed <strong>of</strong><br />

an amino acid ring bridged by a sulfur atom. The<br />

chemical structures <strong>of</strong> nine amatoxins have been<br />

elucidated as bicyclic octapeptide derivatives; the major<br />

ones are the a-, b-, and g-amanitins (a-Ama, b-Ama, g-<br />

Ama). The three amanitins are also present in some<br />

Galerina and Lepiota species responsible for deceased<br />

persons. Phallotoxins, detected only in Amanita species,<br />

have only slight absorption after oral administration and<br />

should not contribute to amatoxin poisoning.<br />

Enjalbert et al.<br />

[27 – 31]<br />

The molecular mechanism <strong>of</strong> toxicity has been<br />

studied in detail. <strong>Amatoxin</strong>s bind with eukaryotic<br />

DNA-dependent RNA polymerase II, and inhibit the<br />

elongation essential to transcription. Pharmacokinetic<br />

studies have shown that amatoxins use the physiological<br />

transport system for biliary acids to reach the liver, the<br />

site <strong>of</strong> irreversible binding to RNA polymerase II.<br />

Enterohepatic circulation perpetuates high toxin concentration<br />

in the hepatocytes. [32,33]<br />

Our survey based on the literature over the last two<br />

decades lists 2108 detailed cases <strong>of</strong> amatoxin poisoning<br />

from North America and Europe. <strong>Treatment</strong> strategies<br />

were characterized as preliminary medical care, supportive<br />

measures, and specific therapies. Specific therapies<br />

included toxin removal from the digestive, biliary, and<br />

urinary systems, and blood as well as the administration<br />

<strong>of</strong> drugs. Experimental investigations and hypotheses<br />

concerning the hepatoprotective properties <strong>of</strong> each<br />

therapeutic modality justifying its use in human<br />

amatoxin intoxication were also described. The use <strong>of</strong><br />

liver transplantation (LT) in amatoxin-induced FHF was<br />

also characterized as a specific therapy among this<br />

<strong>retrospective</strong> patient group.<br />

The aim <strong>of</strong> this review is a critical <strong>analysis</strong> <strong>of</strong> the<br />

different treatments that were applied to amatoxin<br />

poisoned patients by determining for each therapeutic


mode its use and its efficacy. Two complementary<br />

statistical analyses were carried to compare the number<br />

<strong>of</strong> survivors and dead for each group <strong>of</strong> patients, which<br />

received a particular mode <strong>of</strong> therapy, liver transplant<br />

cases being either included as fatalities or excluded from<br />

each analyzed series. These data enabled a classification<br />

<strong>of</strong> therapeutic modalities based on relatively effective,<br />

ineffective, or unproven asset.<br />

AMATOXIN-CONTAINING MUSHROOM<br />

SPECIES<br />

According to the currently available literature,<br />

[12,25,26,34] 35 species belonging to the genera<br />

Amanita, Galerina, and Lepiota contain amatoxins.<br />

There is agreement on amatoxin-containing Amanita and<br />

Galerina species but the occurrence <strong>of</strong> amatoxins in<br />

some species <strong>of</strong> Lepiota genus is uncertain.<br />

In the genus Amanita, the nine amatoxin-containing<br />

mushrooms are (1) Amanita phalloides (Fr.) Secr. [26] and<br />

the related species, the so-called “deadly white Amanita<br />

species,” (2) A. bisporigera Atk., (3) A. decipiens<br />

(Trimbach) Jacquetant, (4) A. hygroscopica Coker, (5) A.<br />

ocreata Peck, (6) A. suballiacea Murr., (7) A. tenuifolia<br />

Murr., (8) A. verna (Bull.:Fr.) Lamarck, and (9) A. virosa<br />

(Lamarck) Bertillon. [12,25,26,34] A. magnivelaris Peck was<br />

suspected <strong>of</strong> containing amatoxins since intoxications<br />

with a 24-hour latency, liver failure, and hepatic necrosis<br />

were reported for patients from Guatemala and Rhode<br />

Island. [35,36] However, amatoxins have never been<br />

detected in the mushroom tissue. [25,37]<br />

In the genus Galerina, nine amatoxin-containing<br />

species are reported: (1) G. autumnalis (Pk.) Sm. and<br />

Sing., (2) G. badipes (Fr.) Kühn., (3) G. beinrothii Brsky,<br />

(4) G. fasciculata Hongo, (5) G. helvoliceps (Berk. and<br />

Curt.) Sing., (6) G. marginata (Batsch) Kühner, (7) G.<br />

sulciceps (Berk.) Boedjin, [38] (8) G. unicolor (Fr.) Sing.,<br />

[12,26,34,39 – 41]<br />

and (9) G. venenata A. H. Smith.<br />

In the mycological literature on Lepiotas,<br />

[12,25,26,42 – 45]<br />

24 species are presumed to be amatoxin-producing mushrooms<br />

and listed alphabetically as follows. The asterisk<br />

indicates those 16 Lepiota species in which amatoxins<br />

[46 – 49]<br />

were detected by thin layer chromatography.<br />

L. brunneoincarnata Chodat and Martin*<br />

L. brunneolilacea Bon and Boiffard*<br />

L. castanea Quélet*<br />

L. citrophylla (Berk. and Br.) Sacc.<br />

L. clypeolaria (Bull.:Fr.) Kummer [42]<br />

L. clypeolarioides Rea*<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 717<br />

L. felina (Pers.:Fr.) Karsten*<br />

L. fulvella Rea* [43] (by semiquantitative Meixner<br />

test [50,51] )<br />

L. fuscovinacea Moeller and Lange<br />

L. griseovirens Maire*<br />

L. heimii Locq.*<br />

L. helveola Bres.*<br />

L. helveoloides Bon ex Bon and Andary<br />

L. josserandii Bon and Boiffard*<br />

L. kuehneri Huijsm. ex Hora*<br />

L. langei Locq.*<br />

L. lilacea Bres. [44]<br />

L. locanensis Espinosa<br />

L. ochrace<strong>of</strong>ulva Orton*<br />

L. pseudohelveola Kühner ex Hora*<br />

L. pseudolilacea Huijsm. [45]<br />

L. rufescens Lge. [44]<br />

[47 – 49]<br />

L. subincarnata Lge.*<br />

L. xanthophylla Orton* [46]<br />

Although a-Ama was detected in North American<br />

Pholiotina (Conocybe) filaris Fr., [52] investigations <strong>of</strong><br />

German collections <strong>of</strong> this species and other Pholiotinas<br />

reported the amatoxins neither in the mushrooms nor in<br />

cases <strong>of</strong> hepatotoxic poisoning. [12] The available<br />

information thus identifies 35 species containing<br />

amatoxins (10 Amanitas, 9 Galerinas, and 16 Lepio-<br />

[46 – 49,51]<br />

tas.<br />

OCCURRENCE OF AMATOXIN<br />

POISONING<br />

<strong>Amatoxin</strong>-containing species and, consequently,<br />

[53 – 56]<br />

amatoxin poisonings occur worldwide: Africa,<br />

America, [25,26,35,57,58] Asia, [46,59 – 66] Europe, [12,67,68] and<br />

Oceania. [63,69 – 71] Given the few reports <strong>of</strong> the amatoxin<br />

syndrome from the African, Asian, and Oceanian<br />

continents, [55,60,61,69,70,72] our review focused on human<br />

cases (Tables 1–6) from North American and European<br />

countries. [73 – <strong>20</strong>4] The sites include the Canadian<br />

province Ontario, [97] Mexico, [35,78,84,85] and 21 different<br />

U.S. states namely Alabama, [89] Arkansas, [93] California,<br />

[42,74,79,90,93,102,109,119,1<strong>20</strong>,151,193,<strong>20</strong>5 – <strong>20</strong>7] Florida, [112]<br />

Georgia, [91,118] Indiana, [132] Kansas, [<strong>20</strong>8] Kentucky, [<strong>20</strong>9]<br />

Michigan, [108,199,<strong>20</strong>9] Minnesota, [122] Mississippi, [118]<br />

Missouri, [118,141] New Jersey, [73,139,<strong>20</strong>5,<strong>20</strong>9] New<br />

York, [93,140,<strong>20</strong>0,<strong>20</strong>6,<strong>20</strong>8] Ohio, [36,<strong>20</strong>7] Oregon, [<strong>20</strong>6,<strong>20</strong>9] Pennsylvania,<br />

[124] Rhode Island, [36,104,<strong>20</strong>6] Virginia, [<strong>20</strong>8]<br />

Washington, [<strong>20</strong>7] and Wisconsin [178] as well as 22<br />

European countries namely Austria, [127,128] Belgium,<br />

[168,190] Bulgaria, [179,210,211] Croatia, [117] Czech


718<br />

Republic, [105,157] Denmark, [154,165,<strong>20</strong>2] Finland, [95,106,<br />

152] France, [75,80,86,103,121,136 – 138,146,148,169,191,192,194 –<br />

198,212] Germany, [87,88,130,133,155,156,163,164,166,167,<strong>20</strong>1]<br />

Hungary, [<strong>20</strong>3,<strong>20</strong>4,213]<br />

Italy, [76,83,92,94,96,100,111,116,125,126,<br />

131,143 – 145,147,161,176,177,181,185,186]<br />

the Netherlands, [159]<br />

Norway, [153] Poland, [99,170 – 173,175,214] Portugal, [162] Slovak<br />

Republic, [113,114,129,160,180,215] Slovenia, [110,174]<br />

Spain, [43,50,77,98,115,182 – 184,187 – 189] Sweden, [101,149]<br />

Switzerland, [158,216,217] Turkey, [81,82,107,134,135,142] and<br />

United Kingdom. [123]<br />

The amatoxin poisoning cases found in the literature<br />

were divided into three groups. The first group comprised<br />

2108 amatoxin poisoning cases that were adequately<br />

documented by hospital reports with detailed therapeutic<br />

information including 32 LTs (Tables 1–6). A second<br />

[11,36,89,93,97,108,118,199,<strong>20</strong>5 –<br />

group from North American<br />

<strong>20</strong>9,218,219] [24,103,111,136,142,160,181,<br />

and European sources<br />

212 – 217,2<strong>20</strong>]<br />

consisted <strong>of</strong> 169 amatoxin poisonings that<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Table 1<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated with Supportive Measures Alone with/without Liver Transplant<br />

Enjalbert et al.<br />

Date/Country T/E Cases Mushroom LT Survivors References<br />

1981 New York 1/3 a.sp 0 1 [73]<br />

1981 California 1/10 A.ph 0 0 [74]<br />

1981 California 4/10 a.sp 0 3 [74]<br />

1982 France 1/1; child G.mar 0 0 [75]<br />

1982 Italy 2/2 L.bi 0 1 [76]<br />

1983–1986 Spain 7/85 a.sp 0 7 [43,50]<br />

1986 Spain 1/3 L.bi 0 1 [77]<br />

1987 Guatemala 19/19; (children) A.mag 0 11 [35]<br />

1987 Mexico 8/8; 2 children A.vi 0 6 [78]<br />

1988 California 4/4 A.ph 0 0 [79]<br />

1988 France 1/1; child A.ph 1 1 [80]<br />

1988 Turkey 11/11; 8 children L.hel 0 0 [81]<br />

1988 Turkey 3/27 L.cas, L.hel 0 2 [82]<br />

1990 Italy 1/2 L.bi 0 1 [83]<br />

1990 Mexico 7/7 A.vi 0 2 [84,85]<br />

1992 France 1/3 L.bi 0 1 [86]<br />

1992 France 2/3; 1 child L.bi 2 2 [86]<br />

1992 Germany 2/3 A.ph 0 1 [87]<br />

1992 Germany 1/3; child A.ph, amat 1 1 [87]<br />

1994 Germany 9/12 A.ph 0 9 [88]<br />

1996 Alabama 1/4; child A.ve 0 0 [89]<br />

1997 California 1/4 a.sp 0 1 [90]<br />

1997 Georgia 1/1 A.ph 1 1 [91]<br />

1998 Italy 1/1 A.ph 1 1 [92]<br />

1999 Arkansas 1/1 A.bis 0 1 [93]<br />

T/E Cases ¼ treated/exposed individuals; LT ¼ liver transplant; amat ¼ amatoxins in biological fluids; a.sp ¼ amatoxin-containing species;<br />

A.bis ¼ Amanita bisporigera; A.mag ¼ A. magnivelaris; A.ph ¼ A. phalloides; A.ve ¼ A. verna; A.vi ¼ A. virosa; G.mar ¼ Galerina marginata;<br />

L.bi ¼ Lepiota brunneoincarnata; L.cas ¼ L. castanea; L.hel ¼ L. helveola; undefined cases are reported in brackets.<br />

were cited in clinical reports but had no treatment<br />

information. A third group contained cases <strong>of</strong> mushroom<br />

exposures reported only as “cyclopeptide intoxication<br />

with hepatotoxic effects” and with incomplete clinical<br />

data. [3 – 9,11,210,211,221] The majority <strong>of</strong> the cases in the<br />

second and third groups were either mildly intoxicated or<br />

asymptomatic individuals who shared the poisoned meal<br />

and did not necessarily require hospital admission. Only<br />

the cases in the first group were included in the data<br />

<strong>analysis</strong>.<br />

Of the 35 amatoxin-containing species, 14 were<br />

responsible for most <strong>of</strong> the intoxications listed in Tables<br />

1–6: A. bisporigera, A. magnivelaris, A. ocreata,<br />

A. phalloides, A. verna, A. virosa, G. autumnalis, [<strong>20</strong>8]<br />

G. marginata, L. brunneoincarnata, L. brunneolilacea,<br />

L. castanea, L. fulvella, L. helveola, and L. josserandii.<br />

The small number <strong>of</strong> species identified may be an artifact<br />

<strong>of</strong> incomplete information; in less than 5% <strong>of</strong> the


Table 2<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated with Detoxication Procedures with/without Liver Transplant<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

Date/Country T/E Cases Mushroom Oral C/GA Urin. FD ECP HD–HP/ PL LT Surv. References<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 719<br />

1975–1990 Italy 93/93; children a.sp 0/0 93 0–0/0 0 86 [94]<br />

1978 Finland 2/2 G.mar 0/0 2 0–0/0 0 2 [95]<br />

1981 California 3/10 a.sp 3/0 0 0–0/0 0 3 [74]<br />

1981 Italy 1/1; pregnant A.ph, amat 0/0 1 0–0/1 0 1 [96]<br />

1982 Canada 1/2 A.bis, A.vi 0/0 0 1–1/1 0 1 [97]<br />

1982 Canada 1/2 A.vi 0/0 0 1–0/0 0 0 [97]<br />

1982 Spain 2/8 A.ph 0/0 0 0–0/2 0 2 [98]<br />

1982–1983 California 11/21 a.sp 11/0 0 0–0/0 0 11 [42]<br />

1982–1983 California 4/21 A.o, amat 4/0 0 0–0/0 0 4 [42]<br />

1982–1983 California 1/21; child A.ph, amat 1/0 0 0–0/0 0 1 [42]<br />

1982–1986 Poland 7/7 A.ph 0/0 0 0–0/7 0 4 [99]<br />

1982–1991 Italy 2/8; 1 child A.ph 0/0 0 0–0/2 0 1 [100]<br />

1983–1986 Sweden 93/93 A.ph, A.vi, a.sp, amat 0/0 93 93–93/0 0 93 [101]<br />

1988 Turkey 3/27; 1 child L.cas, L.hel 3/0 0 0–0/0 0 3 [82]<br />

1988 Turkey 6/27; children L.cas, L.hel 0/0 0 6–0/0 0 0 [82]<br />

1989 California 2/2 A.ph 2/2 0 2–0/0 2 2 [102]<br />

1990 France 1/1 A.ph 0/0 0 1–0/0 1 1 [103]<br />

1990 Rhode Island 1/1 A.vi 1/0 0 0–0/0 0 0 [104]<br />

1990–1991 Czech 35/35 A.ph 0/0 0 0–35/0 0 28 [105]<br />

1990–1991 Czech 38/38 a.sp 0/0 0 0–38/0 0 38 [105]<br />

1991–1999 Italy 6/8 A.ph 0/0 0 0–0/6 1 6 [100]<br />

1994 Finland 1/1 A.vi 0/0 0 1–0/0 1 1 [106]<br />

1994–1995 Turkey 52/60 A.ph 0/0 0 0–52/0 0 52 [107]<br />

1994–1995 Turkey 8/60 A.ph 0/0 0 8–0/0 0 4 [107]<br />

1995 Michigan 1/1 A.vi 1/0 0 0–0/0 0 1 [108]<br />

1996 Alabama 3/4 A.ve 3/0 0 0–0/0 0 3 [89]<br />

1996–1997 California 2/10 A.ph, a.sp 1/0 0 2–0/0 0 0 [109]<br />

1997 California 1/4 a.sp 0/0 0 1–0/0 0 0 [90]<br />

1997 Slovenia 1/1; child a.sp 0/0 1 0–0/1 0 0 [110]<br />

1998 Italy 2/2 a.sp 0/0 0 2*–2/0 0 2 [111]<br />

<strong>20</strong>00 Florida 1/1 a.sp 1/0 0 0–0/0 1 1 [112]<br />

T/E Cases ¼ treated/exposed individuals; Oral ¼ oral detoxication using C ¼ activated charcoal and GA ¼ gastroduodenal aspiration; Urin. ¼ urinary detoxication by FD ¼ forced diuresis;<br />

ECP ¼ extra-corporeal detoxication including * ¼ continuous venovenous hem<strong>of</strong>iltration, HD ¼ hemodialysis, HP ¼ hemoperfusion, and PL ¼ plasmapheresis; LT ¼ liver transplant;<br />

Surv. ¼ survivors; amat ¼ amatoxins in biological fluids; a.sp ¼ amatoxin-containing species; A.bis ¼ Amanita bisporigera; A.o ¼ A. ocreata; A.ph ¼ A. phalloides; A.ve ¼ A. verna;<br />

A.vi ¼ A. virosa; G.mar ¼ Galerina marginata; L.cas ¼ Lepiota castanea; L.hel ¼ L. helveola.


7<strong>20</strong><br />

Table 3<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated with Mono-chemotherapy, with/without Detoxication Procedures and with/without Liver Transplant<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

Date/Country T/E Cases Mushroom Drugs Oral C/GA Urin. FD ECP HD–HP/PL LT Surv. References<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

1988 Turkey 1/27; child L.cas, L.hel 1ATB 0/0 0 1–0/0 0 0 [82]<br />

1971–1995 Slovak Republic 103/103; 14 children A.ph, a.sp B.pen 0/0 (FD) (HD–HP)/0 0 95 [113,114]<br />

1981 Spain 2/2 A.ph B.pen 0/2 0 2–0/0 0 2 [115]<br />

1982 Spain 6/8 A.ph B.pen 0/0 0 0–0/6 0 5 [98]<br />

1982–1986 Spain 13/85; 1 child 5 A.ph, 2 A.ve, 3 L.bi, B.pen 2/2 9 0–1/2 0 12 [43,50]<br />

3 a.sp; amat<br />

1986 Spain 2/3 L.bi B.pen 0/0 0 0–0/0 0 2 [77]<br />

1986–1989 Italy 12/12 A.ph B.pen 12/0 0 12–0/0 0 9 [116]<br />

1988 Croatia 18/18; (children) A.ph B.pen 18/18 18 2–0/16 0 14 [117]<br />

1991 Ohio 1/1 G.sp B.pen 1/0 0 0–0/0 0 1 [36]<br />

1994 Missouri 2/2 A.bis B.pen 0/0 0 0–0/0 0 1 [118]<br />

1996 California 3/3 A.ph B.pen 0/0 0 0–0/0 1 a<br />

3 [119,1<strong>20</strong>]<br />

1998 France 1/1 A.ph B.pen 1/0 0 0–0/0 0 1 [121]<br />

1998 Minnesota 1/1; child A.vi B.pen 1/0 0 0–0/0 0 1 [122]<br />

1982 U.K. 2/2 A.ph Cimetid 0/0 0 0–2/0 0 0 [123]<br />

1999 Pennsylvania 1/6 a.sp Cimetid 1/0 0 0–0/0 0 1 [124]<br />

1987–1993 Italy 86/86 A.ph NAC 86/0 86 0–0/0 0 80 [125]<br />

1994 Italy 1/1; pregnant A.ph, amat NAC 1/0 1 0–0/1 0 1 [126]<br />

1996–1997 California 1/10 A.ph NAC 1/0 0 0–0/0 0 1 [109]<br />

1997 California 1/4 a.sp NAC 1/0 0 0–0/0 0 1 [90]<br />

1980–1986 Europe 25/252 A.ph, a.sp Silybin 0/0 (FD) (HD–HP)/0 0 24 [127,128]<br />

1991–1999 Slovak Republic <strong>20</strong>/<strong>20</strong>; (children) A.ph, a.sp Silybin <strong>20</strong>/0 <strong>20</strong> 0–0/0 0 <strong>20</strong> [129]<br />

1993 Germany 26/154 a.sp Silybin 0/0 0 0–0/0 0 26 [130]<br />

1994 Germany 3/12 A.ph Silybin 0/0 0 0–0/0 3 2 [88]<br />

1981 California 1/10 A.ph Steroid 0/0 0 0–0/0 0 1 [74]<br />

1982–1983 California 2/21 a.sp, amat Steroid 2/0 0 0–2/0 0 0 [42]<br />

1982–1983 California 3/21 a.sp Steroid 3/0 0 0–0/0 0 3 [42]<br />

1988 Turkey 1/27 L.cas, L.hel Steroid 0/0 0 0–0/0 0 1 [82]<br />

1997 Italy 1/1 A.ph Steroid 0/0 0 0–0/1 0 1 [131]<br />

1981 New York 2/3 a.sp Thioc.a 0/0 0 1–0/0 0 2 [73]<br />

1981 California 1/10 a.sp Thioc.a 0/0 0 0–0/0 0 0 [74]<br />

1982 Indiana 1/1 A.vi Thioc.a 0/0 0 0–0/0 0 1 [132]<br />

1982–1986 Spain 4/85; 1 child A.ph, amat Thioc.a 2/3 3 0–2/0 0 4 [43,50]<br />

Enjalbert et al.<br />

T/E Cases ¼ treated/exposed individuals; Oral ¼ oral detoxication using C ¼ activated charcoal and GA ¼ gastroduodenal aspiration; Urin. ¼ urinary detoxication by FD ¼ forced diuresis;<br />

ECP ¼ extra-corporeal detoxication including HD ¼ hemodialysis, HP ¼ hemoperfusion, and PL ¼ plasmapheresis; LT ¼ liver transplant; Surv. ¼ survivors; amat ¼ amatoxins in<br />

biological fluids; undefined cases are reported in brackets.<br />

Drugs: ATB ¼ antibiotic agent; B.pen ¼ benzylpenicillin; Cimetid ¼ cimetidine; NAC ¼ N-acetylcysteine; Thioc.a ¼ thioctic acid.<br />

a.sp ¼ amatoxin-containing species; A.bis ¼ Amanita bisporigera; A.ph ¼ A. phalloides; A.ve¼A. verna; A.vi ¼ A. virosa; G.sp ¼ Galerina species; L.bi ¼ Lepiota brunneoincarnata;<br />

L.cas ¼ L. castanea; L.hel ¼ L. helveola.<br />

a<br />

Auxiliary liver transplant.


poisoning cases is the mushroom species actually<br />

identified. [222] When the species attribution is uncertain<br />

the onset <strong>of</strong> clinical symptoms may be a useful indicator<br />

<strong>of</strong> potential amatoxin ingestion.<br />

<strong>Amatoxin</strong> exposures were more frequently caused by<br />

A. phalloides in Central and Southern Europe, A. virosa<br />

in Northern Europe, and A. phalloides and related deadly<br />

white Amanitas in North America. Unidentified amatoxin-containing<br />

species caused 21% <strong>of</strong> poisonings and<br />

are listed as a.sp. in Tables 1–6.<br />

STATISTICAL ANALYSIS<br />

An overall table (189 rows, 12 columns) was<br />

constituted from Tables 1–6 with the actual or coded<br />

values <strong>of</strong> the following parameters: date; country; modes<br />

<strong>of</strong> care, number <strong>of</strong> exposed individuals and treated<br />

patients; number and percentage <strong>of</strong> survivors and<br />

nonsurvivors; mushroom or mixture <strong>of</strong> mushrooms;<br />

single drug or drug combination; and LTs. A general<br />

frequency table was constructed <strong>of</strong> the observed<br />

frequencies for each mode <strong>of</strong> care. Eleven modes <strong>of</strong><br />

care had a sufficient representation for <strong>analysis</strong>: one<br />

treatment mode (supportive measures alone, Table 1) and<br />

10 specific treatments: detoxication procedures (Table 2)<br />

and nine chemotherapies from Tables 3–6 (monochemotherapies:<br />

benzylpenicillin, N-acetylcysteine<br />

(NAC), silybin; bi-chemotherapies: benzylpenicillin/<br />

antioxidant drug, b-lactam antibiotic (benzylpenicillin<br />

or ceftazidime)/silybin, benzylpenicillin/steroid, benzylpenicillin/thioctic<br />

acid; and tri- and poly-chemotherapies:<br />

benzylpenicillin combinations with any before<br />

mentioned drug, with or without silybin).<br />

Due to small numbers <strong>of</strong> treated victims, 13 other<br />

specific chemotherapies were not analyzed: monochemotherapy<br />

with cimetidine, vitamin C, thioctic acid,<br />

steroid or antibiotic agent (<strong>20</strong> cases from Table 3); and<br />

bi-, tri-, and poly-chemotherapies with silybin/thioctic<br />

acid, antibiotic/antiseptic/vitamin C, steroid/thioctic<br />

acid/vitamin C, antibiotic/thioctic acid/vitamin C, two<br />

antibiotics/steroid, two antibiotics/NAC, antiseptic/silybin/steroid/vitamin<br />

C and three antibiotics/steroid (26<br />

cases from Tables 5 and 6).<br />

Outcome without surgery for the 32 cases who received<br />

liver transplant (LT . 0) combined with one or more from<br />

the 11 analyzed therapeutic modes cannot be known.<br />

Therefore, in order to assess the effectiveness <strong>of</strong> the<br />

nontransplant therapies in preventing the fatal stage <strong>of</strong> the<br />

disease, statistical analyses were performed both with and<br />

without the transplanted cases. The suffixes LTi and LTe<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 721<br />

were added to all numbers, percentages, and probabilities<br />

listed or calculated including or excluding the LT cases,<br />

respectively. For each observation (line <strong>of</strong> the general<br />

table) with LT . 0, the number <strong>of</strong> treated patients,<br />

survivors, and deceased persons were corrected as follows:<br />

(i) for mortality rate excluding the transplant cases<br />

(MRLTe), the LT cases were removed from the data set,<br />

i.e., both treated patient and survivor numbers were<br />

decreased by the number <strong>of</strong> transplants, (ii) for mortality<br />

rate including the transplant cases (MRLTi), each LT<br />

patient was considered as a deceased person; only survivor<br />

numbers were decreased by the number <strong>of</strong> transplants.<br />

Complementary statistical analyses were carried out<br />

for <strong>20</strong>62 LTi patients (2108 victims minus 46<br />

nonanalyzed-treatment cases) and <strong>20</strong>31 LTe cases<br />

(<strong>20</strong>62 victims minus 31 LT cases); one LT case was in<br />

an unanalyzed mode <strong>of</strong> care.<br />

The global performance evaluation <strong>of</strong> each therapeutic<br />

mode was achieved by a statistical comparison <strong>of</strong><br />

the number <strong>of</strong> survivors and nonsurvivors using a Chisquare<br />

calculation from the two rows (survivors,<br />

fatalities) and six columns (six tables) contingency<br />

table. The effect <strong>of</strong> each mode <strong>of</strong> care was studied by<br />

comparison <strong>of</strong> survivor and dead numbers in the 2 £ 2<br />

tables constituted from the general table.<br />

The Chi-square test applied to the general frequency<br />

tables rejected the hypothesis that outcome and treatment<br />

were independent; the distribution <strong>of</strong> survivors and<br />

deceased persons was statistically different for Tables<br />

1–6, both including and excluding the LT patients. When<br />

the p-value was #0.05, the null hypothesis was rejected<br />

at the 95% confidence level. The Yates’ correction was<br />

applied when the number <strong>of</strong> survivors or deceased<br />

patients was #5, and the Fischer’s exact test was<br />

calculated in the case <strong>of</strong> contingency table 2 £ 2 with<br />

less than 100 observations. The statistical <strong>analysis</strong> was<br />

carried out using STATGRAPHICS w PLUS s<strong>of</strong>tware<br />

version 3.3 (Manugistics, Inc., Rockville, MD, USA).<br />

DESCRIPTION OF TREATMENTS<br />

The management <strong>of</strong> amatoxin poisoning involves four<br />

main categories <strong>of</strong> therapy: preliminary medical care,<br />

supportive measures, specific treatments, and LT. Since<br />

there is a relative consensus <strong>of</strong> opinion about<br />

the preliminary medical care and supportive<br />

measures, [14,18 – <strong>20</strong>,23,223 – 228] only their major features<br />

are described. The specific treatments consisting <strong>of</strong><br />

detoxication procedures, chemotherapies, and LT are<br />

described below in detail.


722<br />

Table 4<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated as Bi- and Tri-chemotherapy with Benzylpenicillin, with/without Detoxication Procedures and with/without Liver Transplant<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

ECP HD–HP/PL LT Surv. References<br />

Urin.<br />

FD<br />

Date/Country T/E Cases Mushroom Drugs Oral<br />

C/GA<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

1977–1994 Germany 9/12 A.ph, a.sp ATB, silybin 0/9 9 9–9/0 0 8 [133]<br />

1977–1994 Germany 3/12 A.ph ATB, silybin 0/3 3 3–3/0 3 3 [133]<br />

1988 Turkey 2/27; 1 child L.cas, L.hel ATB, steroid 2/0 0 1–0/0 0 0 [82]<br />

1988 Turkey 1/3; child A.ph ATB, steroid 1/0 0 1–0/0 0 1 [134]<br />

1995 Turkey 3/3; 1 child A.ph, amat ATB, steroid 3/0 3 2–3/0 0 3 [135]<br />

1988 France 1/1 A.ph ATS, steroid 1/0 0 0–0/0 1 1 [136]<br />

1980 France 1/1 A.ph ATS, Vit.C 0/0 0 0–0/0 0 1 [137]<br />

1984 France 1/29 A.ph ATS, Vit.C 1/0 0 0–0/0 0 1 [138]<br />

1992 New Jersey 3/3 A.ph Cimetid 3/0 0 1–2/0 0 3 [139]<br />

1992–1993 New York 2/2 a.sp, amat Cimetid 2/0 0 0–0/0 0 1 [140]<br />

Enjalbert et al.<br />

1999 Pennsylvania 5/6 A.ph, a.sp Cimetid 5/0 0 0–0/0 0 5 [124]<br />

1996–1997 California 1/10 a.sp Cimetid, 1/0 0 0–0/0 0 1 [109]<br />

NAC<br />

<strong>20</strong>00 Missouri 2/2 A.ph, amat Cimetid, 2/0 0 2–2/0 0 2 [141]<br />

NAC<br />

<strong>20</strong>00 Turkey 1/1; child a.sp Cimetid, 1/0 0 0–0/1 0 1 [142]<br />

Vit.C<br />

1986–1992 Italy 73/73; (child.) A.ph, amat NAC a<br />

73/0 73 0–0/0 0 67 [143–145]<br />

1996 France 1/1 L.bi, amat NAC 0/0 0 0–0/0 0 1 [146]<br />

1996–1997 California 6/10 1A.ph, 5 a.sp NAC 6/0 0 0–0/0 0 6 [109]<br />

1996–1998 Italy 11/11 A.ph, amat NAC 11/0 0 11–0/0 1 11 [116]<br />

1997 California 1/4 A.ph NAC 1/0 0 0–0/0 0 0 [90]<br />

1990 Italy 1/1; child a.sp, amat NAC, steroid 0/0 1 0–0/0 0 1 [147]<br />

1994 France 5/29 A.ph NAC, Vit.C 5/0 0 0–0/0 0 5 [138]<br />

1979–1988 France 29/29; (child.) A.ph, amat Silybin 0/0 0 (HD)–0/0 0 26 [148]<br />

1980–1986 Europe 159/252 A.ph, a.sp Silybin 0/0 (FD) (HD–HP)/0 0 156 [127,128]<br />

1985–1994 Sweden 22/41 A.ph, A.vi, a.sp, Silybin 22/0 0 22–22/0 0 22 [149]<br />

amat<br />

1988 California/Oregon 5/5 A.ph Silybin 0/0 5 0–0/0 4 5 [150,151]<br />

1988 Finland 4/4 A.vi Silybin 0/0 1 0–3/0 0 4 [152]<br />

1988 Norway 2/2 A.vi, amat Silybin 2/0 2 0–0/0 0 2 [153]<br />

1988–1994 Denmark 8/8 A.ph, A.vi Silybin 5/8 0 0–3/1 1 6 [154]<br />

1989 Italy 1/2 a.sp, amat Silybin 1/0 1 0–0/0 0 1 [83]<br />

1992 Germany 1/1 A.ph Silybin 1/1 0 0–0/1 0 1 [155]


1992 Germany 4/4; 1 child A.ph, amat Silybin 4/0 0 0–4/0 1 4 [156]<br />

1993 Czech 1/1; child A.ph Silybin 0/0 0 0–0/0 0 1 [157]<br />

1993 Germany 128/154 a.sp Silybin 0/0 0 0–0/0 0 113 [130]<br />

1993 Switzerland 5/5 A.ph, amat Silybin 5/0 0 0–0/0 0 5 [158]<br />

1994 The Netherlands 2/2 A.ph Silybin 2/0 0 0–0/0 0 2 [159]<br />

1994 Slovak Republic 1/1; pregnant A.ph Silybin 0/0 0 1–1/0 0 1 [160]<br />

1996 Italy 3/4 A.ph Silybin 3/0 0 0–0/0 0 3 [161]<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 723<br />

<strong>20</strong>01 Portugal 4/4; 1 child A.ph, a.sp Silybin 3/2 0 0–0/2 2 4 [162]<br />

1981–1983 Germany 6/13 A.ph, amat Silybin,<br />

0/0 0 0–6/0 0 6 [163]<br />

steroid<br />

1983 Germany 3/3 A.ph Silybin,<br />

0/0 0 0–0/0 0 3 [164]<br />

steroid<br />

1986 Denmark 11/11 A.ph, amat Silybin, 0/11 11 0–0/0 0 10 [165]<br />

steroid<br />

1994 Germany 2/2 A.ph Silybin,<br />

2/0 2 0–0/0 0 2 [166]<br />

steroid<br />

1980–1986 Europe 62/252 A.ph, a.sp Silybin,<br />

0/0 (FD) (HD–HP)/0 0 62 [127,128]<br />

Thioc.a<br />

1982–1986 Spain 2/85 a.sp, amat Silybin,<br />

2/2 2 0–2/0 0 2 [43,50]<br />

Thioc.a<br />

1986 Germany 1/1 A.ph, amat Silybin,<br />

1/0 1 0–1/0 0 1 [167]<br />

Thioc.a<br />

1991 Belgium 1/1 A.ph, amat Silybin, Vit.C 0/0 0 1–0/0 0 1 [168]<br />

1992 France 1/4; 1 child L.hel Silybin, Vit.C 1/0 0 0–0/0 0 1 [169]<br />

1993 France 1/29 a.sp Silybin, Vit.C 1/0 0 0–0/0 0 1 [138]<br />

1983–1987 Poland 5/90 A.ph, a.sp, amat Steroid 5/0 5 (HD)–0/0 0 4 [170–172]<br />

1984–1985 Poland 8/30 A.ph, a.sp Steroid 0/8 0 0–8/0 0 7 [173]<br />

1984–1985 Poland 22/30 A.ph, a.sp Steroid 0/22 0 0–0/0 0 16 [173]<br />

1988 Slovenia 10/10; 1 child A.ph, amat Steroid 10/0 0 0–0/10 0 9 [174]<br />

1988 Turkey 2/3; child. A.ph Steroid 1/0 0 1–0/0 0 2 [134]<br />

1988 Turkey 1/27 L.cas, L.hel Steroid 1/0 0 0–0/0 0 1 [82]<br />

1988–1989 Poland 47/90 A.ph, a.sp Steroid 47/47 47 0–0/27 0 42 [170,175]<br />

1979–1981 Italy 64/64 a.sp Steroid, 64/0 0 0–0/0 0 58 [176]<br />

Thioc.a<br />

1981 Italy 44/44; 4 child. A.ph, amat Steroid, 44/0 0 0–0/0 0 40 [177]<br />

Thioc.a<br />

1981–1983 Germany 1/13 A.ph, amat Steroid,<br />

0/0 0 0–0/0 0 1 [163]<br />

Thioc.a<br />

1990 Wisconsin 2/2 A.vi Steroid,<br />

1/1 2 0–2/0 0 2 [178]<br />

Thioc.a<br />

1984 France 2/29 A.ph Steroid, Vit.C 0/0 0 0–0/0 0 2 [138]<br />

(continued)


724<br />

Table 4. Continued<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Urin.<br />

FD ECP HD–HP/PL LT Surv. References<br />

Oral<br />

C/GA<br />

Date/Country T/E Cases Mushroom Drugs<br />

1991–1998 Bulgaria 25/25 A.ph, a.sp Steroid, Vit.E 25/0 25 (HD–HP)/(PL) 0 15 [179]<br />

1977–1992 Slovak 58/58 A.ph Thioc.a 0/0 44 17–58/12 0 38 [180]<br />

Republic<br />

1979–1985 Sweden 19/41 A.ph, A.vi, a.sp Thioc.a 19/0 0 19–19/0 0 19 [149]<br />

1982–1984 Italy 2/6; child. A.ph, a.sp, amat Thioc.a 2/0 0 2–0/2 0 0 [181]<br />

1982–1986 Spain 59/85; (child.) 27 A.ph, 24 a.sp, 7 Thioc.a 18/15 28 0–4/2PL 3 EXE 0 56 [43,50,182–<br />

L.bi, 1 L.f<br />

184]<br />

1985 Italy 53/53; 6 child. A.ph, amat Thioc.a 53/53 (FD) (HD)–0/(PL) 0 47 [185]<br />

1986–1988 Spain 2/4 A.ph, amat Thioc.a 2/0 2 0–0/0 0 0 [182,183]<br />

1987 Italy 2/2 A.ph, amat Thioc.a 0/0 0 0–0/2 0 2 [186]<br />

1988 Spain 1/1 A.ph Thioc.a 0/0 0 0–1/0 0 1 [187]<br />

1989 Spain 10/10 3 L.bi, 7 L.hel, Thioc.a 10/0 0 0–10/0 0 8 [188]<br />

amat<br />

1990 Spain 1/1 A.ph Thioc.a 0/0 0 1–0/0 0 1 [189]<br />

b<br />

1982 Belgium 4/4; 1 child A.ph, amat Thioc.a,<br />

0/0<br />

0–0/0 0 3 [190]<br />

Vit.C<br />

1990–1994 France 11/29 5 A.ph, 6 a.sp Vit.C 4/0 0 1–0/0 0 10 [138]<br />

1992 France 3/4 L.hel Vit.C 1/0 0 0–0/0 0 3 [169]<br />

T/E Cases ¼ treated/exposed individuals; Oral ¼ oral detoxication using C ¼ activated charcoal and GA ¼ gastroduodenal aspiration; Urin. ¼ urinary detoxication by FD ¼ forced diuresis;<br />

ECP ¼ extra-corporeal detoxication including HD ¼ hemodialysis, HP ¼ hemoperfusion, and PL ¼ plasmapheresis (or EXE ¼ exsanguino transfusion); LT ¼ liver transplant;<br />

Surv. ¼ survivors; amat ¼ amatoxins in biological fluids; undefined cases are reported in brackets; ATB ¼ antibiotic agent; ATS ¼ antiseptic agent (nifuroxazide); Cimetid ¼ cimetidine;<br />

NAC ¼ N-acetylcysteine; Thioc.a ¼ thioctic acid; Vit.C ¼ vitamin C; Vit.E ¼ vitamin E; a.sp ¼ amatoxin-containing species; A.ph ¼ Amanita phalloides; A.vi ¼ A. virosa; L.bi ¼ Lepiota<br />

brunneoincarnata; L.cas ¼ L. castanea; L.f. ¼ L. fulvella; L. hel ¼ L. helveola.<br />

a<br />

Neomycin instead <strong>of</strong> benzylpenicillin.<br />

b Spironolactone.<br />

Enjalbert et al.


MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 725<br />

Table 5<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated as Bi- and Tri-chemotherapy without Benzylpenicillin, with/without Detoxication Procedures and with/without Liver Transplant<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

Date/Country T/E Cases Mushroom Drugs Oral C/GA Urin. FD ECP HD–HP/PL LT Surv. References<br />

1996 France 1/1; pregnant A.ph 2 ATB, NAC 1/0 0 0–0/0 0 1 [191,192]<br />

1983 California 1/1; child A.o 2 ATB, steroid 1/0 0 0–0/1 1 1 [193]<br />

1981 France 3/3 A.ph ATB, ATS, Vit.C a<br />

0/0 0 0–0/0 0 3 [194]<br />

1986 France 5/5; (child.) L.blil ATB, ATS, Vit.C a<br />

0/0 0 0–0/0 0 4 [195]<br />

1988 Turkey 3/27 L.cas, L.hel ATB, Thioc.a, Vit.C 3/0 0 3–0/0 0 1 [82]<br />

1989 France 6/6 A.ph, amat Ceftazid, silybin 6/0 0 0–0/0 0 6 [196]<br />

1990 France 5/5 A.ph, amat Ceftazid, silybin 5/0 0 0–0/0 0 5 [197]<br />

1994 France 1/1 L.blil Ceftazid, silybin 0/0 0 0–0/0 1 1 [198]<br />

1980–1986 Europe 6/252 A.ph, a.sp Silybin, Thioc.a 0/0 (FD) (HD–HP)/0 0 5 [127,128]<br />

1982–1984 Italy 4/6; child. A.ph, a.sp, amat Steroid, Thioc.a, Vit.C 4/4 0 0–0/4 0 4 [181]<br />

T/E Cases ¼ treated/exposed individuals; Oral ¼ oral detoxication using C ¼ activated charcoal and GA ¼ gastroduodenal aspiration; Urin. ¼ urinary detoxication by FD ¼ forced diuresis;<br />

ECP ¼ extra-corporeal detoxication including HD ¼ hemodialysis, HP ¼ hemoperfusion, and PL ¼ plasmapheresis; LT ¼ liver transplant; Surv. ¼ survivors; amat ¼ amatoxins in<br />

biological fluids; undefined cases are reported in brackets; ATB ¼ antibiotic agent; ATS ¼ antiseptic agent (nifuroxazide); Ceftazid ¼ ceftazidime; NAC ¼ N-acetylcysteine;<br />

Thioc.a ¼ thioctic acid; Vit.C ¼ vitamin C; a.sp ¼ amatoxin-containing species; A.o ¼ Amanita ocreata; A.ph ¼ A. phalloides; L.blil ¼ Lepiota brunneolilacea; L.cas ¼ L. castanea;<br />

L.hel ¼ L. helveola.<br />

a<br />

Bastien protocol.


726<br />

Table 6<br />

<strong>Amatoxin</strong> <strong>Poisoning</strong> Cases Treated as Poly-chemotherapy with/without Benzylpenicillin, with/without Detoxication Procedures and with/without Liver Transplant<br />

<strong>Treatment</strong>s<br />

Detoxication<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Date/Country T/E Cases Mushroom Drugs Oral C/GA Urin. FD ECP HD–HP/PL LT Surv. References<br />

1992 Michigan 1/1 a.sp 3 ATB, B.pen 0/0 0 0–0/0 1 1 [199]<br />

1996 Italy 1/4 A.ph 2 ATB, B.pen, Silyb 1/0 0 0–0/0 0 1 [161]<br />

1983 New York 1/1 L.jos, amat 3 ATB, Ster 0/0 0 0–1/0 0 0 [<strong>20</strong>0]<br />

1984–1993 Germany 21/21; (child.) A.ph, amat ATB, B.pen, Silyb, Ster, 10/0 0 0–0/21 0 <strong>20</strong> [<strong>20</strong>1]<br />

TA<br />

1988 Turkey 2/27 L.cas, L.hel ATB, B.pen, Ster, TA 2/0 0 0–0/0 0 2 [82]<br />

1988 Turkey 1/27 L.cas, L.hel ATB, B.pen, Ster, TA, 1/0 0 0–0/0 0 1 [82]<br />

Vit.C<br />

1988 Turkey 4/27 L.cas, L.hel ATB, B.pen, Ster, Vit.C 4/0 0 0–0/0 0 2 [82]<br />

1984 France 4/29 A.ph ATS, B.pen, Silyb, Vit.C 0/0 0 0–0/0 0 4 [138]<br />

1988 France 2/29 A.ph ATS, B.pen, Ster, Vit.C 0/0 0 0–0/0 0 2 [138]<br />

1990 France 2/29 A.ph ATS, Silyb, Ster, Vit.C 0/0 0 0–0/0 0 1 [138]<br />

1988 Denmark 4/4 1 A.ph, 1 A.vi, B.pen, Cimet, Silyb, Ster 4/0 4 0–4/0 0 3 [<strong>20</strong>2]<br />

2 a.sp<br />

1993 France 1/29 A.ph B.pen, NAC, Silyb, Vit.C 0/0 0 0–0/0 0 0 [138]<br />

1981–1983 Germany 6/13 A.ph, amat B.pen, Silyb, Ster, TA 0/0 0 0–5/0 0 5 [163]<br />

1991 Hungary 4/4; 1 pregnant A.ph, A.ve B.pen, Silyb, Ster, TA 4/0 4 0–0/0 0 3 [<strong>20</strong>3]<br />

1993 Hungary 8/8; (child.) A.ph B.pen, Silyb, Ster, TA 0/0 0 0–6/1 0 7 [<strong>20</strong>4]<br />

1983–1987 Poland 57/90 A.ph, a.sp, amat B.pen, Ster, Insul, Gluc 57/0 57 (HD)–0/0 0 47 [170–172]<br />

1988–1989 Poland 2/90 A.ph, a.sp, B.pen, Ster, Insul, Gluc 2/2 2 0–0/1 0 2 [170,175]<br />

1983–1987 Poland 28/90 A.ph, a.sp, amat B.pen, Ster, Insul, hGH 28/28 28 0–0/11 0 25 [170–172]<br />

1988–1989 Poland 41/90 A.ph, a.sp B.pen, Ster, Insul, hGH 41/41 41 0–0/29 0 33 [170,175]<br />

T/E Cases ¼ treated/exposed individuals; Oral ¼ oral detoxication using C ¼ activated charcoal and GA ¼ gastroduodenal aspiration; Urin. ¼ urinary detoxication by FD ¼ forced diuresis;<br />

ECP ¼ extra-corporeal detoxication including HD ¼ hemodialysis, HP ¼ hemoperfusion, and PL ¼ plasmapheresis; LT ¼ liver transplant; Surv. ¼ survivors; amat ¼ amatoxins in<br />

biological fluids; ATB ¼ antibiotic agent; ATS ¼ antiseptic agent (nifuroxazide); B.pen ¼ benzylpenicillin; Cimet ¼ cimetidine; Insul, Gluc ¼ insulin and glucagon; Insul, hGH ¼ insulin<br />

and human growth hormone; NAC ¼ N-acetylcysteine; Silyb ¼ silybin; Ster ¼ steroid; TA ¼ thioctic acid; Vit.C ¼ vitamin C; a.sp ¼ amatoxin-containing species; A.ph ¼ Amanita<br />

phalloides; A.ve ¼ A. verna; A.vi ¼ A. virosa; L.cas ¼ Lepiota castanea; L. hel ¼ L. helveola; L. jos ¼ L. josserandii; undefined cases are reported in brackets.<br />

Enjalbert et al.


Preliminary Medical Care<br />

Preliminary medical care consists <strong>of</strong> gastrointestinal<br />

decontamination procedures if appropriate, to make an<br />

attempt at obtaining baseline values <strong>of</strong> key biological<br />

parameters for diagnostic monitoring. When a patient<br />

develops a gastroenteritis 6–24 hours after mushroom<br />

ingestion, all asymptomatic and symptomatic persons<br />

who consumed the same meal should be immediately<br />

evaluated and treated as appropriate to prevent toxin<br />

absorption. Because <strong>of</strong> the long asymptomatic latency,<br />

the clinical utility <strong>of</strong> most gastrointestinal decontamination<br />

procedures seems limited. Although effective in<br />

inducing emesis, there is no evidence from clinical<br />

studies that ipecac syrup improves the outcome <strong>of</strong><br />

poisoned individuals; data to support or exclude its<br />

administration are insufficient. [229] Gastric lavage should<br />

be considered only when it could be performed within<br />

60 minutes after ingestion <strong>of</strong> a life-threatening amount <strong>of</strong><br />

toxin. [230] It is contraindicated if the patient has loss<br />

<strong>of</strong> airway protective reflexes or a decreased level <strong>of</strong><br />

consciousness without endotracheal intubation. [230,231]<br />

There is no conclusive evidence for the use <strong>of</strong> whole<br />

bowel irrigation (WBI), which appears to decrease the<br />

binding capacity <strong>of</strong> the activated charcoal. [232] Some<br />

authors [13,14,22,23,233] advocate the administration <strong>of</strong><br />

activated charcoal alone or with cathartics whereas<br />

others find no data supporting a cathartic in combination<br />

with activated charcoal. [234]<br />

The regional poison center can provide appropriate<br />

decontamination information and also suggest and track<br />

mycological, clinical, and biological data for each<br />

amatoxin victim. [223,231] The identification by a mycologist<br />

<strong>of</strong> any remaining mushrooms can be a key to<br />

diagnosis. The time lag between mushroom ingestion<br />

and hospital admission is an essential information.<br />

Biological parameters including blood sugar, serum<br />

transaminases (aspartate aminotransferase, ASAT; alanine<br />

aminotransferase, ALAT), lactate dehydrogenase<br />

(LDH), serum bilirubin, urea, and coagulation studies<br />

[prothrombin time (PT)] are proposed as indicators <strong>of</strong><br />

hepatotoxicity. [18,19] Ryzko et al. [235] and Parra et al. [236]<br />

noted that hypocalcemia and alkaline phosphatase<br />

isoenzyme (ALP) are also indicators <strong>of</strong> amatoxin<br />

poisoning. Horn et al. [124] recommended concurrent<br />

measurement <strong>of</strong> serum markers <strong>of</strong> hepatocellular<br />

necrosis combined with markers <strong>of</strong> hepatocellular<br />

regeneration (g-glutamyl transferase and a-fetoprotein).<br />

Analysis <strong>of</strong> diarrhea fluids has been recommended<br />

since high levels <strong>of</strong> amatoxins are eliminated in feces.<br />

<strong>Amatoxin</strong>s may also be assayed in urine and serum by<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 727<br />

radio-immunoassay, [237,238] high-performance liquid<br />

chromatography with UV detection method as reviewed<br />

by Dorizzi et al., [239] electrochemical detection, [240] and<br />

capillary electrophoresis. [241] Thin layer chromatography<br />

using a color index <strong>of</strong> amatoxins by Schiff’s test is<br />

reported by Russian authors. [242] Unfortunately, the<br />

amatoxin concentrations in biological samples do not<br />

correlate with the severity <strong>of</strong> poisoning and do not<br />

indicate intra-hepatic toxin accumulation. High individual<br />

differences in urinary amatoxin concentrations may<br />

only be <strong>of</strong> qualitative value. [243]<br />

Supportive Measures<br />

Supportive measures for the management <strong>of</strong> gastroenteritis<br />

and hepatotoxicity are so frequently used that an<br />

<strong>analysis</strong> <strong>of</strong> their utility was not attempted with this data.<br />

In the gastrointestinal phase, diarrhea and emesis can<br />

produce hypovolemic shock requiring intensive intravenous<br />

fluid resuscitation. Electrolyte abnormalities,<br />

metabolic acidosis, hypoglycemia, impaired coagulation<br />

due to decreased hepatic synthesis <strong>of</strong> Factors II, V, VII,<br />

and X are corrected. A normal or slightly high urine<br />

output is maintained during the first 48 hours to avoid<br />

acute renal failure. Parenteral nutrition with protein<br />

intake restriction is instituted.<br />

Specific recommendations for supportive treatment <strong>of</strong><br />

hepatoxicity include: (i) correction <strong>of</strong> coagulation<br />

disorders by parenteral vitamin K (10 mg daily for<br />

three consecutive days), fresh frozen plasma and<br />

antithrombin III, (ii) oral lactulose and neomycin to<br />

prevent encephalopathy, [244] and (iii) mannitol to lower<br />

intracranial pressure and avoid cerebral edema. [245]<br />

Ninety-one <strong>of</strong> the 2108 patients reported since 1980,<br />

including six LT victims, were given supportive<br />

measures alone (Table 1). A total <strong>of</strong> <strong>20</strong>17 <strong>of</strong> 2108<br />

victims were treated with supportive measures combined<br />

with specific treatments as detoxication procedures alone<br />

(Table 2) and various protocols <strong>of</strong> chemotherapy with or<br />

without detoxication procedures (Tables 3–6).<br />

Detoxication Procedures<br />

Detoxication involves two different approaches: the<br />

reduction <strong>of</strong> absorption and enhancement <strong>of</strong><br />

excretion. [246]<br />

Oral Detoxication<br />

Theoretically activated charcoal should bind amatoxins<br />

excreted via the bile into the duodenum and upper<br />

jejunum, although there is no evidence that its use


728<br />

improves clinical outcome if it is used more than 1 hour<br />

after ingestion. [247] Toxicokinetic studies in the dog<br />

suggested amatoxin absorption or reabsorption from the<br />

intestine. [248] Given the enterohepatic circulation <strong>of</strong><br />

amatoxins, administration <strong>of</strong> activated charcoal as<br />

multiple doses could reduce amatoxin absorption if in<br />

contact with toxin present in the gastrointestinal tract.<br />

Serial charcoal dosing either as a continuous nasogastric<br />

drip or pulse dosing with <strong>20</strong>–40 g every 3–4 hours (for<br />

24 hours or more) has been advocated by most authors as<br />

a relatively noninvasive enterohepatic and enteric<br />

dialysis technique. [42,74,233,249 – 251] However, clinical<br />

data are insufficient to support or exclude this oral<br />

detoxication method. [247]<br />

Gastroduodenal aspiration (GA) from the upper<br />

portion <strong>of</strong> the small intestine through a nasogastric tube<br />

has been recommended as a sole technique or combined<br />

with activated charcoal to remove bile fluids and<br />

interrupt enterohepatic circulation [252] but the actual<br />

benefit <strong>of</strong> these procedures is not documented.<br />

<strong>Amatoxin</strong>s are present in the gastroduodenal fluids<br />

until 60 hour after mushroom ingestion. [253] Long term<br />

intubation may lead to side effects <strong>of</strong> bleeding and<br />

pancreatitis and is not always recommended. [14]<br />

Urinary Detoxication<br />

Toxicokinetic reports <strong>of</strong> human mushroom poisoning<br />

have shown that diuresis substantially enhances the<br />

amatoxin elimination rate. Large amounts <strong>of</strong> amatoxins<br />

(60–80%) are filtered through the glomeruli. [254] Urinary<br />

elimination <strong>of</strong> amatoxins has been detected within the<br />

first 8 hours and for 3–4 days after mushroom<br />

ingestion. [167] <strong>Amatoxin</strong> concentrations in the urine are<br />

from 100 to 150 times higher than those <strong>of</strong> serum and can<br />

be quantified even when no serum circulating amatoxins<br />

are detectable. [50,51,255 – 257] Maintenance <strong>of</strong> early and<br />

adequate urine output is theoretically important even<br />

though there is no re-absorption in the proximal tubules<br />

or tubular secretion; “forced diuresis (FD)” with fluids<br />

plus a loop diuretic cannot increase amatoxin elimination.<br />

[14,248] According to Jaeger et al., [257] there is no<br />

pro<strong>of</strong> that FD decreases the amount <strong>of</strong> amatoxins bound<br />

to the hepatocytes or is more efficient than the<br />

maintenance <strong>of</strong> an adequate diuresis (from 100 to<br />

<strong>20</strong>0 mL/h). Furthermore, FD is difficult to maintain in a<br />

patient with a severe dehydration.<br />

Extra-corporeal Purification Procedures<br />

<strong>Amatoxin</strong>s are detected in the serum from 24 to<br />

48 hours after mushroom ingestion but at very low<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

[253,256 – 258]<br />

concentrations when compared to the urine.<br />

Extra-corporeal elimination includes hemodialysis (HD),<br />

hemoperfusion (HP), plasmapheresis (PL), and related<br />

methods. HP and HD are theoretically helpful since the<br />

amatoxins are easily dialyzable due to their free<br />

circulation in the serum and their small molecular<br />

weight (about 900 Da); amatoxins also possess a high<br />

affinity for charcoal and polymers used for HP cartridges<br />

and dialyzer membranes. [249] HD initiated as sole<br />

treatment has been reported to be ineffective in the<br />

management <strong>of</strong> amatoxin syndrome [82,97] but should be<br />

instituted if renal failure occurs. [231] Given the low serum<br />

amatoxin concentration, the utility <strong>of</strong> toxin removal by<br />

extra-corporeal purification procedures is questionable.<br />

Extra-corporeal purification procedures such as HD, HP,<br />

and PL, and related methods such as continuous<br />

venovenous hem<strong>of</strong>iltration and exsanguino-transfusion,<br />

are <strong>of</strong>ten used in a combined mode; it is difficult to assess<br />

the efficacy <strong>of</strong> any single treatment.<br />

HP has been applied to amatoxin-intoxicated patients<br />

since 1978 with a possibly favorable effect. [259 – 261] It<br />

has been carried out within the first 36 or 48 hours after<br />

ingestion [246,260,262] but is proposed as most effective if<br />

applied prior to 24 hours. [231] The survival rate <strong>of</strong><br />

poisoned patients is claimed to depend on the time <strong>of</strong><br />

beginning HP. [14,140,180] Polish and Turkish <strong>retrospective</strong><br />

studies have reported increased survival for amatoxinpoisoned<br />

patients treated with HP. [107,173]<br />

Thrombocytopenia, a major side effect <strong>of</strong> HP that<br />

increases the risk <strong>of</strong> bleeding, [123,149] diminishes when a<br />

platelet protective agent such as prostacyclin is<br />

administered. [123] Other complications <strong>of</strong> HP such as<br />

hypotension due to volume loss, hypoglycemia, and<br />

hypocalcemia must be monitored and corrected. [262]<br />

Controversy centers on whether the blood level <strong>of</strong><br />

amatoxins is high enough to justify this procedure.<br />

[249,258] HP performed within 12–14 hours after<br />

ingestion <strong>of</strong> amatoxin-containing mushrooms eliminated<br />

less than 4% <strong>of</strong> the ingested toxin dose. [225] Although the<br />

benefit <strong>of</strong> HP to remove amatoxins in the early stages <strong>of</strong><br />

intoxication was debatable, [263] it may help support the<br />

patient during hepatic failure. [155] HP eliminates<br />

neurotropic and neurotoxic amino acids and mercaptans;<br />

it has been reported to ameliorate the hepatic<br />

encephalopathy in 75% <strong>of</strong> amatoxin poisoned<br />

patients. [264,265]<br />

The HP sorbent most frequently used is activated<br />

charcoal. In the United States, the only available HP<br />

sorbent is activated charcoal-coated polymer membranes.<br />

[262] The efficacy <strong>of</strong> ion-exchange resin (Amberlite<br />

XAD-4) has been experimentally demonstrated. [266]


Czechoslovakian investigations <strong>of</strong> the in vitro absorption<br />

<strong>of</strong> a- and b-Ama standards, using charcoal as well as<br />

XAD-2 and XAD-4 resin types, found Amberlite XAD-2<br />

synthetic resin the most effective and activated charcoal<br />

the least. [267,268] Positive results from in vitro experiments<br />

with Amberlite XAD-2 resin are said to justify<br />

further trials <strong>of</strong> this material in the detoxication<br />

procedures <strong>of</strong> clinical amatoxin poisonings. [269]<br />

HP is <strong>of</strong>ten combined with HD; some reports claim it<br />

is helpful. [14,159,249] American reports on the clearance <strong>of</strong><br />

amatoxins in a series <strong>of</strong> blood samples taken from<br />

poisoned patients before and after treatment as well as in<br />

the HD/HP circuits demonstrate no utility. [141] Italian<br />

authors have recently reported the combination <strong>of</strong><br />

charcoal plasmaperfusion and continuous venovenous<br />

hem<strong>of</strong>iltration (Table 2) to eliminate both low and high<br />

molecular weight toxins. This new method <strong>of</strong> toxin<br />

removal might improve the liver function <strong>of</strong> amatoxin<br />

intoxicated patients. [111]<br />

The first uses <strong>of</strong> PL in mushroom poisoning in<br />

general [270] and Amanita poisoning in particular, [271]<br />

were reported in the late 1970s. Several authors [98,272]<br />

and most recently Jander et al. [273] reviewed advantages<br />

and problems relevant to PL for amatoxin-intoxicated<br />

patients.<br />

PL performed as a single detoxication procedure [98]<br />

or in combination with other extra-corporeal purification<br />

methods such as HD/charcoal HP [97] or Amberlite XAD-<br />

2HP [215] has been reported to decrease mortality. PL<br />

plus chemotherapy are also said to improve survival<br />

as well as the general condition <strong>of</strong> poisoned patients<br />

by stabilizing biliary acid and bilirubin levels. [131,174] In a<br />

large study, mortality was 7.4% when PL plus chemotherapy<br />

was used for 68 <strong>of</strong> 180 patients and<br />

1<strong>9.</strong>6% when the PL was not used. [175] German authors<br />

also reported that early combined treatment<br />

with PL plus chemotherapy was beneficial. [273] According<br />

to 18-<strong>year</strong> Italian experience, plasma-exchange<br />

therapy associated with general intensive care<br />

may improve the health <strong>of</strong> amatoxin poisoned<br />

patients who retain sufficient capacity for liver<br />

regeneration. [100]<br />

Patterns and Frequency <strong>of</strong> Detoxication<br />

Procedures<br />

Of the <strong>20</strong>17 amatoxin-poisoned individuals administered<br />

specific treatments, 385 (1<strong>9.</strong>1%, Table 2) underwent<br />

only detoxication procedures (Detox-group) while<br />

1632 (80.9%, Tables 3–6) received chemotherapy<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 729<br />

(Chem-group) either alone or combined with detoxication<br />

procedures.<br />

Activated charcoal (C) was given to 7.5% (29/385)<br />

Detox-group patients and to 35.7% (583/1632)<br />

Chem-group patients. GA was performed in<br />

3.6% (59/1632) Chem-group patients. Combined<br />

C þ GA was reported for 2 <strong>of</strong> 385 Detox-group patients<br />

and 223 <strong>of</strong> 1632 (13.7%) Chem-group patients.<br />

FD was undertaken in 4<strong>9.</strong>4% (190/385) Detox-group<br />

patients and at least 33% <strong>of</strong> Chem-group patients.<br />

HD was reported for 30.6% (118/385) Detox-group<br />

and at least 7.1% <strong>of</strong> the 1632 Chem-group patients. HP<br />

was reported for 57.4% (221/385) Detox-group and at<br />

least 11.4% <strong>of</strong> the Chem-group patients. PL was cited for<br />

5.2% (<strong>20</strong>/385) Detox-group and at least <strong>9.</strong>6% <strong>of</strong> the<br />

Chem-group patients.<br />

The inadequate reporting <strong>of</strong> HD and extra-corporeal<br />

procedures in the sources comprised in Tables 3–6<br />

among the patients who also received chemotherapy<br />

necessitated the pooling <strong>of</strong> patients receiving the same<br />

chemotherapy with and without detoxication procedures.<br />

Chemotherapy with Specific Agents<br />

No specific amatoxin antidote is available, but<br />

therapeutic agents such as b-lactam antibiotics, silymarin<br />

complex, thioctic acid, antioxidant drugs and other<br />

drugs are used in the clinical management <strong>of</strong> amatoxin<br />

poisoning. In vitro experiments and animal model<br />

investigations have been summarized along with the<br />

purported advantages and disadvantages <strong>of</strong> their clinical<br />

use. In this survey, the 1632 patients in the Chem-group<br />

received drugs as mono-chemotherapy (Table 3), bichemotherapy<br />

with or without benzylpenicillin (part <strong>of</strong><br />

Table 4 and part <strong>of</strong> Table 5, respectively), trichemotherapy<br />

with or without benzylpenicillin (part <strong>of</strong><br />

Table 4 and part <strong>of</strong> Table 5, respectively) or polychemotherapy<br />

(.3 drugs) with or without benzylpenicillin<br />

(Table 6). Patients in the Chem-group may have<br />

also received detoxication procedures.<br />

b-Lactam Antibiotics<br />

Benzylpenicillin (Penicillin G) and ceftazidime are blactam<br />

antibiotics thought to be hepatoprotective in<br />

amatoxin poisoning. Benzylpenicillin was first used to<br />

protect mice and rats against lethal doses <strong>of</strong> either A.<br />

phalloides extracts or a-Ama. [274,275] In dogs orally<br />

poisoned with a sub-lethal dose <strong>of</strong> A. phalloides<br />

preparation, intravenous benzylpenicillin injection


730<br />

prevented both the rise <strong>of</strong> the liver enzymes and the fall<br />

<strong>of</strong> clotting factors in the blood. [276]<br />

Benzylpenicillin perfusions <strong>of</strong> isolated rat liver<br />

showed a strong inhibition <strong>of</strong> a-Ama toxicity. [277]<br />

Although most b-lactam antibiotics utilize a common<br />

carrier system for uptake into isolated hepatocytes, [278]<br />

kinetic studies <strong>of</strong> a-Ama absorption in hepatocytes<br />

proved that benzylpenicillin does not inhibit the<br />

membrane transport systems used by the toxin. An<br />

intracellular mechanism rather than interference with<br />

amanitin uptake appears responsible for the purported<br />

hepatoprotective effect. [279]<br />

Several theories have been advanced to explain the<br />

antitoxic action <strong>of</strong> benzylpenicillin. Floersheim’s<br />

hypothesis [280]<br />

that the drug could displace a-Ama<br />

from its binding site on serum protein is challenged by<br />

evidence that the toxic cyclopeptide does not bind to<br />

serum albumin. [266,281] Another hypothesis suggested<br />

that benzylpenicillin reduced or eliminated the GABAproducing<br />

intestinal flora involved in hepatic encephalopathy.<br />

[250,280] Although GABA appeared to be involved<br />

in experimental hepatic encephalopathy, the inhibitory<br />

neurotransmitter does not seem to play a role in human<br />

encephalopathy. [282]<br />

Other reports presented evidence <strong>of</strong> an anti-proliferative<br />

effect <strong>of</strong> b-lactam antibiotics on cultured<br />

eukaryotic cells including human sources and in vitro<br />

DNA replication systems. The intracellular target <strong>of</strong> blactams<br />

appears to be the replicative enzyme polymerase<br />

I. [283,284] Since the amatoxins, particularly a-Ama, are<br />

selective blockers <strong>of</strong> DNA-dependent RNA polymerase<br />

II, it is possible that the b-lactam antibiotics protect via<br />

their effects on eukaryotic DNA replication. [285]<br />

Although there is no formal pro<strong>of</strong>, in vitro experiments<br />

on chicken embryo hepatocytes and in vivo studies on<br />

mouse liver have shown that b-lactam antibiotics inhibit<br />

the toxic effect induced by a-Ama. [286]<br />

Unfortunately, benzylpenicillin commonly causes<br />

allergic drug reactions with an incidence <strong>of</strong><br />

1–10%. [126,287 – 289] The large amount <strong>of</strong> sodium ions<br />

administered with this antibiotic agent to amatoxinpoisoned<br />

patients may disrupt electrolyte balance. [290,291]<br />

Severe granulocytopenia has also been observed with<br />

high doses <strong>of</strong> benzylpenicillin. [292 – 294] Degradation<br />

products formed in vitro are <strong>of</strong>ten the causative agents<br />

<strong>of</strong> such adverse reactions rather than parent antibiotic.<br />

Use <strong>of</strong> freshly prepared single doses <strong>of</strong> benzylpenicillin<br />

prevents the majority <strong>of</strong> side effects. [295] However, given<br />

the bone narrow toxicity <strong>of</strong> b-lactams, these antibiotics<br />

[189,285] could affect all the hematopoietic cell<br />

lines. Lastly, massive benzylpenicillin therapy may<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

evoke neurotoxic symptoms in patients with nervous<br />

system disease and renal insufficiency as well as induce<br />

convulsions when cerebral edema is imminent. [14,296]<br />

Although the biological mechanism <strong>of</strong> b-lactam<br />

antibiotics in the treatment <strong>of</strong> amatoxin poisoning is still<br />

unclear and high-dose benzylpenicillin can induce<br />

adverse reactions, the literature seems to support clinical<br />

benefits. Moroni et al. [297] reported 100% recovery for 33<br />

patients treated 1 or 2 days after ingestion <strong>of</strong> Amanita<br />

mushrooms with high doses <strong>of</strong> IV benzylpenicillin plus<br />

thioctic acid and steroids. Statistical <strong>analysis</strong> <strong>of</strong> a clinical<br />

study <strong>of</strong> <strong>20</strong>5 patients from Austria, France, Italy,<br />

Switzerland, and The Netherlands from 1971 to 1980<br />

found benzylpenicillin at 300,000–1,000,000 U/kg/day<br />

IV to be significantly associated with survival. [250,298]<br />

The suggested doses for benzylpenicillin are 40,000,000<br />

and 1,000,000 U/day in adults and children, respectively.<br />

[265] Benzylpenicillin is not approved by the US<br />

Food and Drug Administration (FDA) for treatment <strong>of</strong><br />

Amanita poisonings.<br />

In this <strong>20</strong>-<strong>year</strong> survey, benzylpenicillin was the most<br />

frequently used drug in the management <strong>of</strong> amatoxin<br />

poisoning, either as mono-chemotherapy in 164<br />

cases (10.1%, Table 3) or combined with other drugs<br />

as bi-chemotherapy (797 cases, 48.8%, Table 4), trichemotherapy<br />

(263 cases, 16.1%, Table 4), and polychemotherapy<br />

(187 cases, 11.5%, Table 6). In total,<br />

86.5% <strong>of</strong> Chem-group patients (1411/1632) receiving<br />

chemotherapy were treated with benzylpenicillin.<br />

Ceftazidime, a third generation cephalosporin, is<br />

several times more effective than benzylpenicillin by<br />

DNA replication systems testing in vitro. [284,286]<br />

According to the Neftel protocol, [196] ceftazidime is<br />

administered as 4.5 g IV every 2 hours. Despite the high<br />

drug concentrations in plasma, no renal and neurological<br />

side effects were reported. [197] Ceftazidime was the<br />

second most used b-lactam but was always combined<br />

with silybin (12 cases, Table 5).<br />

Silymarin Complex<br />

Enjalbert et al.<br />

Silymarin is a hepatoprotectant complex <strong>of</strong> natural<br />

substances isolated from seeds <strong>of</strong> Mediterranean milk<br />

thistle, Silybum marianum (L.) Gaertn. (Asteraceae ). [299]<br />

This flavonolignan group includes the three isomers<br />

silydianin, silychristin, and the major compound,<br />

silybin. [300,301] The beneficial effects <strong>of</strong> silymarin on<br />

death rate and survival time in intraperitoneal (IP)<br />

administered mice with a-Ama were reported by Hahn<br />

et al. [302] Silymarin efficacy depended on both the delay<br />

between intoxication and therapy, and the degree <strong>of</strong> liver


damage. [303] Silymarin markedly increased the survival<br />

<strong>of</strong> mice poisoned with IP A. phalloides extracts. [304] In<br />

dogs, which display poisoning resembling human<br />

intoxication, silymarin suppressed both the rise <strong>of</strong> liver<br />

enzymes and the fall <strong>of</strong> clotting factors, and silybin<br />

noticeably reduced the degree <strong>of</strong> bloody necrosis in<br />

animal livers after oral A. phalloides extract. [276,305]<br />

Histochemical studies on isolated rat hepatocytes<br />

have elucidated the mechanism <strong>of</strong> silymarin hepatoprotection.<br />

The flavonolignan complex bound tightly to liver<br />

plasma membrane acts as a membrane stabilizer [306,307]<br />

whereas flavonoid substances such as taxifolin, morin,<br />

and quercetin have no effect. [308]<br />

Silymarin hindered a-Ama penetration <strong>of</strong> the cell<br />

wall. [277,303,308] Silybin competed with a-Ama for the<br />

multi-specific bile salt transport systems <strong>of</strong> the<br />

hepatocyte membrane. [279] Histoenzyme analyses <strong>of</strong><br />

liver from a-Ama poisoned mice revealed that factors<br />

disturbed by the toxin, including glucose-6-phosphatase,<br />

aminopeptidase, ATPase, glycogen, lipid, and nucleic<br />

acid, were restored by silybin. [309]<br />

Silymarin and silybin are also radical scavengers<br />

acting as chain-breaking antioxidants. [310 – 315] Silymarin<br />

complex, by preserving alkaline phosphatase activity,<br />

prevented changes in membrane phospholipid composition<br />

and inhibited the lipid peroxidation in both rat liver<br />

microsomes and isolated hepatocytes.<br />

[310 – 312,316 – 318]<br />

The action site <strong>of</strong> silymarin is the hepatocyte outer<br />

membrane where the drug maintains lipid composition<br />

and aids functional integrity. [316]<br />

Silybin in isolated rat Kupffer cells showed inhibition<br />

<strong>of</strong> the cyclooxygenase and 5-lipooxygenase pathway <strong>of</strong><br />

arachidonic acid metabolism and the subsequent<br />

synthesis <strong>of</strong> the inflammation mediator leukotriene<br />

B4. [319] Silymarin also produced a high anti-inflammatory<br />

effect in vivo by inhibition <strong>of</strong> leukocyte migration<br />

into the inflamed site. [3<strong>20</strong>] Silymarin exerted an<br />

antifibrotic activity and retarded collagen accumulation<br />

in early and advanced biliary fibrosis secondary to<br />

complete bile duct obliteration in rats.<br />

[321 – 323]<br />

Silybin favored the regenerative process <strong>of</strong> both liver<br />

and Kupffer cells <strong>of</strong> partially hepatectomized rats. [324]<br />

These results agree with the observation that silybin<br />

stimulates liver cell metabolism. [325] It increased the<br />

synthetic rate <strong>of</strong> ribosomal RNA not only in rat hepatocyte<br />

but also in the isolated hepatocyte nucleus, via<br />

activation <strong>of</strong> DNA-dependent RNA polymerase I. As a<br />

consequence <strong>of</strong> this stimulation, ribosome formation was<br />

accelerated and protein synthesis increased. Although<br />

protein and RNA syntheses are prerequisites for DNA<br />

synthesis, silybin had no effect on DNA formation in cell<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 731<br />

cultures and liver <strong>of</strong> normal rats whereas an effect could<br />

[326 –<br />

be observed in liver <strong>of</strong> partially hepatectomized rats,<br />

329]<br />

suggesting that silybin stimulates protein biosynthesis<br />

and regenerates damaged liver tissue.<br />

Levels <strong>of</strong> silymarin components are found to be low in<br />

plasma and urine after oral and IV silybin administered to<br />

rats and after oral silymarin to cholecystectomized<br />

patients. [330] The three isomers, silybin, silydianin, and<br />

silychristin (silymarin complex) were excreted mainly by<br />

the biliary route either free or as sulfate and glucuronide<br />

conjugates. [330,331] 75–90% <strong>of</strong> the administered dose <strong>of</strong><br />

silybin is metabolized to glucuronide and sulfate<br />

conjugates, which are partly hydrolyzed and cycled<br />

enterohepatically. [315] Silybin elimination is estimated as<br />

<strong>20</strong>–40% over a 24-hour period with a maximum between<br />

2 and 9-hour post-administration. [332] Thus, silybin in the<br />

bile theoretically inhibits enteric absorption and interrupt<br />

enterohepatic circulation <strong>of</strong> the amatoxins. [249,333]<br />

Silybin administration within 60 hours after a toxic<br />

mushroom meal blocked the increased alanine amino<br />

transferase (ALAT) and restored other parameters <strong>of</strong><br />

liver dysfunction. [315,334]<br />

After oral silymarin, collected bile contained high<br />

amounts <strong>of</strong> isosilybin (a silybin isomer) and very low<br />

levels <strong>of</strong> silydianin and silychristin. The low concentrations<br />

in plasma and bile <strong>of</strong> both silydianin and<br />

silychristin indicate a minor contribution <strong>of</strong> these<br />

compounds to the hepatoprotective effect <strong>of</strong> silymarin<br />

complex. [335]<br />

In order to increase silybin concentration in the bile,<br />

recent studies have combined silybin with phosphatidylcholine;<br />

this lipophilic complex is called silipide (IdB<br />

1016). Silybin concentrations in patient bile after silipide<br />

administration were several-fold higher than after oral<br />

silymarin. This suggests that such complexation<br />

increased the oral bio-availability <strong>of</strong> silybin. It is likely<br />

that drug passage through membranes <strong>of</strong> the gastrointestinal<br />

tract was facilitated, favoring hepatic delivery.<br />

[335,336]<br />

Advances in the knowledge <strong>of</strong> the hepatoprotective<br />

properties <strong>of</strong> silymarin complex have yielded convincing<br />

experimental evidence for the efficacy <strong>of</strong> silybin and<br />

justified its use in human amatoxin poisoning. However,<br />

according to Wellington and Jarvis, [315] the value <strong>of</strong><br />

silymarin relates to the toxin dose and time lag before<br />

drug administration. In a clinical series <strong>of</strong> <strong>20</strong>5 cases, all<br />

patients who received silybin survived. [298] Reviewing<br />

the recovery <strong>of</strong> 18 cases <strong>of</strong> Amanita poisoning treated<br />

with silybin, Hruby et al. [290,291] concluded that the drug<br />

administered even up to 48 hour after toxic mushroom<br />

ingestion was effective in preventing severe liver


732<br />

damage. In a <strong>retrospective</strong> study <strong>of</strong> 175 cases with a<br />

mortality rate <strong>of</strong> 8.6%, [315] 131 patients were treated with<br />

silybin/benzylpenicillin combination (14 deaths) and 44<br />

patients received silybin alone (one death). However, the<br />

mean interval between mushroom ingestion and institution<br />

<strong>of</strong> silybin therapy as well as the severity <strong>of</strong> poisoning<br />

were not identical for the two therapeutic modes.<br />

Table 3 lists 74 amatoxin-poisoning cases (4.5% <strong>of</strong><br />

1632) treated with silybin as mono-chemotherapy and<br />

Tables 4–6 list 550 cases (33.7% <strong>of</strong> 1632) treated with<br />

silybin in combination with other drugs. Some authors<br />

suggested the combination <strong>of</strong> silybin plus benzylpenicillin<br />

to be more beneficial than other combinations.<br />

[18,69,224,337] Faulstich and Zilker thought that<br />

both drugs act as competitive inhibitors <strong>of</strong> the amatoxintransporting<br />

system and should not be used in<br />

combination [14] but did not consider the disparate effects<br />

<strong>of</strong> benzylpenicillin and silybin on a-Ama uptake<br />

reported by Kröncke et al. [279] In our survey, 379, 102,<br />

and 49 <strong>of</strong> 1632 amatoxin intoxicated patients received<br />

silybin/benzylpenicillin as bi-chemotherapy (23.2%,<br />

Table 4), tri-chemotherapy (6.3%, Table 4), and polychemotherapy<br />

(3%, Table 6), respectively.<br />

The initial dose <strong>of</strong> silybin dihemisuccinate is 5 mg/kg<br />

by IV infusion over 1 hour followed by <strong>20</strong> mg/kg/day by<br />

continuous infusion for six days until transaminase levels<br />

have normalized. [315] In the United States, silymarin is<br />

available only as a food supplement; at this time there is<br />

no active Investigational New Drug (IND) application<br />

for any component <strong>of</strong> the silymarin complex in the U.S.<br />

FDA. [231,315,338]<br />

No serious side effects have been observed with<br />

silybin [225] but nausea, epigastric discomfort, arthralgia,<br />

headaches, pruritus, and urticaria have been reported.<br />

Due to a lack <strong>of</strong> adequate clinical investigations, silybin<br />

is not administered to children under 12 <strong>year</strong>s <strong>of</strong> age,<br />

unless the benefits outweigh the risks. [315] Oral<br />

silymarin, Legalon w and b-cyclodextrin silybin have<br />

been recommended as an alternative to parenteral<br />

silybin. [133,339]<br />

Hepatoprotective activity <strong>of</strong> the Extractum Silybi<br />

fluidum (fluid extract) and “Silybochol” against rat liver<br />

damage caused by CCl 4 was recently shown. This<br />

preliminary finding suggests potential utility in clinical<br />

trials <strong>of</strong> the bio-active substances from S. marianum fruit<br />

powder, fluid extract, and fatty oil. [340]<br />

Thioctic Acid<br />

Mechanistic studies on thioctic acid (a-lipoic acid;<br />

1,2-dithiolane-3-pentanoic acid) suggest a rationale for<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

potential benefit in amatoxin hepatotoxicity. Acting as a<br />

free radical scavenger, it might prevent lipid peroxidation<br />

<strong>of</strong> the cell membrane by dissociating the hydrogen<br />

ion on the sulfhydryl groups <strong>of</strong> dihydrothioctic acid, its<br />

main metabolite. [354] Due to the antioxidant activity <strong>of</strong><br />

both oxidized and reduced forms, affecting in vitro<br />

cellular metabolic processes, thioctic acid is capable <strong>of</strong><br />

regenerating directly vitamin C and indirectly vitamin E,<br />

as well as influencing the increase <strong>of</strong> intracellular<br />

glutathione content. [355,356] Thioctic acid has a therapeutic<br />

potential in the treatment <strong>of</strong> hepatic diseases<br />

induced by chemical agents in animal models as<br />

reviewed by Bustamante et al. [356]<br />

It was introduced for the treatment <strong>of</strong> amatoxin<br />

poisoning in the Czech Republic by Kubicka in 196<strong>9.</strong> [341]<br />

The successful use <strong>of</strong> a-lipoic acid was also reported<br />

from Italy [342,343] and then reviewed in the Eastern<br />

European literature. [344,345] In the United States, the first<br />

use <strong>of</strong> thioctic acid was described in 1972 in New Jersey<br />

for A. verna intoxication with apparently beneficial<br />

result. [346] The cause–effect relationship between<br />

thioctic acid administration and clinical improvement<br />

in amatoxin poisoning is not clearly established and<br />

opinion concerning efficacy is divergent. [347 – 351] Early<br />

enthusiasm in the United States waned as investigations<br />

<strong>of</strong> thioctic acid carried out in Amanita poisoned mice and<br />

dogs reported either a severe glucose imbalance [352] or<br />

ineffectiveness <strong>of</strong> the drug. [353] A controlled clinical trial<br />

was never conducted and there were too few patients<br />

enrolled in the IND study to support a claim <strong>of</strong> efficacy.<br />

This drug is unavailable for human use in the United<br />

States. Multiple authors discourage its clinical<br />

use. [74,352,357 – 359] According to Floersheim et al. [298]<br />

and Floersheim [360] the administration <strong>of</strong> thioctic acid is<br />

<strong>of</strong>ten associated with a fatal outcome and it should be<br />

removed from the therapeutic protocol. [231] Other<br />

authors support thioctic acid trials in amatoxin poisoning<br />

until its efficacy can be confirmed or refuted. [23,361,362]<br />

Given the experimental findings <strong>of</strong> hypoglycemia as a<br />

major side effect <strong>of</strong> thioctic acid, [348,352] the drug should<br />

beadministeredwithasustainedIVdrip<strong>of</strong>glucose. [349,363]<br />

In clinical use, thioctic acid was combined with glucose<br />

in IV infusions at doses <strong>of</strong> (i) 300 mg/kg/day in four<br />

divided doses and then 600 mg/kg/day [73,361] and (ii)<br />

50–150 mg/kg/day. [364] Allergic skin reactions have<br />

been reported. [355] Because it is sensitive to light and<br />

heat, bottles and infusion lines containing the solution<br />

must be wrapped in aluminum foil. [231,347,349]<br />

In this <strong>20</strong>-<strong>year</strong> case survey beginning in the 1980s,<br />

thioctic acid was used in 8 <strong>of</strong> 1632 amatoxin poisonings<br />

(0.5%, Table 3) as single chemotherapy and in 442 <strong>of</strong>


1632 (27.1%, Tables 4–6) in combined chemotherapy.<br />

Thioctic acid/benzylpenicillin was given as bi-chemotherapy<br />

(<strong>20</strong>7 <strong>of</strong> 1632, 12.7%, Table 4), tri-chemotherapy<br />

(180 <strong>of</strong> 1632, 11%, Table 4), and poly-chemotherapy (42<br />

<strong>of</strong> 1632, 2.6%, Table 6).<br />

Antioxidant Drugs<br />

In recent <strong>year</strong>s, authors have postulated that the<br />

oxidant effects <strong>of</strong> amatoxins could be counteracted by<br />

the use <strong>of</strong> antioxidants such as ascorbic acid, cimetidine,<br />

and NAC. [116]<br />

L-ascorbic acid (vitamin C) is widely distributed in the<br />

plant and animal kingdoms. Biochemistry, physiological<br />

properties, and clinical uses <strong>of</strong> this chemical agent have<br />

been extensively reviewed. [301,365] Vitamin C inhibits<br />

lipid peroxidation and is used as hepatocyte protector in<br />

damage due to acetaminophen and CCl4. [366] It was<br />

introduced in the emergency treatment <strong>of</strong> A. phalloides<br />

intoxication <strong>20</strong> <strong>year</strong>s ago as part <strong>of</strong> a multi-drug regimen<br />

(plus nifuroxazide and dihydrostreptomycin) devised by<br />

Bastien. [194,367,368] The regimen was reviewed by<br />

Chabré [369] and is still used in French poison centers. [231]<br />

Our survey found use <strong>of</strong> vitamin C, usually in<br />

combination with benzylpenicillin, in 60 cases (3.7%,<br />

Tables 4–6).<br />

Cimetidine, a cytochrome P450 inhibitor, is an<br />

antioxidant agent with cytoprotective and antifibrinolytic<br />

effects. [301,370] Therapeutic use in the management <strong>of</strong><br />

amatoxin poisoning is based on the clinical similarity <strong>of</strong><br />

this intoxication to liver damage due to other toxins<br />

affecting cytochrome P450. Histological examination <strong>of</strong><br />

livers from a-Ama poisoned mice revealed major<br />

mitochondrial changes while the hepatic mitochondria<br />

were preserved in a-Ama poisoned mice treated with<br />

cimetidine either prophylactically or within 6 hours. [371]<br />

A three-drug combination <strong>of</strong> cimetidine, benzylpenicillin,<br />

and ascorbic acid significantly improved enzymatic<br />

and histopathological changes and survival rate <strong>of</strong> a-<br />

Ama intoxicated mice. [372] Clinical cimetidine treatment<br />

was reported for only 21 amatoxin poisoned patients<br />

(1.3%, Tables 3, 4, and 6) at a dose <strong>of</strong> 300 mg IV<br />

administered every 8 hours and usually in association<br />

with benzylpenicillin.<br />

NAC acts as a glutathione precursor when natural<br />

stores are depleted and is also a scavenger <strong>of</strong> free radicals<br />

formed in paracetamol poisoning. [373,374] The similarity<br />

between the clinical toxicities <strong>of</strong> a-Ama and paracetamol<br />

suggested NAC inclusion in the management <strong>of</strong><br />

amatoxin poisoning. [125,143 – 145] Japanese authors investigating<br />

mushroom toxicity in isolated rat hepatocytes<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 733<br />

showed that Amanita extracts (in particular A. virosa )<br />

markedly decreased intracellular glutathione content.<br />

[375] However, the negative results observed with<br />

NAC treatment for amatoxin poisoned mice indicate that<br />

amatoxin metabolism is probably not identical to that <strong>of</strong><br />

paracetamol and that glutathione may play little or no<br />

role in amatoxin hepatotoxicity. [376] Over the <strong>20</strong>-<strong>year</strong><br />

period, 89 <strong>of</strong> 1632 amatoxin cases (5.5%, Table 3)<br />

received chemotherapy with NAC alone and 103 <strong>of</strong> 1632<br />

(6.3%, Tables 4–6) received NAC combined with other<br />

drugs, usually benzylpenicillin.<br />

Miscellaneous Drugs and Prospective<br />

<strong>Treatment</strong>s<br />

Other drugs such as antibiotics, antiseptic agents,<br />

hormones and steroids used in the management <strong>of</strong><br />

amatoxin intoxicated patients are listed in Tables 3–6.<br />

To our knowledge, no experimental evidence is reported<br />

<strong>of</strong> any hepatoprotective effect <strong>of</strong> antibiotics such as<br />

aminoglycoside derivatives (gentamycin, neomycin,<br />

streptomycin), cyclopeptide derivatives (vancomycin),<br />

and macrolide derivatives (clindamycin). These agents<br />

are not considered in our <strong>retrospective</strong> <strong>analysis</strong>. The<br />

antiseptic agent nifuroxazide plus dihydrostreptomycin<br />

and vitamin C is part <strong>of</strong> Bastien’s regimen. [194,367,368]<br />

The role <strong>of</strong> hormones and steroids in the management <strong>of</strong><br />

amatoxin syndrome is questionable. Other agents<br />

proposed for therapy include iridoid glycosides and<br />

immunotherapy and are discussed below.<br />

Insulin and human growth hormone (hGH) were<br />

reported to be effective in rat liver regeneration after<br />

Amanita poisoning. [377] Intravenous infusion <strong>of</strong> either<br />

insulin/glucagon or insulin/hGH, in combination with<br />

glucose, was administered to amatoxin poisoned children<br />

by clinicians in Poland in an attempt to stimulate liver<br />

cell metabolism. [172,175] A randomized clinical series <strong>of</strong><br />

FHF cases showed no effect <strong>of</strong> insulin/glucagon on liver<br />

regeneration. [378]<br />

Experiments on a-Ama uptake into hepatocytes<br />

suggested that prednisolone might exert a protective<br />

effect by competition between the steroid and toxin for<br />

the transport systems and not by nonspecific effects upon<br />

the cell membrane. [279] Investigations <strong>of</strong> steroids in mice<br />

and dogs poisoned with either A. phalloides extract or a-<br />

Ama revealed a positive effect on recovery <strong>of</strong> mice but<br />

not on survival <strong>of</strong> dogs. [276,304] Since steroids have no<br />

efficacy in acute hepatic failure, the American and<br />

European Associations for the Study <strong>of</strong> the Liver<br />

excluded these drugs for this indication 25 <strong>year</strong>s ago. [264]<br />

A 1979 double-blind randomized trial with acute hepatic


734<br />

failure cases treated by hydrocortisone confirmed that<br />

steroids improved neither hepatic function nor survival<br />

rate. [379]<br />

Although steroids were included as therapeutic agents<br />

for Amanita poisoning by Floersheim et al. in 1982, [298]<br />

he suggested removal <strong>of</strong> steroids from treatment<br />

protocols in 1985 because <strong>of</strong> lack <strong>of</strong> correlation with<br />

the outcome. [360] Despite this, in the cases published<br />

since 1980 steroids were reported in the treatment as<br />

mono-chemotherapy (8 <strong>of</strong> 1632, 0.5%, Table 3) and as<br />

bi-, tri-, and poly-chemotherapies with benzylpenicillin<br />

(443 <strong>of</strong> 1632, 27.1%, Tables 4 and 6), and without<br />

benzylpenicillin (0.5%, 8 <strong>of</strong> 1632, Tables 5 and 6).<br />

Iridoid glycosides such as aucubin and kutkin<br />

represent a group <strong>of</strong> monoterpene glycosides with a<br />

cyclopentane-(c)-pyran ring structure widely distributed<br />

in the plant kingdom. [380] Aucubin is a common iridoid<br />

glycoside isolated from Eucommia ulmoides Oliver<br />

(Magnoliaceae ), [381] Plantago asiatica L. (Plantaginaceae<br />

), [382] and Aucuba japonica Thunb. (Corna-<br />

ceae ). [383]<br />

Iridoid compounds have recently been<br />

successful in experimental amatoxin poisoning, and on<br />

the basis <strong>of</strong> the promising results, these drugs may merit<br />

clinical evaluation. Protective activities <strong>of</strong> aucubin<br />

against a-Ama have been reported in beagle dogs orally<br />

poisoned by A. virosa extract, and in mice I.P. administered<br />

with the toxin, even when the treatment was begun<br />

12 hours later. [380,382] According to these authors, the<br />

mechanism <strong>of</strong> hepatoprotection might be attenuation <strong>of</strong><br />

the continuous depression <strong>of</strong> liver m-RNA biosynthesis<br />

caused by a-Ama. [382,384] This mechanism was not<br />

confirmed in rat studies, however, aucubin enhanced<br />

excretion <strong>of</strong> a-Ama suggesting that it or one <strong>of</strong> its<br />

hydrolyzed products may displace the toxin from binding<br />

sites. [385] Oral administration is ineffective; [380,384] and<br />

the influence <strong>of</strong> the route <strong>of</strong> administration on efficacy<br />

may merit elucidation. [386] As far as we know, no<br />

investigation <strong>of</strong> aucubin in humans has been conducted.<br />

Picrosides I–III and kutkoside, known collectively as<br />

kutkin, were isolated from the roots and rhizome <strong>of</strong><br />

Picrorhiza kurroa Rogle ex Benth. (Scrophulariaceae ),<br />

an Indian plant used for the treatment <strong>of</strong> liver<br />

diseases. [387] Protective activity <strong>of</strong> kutkin was demonstrated<br />

against the hepatic damage <strong>of</strong> A. phalloides in<br />

rodent models. [388,389] Floersheim found the protective<br />

effect <strong>of</strong> kutkin comparable to that <strong>of</strong> silybin. [390]<br />

Constituents from P. kurroa have demonstrated antioxidant<br />

and anti-lipid peroxidation activity as well as<br />

effects on liver regeneration in research cited by<br />

Luper. [313] Further investigations should be carried out<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

to assess the place <strong>of</strong> kutkin in clinical amatoxin<br />

poisoning treatment.<br />

In vitro production and cytoprotective properties <strong>of</strong><br />

polyclonal amanitin-specific antibodies were reported in<br />

1993. [391] However, Faulstich et al. [392] reported in 1998<br />

that amatoxin-specific Fab fragments or monoclonal<br />

antibodies enhanced the activity <strong>of</strong> amatoxins and that<br />

this new therapeutic strategy should not be considered.<br />

Retrospective Data on Use <strong>of</strong> Chemotherapy<br />

Enjalbert et al.<br />

Our review <strong>of</strong> chemotherapy administered to 1632<br />

amatoxin poisoned patients underscores its typical use in<br />

combination, and makes it difficult to assess the efficacy<br />

<strong>of</strong> each therapeutic agent individually. The mechanism<br />

by which b-lactam antibiotics (benzylpenicillin, ceftazidime)<br />

afford their therapeutic effect is still scientifically<br />

uncharacterized. Considerable data support the relevance<br />

<strong>of</strong> silymarin complex in amatoxin poisoning; the<br />

mechanisms <strong>of</strong> action include an antioxidant effect,<br />

anti-lipid oxidation, enhancement <strong>of</strong> detoxication, and<br />

stimulation <strong>of</strong> the hepatic regeneration. Biochemical data<br />

suggesting hepatoprotection by antioxidants support the<br />

continued consideration <strong>of</strong> free radical scavengers such<br />

as ascorbic acid, cimetidine, and NAC in the management<br />

<strong>of</strong> amatoxin intoxication. Hepatoprotective effects<br />

<strong>of</strong> iridoid glycosides (aucubin, kutkin) have also been<br />

demonstrated with in vivo animal models; these<br />

promising findings merit further investigations.<br />

In our compilation, 80.9% (1632 <strong>of</strong> <strong>20</strong>17) amatoxin<br />

poisoned patients received chemotherapy (Chem-group)<br />

with or without detoxication procedures (Tables 3–6).<br />

Drugs were given as mono-chemotherapy in 347 cases<br />

(21.3%, Table 3) and in combination in 1285 cases<br />

(78.7%, Tables 4–6) either as bi-chemotherapy (815 <strong>of</strong><br />

1632, 4<strong>9.</strong>9%) or tri-chemotherapy (280 <strong>of</strong> 1632, 17.2%)<br />

or poly-chemotherapy (190 <strong>of</strong> 1632, 11.6%). The<br />

therapeutic agents can be classified into four groups<br />

according to the frequency <strong>of</strong> their administration as<br />

single agent or chemotherapy combinations. Frequency<br />

<strong>of</strong> use ranged from 0.7 to 86.5%. The lowest frequency<strong>of</strong>-use<br />

group among the 1632 amatoxin poisoning cases<br />

is constituted by ceftazidime (0.7%), cimetidine (1.1%),<br />

and antiseptic agent (1.2%). The second group is<br />

represented by vitamin C (3.7%), antibiotics (3.8%),<br />

and NAC (11.8%). The third group consists <strong>of</strong> thioctic<br />

acid (27.1%), steroids (27.6%), and silybin (33.7%). The<br />

highest frequency-<strong>of</strong>-use group is comprised <strong>of</strong> cases<br />

treated with benzylpenicillin (1411 <strong>of</strong> 1632 patients,<br />

86.5%). Benzylpenicillin was the most frequently<br />

administered drug used alone (164 cases, 10.1%,


Table 3) when compared to antibiotic (one case),<br />

cimetidine (three cases), NAC (89 cases), silybin (74<br />

cases), and steroids or thioctic acid (eight cases for each).<br />

It is also the agent most frequently represented in therapy<br />

combinations (1247 cases <strong>of</strong> 1632, 76.4%, Tables 4 and<br />

6). The most common combinations were benzylpenicillin<br />

plus silybin (379 <strong>of</strong> 1632, 23.2%) and benzylpenicillin<br />

plus thioctic acid (<strong>20</strong>7 <strong>of</strong> 1632, 12.0%), in<br />

contrast to the low representation <strong>of</strong> benzylpenicillin plus<br />

steroid (95 <strong>of</strong> 1632, 5.8%).<br />

Retrospective Data on Use <strong>of</strong> Specific<br />

<strong>Treatment</strong>s<br />

Specific treatments consist <strong>of</strong> detoxication procedures<br />

and chemotherapy. In our review, <strong>20</strong>17 <strong>of</strong> 2108<br />

amatoxin-poisoned patients (95.7%) were treated with<br />

either one or both <strong>of</strong> these specific therapeutic modes.<br />

Detoxication procedures alone were applied to 385 <strong>of</strong><br />

<strong>20</strong>17 cases (1<strong>9.</strong>1%, Table 2) whereas chemotherapy with<br />

or without detoxication procedures was administered to<br />

the majority <strong>of</strong> cases (1632 <strong>of</strong> <strong>20</strong>17, 80.9%, Tables 3–6).<br />

Overall survivors (1810 <strong>of</strong> <strong>20</strong>17 patients, 8<strong>9.</strong>7%) as<br />

listed in Tables 2–6 are subsequently analyzed for the<br />

relation to specific therapy and to LT.<br />

Liver Transplantation<br />

Liver transplantation has emerged as the most<br />

important advance in the therapy <strong>of</strong> FHF and is an<br />

intervention formally validated for this disease with<br />

survival rates from 60 to 80%. [282,393] Kinetic studies<br />

have shown no risk <strong>of</strong> toxicity for the transplanted<br />

liver [257] beginning day 4 after mushroom ingestion.<br />

Total Orthotopic Liver Transplantation and<br />

Auxiliary Partial Liver Transplantation<br />

Two surgical options, orthotopic liver transplantation<br />

(OLT) and auxiliary LT have been developed. Total OLT<br />

is a well-established procedure for FHF but requires long<br />

immunosuppression to maintain the graft. Because some<br />

patients with partial hepatectomy and temporary support<br />

may have complete morphological and functional<br />

recovery <strong>of</strong> their own liver, auxiliary partial liver<br />

transplantation (APOLT) represents an alternative. In<br />

APOLT only a portion <strong>of</strong> the native liver is removed and<br />

the remainder is left in situ; the transplant provides<br />

temporary assistance until the native liver recovers and<br />

the immunosuppression can be withdrawn.<br />

[394 – 397]<br />

Within the <strong>20</strong>-<strong>year</strong> period <strong>of</strong> this review, 31 amatoxin<br />

poisoned patients underwent OLT: Six received suppor-<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 735<br />

tive measures alone (Table 1), six were treated with<br />

detoxication procedures without chemotherapy (Table 2),<br />

and 19 received chemotherapy with or without<br />

detoxication procedures (Tables 3–6). The success <strong>of</strong><br />

APOLT in one young girl was also reported, [119,1<strong>20</strong>]<br />

(Table 3). These 32 LT patients represent only 1.5% <strong>of</strong><br />

2108 intoxicated cases reviewed in our survey. Twelve<br />

additional LT cases performed since 1985 were cited<br />

but due to lack <strong>of</strong> adequate data were not analyzed.<br />

[87,92,93,100,111,116,<strong>20</strong>6,<strong>20</strong>7,216,218,398,399]<br />

The early use <strong>of</strong> specific treatments (detoxication<br />

procedures and chemotherapy) and <strong>of</strong> biological<br />

parameters predicting recovery may avoid unnecessary<br />

LT. [146,159,187 – 189] Many patients who originally were<br />

candidates for LT showed improvement in hepatic<br />

function and were taken <strong>of</strong>f the transplant waiting<br />

list. [83,156,158,159]<br />

The major dilemma in emergency liver failure is the<br />

right moment to transplant. The time between “too early”<br />

and “too late” may be very short. LT is considered too<br />

late when complications such as multi-organ failure with<br />

cerebral edema or renal insufficiency become contraindications<br />

to transplant because they compromise the<br />

success <strong>of</strong> surgery. The mean delay (about 2 days)<br />

between the decision for LT and finding <strong>of</strong> a liver donor<br />

must be taken into account. The shortage <strong>of</strong> available<br />

livers limits transplantation. Recently, a living, related<br />

donor <strong>of</strong> a 1-<strong>year</strong>-old boy poisoned with amatoxin<br />

provided a partial liver transplant specimen. [57] Fulminant<br />

hepatitis is rapidly fatal; only 50–85% <strong>of</strong> patients<br />

identified as candidates for LT survive long enough to<br />

receive a transplant. [400,401] An explosive course was also<br />

reported for amatoxin poisoned patients included in the<br />

emergency list for LT who died before obtaining a<br />

donor. [89,118,138,188,<strong>20</strong>3]<br />

It is essential to establish early, reliable criteria<br />

identifying the immediate prognosis. [402,403] The number<br />

<strong>of</strong> amatoxin poisoning victims considered for LT is small<br />

and the prognostic indicators for LT are not clearly<br />

defined. [1<strong>20</strong>] Candidacy guidelines for OLT and APOLT<br />

have therefore been extrapolated from experience with<br />

FHF from other etiologies and include repeated clinical<br />

examination and biological investigations. [404]<br />

Prognostic Factors<br />

Most liver units have accepted for emergency liver<br />

transplant the King’s College criteria proposed by<br />

O’Grady et al. [405] from a <strong>retrospective</strong> <strong>analysis</strong> <strong>of</strong> 278<br />

patients with FHF not induced by acetaminophen<br />

overdose. These criteria are based on PT, age, etiology,


736<br />

time between appearance <strong>of</strong> jaundice and onset <strong>of</strong><br />

encephalopathy, and bilirubin concentration. The criteria<br />

have been recently evaluated by the University <strong>of</strong><br />

Pittsburgh for 177 patients over a 13-<strong>year</strong> period and<br />

were found to be relatively effective in predicting death<br />

and the need for transplantation. [406] French emergency<br />

liver units rely on the combination <strong>of</strong> encephalopathy<br />

stages (III and IV) with factor V concentration and<br />

age. [407 – 409] Other prognostic models reviewed by Mas<br />

and Rodés [244] based on hemodynamic disturbances and<br />

clinical course <strong>of</strong> FHF have also been developed.<br />

Furthermore, other variables such as a factor VIII/V<br />

ratio [410] as well as serial a-fetoprotein levels [245] might<br />

be useful tests for predicting survival in FHF. Lastly, a<br />

Gc level ,34 mg/mL 48 hours after admission strongly<br />

suggests a stage <strong>of</strong> liver failure beyond which recovery<br />

will not occur. [411]<br />

Despite the lack <strong>of</strong> absolute predictors, prognostic<br />

factors such as stage <strong>of</strong> encephalopathy, coagulation<br />

tests, metabolic abnormalities, and age are useful in the<br />

rational planning <strong>of</strong> LT. Of 31 transplanted patients<br />

having undertaken OLT (including 4 children below 10<br />

<strong>year</strong>s <strong>of</strong> age), the prognostic factors used for 27 cases are<br />

listed in Table 7.<br />

Encephalopathy Stages<br />

The association between encephalopathy stages<br />

(I–IV) [412] and vital prognosis is controversial. According<br />

to Bernuau et al. [413] and Frohburg et al., [399]<br />

encephalopathy does not always reflect liver function<br />

deterioration. Since advanced encephalopathy typically<br />

occurs late in the course <strong>of</strong> the FHF, the stage <strong>of</strong><br />

encephalopathy may be <strong>of</strong> limited use. [403] Other authors<br />

promote encephalopathy stage as the most powerful<br />

clinical indicator <strong>of</strong> the severity <strong>of</strong> liver disease.<br />

[244,409,414,415] According to Gill and Sterling, [245]<br />

patients with a stage II encephalopathy have a mortality<br />

<strong>of</strong> 30% while those who progress to stage IV have a<br />

mortality rate greater than 80%. In the early use <strong>of</strong> OLT<br />

for amatoxin poisoning, encephalopathy stages (III and<br />

IV) were the major decision factors for this surgery.<br />

[80,103,106,136,154,193,199]<br />

However, Klein’s experience [102] indicated a clinical<br />

course <strong>of</strong> amatoxin poisoning characterized by slow<br />

deterioration over a week that then worsens quickly. This<br />

pattern may lead to an early underestimation <strong>of</strong> liver<br />

damage. Consequently, several authors think that LT<br />

should be considered with the onset <strong>of</strong> mild encephalopathy<br />

(stages I and II) before the onset <strong>of</strong> progressive and<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

pr<strong>of</strong>ound neurological signs resulting from severe<br />

amatoxin intoxication [86,156,198,199] (Table 7).<br />

Coagulation Factors<br />

No definitive conclusion can be drawn about the<br />

usefulness <strong>of</strong> the degree <strong>of</strong> coagulopathy as an indication<br />

for LT because too few patients are included in clinical<br />

data, and prophylactic administration <strong>of</strong> fresh frozen<br />

plasma modifies or prevents interpretation <strong>of</strong> coagulation<br />

factors. [401] The PT is considered the most satisfactory<br />

test <strong>of</strong> hepatocellular necrosis and prognosis. [405,414,415]<br />

Some authors suggest that factor V level is more sensitive<br />

and reliable than PT and a better indicator <strong>of</strong> recovery<br />

than other biological factors. [158,407,416,417] According to<br />

Izumi et al., [418] the predictive accuracy <strong>of</strong> plasma factor<br />

V is less than that <strong>of</strong> international normalized result<br />

(INR) as advocated by Harrison et al. [419] A factor VIII/V<br />

ratio <strong>of</strong> more than 30% can be associated with a poor<br />

prognosis. [410] The dynamics <strong>of</strong> a biological marker<br />

could be <strong>of</strong> greater predictive value than the minimum or<br />

maximum level <strong>of</strong> the variable itself. The progressive<br />

prolongation <strong>of</strong> PT was noted as an outcome predictor <strong>of</strong><br />

the patients with FHF and its evolution over 4 days after<br />

the poisonous mushroom meal was suggested as a<br />

reliable indicator <strong>of</strong> recovery or death. [14]<br />

Metabolic Abnormalities<br />

Enjalbert et al.<br />

Metabolic abnormalities such as lactic acidosis,<br />

hypoglycemia, hyperbilirubinemia, and increased aminotransferases<br />

seen in FHF may also provide foundation<br />

for LT decisions. [244] Lactic acidosis and hypoglycemia<br />

are cited as prognostic factors associated with encephalopathy<br />

stage II and prolonged PT that determine urgent<br />

LT. [99,151,156,199] Several studies have shown that a high<br />

level <strong>of</strong> bilirubin (.300 mmol/L) is a sign <strong>of</strong> fatal<br />

prognosis. [399,405,4<strong>20</strong>] On the basis <strong>of</strong> their own<br />

experience, Faulstich and Zilker [14] suggested that LT<br />

be performed when an amatoxin poisoned patient<br />

exhibits a PT below <strong>20</strong>% associated with both high<br />

bilirubin and creatinine (.5 and .2 mg/dL, respectively),<br />

on day 3. Patients with progressive failure have<br />

continued rise in the bilirubin and prolongation <strong>of</strong> PT<br />

despite declining aminotransferases. [245] Recent results<br />

support the hypothesis that a sustained elevation in<br />

markers <strong>of</strong> regeneration (a-fetoprotein, g-glutamyl<br />

transferase) for more than 10–12 hours combined with<br />

a similarly maintained decline in markers <strong>of</strong> necrosis<br />

(ASAT, ALAT, alkaline phosphatase, LDH) levels could<br />

aid in prediction <strong>of</strong> recovery. [124]


Table 7<br />

Prognosis Factors for Liver Transplant<br />

Coagulation Factors<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 737<br />

Date/References No. <strong>of</strong> cases Encephalopathy Stage P.T. Factor V(%) Lactic Acidosis Hypoglycemia (mg/dL) Hyperbilirubinemia a (mmol/L)<br />

1985 [193] 1/1; child III coma 34.2 sec NI NI 161 3<strong>9.</strong>3<br />

1988 [136] 1/1 Coma ,<strong>20</strong>% ,<strong>20</strong> NI NI 180<br />

1989 [80] 1/1; child III–IV ,10% ,<strong>20</strong> NI NI NI<br />

1989 [102] 1/2 III 50 sec NI NI NI 427.3<br />

1/2 III 30 sec NI NI NI 341.9<br />

1990 [151] 2/4 I 81 sec NI þ þ <strong>20</strong>8.9<br />

2/4 II 81 sec NI þ þ NI<br />

1991 [103] 1/1 IV coma ,10% ,10 þ þ NI<br />

1992 [199] 1/1 III–IV .100 sec NI NI þ 556.5<br />

1994 [156] 1/1 I–II ,9% 6 NI NI 136.8<br />

1994 [106] 1/1 IV 28% b<br />

32 NI NI 364<br />

1994 [198] 1/1 I ,10% ,8 NI NI NI<br />

1995 [86] 2/2; 1 child II–III ,10% ,10 NI NI NI<br />

1995 [154] 1/1 III–IV ,10% b<br />

NI NI NI 144<br />

1996 [133] 2/2 II ,10% ,10 No prognosis values<br />

1997 [88] 3/3 III–IV ,<strong>20</strong>% NI NI NI 78.6<br />

1997 [91] 1/1 II–III 47.3 sec NI NI NI 124.8<br />

<strong>20</strong>00 [112] 1/1 III–IV 106 sec NI NI 19 158.9<br />

<strong>20</strong>01 [162] 2/2; 1 child NI 49 sec 7 NI NI 4<strong>9.</strong>7<br />

2<strong>9.</strong>1 sec 15 NI NI NI<br />

P.T. ¼ prothrombin test (sec) or (%); NI ¼ not indicated; þ¼presence.<br />

a<br />

Normal bilirubinemia level ranges from 2 to 17 mmol/L.<br />

b Thrombotest (factors II, VII, and X).


738<br />

Age <strong>of</strong> Patient<br />

The age <strong>of</strong> the amatoxin mushroom victim is another<br />

prognostic factor. Fatal outcomes are usually associated<br />

with age less than 10 <strong>year</strong>s. [112,244] In the series <strong>of</strong> <strong>20</strong>5<br />

and 83 patients reported by Floersheim et al., [298] and<br />

Lambert and Larcan, [19] the death rates were 51 and 22%<br />

for children below 10 <strong>year</strong>s and 16.5 and 8.8% for adults,<br />

respectively. The high mortality rate in children is likely<br />

related to the larger dose <strong>of</strong> the toxins per unit <strong>of</strong> body<br />

weight.<br />

Retrospective Liver Transplantation Data<br />

In the absence <strong>of</strong> definitive medical treatment for<br />

amatoxin poisoning, LT has changed the outlook for<br />

severe poisoning and can be the single best option<br />

for selected patients. Since 1985, 32 LTs (31 OLT and 1<br />

APOLT) have been performed for amatoxin mushroom<br />

victims representing 1.5% <strong>of</strong> 2108 intoxicated individuals.<br />

Liver transplant increases the survival rate <strong>of</strong><br />

amatoxin poisoning considering the LT patient was<br />

presumed as a fatal case. Easily applicable criteria are<br />

needed to identify patients for whom transplantation is<br />

indicated. Prognostic indicators such as encephalopathy<br />

stages, coagulation factors, metabolic abnormalities, and<br />

age have to be taken into account in the decision to<br />

perform liver transplant (OLT and APOLT) but do not<br />

replace intensive medical experience. Serious amatoxin<br />

intoxication must no longer be considered only as an<br />

acute disease with massive necrosis whose prognosis<br />

depends only on the early course <strong>of</strong> the poisoning. The<br />

progression <strong>of</strong> severely poisoned cases towards either<br />

massive necrosis or chronic active hepatitis from <strong>20</strong> to<br />

70% [176,177] should be considered factors determining<br />

LT.<br />

Statistical Analysis <strong>of</strong> Retrospective Data<br />

Two general frequency tables were established<br />

including and excluding the LT cases, and composed<br />

for a systematic <strong>analysis</strong>. Statistical comparison <strong>of</strong> the<br />

2 £ 2 tables determined significant differences in the<br />

mortality rates <strong>of</strong> the 11 modes <strong>of</strong> care; the applied<br />

treatments were sorted by increasing efficacy, i.e.,<br />

decreasing mortality rates (MR) combining MRLTi and<br />

MRLTe. Table 8 shows the 11 modes <strong>of</strong> care in order <strong>of</strong><br />

increasing efficacy/decreasing mortality rates from #1 to<br />

#11 and the number <strong>of</strong> cases in each group including and<br />

excluding the liver transplanted patients with the related<br />

mortality rates. Then to further evaluate significant<br />

comparison between the 11 analyzed therapeutic<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

modalities (#1 to #11), five pooled therapies from #12<br />

to #16 have made up.<br />

The mortality rates <strong>of</strong> the 10 analyzed specific<br />

therapeutic modes varied from 5.4 to 16.9% (MRLTi)<br />

and from 1.4 to 16.9% (MRLTe) for the <strong>20</strong>62 LTi and<br />

<strong>20</strong>31 LTe amatoxin victims, respectively. Mortality rates<br />

were 47.3% ðNo: ¼ 91 LTiÞ and 43.5% ðNo: ¼ 85 LTeÞ<br />

for amatoxin poisoned patients receiving supportive<br />

measures alone (Fig. 1).<br />

First, the mortality rates <strong>of</strong> supportive measures alone<br />

(#11) were significantly higher than those found for the<br />

group <strong>of</strong> combined 10 specific therapies (#14, detoxication<br />

procedures plus nine chemotherapies) as reported in<br />

Tables 8 and <strong>9.</strong> Then, the MR <strong>of</strong> detoxication procedures<br />

(#5) compared with #13, the nine combined chemotherapies,<br />

were not statistically different, but were significantly<br />

lower than those <strong>of</strong> two chemotherapies:<br />

BpThioca (#1) and BpwSilybTriPoly (#2). More<br />

importantly, the MRLTe <strong>of</strong> detoxication-proceduresalone<br />

(#5) was significantly higher than those <strong>of</strong> silybin<br />

plus benzylpenicillin (#8) and silybin (#10) as monochemotherapy<br />

(<strong>9.</strong>0 vs. 6.0 and 1.4%, respectively).<br />

Finally, the differences between the 9 individual applied<br />

chemotherapies were evaluated. The chemotherapies<br />

exhibiting the highest mortality rates were the combination<br />

<strong>of</strong> benzylpenicillin and thioctic acid (#1.<br />

BpThioca) followed by benzylpenicillin in drug<br />

combinations without silybin as tri- and poly-chemotherapies<br />

(#2. BpwSilybTriPoly), and by the combination<br />

<strong>of</strong> benzylpenicillin and steroids (#3. BpSter).<br />

The chemotherapies with the lowest mortality rates<br />

were silybin as mono-chemotherapy (#10. Silyb) and<br />

silybin plus benzylpenicillin without and with other<br />

drugs (#8. BpSilyb, #<strong>9.</strong> BpSilybTriPoly) and NAC as<br />

mono-chemotherapy (#7. NAC). Both MRLTi and<br />

MRLTe <strong>of</strong> BpThioca (#1), BpwSilybTriPoly (#2), and<br />

BpSter (#3) were not statistically different between them<br />

(Table 9), and were significantly higher than those <strong>of</strong><br />

BpSilyb (#8), BpSilybTriPoly (#9), and Silyb (#10).<br />

Moreover no significant difference was observed<br />

between the MR <strong>of</strong> the four best therapies with the lowest<br />

mortality rates: NAC (#7), BpSilyb (#8), BpSilybTriPoly<br />

(#9), and Silyb (#10). The MR <strong>of</strong> #6, benzylpenicillin<br />

plus one or more antioxidant drug (cimetidine, NAC, or<br />

vitamin C), were significantly lower only than those <strong>of</strong><br />

BpThioca (#1). The MR <strong>of</strong> NAC (#7) were significantly<br />

lower than those <strong>of</strong> both BpThioca (#1) and BpwSilyb-<br />

TriPoly (#2).<br />

On the other hand, the statistical data were not<br />

significant for certain treatment groups whose mortality<br />

rates appear to be different in part due to the disparity <strong>of</strong>


the group size and the small number <strong>of</strong> analyzed cases:<br />

(i) the MRLTs <strong>of</strong> benzylpenicillin as mono-chemotherapy<br />

(#4) were not statistically different from those <strong>of</strong><br />

NAC (#7) and (ii) the MRLT <strong>of</strong> mono-chemotherapies,<br />

benzylpenicillin (#4), and silybin (#10) was comparable,<br />

11.6 vs. 5.4%, whereas the MRLTe <strong>of</strong> benzylpenicillin<br />

was significantly higher than that <strong>of</strong> silybin, 11.0 vs.<br />

1.4% (Table 9). Furthermore, benzylpenicillin plus<br />

antioxidant (#6. BpantiOx, No: ¼ 111 LTi treated;<br />

MRLTi <strong>9.</strong>1%; No: ¼ 110 LTe treated; MRLTe 8.2%)<br />

was not statistically different from benzylpenicillin plus<br />

other drugs without silybin as tri- and poly-chemotherapies<br />

(#2. BpwSilybTriPoly, No: ¼ 299 LTi treated;<br />

MRLTi 15.4%; No: ¼ 297 LTe treated; MRLTe<br />

14.8%): the Chi-square values were 0.08 and 0.06,<br />

respectively; more data are needed to prove whether any<br />

statistical differences in the fatality rate between these<br />

groups were truly.<br />

To further assess the role <strong>of</strong> silybin in affecting<br />

mortality, the three chemotherapies with the worst<br />

mortality rates (#16. BpThioca, BpwSilybTriPoly and<br />

BpSter) were pooled and compared with the pooled<br />

therapies including silybin (#12. BpSilyb and BpSilybTriPoly);<br />

the MR <strong>of</strong> #12 were significantly lower<br />

than those <strong>of</strong> #16 (MRLTi 7.9 vs. 15.8% and MRLTe<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 739<br />

Table 8<br />

Statistical Analysis <strong>of</strong> <strong>Amatoxin</strong>-<strong>Poisoning</strong> Therapies<br />

5.8 vs. 15.5%). This finding supports silybin benefit in<br />

amatoxin poisoning treatment.<br />

Regarding benzylpenicillin, the most frequently<br />

therapeutic agent used among the reported cases, the<br />

bi-chemotherapies with this drug and without silybin<br />

were pooled (#15. BpThioca, BpSter, and BpantiOx),<br />

the MR found for this group were significantly higher<br />

than those <strong>of</strong> BpSilyb (#8) as reported in Table <strong>9.</strong> In<br />

addition, the MR <strong>of</strong> BpwSilybTriPoly (#2) were<br />

significantly higher than those <strong>of</strong> BpSilybTriPoly (#9)<br />

(MRLTi 15.4 vs. 7.3%; MRLTe 14.8 vs. 5.4%). All<br />

these results suggest that benzylpenicillin administered<br />

with any drug except silybin as bi-, tri-, and polychemotherapies<br />

was not beneficial in treatment <strong>of</strong><br />

amatoxin poisoning when mortality and/or liver<br />

transplant was used as the endpoint.<br />

Our statistical <strong>analysis</strong> underscores that the hepatoprotective<br />

effect <strong>of</strong> the flavonolignan complex, silymarin,<br />

and the antioxidant property <strong>of</strong> NAC play a<br />

crucial role in the recovery <strong>of</strong> amatoxin-poisoned<br />

patients. The limitations <strong>of</strong> this data include its<br />

<strong>retrospective</strong> nature and the lack <strong>of</strong> standardized severity<br />

scoring by which to judge the patient mix in each<br />

treatment group. However, these analyses and literature<br />

review point out the most fruitful avenues for future<br />

# No. LTi No. LTe MRLTi (%) MRLTe (%)<br />

Applied therapies<br />

1 BpThioca <strong>20</strong>7 <strong>20</strong>7 16.9 16.9<br />

2 BpwSilybTriPoly 299 297 15.4 14.8<br />

3 BpSter 95 95 14.7 14.7<br />

4 Bp 164 163 11.6 11.0<br />

5 Detox alone 385 379 10.4 <strong>9.</strong>0<br />

6 BpantiOx 111 110 <strong>9.</strong>1 8.2<br />

7 NAC 89 89 6.7 6.7<br />

8 BpSilyb 391 382 8.2 6.0<br />

9 BpSilybTriPoly 151 148 7.3 5.4<br />

10 Silyb 74 71 5.4 1.4<br />

11 Supportive measures alone 91 85 47.3 43.5<br />

Pooled therapies<br />

12 Bp/Silybin combinations (8, 9) 542 530 7.9 5.8<br />

13 Combined nine chemotherapies (1–4, 6–10 above) 1586 1,567 11.2 10.1<br />

14 Combined 10 specific therapies (1–10 above) <strong>20</strong>62 2,031 12.6 11.3<br />

15 Bp bi-chemotherapies without Silybin (1, 3, 6) 413 412 14.3 14.1<br />

16 Combined three worst chemotherapies (1–3) 601 599 15.8 15.5<br />

No. LTi ¼ number <strong>of</strong> patients including liver transplants; No. LTe ¼ number <strong>of</strong> patients excluding liver transplants; MRLTi ¼ mortality rate including<br />

liver transplants; MRLTe ¼ mortality rate excluding liver transplants.


740<br />

Figure 1. Effect <strong>of</strong> the modes <strong>of</strong> care (supportive measures<br />

alone and 10 specific treatments) on the distribution <strong>of</strong> treated<br />

patients in terms <strong>of</strong> survivors and deceased (histograms<br />

including liver transplants), and percentages <strong>of</strong> deceased<br />

patients vs. treated with and without liver transplants (curves).<br />

survLT: survivors including liver transplants; decLT: deceased<br />

including liver transplants; MRLTi: mortality rate including<br />

liver transplants; MRLTe: mortality rate excluding liver<br />

transplants. Supportive M. ¼ supportive measures alone<br />

(Table 1); BpThioca ¼ benzylpenicillin/thioctic acid; Bpw-<br />

SilybTriPoly ¼ benzylpenicillin/drugs without silybin as triand<br />

poly-chemotherapies; BpSter ¼ benzylpenicillin/steroid;<br />

Bp ¼ benzylpenicillin; Detox ¼ detoxication procedures alone<br />

(Table 2); BpantiOx ¼ benzylpenicillin/antioxidant drug<br />

(cimetidine, N-acetylcysteine or vitamin C); Nac ¼<br />

N-Acetylcysteine; BpSilyb ¼ benzylpenicillin/silybin;<br />

BpSilybTriPoly ¼ benzylpenicillin/drugs with silybin as triand<br />

poly-chemotherapies; Silyb ¼ silybin.<br />

clinical research to pursue, and provide a basis for the<br />

discontinuation <strong>of</strong> the clearly less effective therapies.<br />

Investigations for amatoxin treatment should focus on<br />

detoxication procedures, silybin, and NAC. Assessment<br />

<strong>of</strong> more cases would be useful to confirm their benefit.<br />

Clinical data from this <strong>20</strong>-<strong>year</strong> period do not show<br />

benzylpenicillin to be an effective drug; this antibiotic<br />

agent did not enhance the efficacy <strong>of</strong> either silybin or<br />

NAC in the treatment <strong>of</strong> amatoxin syndrome. Perhaps<br />

benzylpenicllin, thioctic acid, and steroids should be<br />

abandoned as therapeutic modalities.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

SUMMARY<br />

Enjalbert et al.<br />

Although the treatment <strong>of</strong> patients exposed to<br />

amatoxin-containing mushrooms has become more<br />

sophisticated, the optimal management <strong>of</strong> the poisoning<br />

is still not determined. Options include various detoxication<br />

procedures, chemotherapies, and liver transplant in<br />

case the hepatic disease reaches a potentially fatal stage.<br />

The clinical efficacy <strong>of</strong> any modality <strong>of</strong> treatment for<br />

amatoxin poisoning is difficult to demonstrate since<br />

randomized, controlled clinical trials verified within the<br />

frame <strong>of</strong> multicenter studies have not been reported. The<br />

use <strong>of</strong> drug combinations also limits the evaluation <strong>of</strong><br />

individual efficacy <strong>of</strong> the therapeutic modalities. The<br />

theoretical and experimental bases for antitoxic action <strong>of</strong><br />

most <strong>of</strong> these agents are not clearly established. Silymarin<br />

complex and free radical scavengers (cimetidine, NAC,<br />

vitamin C) have respective hepatoprotective and antioxidant<br />

properties that yield convincing support for their use.<br />

LT is accepted as a life-saving procedure in amatoxin<br />

poisoning cases leading to acute massive hepatic<br />

necrosis. Early identification <strong>of</strong> liver dysfunction, rapid<br />

evaluation <strong>of</strong> suitability for transplant, immediate listing,<br />

and an available donor research are crucial. It is<br />

important to verify that the prognostic indications for LT<br />

are defined and met.<br />

Our <strong>retrospective</strong> data determined the use and the<br />

mortality rate for each treatment in this overall<br />

compilation <strong>of</strong> heterogeneous subjects. For statistical<br />

<strong>analysis</strong> relative to MR, the 32 amatoxin victims<br />

receiving LT were considered as special cases and<br />

were either excluded from the group <strong>of</strong> treated patients<br />

(MRLTe), or since their outcome was considered<br />

virtually fatal without transplantation, were included as<br />

deadly cases (MRLTi).<br />

Benzylpenicillin, despite mechanism <strong>of</strong> its action<br />

poorly argued, was the most frequently administered<br />

agent (86.5%). Silybin was given to 38.2% <strong>of</strong> patients.<br />

Among the antioxidant drugs, NAC was the most<br />

frequently prescribed agent, utilized in 11.8% <strong>of</strong> cases.<br />

Comparison <strong>of</strong> the mortality rates <strong>of</strong> 11 modes <strong>of</strong> care<br />

representing sufficient numbers <strong>of</strong> patients for statistical<br />

<strong>analysis</strong> showed that supportive measures alone resulted<br />

in high mortality comparable to historical data (.40%).<br />

The mortality rates <strong>of</strong> detoxication procedures alone<br />

were comparable to those <strong>of</strong> the nine combined<br />

chemotherapies suggesting a benefit due to amatoxin<br />

removal after initial absorption. Case data and numbers<br />

were insufficient to allow a comparison <strong>of</strong> the MR <strong>of</strong> the<br />

nine chemotherapies used with and without detoxication


Table 9<br />

Comparison <strong>of</strong> Mortality Rates Relative to the Different Therapies <strong>of</strong> the <strong>Amatoxin</strong>-<strong>Poisoning</strong>: (a) Including Liver Transplants (MRLTi) and (b) Excluding Liver<br />

Transplants MRLTe<br />

# Therapies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 741<br />

(a) Including liver transplants (MRLTi)<br />

1. BpThioca 16.9 * * * ** * * **<br />

2. BpwSilybTriPoly 15.4 * * ** ** * **<br />

3. BpSter 14.7 * ** * **<br />

4. Bp 11.6 **<br />

5. Detox alone * * 10.4 **<br />

6. BpantiOx * <strong>9.</strong>1 **<br />

7. NAC * * 6.7 **<br />

8. BpSilyb ** ** * 8.2 ** **<br />

<strong>9.</strong> BpSilybTriPoly * ** ** 7.3 **<br />

10. Silyb * * * 5.4 **<br />

11. Supportive measures alone ** ** ** ** ** ** ** ** ** ** 47.3 ** ** ** ** **<br />

12. Bp combinations with Silybin (8, 9) ** 7.9 **<br />

13. Combined nine chemotherapies (1–4, 6–10 above) ** 11.2<br />

14. Combined 10 specific therapies (1–10 above) ** 12.6<br />

15. Bp bi-chemotherapies without Silybin (1, 3, 6) ** ** 14.3<br />

16. Combined three worst chemotherapies (1–3) ** ** 15.8<br />

(b) Excluding liver transplants (MRLTe)<br />

1. BpThioca 16.9 ** * * ** * ** **<br />

2. BpwSilybTriPoly 14.8 * * ** ** ** **<br />

3. BpSter 14.7 ** ** ** **<br />

4. Bp 11.0 * **<br />

5. Detox alone ** * <strong>9.</strong>0 * * **<br />

6. BpantiOx * 8.2 **<br />

7. NAC * * 6.7 **<br />

8. BpSilyb ** ** ** * 6.0 ** **<br />

<strong>9.</strong> BpSilybTriPoly * ** ** 5.4 **<br />

10. Silyb ** ** ** * * 1.4 **<br />

11. Supportive measures alone ** ** ** ** ** ** ** ** ** ** 43.5 ** ** ** ** **<br />

12. Bp combinations with Silybin (8, 9) ** 5.8 **<br />

13. Combined nine chemotherapies (1–4, 6–10 above) ** 10.1<br />

14. Combined 10 specific therapies (1–10 above) ** 11.3<br />

15. Bp bi-chemotherapies without Silybin (1, 3, 6) ** ** 14.1<br />

16. Combined three worst chemotherapies (1–3) ** ** 15.5<br />

Significant comparisons <strong>of</strong> mortality rates (*: p # 0:05; **: p # 0:01Þ;1. 5 (MRLTi*, MRLTe**); 1 . 6 and 1 . 7 (MRLTi*, MRLTe*); 1 . 8 (MRLTi**, MRLTe**); 1 . 9 (MRLTi*,<br />

MRLTe*); 1 . 10 (MRLTi*, MRLTe**); 2 . 5 (MRLTi*, MRLTe*); 2 . 7 (MRLTi*, MRLTe*); 2 . 8 (MRLTi**, MRLTe**), 2 . 9 (MRLTi**, MRLTe**); 2 . 10 (MRLTi*,<br />

MRLTe**); 3 . 8 (MRLTi*, MRLTe**); 3 . 9 (MRLTi**, MRLTe**); 3 . 10 (MRLTi*, MRLTe**); 4 . 10 (MRLTe*); 5 . 8 and 5 . 10 (MRLTe*); 11 . 1 to 10 (MRLTi**,<br />

MRLTe**); 12 . 16 (MRLTi**, MRLTe**); 15 . 8 (MRLTi**, MRLTe**); 16 . 8 (MRLTi**, MRLTe**).


742<br />

procedures in order to assess a beneficial toxin<br />

elimination for each applied chemotherapy.<br />

A ranking <strong>of</strong> therapies was based on significant<br />

differences in effectiveness as measured by decreasing<br />

mortality rates (Fig. 1, Tables 8 and 9). The highest<br />

mortality/lowest efficacy was observed with combinations<br />

<strong>of</strong> benzylpenicillin with thioctic acid, steroid,<br />

and other drugs except silybin as bi-, tri-, and polychemotherapies.<br />

The lowest mortality rates were<br />

observed with silybin and NAC both administered as<br />

mono-chemotherapy, and silybin associations with<br />

benzylpenicillin as bi, tri-, and poly-chemotherapies.<br />

Since no significant difference between silybin singly<br />

and silybin/benzylpenicillin combinations was found,<br />

it appears that the flavonolignan complex is effective<br />

in reducing mortality and/or avoid LT whereas<br />

benzylpenicillin singly is ineffective. Similarly, NAC<br />

statistically appears to be a potentially more effective<br />

chemotherapy than the other drug options.<br />

Review <strong>of</strong> the modes <strong>of</strong> care reported for amatoxinintoxicated<br />

patients over the last <strong>20</strong> <strong>year</strong>s demonstrates<br />

wide variability in treatment and response to treatment.<br />

Of particular interest in the environment <strong>of</strong> evidencebased<br />

medicine is the prevalent use <strong>of</strong> a therapy,<br />

benzylpenicillin, which has little theoretical foundation<br />

and little evidence <strong>of</strong> efficacy when compared to<br />

treatment alternatives. It exemplifies the fallacy <strong>of</strong><br />

consensus judgments and recommendations based solely<br />

on widespread use <strong>of</strong> a treatment. These case analyses<br />

and literature review have a number <strong>of</strong> limitations due to<br />

the disparity in severity grades. However, our work<br />

suggests the most successful orientation for prospective<br />

clinical research and provides a basis for the discontinuation<br />

<strong>of</strong> the clearly less effective chemotherapies.<br />

Efficacy <strong>of</strong> several drugs is not supported in this review:<br />

the most widely used agent, benzylpenicllin, as well as<br />

thioctic acid and steroids; perhaps their use should be<br />

discontinued. <strong>Amatoxin</strong> poisoning cases whose treatment<br />

focuses on detoxication procedures, silybin, and<br />

NAC would be useful to confirm their relevance revealed<br />

by our statistical <strong>analysis</strong>. Future research should be<br />

directed towards the iridoid glycosides being potential<br />

agents to inhibit amatoxins and stimulate hepatocyte<br />

regeneration.<br />

ACKNOWLEDGMENTS<br />

The authors are grateful to J. ApSimon (Canada),<br />

S. Badalian (Armenia), R. Courtecuisse (France),<br />

J. Elguero (Spain), G. Eyssartier (France), E. Florac<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

(France), F. Fons (France), A. Fraiture (Belgium),<br />

J. Guillot (France), D. Guez (Japan), J. Guinberteau<br />

(France), G. Guzman (Mexico), M. Heil (Germany),<br />

G. Konska (Poland), M. J. Mauruc (France), J. Melot<br />

(Iceland), P. A. Moreau (France), and G. Redeuilh<br />

(France) for providing literature data.<br />

REFERENCES<br />

Enjalbert et al.<br />

1. De Haro, L.; Prost, N.; Perringue, C.; Arditti, J.; David,<br />

J.M.; Drouet, G.; Thomas, M.; Valli, M. Intoxications<br />

par Champignons: Expérience du Centre Anti-Poisons<br />

de Marseille en 1994 et 1998. Bull. Épidémiol.<br />

Hebdomadaire 1999, 30, 1–8.<br />

2. Jacobs, J.; VonBehren, J.; Kreutzer, R. Serious Mushroom<br />

<strong>Poisoning</strong>s in California Requiring Hospital<br />

Admission, 1990–1994. West. J. Med. 1996, 165,<br />

283–288.<br />

3. Litovitz, T.L.; Clark, L.R.; Soloway, R.A. 1993 Annual<br />

Report <strong>of</strong> the American Association <strong>of</strong> Poison Control<br />

Centers Toxic Exposure Surveillance System. Am.<br />

J. Emerg. Med. 1994, 12 (5), 546–584.<br />

4. Litovitz, T.L.; Felberg, L.; Soloway, R.A.; Ford, M.;<br />

Geller, R. 1994 Annual Report <strong>of</strong> the American Association<br />

<strong>of</strong> Poison Control Centers Toxic Exposure Surveillance<br />

System. Am. J. Emerg. Med. 1995, 13 (5), 551–597.<br />

5. Litovitz, T.L.; Felberg, L.; White, S.; Klein-Schwartz,<br />

W. 1995 Annual Report <strong>of</strong> the American Association <strong>of</strong><br />

Poison Control Centers Toxic Exposure Surveillance<br />

System. Am. J. Emerg. Med. 1996, 14 (5), 487–537.<br />

6. Litovitz, T.L.; Smilkstein, M.; Felberg, L.; Klein-<br />

Schwartz, W.; Berlin, R.; Morgan, J.L. 1996 Annual<br />

Report <strong>of</strong> the American Association <strong>of</strong> Poison Control<br />

Centers Toxic Exposure Surveillance System. Am.<br />

J. Emerg. Med. 1997, 15 (5), 447–500.<br />

7. Litovitz, T.L.; Klein-Schwartz, W.; Dyer, K.S.; Shannon,<br />

M.; Lee, S.; Powers, M. 1997 Annual Report <strong>of</strong> the<br />

American Association <strong>of</strong> Poison Control Centers Toxic<br />

Exposure Surveillance System. Am. J. Emerg. Med.<br />

1998, 16 (5), 443–497.<br />

8. Litovitz, T.L.; Klein-Schwartz, W.; Caravati, E.M.;<br />

Youniss, J.; Crouch, B.; Lee, S. 1998 Annual Report <strong>of</strong><br />

the American Association <strong>of</strong> Poison Control Centers<br />

Toxic Exposure Surveillance System. Am. J. Emerg.<br />

Med. 1999, 17 (5), 535–587.<br />

<strong>9.</strong> Litovitz, T.L.; Klein-Schwartz, W.; White, S.; Cobaugh,<br />

D.J.; Youniss, J.; Drab, A.; Benson, B.E. 1999 Annual<br />

Report <strong>of</strong> the American Association <strong>of</strong> Poison Control<br />

Centers Toxic Exposure Surveillance System. Am.<br />

J. Emerg. Med. <strong>20</strong>00, 18 (5), 517–574.<br />

10. Persson, H.E.; Sjöberg, G.K.; Haines, J.A.; Pronczuk de<br />

Carbino, J. <strong>Poisoning</strong> Severity Score. Grading <strong>of</strong> Acute<br />

<strong>Poisoning</strong>. Clin. Toxicol. 1998, 36 (3), <strong>20</strong>5–213.


MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 743<br />

11. Trestail, J.H. Mushroom <strong>Poisoning</strong> in the United<br />

States—An Analysis <strong>of</strong> 1989 United States Poison<br />

Center Data. Clin. Toxicol. 1991, 29 (4), 459–465.<br />

12. Bresinsky, A.; Besl, H. A Colour Atlas <strong>of</strong> Poisonous<br />

Fungi; Wolfe Publishing Ltd.: Stuttgart, Germany, 1990;<br />

295.<br />

13. Fanton, L.; Perrot, D.; Miras, A.; Achache, P.; Malicier,<br />

D. Intoxications par les Champignons. Rev. Prat. 1995,<br />

45, 1327–1332.<br />

14. Faulstich, H.; Zilker, T. <strong>Amatoxin</strong>s. In Handbook <strong>of</strong><br />

Mushroom <strong>Poisoning</strong>, Diagnosis and <strong>Treatment</strong>;<br />

Spoerke, D.G., Rumack, B.H., Eds.; CRC Press, Inc.:<br />

Boca Raton, FL, 1994; 233–248.<br />

15. Godfrank, L.R. Mushrooms: Toxic and Hallucinogenic.<br />

In Godfrank’s Toxicologic Emergencies; Godfrank,<br />

L.R., Ed.; Appleton & Lange: Norwalk, CT, 1998;<br />

1<strong>20</strong>5–121<strong>9.</strong><br />

16. Jaeger, A.; Vale, J.A. Intoxications Aiguës; Elsevier:<br />

Paris, 1999; 393–415.<br />

17. Kohn, R.; Motovska, Z. Otrava Hubami—Klasifikacia,<br />

Symptomatoza a Liecba (Mushroom <strong>Poisoning</strong>—<br />

Classification, Symptomatology and <strong>Treatment</strong>). Vnitr.<br />

Lék. 1997, 43 (4), 230–233.<br />

18. Lambert, H. Le Syndrome Phalloïdien. Les Intoxications<br />

Aiguës, Collection Anesthésie et Réanimation<br />

d’Aujourd’hui; Arnette: Paris, France, 1993; 495–517.<br />

1<strong>9.</strong> Lambert, H.; Larcan, A. Intoxications par les Champignons.<br />

Encyclopédie Médico-Chirurgicale; Elsevier<br />

Publishers/Editions Scientifiques et Médicales: Paris,<br />

France, 1989; Vol. 3, 1–14.<br />

<strong>20</strong>. Larcan, A. A Propos de la Néphropathie Phalloïdienne.<br />

Presse Méd. 1999, 28 (5), 231.<br />

21. Vetter, J. Toxins <strong>of</strong> Amanita phalloides (Review).<br />

Toxicon 1998, 36 (1), 13–24.<br />

22. Wiernikowski, A.; Sczepanek, M. Zatrucie Muchomoren<br />

Sromotnikowym—Rozpoznawanie, Klinika, Leczenie<br />

(Amanita phalloides <strong>Poisoning</strong>—Diagnosis, Clinical<br />

Course, <strong>Treatment</strong>). Przegl. Lék. 1999, 56 (6), 450–454.<br />

23. Zachoval, R.; Günther, C.; Scheurlen, C.; Klüppelberg,<br />

U.G.; Zilker, T.; Pape, G.R. Ein 27Jähriger Patient mit<br />

Wäßrigen Durchfällen, Ubelkeit und Erbrechen 10 h<br />

nach Genuß Eines Pilzgerichtes. Internist 1994, 35,<br />

385–391.<br />

24. Fineschi, V.; Di Paolo, M.; Centini, F. Histological<br />

Criteria for Diagnosis <strong>of</strong> Amanita phalloides <strong>Poisoning</strong>.<br />

J. Forensic Sci. 1996, 41 (2), 429–432.<br />

25. Ammirati, J.F.; Traquair, J.A.; Horgen, P.A. Poisonous<br />

Mushrooms <strong>of</strong> Canada Including Other Inedible Fungi;<br />

Fitzhenry & Whiteside: Markham, Canada, 1985; 396.<br />

26. Linc<strong>of</strong>f, G.H. National Audubon Society Field Guide to<br />

North American Mushrooms; Alfred A. Knopf: New<br />

York, 1998; 926.<br />

27. Enjalbert, F.; Cassanas, G.; Andary, C. Variation in<br />

Amounts <strong>of</strong> Main Phallotoxins in Amanita phalloides.<br />

Mycologia 1989, 81 (2), 266–271.<br />

28. Enjalbert, F.; Gallion, C.; Jehl, F.; Monteil, H.;<br />

Faulstich, H. Simultaneous Assay for <strong>Amatoxin</strong>s and<br />

Phallotoxins in Amanita phalloides Fr. by High-<br />

Performance Liquid Chromatography. J. Chromatogr.<br />

A 1992, 598, 227–236.<br />

2<strong>9.</strong> Enjalbert, F.; Gallion, C.; Jehl, F.; Monteil, H.;<br />

Faulstich, H. <strong>Amatoxin</strong>s and Phallotoxins in Amanita<br />

Species: High-Performance Liquid Chromatographic<br />

Determination. Mycologia 1993, 85 (4), 579–584.<br />

30. Wieland, T. The Toxic Peptides from Amanita<br />

Mushrooms. Int. J. Pept. Protein Res. 1983, 22,<br />

257–276.<br />

31. Wieland, T.; Faulstich, H. Peptide Toxins from Amanita.<br />

In Handbook <strong>of</strong> Natural Toxins; Keeler, R.F., Tu, A.T.,<br />

Eds.; Marcel Dekker, Inc.: New York, 1983; Vol. 1,<br />

585–635.<br />

32. Faulstich, H.; Wieland, T. New Aspects <strong>of</strong> Amanitin and<br />

Phalloidin <strong>Poisoning</strong>. In Natural Toxins II. Advances in<br />

Experimental Medicine and Biology; Singh, B.R., Tu,<br />

A.T., Eds.; Plenum Press: New York, 1996; 309–314.<br />

33. Wieland, T.; Faulstich, H. Fifty Years <strong>of</strong> Amanitin.<br />

Experientia 1991, 47, 1186–1193.<br />

34. Courtecuisse, R.; Duhem, B. Guide des Champignons de<br />

France et d’Europe; Delachaux et Niestlé: Lausanne,<br />

Switzerland, <strong>20</strong>00; 476.<br />

35. Logemann, H.; Argueta, J.; Guzman, G.; Montoya Bello,<br />

L.; Bandela Munoz, V.; Leon Chocooj, R. Evenamiento<br />

Mortal por Hongos en Guatemala. Rev. Mex. Micol.<br />

1987, 3, 211–216.<br />

36. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry: North<br />

American Mycological Association Report 1991.<br />

McIlvainea 1992, 10 (2), 51–5<strong>9.</strong><br />

37. Benjamin, D.R. Mushrooms Poisons and Panaceas;<br />

Freeman, W.H. and Company: New York, 1995; 422.<br />

38. Besl, H. <strong>Amatoxin</strong>s in Greenhouses, Galerina sulciceps,<br />

a Tropical Toxic Mushroom. Z. Mykol. 1981 (Received<br />

1982), 47 (2), 253–256.<br />

3<strong>9.</strong> Singer, R. The Agaricales in Modern Taxonomy; Koeltz<br />

Scientific Books: Koenigstein, Germany, 1986; 981.<br />

40. Muraoka, S.; Fukamachi, N.; Mizumoto, K.; Shinozawa,<br />

T. Detection and Identification <strong>of</strong> Amanitins in the<br />

Wood-Rotting Fungi Galerina fasciculata and Galerina<br />

helvoliceps. Appl. Environ. Microbiol. 1999, 65 (9),<br />

4<strong>20</strong>7–4210.<br />

41. Muraoka, S.; Shinozawa, T. Effective Production <strong>of</strong><br />

Amanitins by Two-Step Cultivation <strong>of</strong> the Basidiomycete,<br />

Galerina fasciculata GF-060. J. Biosci. Bioeng.<br />

<strong>20</strong>00, 89 (1), 73–76.<br />

42. Pond, S.M.; Olson, K.R.; Woo, O.F.; Osterloh, J.D.;<br />

Ward, R.E.; Kaufman, D.A.; Moody, R.R. <strong>Amatoxin</strong><br />

<strong>Poisoning</strong> in Northern California, 1982–1983. West.<br />

J. Med. 1986, 145 (2), <strong>20</strong>4–<strong>20</strong><strong>9.</strong><br />

43. Piqueras, J. Nuevas Aportaciones al Conocimiento de la<br />

Etiologia, Fisiopatologia, Clinica y Terapeutica de las<br />

Intoxicaciones por Hongos Macromicetos Hepatotoxicos


744<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

(Amanitas y Lepiotas). Tesis Doctoral, Universitat de<br />

Barcelona: Spain, 1988, 51<strong>9.</strong><br />

44. Klan, J. Prehleb hub Obsahujicich Amanitiny a<br />

Faloidiny (the Survey <strong>of</strong> Fungi Containing Amanitins<br />

and Phalloidins). Cas. Lék. Cesk. 1993, 132 (15),<br />

449–451.<br />

45. Esteve-Ravantos, F.; Altés, A. Tres Interesantes<br />

Lepiotas Toxicas en la Provincia de Madrid. Bol. Soc.<br />

Micol. Madrid 1990, 14, 161–168.<br />

46. Besl, H.; Mack, P.; Schmid-Heckel, H. Gifpilze in den<br />

Gattungen Galerina und Lepiota (New Toxic Fungi in<br />

the Genera Galerina and Lepiota ). Z. Mykol. 1984, 50<br />

(2), 183–192.<br />

47. Gérault, A. Les Champignons Supérieurs et Leurs<br />

Intoxications. Le Genre Lepiota (au sens Ancien<br />

Classique). Thèse d’Etat ès Sciences Pharmaceutiques,<br />

Université de Rennes: France, 1976, 302.<br />

48. Gérault, A.; Girre, L. Recherches Toxicologiques sur le<br />

Genre Lepiota Fries. C. R. Acad. Sci. Paris 1975, 280<br />

(25), 2841–2843.<br />

4<strong>9.</strong> Gérault, A.; Girre, L. Mise au Point sur les Intoxications<br />

par les Champignons Supérieurs. Bull. Soc. Mycol. Fr.<br />

1977, 93 (3), 373–405.<br />

50. Piqueras, J. Hepatotoxic Mushroom <strong>Poisoning</strong>: Diagnosis<br />

and Management. Mycopathologia 1989, 105,<br />

99–110.<br />

51. Piqueras, J. Terapeutica de la Intoxicacion por Amanita<br />

phalloides. Farm. Clin. 1992, 9 (3), 221–228.<br />

52. Brady, L.R.; Benedict, R.G.; Tyler, D.E.; Stuntz, D.E.;<br />

Malone, M.H. Identification <strong>of</strong> Conocybe filaris as a<br />

Toxic Basidiomycete. Lloydia 1975, 38, 172–173.<br />

53. Bertault, R. Amanites du Maroc. Bull. Soc. Mycol. Fr.<br />

1965, 81, 345–371.<br />

54. Bertault, R. Amanites du Maroc. Bull. Soc. Mycol. Fr.<br />

1980, 96, 273–284.<br />

55. Flegg, P.J. Mushroom <strong>Poisoning</strong>. Cent. Afr. J. Med.<br />

1981, 27 (7), 125–12<strong>9.</strong><br />

56. Reid, D.A.; Eicker, A. South African Fungi: The Genus<br />

Amanita. Mycol. Res. 1991, 95, 80–95.<br />

57. D’Agostino, D.E.; Garcia Roig, C.; Telenta, M.; Duca,<br />

P.; Steinberg, C.E.; de Santibanes, E. Liver Transplantation<br />

in Amanita phalloides Intoxication. Hepatology<br />

1998, 28, (2326) 744A.<br />

58. Villegas, M.; Cifuentes, J.; Aroche, R.M.; Fuentes, P.<br />

Primer Registro de Amanita phalloides en Mexico. Bol.<br />

Soc. Mex. Micol. 1982, 17, 140–146.<br />

5<strong>9.</strong> Gurevich, L.S.; Zhurkovitch, I.K. Toxins <strong>of</strong> Some<br />

Species <strong>of</strong> the Genus Amanita Pers. Mikol. Fitopatol.<br />

1995, 29, 41–50.<br />

60. Lim, J.G.; Kim, J.H.; Lee, S.I.; Kim, Y.S. Amanita<br />

virosa Induced Toxic Hepatitis: Report <strong>of</strong> Three Cases.<br />

Yonsei Med. J. <strong>20</strong>00, 41 (3), 416–421.<br />

61. Omidynia, E.; Rashidpourai, R.; Quaderi, M.T.; Ameri,<br />

E. Mycetismus in Hamadan <strong>of</strong> West Iran. Southeast<br />

Asian J. Trop. Med. Health 1997, 28, 438–43<strong>9.</strong><br />

Enjalbert et al.<br />

62. Oztekin-Mat, A. Les Intoxications par les Champignons<br />

en Turquie. Ann. Pharm. Fr. 1998, 56, 233–235.<br />

63. Seeger, R.; Stijve, T. Occurrence <strong>of</strong> Toxic Amanita<br />

Species. In <strong>Amatoxin</strong>, Toxins and <strong>Poisoning</strong>s; Faulstich,<br />

H., Kommerell, B., Wieland, T., Eds.; Lubrecht Cramer:<br />

New York, 1980; 3–17.<br />

64. Ying, J.; Mao, X.; Ma, Q.; Zong, Y.; Wen, H. Icones <strong>of</strong><br />

Medicinal Fungi from China; Science Press: Beijing,<br />

China, 1987; 575.<br />

65. Yin, W.; Yang, Z.R. A Clinical Analysis <strong>of</strong> Twelve<br />

Patients with Galerina autumnalis <strong>Poisoning</strong>. Chunghua<br />

Nei K’o Tsa Chih 1993, 32 (12), 810–812.<br />

66. Zu, Y. Acute Mushroom <strong>Poisoning</strong> with Amanita virosa.<br />

Chung-hua Yu Fang I Hsueh Tsa Chih 1987, 21 (6),<br />

335–337.<br />

67. Edward, J.N.; Henry, J.A. Medical Problems <strong>of</strong> Mushroom<br />

Ingestion. Mycologist 1989, 3 (1), 13–16.<br />

68. Pegler, D.N.; Watling, R. British Toxic Fungi. Bull. Br.<br />

Mycol. Soc. 1982, 16, 66–75.<br />

6<strong>9.</strong> Barbato, M.P. <strong>Poisoning</strong> from Accidental Ingestion <strong>of</strong><br />

Mushrooms. Med. J. Aust. 1993, 158, 842–847.<br />

70. Cole, F.M. Amanita phalloides in Victoria. Med. J. Aust.<br />

1993, 158 (12), 849–850.<br />

71. Trim, G.M.; Lepp, H.; Hall, M.J.; McKeown, R.V.;<br />

McCaughan, G.W.; Duggin, G.G.; Le Couteur, D.G.<br />

<strong>Poisoning</strong> by Amanita phalloides (“deathcap”) Mushrooms<br />

in the Australian Capital Territory. Med. J. Aust.<br />

1999, 171 (5), 247–24<strong>9.</strong><br />

72. Chaiear, K.; Limpaiboon, R.; Meechai, C.; Poovorawan,<br />

Y. Fatal Mushroom <strong>Poisoning</strong> Caused by Amanita<br />

virosa in Thailand. Southeast Asian J. Trop. Med. Public<br />

Health 1999, 30 (1), 157–160.<br />

73. Hanrahan, J.P.; Gordon, M.A. Mushroom <strong>Poisoning</strong>:<br />

Case Reports and a Review <strong>of</strong> Therapy. J. Am. Med.<br />

Assoc. 1984, 251 (8), 1057–1061.<br />

74. Olson, K.R.; Pond, S.M.; Sewards, J.; Healey, K.; Woo,<br />

F.; Becker, C.E. Amanita phalloides-Type Mushroom<br />

<strong>Poisoning</strong>. West. J. Med. 1982, 137 (4), 282–28<strong>9.</strong><br />

75. Bauchet, J.M. <strong>Poisoning</strong> Said to Be Due to Galerina<br />

unicolor. Bull. Br. Mycol. Soc. 1983, 17, 51.<br />

76. Furia, A.; Bernicchia, A.; Alberton, F. Intossicazione<br />

Parafalloidea da Lepiota brunneoincarnata. Micol. Ital.<br />

1982, 3, 29–33.<br />

77. Calonge, F.D.; Lopez-Herce, J.A. Tres Casos de<br />

Envenenamiento Grave en Madrid por Ingestion de<br />

Lepiota brunneo-incarnata Chodat & Martin (Three<br />

Cases <strong>of</strong> <strong>Poisoning</strong> by Lepiota brunneo-incarnata<br />

Chodat & Martin in Madrid). Bol. Soc. Micol. Madrid<br />

1987, 11 (2), 287–290.<br />

78. Gúzman, G. Un Caso Especial de Evenamiento Mortal<br />

Producido por Hongos en el Estado de Veracruz. Rev.<br />

Mex. Micol. 1987, 3, <strong>20</strong>3–<strong>20</strong><strong>9.</strong><br />

7<strong>9.</strong> McClain, J.L.; Hausse, D.W.; Clark, M.A. Amanita<br />

phalloides Mushroom <strong>Poisoning</strong>: A Cluster <strong>of</strong> Four<br />

Fatalities. J. Forensic Sci. 1989, 34, 83–87.


MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 745<br />

80. Boudjema, K.; Wolf, P.; Burtscher, A.; Juif, J.G.; Steib,<br />

A.; Ellero, B.; Jaeck, D.; Cinqualbre, J. Hépatite<br />

Fulminante par Intoxication Phalloïdienne. Une Indication<br />

d’Allotransplantation Hépatique. Presse Méd.<br />

1989, 18 (18), 937.<br />

81. Isiloglu, M.; Watling, R. <strong>Poisoning</strong> by Lepiota helveola<br />

Bres. in Southern Turkey. Edinb. J. Bot. 1991, 48 (1),<br />

91–100.<br />

82. Paydas, S.; Kocak, R.; Erturk, F.; Erken, E.; Zaksu, H.S.;<br />

Gurcay, A. <strong>Poisoning</strong> Due to <strong>Amatoxin</strong>-Containing<br />

Lepiota Species. Br. J. Clin. Pharmacol. 1990, 44 (11),<br />

450–453.<br />

83. Ronzoni, G.; Vesconi, S.; Radrizzani, D.; Corbetta, C.;<br />

Langer, M.; Iapichino, G. Guarigione Dopo Intossicazione<br />

Grave da Funghi Selvatici (Encefalopatia di IV<br />

Grado) con Sola Terapia Medica Intensiva e Senza<br />

Trapianto di Fegato Caso Clinico. Minerva Anestesiol.<br />

1990, 57, 383–387.<br />

84. Pérez-Moreno, J.; Pérez-Moreno, A.; Ferrara-Cerrato, R.<br />

Multiple Fatal Mycetism Caused by Amanita virosa in<br />

Mexico. Mycopathologia 1994, 125 (1), 3–5.<br />

85. Pérez-Moreno, J.; Ferrera-Cerrato, R. A Review <strong>of</strong><br />

Mushroom <strong>Poisoning</strong> in Mexico. Food Addit. Contam.<br />

1995, 12 (3), 355–360.<br />

86. Meunier, B.C.; Camus, C.M.; Houssin, D.P.; Messner,<br />

M.J.M.; Gérault, A.M.; Launois, B.G. Liver Transplantation<br />

After Severe <strong>Poisoning</strong> Due to <strong>Amatoxin</strong>-<br />

Containing Lepiota—Report <strong>of</strong> Three Cases. Clin.<br />

Toxicol. 1995, 33 (2), 165–171.<br />

87. Kern, C.; Zilker, T.; Van Clarman, M. Successful Liver-<br />

Transplantation in a Child After Amanita <strong>Poisoning</strong>.<br />

Congress <strong>of</strong> Anti-Poisons Centre, Istanbul, Turkey, May<br />

24–27, 1992; 37.<br />

88. Beckurts, K.T.E.; Hölscher, A.H.; Heidecke, C.D.;<br />

Zilker, T.R.; Natrath, W.; Siewert, J.R. Die Rolle der<br />

Lebertransplantation im Behandlungskonzept des Akuten<br />

Leberversagens nach Knollenblätterpilzvergiftung<br />

(The Place <strong>of</strong> Liver Transplantation in the <strong>Treatment</strong> <strong>of</strong><br />

Acute Liver Failure Caused by Amanita phalloides <strong>Poisoning</strong>).<br />

Dtsch. Med. Wochenschr. 1997, 122, 351–355.<br />

8<strong>9.</strong> O’Brien, B.L.; Khuu, L. A Fatal Sunday Brunch:<br />

Amanita Mushroom <strong>Poisoning</strong> in a Gulf Coast Family.<br />

Am. J. Gastroenterol. 1996, 91 (3), 581–583.<br />

90. Zevin, S.; Dempsey, D.; Olson, K. Amanita phalloides<br />

Mushroom <strong>Poisoning</strong>—Northern California, January<br />

1997. Morb. Mortal. Wkly Rep. 1997, 46 (22), 489–492.<br />

91. Skaare, V.K. Mushroom <strong>Poisoning</strong>: An Indication for<br />

Liver Transplantation. J. Transplant. Coord. 1997, 7 (3),<br />

141–143.<br />

92. Scocco, P.; Rupolo, G.; De Leo, D. Failed Suicide by<br />

Amanita phalloides (Mycetismus) and Subsequent Liver<br />

Transplant: Case Report. Arch. Suicide Res. 1998, 4,<br />

<strong>20</strong>1–<strong>20</strong>6.<br />

93. Cochran, K.W. 1999 Annual Report <strong>of</strong> the North<br />

American Mycological Association’s Mushroom<br />

<strong>Poisoning</strong> Case Registry. McIlvainea <strong>20</strong>00, 14 (2),<br />

34–40.<br />

94. Chiossi, M.; Di Pietro, P.; Marchi, A.; Messi, G.;<br />

Gallone, G.; Peisino, M.G. Mushroom <strong>Poisoning</strong> in<br />

Children. Vet. Hum. Toxicol. 1993, 35 (4), 331.<br />

95. Elonen, E.; Härkönen, M. Myrkkynääpikän (Galerina<br />

marginata ) Aiheuttama Myrkytys (<strong>Poisoning</strong> with<br />

Galerina marginata ). Duodecim 1978, 94, 1050–1053.<br />

96. Belliardo, F.; Massano, G.; Accomo, S. <strong>Amatoxin</strong>s<br />

Do Not Cross the Placental Barrier. Lancet 1983,<br />

1, 1381.<br />

97. Kendrick, B.; Shimizu, A. Mushroom <strong>Poisoning</strong>—<br />

Analysis <strong>of</strong> Two Cases and a Possible New <strong>Treatment</strong>,<br />

Plasmapheresis. Mycologia 1984, 76 (3), 448–453.<br />

98. Fort, J.; Rodriguez, J.A.; Cantarell, C.; Bartolomé, J.;<br />

Boveda, J.L.; Olmos, A.; Piera, L. Plasmaseparacion en<br />

la Intoxicacion por Amanita phalloides. Med. Clin.<br />

(Barc.) 1984, 82, 748–775.<br />

9<strong>9.</strong> Boron, P.; Prokopowicz, D.; Miegoc, H. Plazmafereza w<br />

Leczeniu Zatruc Grzybami (Plasmapheresis in the<br />

<strong>Treatment</strong> <strong>of</strong> <strong>Poisoning</strong> with Mushrooms). Pol. Tyg.<br />

Lék. 1987, XLII (39), 1215–121<strong>9.</strong><br />

100. DeSilvestro, G.; Marson, P.; Brandolese, R.; Pittoni, G.;<br />

Ongaro, G. A Single Institution’s Experience (1982–<br />

1999) with Plasma-Exchange Therapy in Patients with<br />

Fulminant Hepatic Failure. Int. J. Artif. Organs <strong>20</strong>00,<br />

23 (7), 454–461.<br />

101. Ohrn, M.; Jörgensen, B.; Gréen, K.; Karlson-Stiber, C.;<br />

Persson, H. <strong>Amatoxin</strong>analys vid Svampförgiftning<br />

(<strong>Amatoxin</strong> Analysis in Mushroom <strong>Poisoning</strong>). Laekartidningen<br />

1987, 84 (34), 2581–2583.<br />

102. Klein, A.S.; Hart, J.; Brems, J.J.; Goldstein, L.; Lewin,<br />

K.; Busuttil, R.W. Amanita <strong>Poisoning</strong>: <strong>Treatment</strong> and<br />

the Role <strong>of</strong> Liver Transplantation. Am. J. Med. 1989, 85,<br />

187–193.<br />

103. Pouyet, M.; Caillon, P.; Ducerf, C.; Berthaud, S.;<br />

Bouffard, Y.; Delafosse, B.; Thomasson, A.; Pignal, C.;<br />

Pulce, C. Transplantation Orthotopique du Foie pour<br />

Intoxication Grave par Amanite Phalloïde. Presse Méd.<br />

1991, <strong>20</strong> (41), <strong>20</strong>95–<strong>20</strong>98.<br />

104. Gazzero, R.C.; Goos, R.D. A Case <strong>of</strong> Mushroom<br />

<strong>Poisoning</strong> Involving Amanita virosa. McIlvainea 1991,<br />

10 (1), 45–46.<br />

105. Pelclova, D.; Rakovcova, H. Intoxikace Houbou<br />

Amanita phalloides v Dotazech Toxikologickeho<br />

Informacniho Strediska v Praze (Mushroom Amanita<br />

phalloides in the Inquiries <strong>of</strong> the Poison Information<br />

Centre). Cas. Lék. Cesk. 1993, 132, 470–472.<br />

106. Doepel, M.; Isoniemi, H.; Salmela, K.; Penttilä, K.;<br />

Höckerstedt, K. Liver Transplantation in a Patient with<br />

Amanita <strong>Poisoning</strong>. Transplant. Proc. 1994, 26 (3),<br />

1801–1802.<br />

107. Karakullukçu, F.; Besler, M.; Yurdun, T.; Sifoglu, Z.;<br />

Yuksel, K.; Hacikaptan, E.; Onsun, K.; Karakullukçu,<br />

B. Hemoperfusion Is Life Saving in Amanita phalloides


746<br />

Intoxication. XXXIIIrd Congress <strong>of</strong> EDTA, Amsterdam,<br />

Holland, 1996; 316.<br />

108. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry:<br />

NAMA Report 1995. McIlvainea 1996, 12 (2), 98–104.<br />

10<strong>9.</strong> Yamada, E.G.; Mohle-Boetani, J.; Olson, K.R.; Werner,<br />

S.B. Mushroom <strong>Poisoning</strong> Due to <strong>Amatoxin</strong>. West.<br />

J. Med. 1998, 169, 380–384.<br />

110. Langer, M.; Gridelli, B.; Piccolo, G.; Markovic, S.;<br />

Quarenghi, E.; Gatti, S.; Ghio, L.; Ginevri, F. A Liver-<br />

Transplant Candidate (Fulminant Hepatic Failure from<br />

Amanita phalloides <strong>Poisoning</strong>) as a Multiorgan Donor.<br />

Transplant. Proc. 1997, 29, 3343–3344.<br />

111. Splendiani, G.; Zazzaro, D.; Di Pietrantonio, P.D.;<br />

Delfino, L. Continuous Renal Replacement Therapy and<br />

Charcoal Plasmaperfusion in <strong>Treatment</strong> <strong>of</strong> Amanita<br />

Mushroom <strong>Poisoning</strong>. Artif. Organs <strong>20</strong>00, 24 (4),<br />

305–308.<br />

112. Pomerance, H.H.; Barness, E.G.; Kobli-Kumar, M.;<br />

Arnold, S.R.; Steigelfest, J. A 15-Year-Old Boy with<br />

Fulminant Hepatic Failure. J. Pediatr. <strong>20</strong>00, 137 (1),<br />

114–118.<br />

113. Jaros, F. Incidence <strong>of</strong> Fungal Intoxications Including<br />

Amanita phalloides in Last Four Decades in the District<br />

<strong>of</strong> Trencia in Slovakia. Ceska Mykol. 1992 (Received<br />

1993), 46 (3–4), 256–262.<br />

114. Jaros, F.; Simurka, P.; Ehsanova, M. Incidencia, Sucasna<br />

Liecba a Prognoza Otrav Hubami u Deti a Dospelych<br />

(Incidence, Contemporary <strong>Treatment</strong> and Prognosis <strong>of</strong><br />

Mushroom <strong>Poisoning</strong> in Children and Adults). Cs.<br />

Pediatr. 1998, 53 (2), 90–93.<br />

115. Cosme Jimenez, A.; Zabaleta Arrizabalaga, S.; Izaguirre<br />

Boneta, A.; Diago Ferrero, A.; Alzate Saez de Heredia,<br />

L.F.; Orive Cura, V.; Arenas Mirave, J.I. Intoxication no<br />

Mortal por Amanita phalloides. A Proposito de dos<br />

Casos. Rev. Clin. Esp. 1983, 171 (4), 261–264.<br />

116. Montanini, S.; Sinardi, D.; Pratico, C.; Sinardi, A.U.;<br />

Trimarchi, G. Use <strong>of</strong> Acetyl-Cysteine as the Life-Saving<br />

Antidote in Amanita phalloides (Death Cap) <strong>Poisoning</strong>.<br />

Case Report on 11 Patients. Arzneim.-Forsch. 1999,<br />

49 (12), 1044–1047.<br />

117. Kacic, M.; Dujsin, M.; Puretic, Z.; Slavicek, J.<br />

Micetizam u Djece-u Povodu Jedne Epidemije Otrovanja<br />

(Mycetismus in Children, with Special Reference<br />

to One Outbreak <strong>of</strong> Mushroom <strong>Poisoning</strong>). Lijec. Vjesn.<br />

1990, 112 (11–12), 369–373.<br />

118. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry:<br />

NAMA Report 1994. McIlvainea 1995, 12 (1), 68–73.<br />

11<strong>9.</strong> Rosenthal, P.; Roberts, J.P.; Ascher, N.L.; Edmond, J.C.<br />

Auxiliary Liver Transplant in Fulminant Failure.<br />

Pediatrics 1997, 100 (2), 100–111.<br />

1<strong>20</strong>. Rosenthal, P.R. Auxiliary Liver Transplantation for<br />

Toxic Mushroom <strong>Poisoning</strong>. J. Pediatr. <strong>20</strong>01, 138 (3),<br />

44<strong>9.</strong><br />

121. Beaudreuil, S.; Sharobeem, R.; Maître, F.; Karsenti, D.;<br />

Crezard, O.; Pierre, D. Toxicité Rénale de L’amanite<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

phalloïde. Une Observation avec Ponction Biopsie<br />

Rénale. Presse Méd. 1998, 27 (28), 1434.<br />

122. Cochran, K.W. 1998 Annual Report <strong>of</strong> the North<br />

American Mycological Association’s Mushroom <strong>Poisoning</strong><br />

Case Registry. McIlvainea 1999, 14 (1), 93–98.<br />

123. Gimson, A.E.S.; Braude, S.; Mellon, P.J.; Canalese, J.<br />

Earlier Charcoal Haemoperfusion in Fulminant Hepatic<br />

Failure. Lancet 1982, 681–683.<br />

124. Horn, K.D.; Wax, P.; Schneider, S.M.; Martin, T.G.;<br />

Nine, J.S.; Moraca, M.A.; Virji, M.A.; Aronica, P.A.;<br />

Rao, K.N. Biomarkers <strong>of</strong> Liver Regeneration Allow<br />

Early Prediction <strong>of</strong> Hepatic Recovery After Acute<br />

Necrosis. Am. J. Clin. Pathol. 1999, 112, 351–357.<br />

125. Butera, R.; Locatelli, C.; Maccarini, D.; Candura, S.M.;<br />

Manzo, L. Emploi de la N-Acetylcystéine dans<br />

L’intoxication par Amanita phalloides: Résultats Cliniques.<br />

Résumés des Communications. XXXIème Congrès<br />

de la Société de Toxicologie Clinique, Nancy,<br />

France, Sept 16–17, 1993; 2<strong>9.</strong><br />

126. Dolfi, F.; Gonnella, R. Intossicazione Acuta da Amanita<br />

phalloide nel Secondo Trimestre di Gravidenza. Minerva<br />

Anestesiol. 1994, 60, 153–154.<br />

127. Hruby, K. Knollenblätterpilzvergiftung. Intensivmedizin<br />

1987, 24, 269–274.<br />

128. Hruby, K. <strong>Treatment</strong> <strong>of</strong> Death Cap Fungus with<br />

Silibinin. 10th Congress <strong>of</strong> the International Society<br />

for Human and Animal Mycology, Barcelona, Spain,<br />

Jun 1988; 361–363.<br />

12<strong>9.</strong> Plackova, S.; Caganova, B. Acute Intoxications by<br />

Mushrooms and Plants in Slovakia. Clin. Toxicol. 1998,<br />

36, 452–453.<br />

130. Zilker, T.R.; Felgenhauer, N.J.; Michael, H.; Strange-<br />

Hesse, A. Grading <strong>of</strong> Severity and Therapy <strong>of</strong> 154 Cases<br />

<strong>of</strong> Amanita <strong>Poisoning</strong>. Vet. Hum. Toxicol. 1993, 35 (4),<br />

331.<br />

131. Russo, G.E.; Giusti, S.; Maurici, M.; Bosco, M.;<br />

Vitaliano, E.; Caramiello, M.S.; Bauco, B.; De Marco,<br />

C.M.; Marigliano, V. Plasmapheresi e Avvelenamento<br />

da Funghi: Presentazione di un Caso di Intossicazione da<br />

Amanita phalloides. Clin. Ter. 1997, 148 (5–6),<br />

277–280.<br />

132. Plotzker, R.; Jensen, D.M.; Payne, J.A. Case Report<br />

Amanita virosa Acute Hepatic Necrosis: <strong>Treatment</strong><br />

with Thioctic Acid. Am. J. Med. Sci. 1982, 283 (2),<br />

79–81.<br />

133. Bektas, H.; Schlitt, H.J.; Böker, K.; Brunkhorst, R.;<br />

Oldhafer, K.J.; Pichlmayr, R. Indikationsstellung zur<br />

Lebertransplantation bei Schwerer Knollenblätterpilzvergiftung<br />

(Indication for Liver Transplantation in<br />

Severe Amanita phalloides Mushroom <strong>Poisoning</strong>).<br />

Chirurg 1996, 67, 996–1001.<br />

134. Pehlivanoglu, E.; Lawrence, R.A.; Canpolat, C. <strong>Treatment</strong><br />

<strong>of</strong> Amanita phalloides Intoxication. A Report <strong>of</strong> 3<br />

Cases and Review <strong>of</strong> the Literature. Int. Pediatr. 1991, 6<br />

(4), 366–370.


135. Aji, D.Y.; Caliskan, S.; Nayir, A.; Mat, A.; Can, B.;<br />

Yasar, Z.; Ozsahin, H.; Cullu, F.; Sever, L. Haemoperfusion<br />

in Amanita phalloides <strong>Poisoning</strong>. J. Trop. Pediatr.<br />

1995, 41, 371–374.<br />

136. Favarel-Garrigues, J.C.; Saric, J.; Janvier, F.; Wickers,<br />

F.; Masson, B.; Winnock, S.; Couzigou, P.; Lugrin, D.;<br />

Penouil, F.; De Mascarel, A. Intoxication Phalloïdienne<br />

Grave—Transplantation Hépatique: Un Recours Possible<br />

(à Propos d’une Observation). Soc. Fr. Toxicol.<br />

1988, 8, 62.<br />

137. Rangé Grasland, L. Intoxication Volontaire par L’amanite<br />

phalloïde (à Propos d’un Cas). Thèse de Médecine,<br />

Université de Rennes 1: France, 1986, 96.<br />

138. Pescador Guiral, C. Intoxications Phalloïdiennes: À<br />

Propos de 29 Cas Recensés par le Centre Anti-Poisons<br />

de Toulouse Entre 1983 et 1994. Propositions Thérapeutiques.<br />

Thèse de Médecine, Université de Toulouse<br />

III: France, 1995, 17<strong>9.</strong><br />

13<strong>9.</strong> Cappell, M.S.; Hassan, T. Gastrointestinal and Hepatic<br />

Effects <strong>of</strong> Amanita phalloides Ingestion. J. Clin.<br />

Gastroenterol. 1992, 15 (3), 225–228.<br />

140. Feinfeld, D.A.; M<strong>of</strong>enson, H.C.; Caraccio, T.; Kee, M.<br />

<strong>Poisoning</strong> by <strong>Amatoxin</strong>-Containing Mushrooms in<br />

Suburban New York—Report <strong>of</strong> Four Cases. Clin.<br />

Toxicol. 1994, 32 (6), 715–721.<br />

141. Mullins, M.E.; Horowitz, B.Z. The Futility <strong>of</strong> Hemoperfusion<br />

and Hemodialysis in Amanita phalloides<br />

<strong>Poisoning</strong>. Vet. Hum. Toxicol. <strong>20</strong>00, 42 (2), 90–91.<br />

142. Saltik, I.N.; Soysal, A.; Sarikayalar, F.; Topalgu, R.;<br />

Gurakan, F. Amanita <strong>Poisoning</strong> in a Child Treated with<br />

Plasma Exchange. Indian Pediatr. <strong>20</strong>00, 37, 1028–102<strong>9.</strong><br />

143. Locatelli, C.; Maccarini, D.; Ferruzi, M.; Olibet, G.;<br />

Ruggerone, M.L. Intossicazioni Acute da Amanita phalloides:<br />

Proposta di Terapia con N-Acetilcisteina. Ann.<br />

Mus. Civ. Rovereto 1989, 4 (1988, Suppl.), 211–212.<br />

144. Locatelli, C.; Travaglia, A.; Sala, G.; Maccarini, D.;<br />

Ruggerone, M.L. Ruolo Dell’ N-Acetilcisteinia e Della<br />

Diuresi Forzata nel Trattamento Dell’intossicazione<br />

Falloidea: Casistica Clinica. Minerva Anestesiol. 1990,<br />

56, 1361–1363.<br />

145. Locatelli, C.; Maccarini, D.; Travaglia, A.; Manzo, L.<br />

Prolonged High Dose N-Acetylcysteine <strong>Treatment</strong> <strong>of</strong><br />

Amanita phalloides and Chlorinated Hydrocarbon<br />

<strong>Poisoning</strong>. Pharmacol. Res. 1992, 26, <strong>20</strong>1.<br />

146. Gayol, S.; Tournoud, C.; Flesch, F.; Berton, C.;<br />

Rusterholtz, T.; Raguin, O.; Liegeon, M.N.; Sauder,<br />

P.; Jaeger, A. <strong>Amatoxin</strong> <strong>Poisoning</strong> Due to Lepiota<br />

brunneoincarnata. Congrès Européen de Toxicologie,<br />

Marseille, France, Jun 4–7, 1966; 14.<br />

147. Pertile, N.; Galliani, E.; Vergerio, A.; Turrin, A.; Caddia,<br />

V. Sindrome Falloidea-Descrizione di un Caso in Una<br />

Bambina di due Anni. Ped. Med. Chr. (Med. Surg. Ped.)<br />

1990, 12, 411–414.<br />

148. Benvenuto, V. Intoxication Phalloïdienne: Aspects<br />

Botanique, Toxicologique, Clinique, Thérapeutique et<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 747<br />

Préventif. Thèse de Médecine, Université de Saint<br />

Etienne: France, 1989, 172.<br />

14<strong>9.</strong> Sabeel, A.I.; Kurkus, J.; Lindholm, T. Intensive<br />

Hemodialysis and Hemoperfusion <strong>Treatment</strong> <strong>of</strong> Amanita<br />

Mushroom <strong>Poisoning</strong>. Mycopathologia 1995, 131,<br />

107–114.<br />

150. Daya, M.R.; Norton, R.L.; Fields, R.D.; Kao, R.; Lake,<br />

J.R.; Ascher, N.L.; Pinson, C.W.; Benner, K.G.; Keefe,<br />

E.B. Liver Transplantation in Amanita phalloides<br />

<strong>Poisoning</strong>. Vet. Hum. Toxicol. 1989, 31 (4), 360.<br />

151. Pinson, C.W.; Daya, M.R.; Benner, K.G.; Norton, R.L.;<br />

Deveney, K.E.; Ascher, N.L.; Roberts, J.P.; Lake, J.R.;<br />

Kurkchubasche, A.G.; Ragsdale, J.W.; Alexander, J.P.;<br />

Keefe, E.B. Liver Transplantation for Severe Amanita<br />

phalloides Mushroom <strong>Poisoning</strong>. Am. J. Surg. 1990,<br />

159, 493–49<strong>9.</strong><br />

152. Iivanainen, A.; Valtonen Ja Pertti, M.; Pentikäinen, J.<br />

Sienimyrkytys—Syksyn Sairaus (Mushroom <strong>Poisoning</strong>—A<br />

Disease <strong>of</strong> Autumn). Duodecim 1989, 105 (15),<br />

1313–1317.<br />

153. Madsen, S.; Jenssen, K.M. Forgiftning Med Hvit<br />

Fluesopp (Amanita virosa )—Symptomer, Diagnose og<br />

Behandling. Tidsskr. Nor. Laegeforen. 1990, 110 (14),<br />

1828–182<strong>9.</strong><br />

154. Schiodt, F.V.; Ott, P.; Bondesen, S. Forgiftning Med<br />

Gron og Hvid Fluesvamp pä en Hepatologisk Specialafdeling,<br />

1989–1994 (<strong>Poisoning</strong> with Amanita phalloides<br />

and Amanita virosa Treated at a Department <strong>of</strong><br />

Hepatology, 1989–1994). Ugeskr. Laeg. 1995, 157 (31),<br />

4350–4354.<br />

155. Nieter, B.; Frille, J. Plasmaaustausch bei Knollenblätterpilzvergiftung<br />

(Plasma Exchange in Amanita phalloides<br />

Mushroom <strong>Poisoning</strong>—A Case Report). Nieren-Hochdruckkr.<br />

1992, 21 (1), 8–10.<br />

156. Scheurlen, C.; Spannbrucker, N.; Spengler, U.;<br />

Zachoval, R.; Schulte-Witte, H.; Brensing, K.A.<br />

Amanita phalloides Intoxications in a Family <strong>of</strong> Russian<br />

Immigrants. Case Reports and Review <strong>of</strong> the Literature<br />

with a Focus on Orthotopic Liver Transplantation.<br />

Z. Gastroenterol. 1994, 32, 399–404.<br />

157. Rambousek, V.; Janda, J.; Sikut, M. Severe Amanita<br />

phalloides <strong>Poisoning</strong> in a 7-Year-Old Girl. Cesk.<br />

Pediatr. 1993, 48 (6), 332–333.<br />

158. Christen, Y.; Minazio, P.; de Moerloose, P. Monitoring<br />

<strong>of</strong> Haemostatic Parameters in Five Cases <strong>of</strong> Amanita<br />

phalloides <strong>Poisoning</strong>. Blood Coagul. Fibrinolysis 1993,<br />

4, 627–630.<br />

15<strong>9.</strong> Serné, E.H.; Toorians, A.W.F.T.; Gietema, J.A.;<br />

Bronsveld, W.; Haagsma, E.B.; Mulder, P.O.M.<br />

Amanita phalloides, a Potentially Lethal Mushrooms:<br />

Its Clinical Presentation and Therapeutic Options. Neth.<br />

J. Med. 1996, 49 (1), 19–23.<br />

160. Jaros, F.; Kascak, M. Incidencia a Sucasna Liecba<br />

Cytotoxickych Cyclopeptidovych (Faloidnych) Otrav u<br />

Gravidnych Zien (Incidence and Contemporary Treat-


748<br />

ment <strong>of</strong> Cytotoxic Cyclopeptide (Phalloid) Intoxications<br />

in Pregnant Women). Vnitr. Lék. 1996, 42 (6), 414–417.<br />

161. Carducci, R.; Armellino, M.F.; Volpe, C.; Basile, G.;<br />

Caso, N.; Apicella, A.; Basile, V. Silibinina e<br />

Intossicazione Acuta da Amanita phalloides. Minerva<br />

Anestesiol. 1996, 62 (5), 187–193.<br />

162. Alves, A.; Ferreira, M.G.; Paulo, J.; França, A.;<br />

Carvalho, A. Mushroom <strong>Poisoning</strong> with Amanita<br />

phalloides. Eur. J. Int. Med. <strong>20</strong>01, 12, 64–66.<br />

163. Marugg, D.; Reutter, F.W. Die Amanita phalloides-<br />

Intoxication Moderne Therapeutische Massnahmen und<br />

Klinischer Verlauf (Amanita phalloides <strong>Poisoning</strong>—<br />

Modern Therapeutic Procedures and Clinical Course).<br />

Schweiz. Rundsch. Med./Prax. 1985, 74 (37), 972–982.<br />

164. H<strong>of</strong>er, J.F.; Egermann, G.; Mach, K.; Sommer, K.<br />

Therapie der Knollenblät-Terpilzergiftung mit Silibinin<br />

in Kombination mit Penicillin und Cortison. Wien. Klin.<br />

Wochenschr. 1983, 95 (7), 240–243.<br />

165. Hallas, J.; Jensen, K. Forgiftning Med Gron Fluesvamp.<br />

Ugeskr. Laeg. 1988, 150 (16), 975–978.<br />

166. Molling, J.; Pohle, W.; Klein, H.; Welte, T. Stellenwert<br />

Therapeutischer Maßnahmen bei Vergiftung mit dem<br />

Grünen Knollenblätterpilz (The Different Stages in the<br />

<strong>Treatment</strong> <strong>of</strong> Amanita phalloides <strong>Poisoning</strong>). Intensivmedizin<br />

1995, 32 (1), 37–42.<br />

167. Homann, J.; Rawer, P.; Bleyl, H.; Matthes, K.J.;<br />

Heinrich, D. Early Detection <strong>of</strong> <strong>Amatoxin</strong>s in Human<br />

Mushroom <strong>Poisoning</strong>. Arch. Toxicol. 1986, 59,<br />

190–191.<br />

168. Bourgeois, F.; Bourgeois, N.; Gelin, M.; Van de Stadt,<br />

J.; Doutrelepont, J.M.; Adler, M. Hépatite Aiguë et<br />

Intoxication à L’amanite Phalloïde. Acta Gastroenterol.<br />

Belg. 1992, LV, 358–363.<br />

16<strong>9.</strong> Soyez, C.; Autret, E.; Laugier, J.; Broué P.; Crèche,<br />

J. Intoxication Familiale par Lepiota helveola. Résumés<br />

des Communications. XXXIème Congrès de la Société<br />

de Toxicologie Clinique, Nancy, France, Sept 16–17,<br />

1993; 28.<br />

170. Jankowska, I.; Malenta, G.; Rysko, J.; Socha, J.;<br />

Wozniewicz, M. Analiza Kliniczno–Morfologiczna<br />

Dzieci Zmarlych z Powodu Zatrucia Muchomorem<br />

Sromotnikowym (The Clinical–Morphological Analysis<br />

<strong>of</strong> Children Dying <strong>of</strong> Intoxication with Amanita<br />

phalloides ). Wiad. Lék. 1992, XLV, 21–22.<br />

171. Ryzko, J.; Jankowska, I.; Socha, J. Ostra Nierwydolnosci<br />

Watroby po Zatruciu Muchomorem Sromotnikowym<br />

(Acute Hepatic Liver Failure After <strong>Poisoning</strong> with<br />

Amanita phalloides). Wiad. Lék. 1987, 40 (21),<br />

1453–1458.<br />

172. Socha, J. Mushroom <strong>Poisoning</strong> in Children. 10th<br />

International Congress <strong>of</strong> the Society for Human and<br />

Animal Mycology, Barcelona, Spain, June, 1988;<br />

356–360.<br />

173. Pach, J.; Zajac, J.J.; Chrostek-Maj, J.; Wiernikowski, A.<br />

Porownanie Skutecznosci Rosnych Modeli Postepowa-<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

nia Leczniczego w Ostrym Zatruciu Muchomorem<br />

Sromotnikowym (Comparison <strong>of</strong> the Effectiveness <strong>of</strong><br />

Various Models <strong>of</strong> Therapeutic Man Amanita <strong>Poisoning</strong>).<br />

Pol. Tyg. Lék. 1987, XLII (11), 322–324.<br />

174. Ponikvar, R.; Drinovec, J.; Kandus, A.; Varl, J.; Gucek,<br />

A.; Malovrh, M. Plasma Exchange in Management <strong>of</strong><br />

Severe Acute <strong>Poisoning</strong> with Amanita phalloides. Apher<br />

1990, 327–32<strong>9.</strong><br />

175. Jankowska, I.; Grenda, R.; Rysko, J.; Litwin, M.;<br />

Prokurat, S.; Rychlik, G.; Smirska, E.; Kaliszan, A.;<br />

Socha, J. Ocena Przydatnosci Plazmaferezy w Leczeniu<br />

Zatruc Muchomorem Sromotnikowym (Evaluation de la<br />

Plasmaphérèse dans le Traitement de l’intoxication par<br />

Amanita phalloides ). Pol. Tyg. Lék. 1993, XLVII<br />

(18–19), 427–42<strong>9.</strong><br />

176. Bartoloni St Omer, F.; Giannini, A.; Botti, P.; Caramelli,<br />

L.; Ledda, F.; Peruzzi, S.; Zorn, M. Amanita <strong>Poisoning</strong>:<br />

A Clinical–Histopathological Study <strong>of</strong> 64 Cases <strong>of</strong><br />

Intoxication. Hepatogastroenterology 1985, 32,<br />

229–231.<br />

177. Fantozzi, R.; Ledda, F.; Caramelli, L.; Moroni, F.;<br />

Blandina, P.; Masini, E.; Botti, P.; Peruzzi, S.; Zorn, M.;<br />

Mannaioni, P.F. Clinical Findings and Follow-Up<br />

Evaluation <strong>of</strong> an Outbreak <strong>of</strong> Mushroom <strong>Poisoning</strong>—<br />

Survey <strong>of</strong> Amanita phalloides <strong>Poisoning</strong>. Klin.<br />

Wochenschr. 1986, 64, 38–43.<br />

178. Piering, W.F.; Bratanow, N. Role <strong>of</strong> the Clinical<br />

Laboratory in Guiding <strong>Treatment</strong> <strong>of</strong> Amanita virosa<br />

Mushroom <strong>Poisoning</strong>: Report <strong>of</strong> Two Cases. Clin.<br />

Chem. 1990, 36 (3), 571–574.<br />

17<strong>9.</strong> Iliev, Y.; Andonova, S.; Akabaliev, V. Our Experience<br />

in the <strong>Treatment</strong> <strong>of</strong> Acute Amanita phalloides <strong>Poisoning</strong>.<br />

Folia Med. 1999, XLI (4), 30–37.<br />

180. Mydlik, M.; Derzsiova, K.; Mizla, P.; Beno, P. Pouzitie<br />

Hemoperfuzie pri Otrave Hubami. Klinicky Rozbor 58<br />

Chorych (Use <strong>of</strong> Haemoperfusion in Mushroom<br />

<strong>Poisoning</strong>. Clinical Analysis <strong>of</strong> 58 Patients). Cas. Lék.<br />

Cesk. 1993, 132 (15), 464–466.<br />

181. Buffoni, L.; Chiossi, M.; De Santis, L.; Galletti, A.;<br />

Lattere, M.; Pesce, F.; Reboa, E.; Renna, S.; Rosati, U.;<br />

Tarateta, A.; Tasso, L. l’Avvelenamento nell’Infanzia da<br />

Amanita velenosa “Mortale”. Minerva Pediatr. 1986, 38,<br />

1155–117<strong>9.</strong><br />

182. Sanz, P.; Reig, R.; Borras, L.; Martinez, J.; Manez, R.;<br />

Corbella, J. Disseminated Intravascular Coagulation and<br />

Mesenteric Venous Thrombosis in Fatal Amanita<br />

<strong>Poisoning</strong>. Hum. Toxicol. 1988, 7, 199–<strong>20</strong>1.<br />

183. Sanz, P.; Reig, R.; Piqueras, J.; Marti, G.; Corbella, J.<br />

Fatal Mushroom <strong>Poisoning</strong> in Barcelona, 1986–1988.<br />

Mycopathologia 1989, 108, <strong>20</strong>7–<strong>20</strong><strong>9.</strong><br />

184. Sese Torres, J.; Piqueras Carrasco, J.; Morlans Molina,<br />

G. Intoxicacion por Amanita phalloides: Diagnostico<br />

por Radioinmunoanalisis y Tratamiento con Diuresis<br />

Forzada (<strong>Poisoning</strong> with Amanita phalloides.<br />

Diagnosis by Radioimmunoassay and <strong>Treatment</strong>


with Forced Diuresis). Med. Clin. 1985, 84 (16),<br />

660–662.<br />

185. Vesconi, S.; Langer, M.; Iapichino, G.; Constantino, D.;<br />

Busi, C.; Fiume, L. Therapy <strong>of</strong> Cytotoxic Mushroom<br />

Intoxication. Crit. Care Med. 1985, 13, 402–406.<br />

186. Capellaro, L.; Lupo, F.; Tiboldo, F.; Belotti, M.T.;<br />

Spagarino, E. Esperienza Riguardo All’uso Della<br />

Plasmaferesi in Patologie di Interesse Rianimatorio.<br />

Minerva Med. 1987, 78, 1565–1570.<br />

187. Lopez, A.; Jerez, V.; Rebollo, J.; Lombardo, A.G.; Julia,<br />

J.A. Fulminant Hepatitis and Liver Transplantation.<br />

Ann. Intern. Med. 1988, 108, 76<strong>9.</strong><br />

188. Ramirez, P.; Parrilla, P.; Bueno, F.S.; Robles, R.; Pons,<br />

J.A.; Bixquert, V.; Nicolas, S.; Nunez, R.; Alegria, M.S.;<br />

Miras, M.; Rodriguez, J.M. Fulminant Hepatic Failure<br />

After Lepiota Mushroom <strong>Poisoning</strong>. J. Hematol. 1993,<br />

19, 51–54.<br />

18<strong>9.</strong> Castiella, A.; Lopez Dominguez, L.; Txoperena, G.;<br />

Cosme, A.; Aramburu, V.; Arenas, J.I. Indication de la<br />

Transplantation du Foie en Cas d’Intoxication par<br />

Amanite Phalloïde. Presse Méd. 1993, 22 (4), 177.<br />

190. Van Cauter, J.; Quarre, J.P.; Demay, M.; Pollart, C.;<br />

Ligny, C. Intoxication Familiale par Amanite Phalloïde.<br />

Acta Gastroenterol. Belg. 1984, XLVII, 47–54.<br />

191. Boyer, J.C.; Hernandez, F.; Estorc, J.; De La Coussaye,<br />

J.E.; Bali, J.P. Management <strong>of</strong> Maternal Amanita<br />

phalloides <strong>Poisoning</strong> During the First Trimester <strong>of</strong><br />

Pregnancy: A Case Report and Review <strong>of</strong> the Literature.<br />

Clin. Chem. <strong>20</strong>01, 47 (5), 971–974.<br />

192. Perrier, A.L. Syndrome Phalloïdien: à Propos d’une<br />

Intoxication chez la Femme Enceinte à Treize Semaines<br />

d’Aménorrhée. Thèse de Médecine, Université Montpellier<br />

I: France, 1998, 116.<br />

193. Woodle, E.S.; Moody, R.R.; Cox, K.L.; Cannon, R.A.;<br />

Ward, R.E. Orthotopic Liver Transplantation in a Patient<br />

with Amanita <strong>Poisoning</strong>. J. Am. Med. Assoc. 1985, 253<br />

(1), 69–70.<br />

194. Dumont, A.M.; Chennebault, J.M.; Alquier, P.; Jardel,<br />

H. Management <strong>of</strong> Amanita phalloides <strong>Poisoning</strong> by<br />

Bastien’s Regimen. Lancet 1981, 1, 722.<br />

195. Boiffard, J. Une Intoxication Familiale par Lepiota<br />

brunneolilacea. Doc. Mycol. 1987, XVIII (69), 21–23.<br />

196. Daoudal, P.; Noirot, A.; Wagschal, G.; Neftel, K.; Hany,<br />

M.; Clément, D.; Floriot, C.; Delacour, J.L. Traitement<br />

de l’intoxication Phalloïdienne par Silymarine et<br />

Ceftazidime. Presse Méd. 1989, 18 (27), 1341–1342.<br />

197. Heurtebize, P. Intoxication Phalloïdienne: À Propos de<br />

Cinq Cas Traités par Ceftazidime et Silymarine. Thèse<br />

de Médecine, Université de Besançon: France, 1990, 192.<br />

198. Meunier, B.; Messner, M.; Bardaxoglou, E.; Spiliopoulos,<br />

G.; Terblanche, J.; Launois, B. Liver Transplantation<br />

for Severe Lepiota helveola <strong>Poisoning</strong>. Liver<br />

1994, 14, 158–160.<br />

19<strong>9.</strong> Galler, G.W.; Weisenberg, E.; Brasitus, T.A. Mushroom<br />

<strong>Poisoning</strong>: The Role <strong>of</strong> Orthotopic Liver<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 749<br />

Transplantation. J. Clin. Gastroenterol. 1992, 15 (3),<br />

229–232.<br />

<strong>20</strong>0. Haines, J.H.; Lichstein, E.; Glickerman, D. A Fatal<br />

<strong>Poisoning</strong> from an <strong>Amatoxin</strong> Containing Lepiota.<br />

Mycopathologia 1985, 93, 15–17.<br />

<strong>20</strong>1. Jander, S.; Bisch<strong>of</strong>f, J. <strong>Treatment</strong> <strong>of</strong> Amanita phalloides<br />

<strong>Poisoning</strong>: I. Retrospective Evaluation <strong>of</strong> Plasmapheresis<br />

in 21 Patients. Ther. Apher. <strong>20</strong>00, 4 (4), 303–307.<br />

<strong>20</strong>2. Olesen, L.L. <strong>Amatoxin</strong> Intoxication. Scand. J. Urol.<br />

Nephrol. 1990, 24, 231–234.<br />

<strong>20</strong>3. Nagy, I.; Pogatsa-Murray, G.; Zalanyi, S.; Komlosi, P.;<br />

Laszlo, F.; Ungi, I. Amanita <strong>Poisoning</strong> During the Second<br />

Trimester <strong>of</strong> Pregnancy. A Case Report and a Review <strong>of</strong><br />

the Literature. Clin. Investig. 1994, 72, 794–798.<br />

<strong>20</strong>4. Mikos, B.; Biro, E. Amanita phalloides <strong>Poisoning</strong> in a<br />

15-Year Case Load <strong>of</strong> a Pediatric Intensive Care Unit.<br />

Orv. Hetil. 1993, 134 (17), 907–910.<br />

<strong>20</strong>5. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry: North<br />

American Mycological Association Report 1992.<br />

McIlvainea 1993, 11 (1), 51–60.<br />

<strong>20</strong>6. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry:<br />

NAMA Report 1996. McIlvainea 1997, 13 (1), 63–67.<br />

<strong>20</strong>7. Trestail, J.H. 1997 Annual Report <strong>of</strong> the North American<br />

Mycological Association’s Mushroom <strong>Poisoning</strong> Case<br />

Registry. McIlvainea 1998, 13 (2), 86–92.<br />

<strong>20</strong>8. Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry: North<br />

American Mycological Association Report 1993.<br />

McIlvainea 1994, 11 (2), 87–95.<br />

<strong>20</strong><strong>9.</strong> Trestail, J.H. Mushroom <strong>Poisoning</strong> Case Registry: North<br />

American Mycological Association Report 1989–90.<br />

McIlvainea 1991, 10 (1), 36–44.<br />

210. Dimitrov, C.; Nikova, M. Intensive Care <strong>Treatment</strong> in<br />

Patients on Acute Haemodialysis/Haemoperfusion.<br />

XXXth Congress <strong>of</strong> EDTA, Vienna, Austria, 1994; 77.<br />

211. Hubenova, A.; Stankova, E. Some Recent Problems in<br />

Amanita phalloides <strong>Poisoning</strong>s. Congress <strong>of</strong> Anti-<br />

Poisons Centre, Istambul, Turkey, May 24–27, 1992;<br />

37.<br />

212. De Haro, L.; Jouglard, J.; Hayek, M.; David, J.M.;<br />

Arditti, J.; Bourdon, J.H.; Blanchard, M.; Regli, P.;<br />

Bechtel, Y.; Bechtel, P. Un Cas d’Intoxication par<br />

Amanites Printanières: Étude de l’Atteinte Hépatique.<br />

XXXIème Congrès de la Société de Toxicologie<br />

Clinique, Nancy, France, Sept 16–17, 1993; 27.<br />

213. Timar, L.; Czeizel, A.E. Birth Weight and Congenital<br />

Anomalies Following Poisonous Mushroom Intoxication<br />

During Pregnancy. Reprod. Toxicol. 1997, 11<br />

(6), 861–866.<br />

214. Misiuk-Hojio, M.; Magnowska-Wozniak, M. Powiklania<br />

Oczne w Zatruciu Muchomorem Sromotnikowym<br />

(Ocular Complications in Amanita phalloides <strong>Poisoning</strong>).<br />

Klin. Oczna 1996, 98 (1), 59–60.<br />

215. Mydlik, M.; Mizla, P.; Derzsiova, K.; Beno, P.;<br />

Matheova, E. Extracorporeal <strong>Treatment</strong> <strong>of</strong> Acute<br />

Renal Failure (ARF) and Acute <strong>Poisoning</strong> (AP) in


750<br />

Children and Adolescents—27 Year Experiences.<br />

XXXth Congress <strong>of</strong> EDTA, Vienna, Austria, 1994; 82.<br />

216. Brunelli, F. Première Suisse à Genève: Un Enfant de 7<br />

ans, Intoxiqué par Amanita phalloides, est Sauvé par une<br />

Greffe de Foie. Schweiz. Z. Pilzkd. 1992, 70 (4), 85–86.<br />

217. Römer, E. Rapport du Toxicologue de l’USSM pour<br />

1987. Schweiz. Z. Pilzkd. 1988, 66 (11), <strong>20</strong>2–<strong>20</strong>3.<br />

218. Anonymous. From the Centers for Disease Control and<br />

Prevention; Amanita phalloides Mushroom <strong>Poisoning</strong>—<br />

Northern California, January 1997. J. Am. Med. Assoc.<br />

1997, 278 (1), 16–17.<br />

21<strong>9.</strong> Nordt, S.P.; Manoguerra, A.; Clark, R.F. 5-Year<br />

Analysis <strong>of</strong> Mushroom Exposures in California. West.<br />

J. Med. <strong>20</strong>00, 173 (5), 314–317.<br />

2<strong>20</strong>. Jaeger, A.; Flesch, F.; Jehl, F.; Sauder, P.; Kopferschmitt,<br />

J. Les Intoxications par Champignons. J. Méd.<br />

Strasb. 1988, 19 (7), 381–384.<br />

221. Forgittoni, R.; Vecchiarelli, P.; Lepri, F.; Casagrande,<br />

G.C.; Quadrani, G.; Meletti, M. Le Intossicazioni<br />

Esogene Acute Presso il Centro di Rianimazione<br />

dell’Ospedale di Viterbo nel Decennio 1-10-1979/31-<br />

12-1989 (Acute <strong>Poisoning</strong> Cases in the Intensive Care<br />

Unit <strong>of</strong> the “Ospedale Grande” in Viterbo from 1-X-79<br />

to 31-XII-89). Acta Anaesthesiol. Ital. 1992, 43, 79–93.<br />

222. Pinson, C.W.; Bradley, A.L. A Primer for Clinicians on<br />

Mushroom <strong>Poisoning</strong> in the West. West. J. Med. 1996,<br />

165, 318–31<strong>9.</strong><br />

223. Anonymous. Consensus Thérapeutique Face à l’Intoxication<br />

Phalloïdienne. In Centre Anti-Poisons de Toulouse;Hôpitaux<br />

de Toulouse: Toulouse, France, 1995; 7.<br />

224. Parish, R.C.; Doering, P.L. <strong>Treatment</strong> <strong>of</strong> Amanita<br />

<strong>Poisoning</strong>: A Review. Vet. Hum. Toxicol. 1986, 28 (4),<br />

318–322.<br />

225. Köppel, C. Clinical Symptomatology and Management<br />

<strong>of</strong> Mushroom <strong>Poisoning</strong>. Toxicon 1993, 31 (12),<br />

1513–1540.<br />

226. Barriot, P.; Masson, B.; Fournier, S. Intoxications par les<br />

Champignons. Rev. Prat. <strong>20</strong>00, 50, 396–400.<br />

227. Basak, M.; Cosansel, S.; Ozer, A.; Bilgi, O.; Danaci, M.<br />

Mantar Zehirlenmeleri ve Tedavisi (Mushroom <strong>Poisoning</strong>s<br />

and Their <strong>Treatment</strong>). Sendrom 1998, 10 (9),<br />

55–5<strong>9.</strong><br />

228. Stetkova, A. Errors <strong>of</strong> Diagnostics and Therapy <strong>of</strong><br />

<strong>Poisoning</strong> with Amanita phalloides. Ceska Mykol. 1991,<br />

45, 47.<br />

22<strong>9.</strong> American Academy <strong>of</strong> Clinical Toxicology; European<br />

Association <strong>of</strong> Poisons Centres and Clinical Toxicologists;<br />

Position Statement: Ipecac Syrup. Clin. Toxicol.<br />

1997, 35 (7), 699–70<strong>9.</strong><br />

230. American Academy <strong>of</strong> Clinical Toxicology; European<br />

Association <strong>of</strong> Poisons Centres and Clinical Toxicologists.<br />

Position Statement: Gastric Lavage. Clin. Toxicol.<br />

1997, 35 (7), 711–71<strong>9.</strong><br />

231. Anonymous. Poisindex w and Identidex w Toxicology<br />

Information; Micromedex Health Care Series; Micro-<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

medex Inc. Intranet Knowledge Bases 1974–1999; Vol.<br />

99, Expires 3/9<strong>9.</strong><br />

232. American Academy <strong>of</strong> Clinical Toxicology; European<br />

Association <strong>of</strong> Poisons Centres and Clinical Toxicologists.<br />

Position Statement: Whole Bowel Irrigation. Clin.<br />

Toxicol. 1997, 35 (7), 753–762.<br />

233. Rabe, C.; Scheurlen, C.; Caselmann, W.H. Vorgehen bei<br />

Knollenblätterpilzergiftung. Dtsch. Med. Wochenschr.<br />

1999, 124, 1073–1076.<br />

234. American Academy <strong>of</strong> Clinical Toxicology; European<br />

Association <strong>of</strong> Poisons Centres and Clinical Toxicologists.<br />

Position Statement: Cathartics. Clin. Toxicol.<br />

1997, 35 (7), 743–752.<br />

235. Ryzko, J.; Jankowska, I.; Socha, J. Ocena Wybranych<br />

Parametrow Gospodarki Wapniowo-Iosioranowej w<br />

Ostrej Nierwydolnosci Watroby po Zatruciu Muchomorem<br />

Sromotnikowym (Selected Parameters <strong>of</strong> Calcium<br />

and Phosphate Metabolism in the Acute Liver<br />

Failure Following <strong>Poisoning</strong> with Amanita phalloides ).<br />

Pol. Tyg. Lék. 1990, XLV (49–50), 990–992.<br />

236. Parra, S.; Garcia, J.; Martinez, P.; De La Pena, C.;<br />

Carrascosa, C. Pr<strong>of</strong>ile <strong>of</strong> Alkaline Phosphatase Isoenzymes<br />

in Ten Patients Poisoned by Mushrooms <strong>of</strong> the<br />

Genus Lepiota. Dig. Dis. Sci. 1992, 37 (10),<br />

1495–1498.<br />

237. Faulstich, H.; Zobeley, S.; Trischmann, H. A Rapid<br />

Radioimmunoassay, Using a Nylon Support, for<br />

<strong>Amatoxin</strong>s from Amanita Mushrooms. Toxicon 1982,<br />

<strong>20</strong> (5), 913–924.<br />

238. Frei, W.; Andres, R.; Gautschi, K.; Vonderschmitt, D.<br />

Eine Neue Methode zur Raschen Bestimmung von<br />

Knollenblätterpilzgift im Urin und im Plasma (A New<br />

Method for the Rapid Detection <strong>of</strong> Amanita Toxins in<br />

the Urine and Plasma). Schweiz. Med. Wochenschr.<br />

1986, 116 (26), 892–893.<br />

23<strong>9.</strong> Dorizzi, R.; Michelot, D.; Tagliaro, F.; Ghielmi, S.<br />

Methods for Chromatographic Determination <strong>of</strong> Amanitins<br />

and Related Toxins in Biological Samples.<br />

J. Chromatogr. (Biomed. Appl.) 1992, 580, 279–291.<br />

240. Defendenti, C.; Bonacina, E.; Mauroni, M.; Gelosa, L.<br />

Validation <strong>of</strong> a High Performance Liquid Chromatographic<br />

Method for Alpha Amanitin Determination in<br />

Urine. Forensic Sci. Int. 1998, 92, 59–68.<br />

241. Brüggemann, O.; Meder, M.; Freitag, R. Analysis <strong>of</strong><br />

<strong>Amatoxin</strong>s a-Amanitin and b-Amanitin in Toadstool<br />

Extracts and Body Fluids by Capillary Zone Electrophoresis<br />

with Photodiode Array Detection.<br />

J. Chromatogr. A 1996, 744, 167–176.<br />

242. Fartushnyi, A.F.; Sukhin, A.P.; Fartushnaya, Y.A.<br />

Chemical and Toxicological Studies in Mushroom<br />

<strong>Poisoning</strong>s. Sud. Med. Ekspert. <strong>20</strong>00, 43 (2), 21–24.<br />

243. Jankowska, I.; Rysko, J.; Kuryl, T.; Socha, J.<br />

Przydatnosc Oznaczania Amanityny Metoda RIA w<br />

Diagnostyce Zatruc Muchomorem Sromotnikowym u<br />

Dzieci (Value <strong>of</strong> Amanitin Determination with RIA


Technique for the Diagnosis <strong>of</strong> <strong>Poisoning</strong> with Amanita<br />

phalloides in Childhood). Pol. Tyg. Lék. 1988, XLIII,<br />

585–588.<br />

244. Mas, A.; Rodés, J. Fulminant Hepatic Failure. Lancet<br />

1997, 349, 1081–1085.<br />

245. Gill, R.Q.; Sterling, R.K. Acute Liver Failure. J. Clin.<br />

Gastroenterol. <strong>20</strong>01, 33 (3), 191–198.<br />

246. Vesconi, S.; Langer, M.; Costantino, D.; Iapichino, G.;<br />

Macchi, R. Clinical Evaluation <strong>of</strong> <strong>Amatoxin</strong> Removal<br />

Approach in Amanita phalloides <strong>Poisoning</strong>. In Amanita<br />

Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell, B.,<br />

Wieland, T., Eds.; Lubrecht Cramer: New York, 1980;<br />

232–236.<br />

247. American Academy <strong>of</strong> Clinical Toxicology; European<br />

Association <strong>of</strong> Poisons Centres and Clinical Toxicologists.<br />

Position Statement: Single-Dose Activated Charcoal.<br />

Clin. Toxicol. 1997, 35 (7), 721–741.<br />

248. Faulstich, H.; Talas, A.; Wellhöner, H.H. Toxicokinetics<br />

<strong>of</strong> Labeled <strong>Amatoxin</strong>s in the Dog. Arch. Toxicol. 1985,<br />

56, 190–194.<br />

24<strong>9.</strong> Faulstich, H. New Aspects <strong>of</strong> Amanita <strong>Poisoning</strong>. Klin.<br />

Wochenschr. 1979, 57, 1143–1152.<br />

250. Floersheim, G.L. <strong>Treatment</strong> <strong>of</strong> Human <strong>Amatoxin</strong><br />

Mushroom <strong>Poisoning</strong>. Myths and Advances in Therapy.<br />

Med. Toxicol. 1987, 2, 1–<strong>9.</strong><br />

251. Buchwald, A. Amanita <strong>Poisoning</strong>. Am. J. Med. 1989, 87,<br />

702.<br />

252. Busi, C.; Fiume, L.; Costantino, D.; Langer, M.;<br />

Vesconi, F. Amanita Toxins in Gastroduodenal Fluid<br />

<strong>of</strong> Patients Poisoned by the Mushroom, Amanita<br />

phalloides. N. Engl. J. Med. 1979, 300, 800.<br />

253. Langer, M.; Vesconi, S.; Costantino, D.; Busi, C.<br />

Pharmacodynamics <strong>of</strong> <strong>Amatoxin</strong>s in Human <strong>Poisoning</strong><br />

as the Basis for the Removal <strong>Treatment</strong>. In Amanita<br />

Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell, B.,<br />

Wieland, T., Eds.; Lubrecht Cramer: New York, 1980;<br />

90–97.<br />

254. Vesconi, S.; Langer, M.; Costantino, D. Mushroom<br />

<strong>Poisoning</strong> and Forced Diuresis. Lancet 1980, 854–855.<br />

255. Piqueras, J.; Duran-Suarez, J.R.; Massuet, L.; Hernandez-Sanchez,<br />

J.M. Mushroom <strong>Poisoning</strong>: Therapeutic<br />

Aphereris or Forced Diuresis. Transfusion 1987, 27 (1),<br />

116–117.<br />

256. Jaeger, A.; Jehl, F.; Flesch, F.; Sauder, P.; Kopferschmitt,<br />

J.; Minck, R.; Mantz, J.M. Cinétique de l’amanitine<br />

au Cours des Intoxications Phalloïdiennes. Réanim.<br />

Soins Intens. Méd. Urgence 1985, 1, 262.<br />

257. Jaeger, A.; Jehl, F.; Flesch, F.; Sauder, P.; Kopferschmitt,<br />

J. Kinetics <strong>of</strong> <strong>Amatoxin</strong>s in Human <strong>Poisoning</strong>: Therapeutic<br />

Implications. Clin. Toxicol. 1993, 31, 63–80.<br />

258. Busi, C.; Fiume, L.; Costantino, D.; Borroni, M.;<br />

Ambrosino, G.; Olivotto, A.; Bernardini, D. Détermination<br />

des Amanitines dans le Sérum de Patients<br />

Intoxiqués par l’Amanite Phalloïde. Nouv. Presse Méd.<br />

1977, 6 (32), 2855–2857.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 751<br />

25<strong>9.</strong> Wauters, J.P.; Rossel, C.; Farquet, J.J. Amanita<br />

phalloides <strong>Poisoning</strong> Treated by Early Charcoal<br />

Haemoperfusion. Br. Med. J. 1978, 2, 1465.<br />

260. Bartels, O.; Topf, G. Amanita phalloides <strong>Poisoning</strong>—<br />

Indication for Early Haemoperfusion. In Amanita Toxins<br />

and <strong>Poisoning</strong>s; Faulstich, H., Kommerell, B., Wieland,<br />

T., Eds.; Lubrecht Cramer: New York, 1980; 147–154.<br />

261. Czygan, P.; Zimmermann, R.; Leuschner, U.; Stiehl,<br />

A.; Kommerell, B. Clinical, Biochemical and<br />

Morphological Alterations in Patients with Amanita<br />

phalloides Intoxication. In Amanita Toxins and<br />

<strong>Poisoning</strong>s; Faulstich, H., Kommerell, B., Wieland,<br />

T., Eds.; Lubrecht Cramer: New York, 1980;<br />

131–136.<br />

262. Balsam, L.; Coritsidis, G.N.; Feinfeld, D.A. Role <strong>of</strong><br />

Hemodialysis and Hemoperfusion in the <strong>Treatment</strong> <strong>of</strong><br />

Intoxications. Crit. Care Toxicol. 1991, 1 (3), 61–7<strong>9.</strong><br />

263. Lambert, H.; Laprévote-Heully, M.C.; Manel, J.;<br />

Claude, D.; Delorme, N.; Larcan, A. Bilan de<br />

l’Utilisation de l’Hémoperfusion dans le Traitement<br />

des Intoxications Aiguës. A Propos de 23 Observations.<br />

Ann. Méd. Nancy Est 1981, <strong>20</strong>, 935–946.<br />

264. Czygan, P.; Stiehl, A.; Kommerell, B. <strong>Treatment</strong> <strong>of</strong><br />

Acute Amanita phalloides Induced Hepatic Failure by<br />

Haemoperfusion. In Amanita Toxins and <strong>Poisoning</strong>s;<br />

Faulstich, H., Kommerell, B., Wieland, T., Eds.;<br />

Lubrecht Cramer: New York, 1980; 155–161.<br />

265. Lambert, H. Pronostic et Traitement de l’Intoxication. In<br />

Réanimation des Intoxications Aiguës; Baud, F., Ed.;<br />

Masson: Paris, France, 1995; 185–195.<br />

266. Langescheid, C.; Schmitz-Salue, H.; Faulstich, H.;<br />

Kramer, P.; Scheler, F. In Vitro Elimination <strong>of</strong><br />

( 3 H)Methyl-dehydroxymethyl-a-Amanitin by Four<br />

Different Extracorporeal Detoxification Methods. In<br />

Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell,<br />

B., Wieland, T., Eds.; Lubrecht Cramer: New<br />

York, 1980; 137–146.<br />

267. Monhart, V.; Balikova, M.; Tlustakova, M. Sorpcni<br />

Ucinnost Ceskych Hemoperfuznich Sorbentu pro<br />

<strong>Amatoxin</strong>y (Sorption Effectiveness <strong>of</strong> Czech Haemoperfusion<br />

Sorbents for <strong>Amatoxin</strong>s). Cas. Lék. Cesk.<br />

1994, 6, 181–183.<br />

268. Mydlik, M.; Derzsiova, K.; Klan, J.; Zima, T.<br />

Hemoperfusion with a-Amanitin: An In Vitro Study.<br />

Int. J. Artif. Organs 1997, <strong>20</strong> (2), 105–107.<br />

26<strong>9.</strong> Monhart, V. Otravy Muchomurkami a Vyznam Sorpcni<br />

Hemoperfuze pri Jejich Léceni (Toadstool Intoxications<br />

and Importance <strong>of</strong> Sorption Haemoperfusion in Their<br />

<strong>Treatment</strong>). Vnitr. Lék. 1997, 43 (10), 686–690.<br />

270. Mercuriali, F.; Sirchia, G. Plasma Exchange for<br />

Mushroom <strong>Poisoning</strong>. Transfusion 1977, 17, 644.<br />

271. Ariani, G.; Ciccarelli, P.; Ghergo, G.F.; Reverberi, R.<br />

Qualche Considerazione sul Trattamento Terapeutico di<br />

Tre Casi di Avvelenamento Acuto da Amanita Falloide<br />

(Remarks on the Therapy <strong>of</strong> the Three Cases <strong>of</strong> Acute


752<br />

Amanita phalloides <strong>Poisoning</strong>). Minerva Anestesiol.<br />

1979, 45, 335–344.<br />

272. Pigrau, C.; Martinez-Vazquez, M.; Piqueras, J. Intoxicacion<br />

por Amanita phalloides. Med. Clin. 1984, 83,<br />

342–345.<br />

273. Jander, S.; Bisch<strong>of</strong>f, J.; Woodcock, B.G. Plasmapheresis<br />

in the <strong>Treatment</strong> <strong>of</strong> Amanita phalloides <strong>Poisoning</strong>. II. A<br />

Review and Recommendations. Ther. Apher. <strong>20</strong>00, 4<br />

(4), 308–312.<br />

274. Floersheim, G.L.; Schneeberger, J.; Bucher, K. Curative<br />

Potencies <strong>of</strong> Penicillin in Experimental Amanita<br />

phalloides <strong>Poisoning</strong>. Agents Actions 1971, 2 (3),<br />

138–141.<br />

275. Floersheim, G.L. Antagonistic Effects <strong>of</strong> Phalloidin a-<br />

Amanitin and Extracts <strong>of</strong> Amanita phalloides. Agents<br />

Actions 1971, 2 (3), 142–14<strong>9.</strong><br />

276. Floersheim, G.L.; Eberhard, M.; Tschumi, P.; Duckert,<br />

F. Effects <strong>of</strong> Penicillin and Silymarin on Liver Enzymes<br />

and Blood Clotting Factors in Dogs Given a Boiled<br />

Preparation <strong>of</strong> Amanita phalloides. Toxicol. Appl.<br />

Pharmacol. 1978, 46, 455–462.<br />

277. Jahn, W.; Faulstich, H.; Wieland, T. Pharmacokinetics<br />

<strong>of</strong> ( 3 H)Methyldehydroxymethyl-a-amanitin in the Isolated<br />

Perfused Rat Liver and the Influence <strong>of</strong> Several<br />

Drugs. In Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H.,<br />

Kommerell, B., Wieland, T., Eds.; Lubrecht Cramer:<br />

New York, 1980; 79–87.<br />

278. Tamai, I.; Terasaki, T.; Tsuji, A. Evidence for the<br />

Existence <strong>of</strong> a Common Transport System <strong>of</strong> b-Lactam<br />

Antibiotics in Isolated Rat Hepatocytes. J. Antibiot.<br />

1985, 38 (12), 1774–1780.<br />

27<strong>9.</strong> Kröncke, K.D.; Fricker, G.; Meier, P.; Gerock, W.;<br />

Wieland, T.; Kurz, G. a-Amanitin Uptake into<br />

Hepatocytes: Identification <strong>of</strong> Hepatic Membrane<br />

Transport Systems Used by <strong>Amatoxin</strong>s. J. Biol. Chem.<br />

1986, 261 (27), 12562–12567.<br />

280. Floersheim, G.L. Toxins and Intoxications from the<br />

Toadstool Amanita phalloides. Trends Pharmacol. Sci.<br />

1983, 4, 263–266.<br />

281. Fiume, L.; Serti, S.; Montanaro, L.; Busi, C.; Costantino,<br />

D. Amanitins Do Not Bind to Serum Albumin. Lancet<br />

1977, 1, 1111.<br />

282. Sherlock, S.; Dooley, J. Diseases <strong>of</strong> the Liver and Biliary<br />

System, 10th Ed.; Blackwell Science Ltd.: Oxford, UK,<br />

1997; 87–102, 651–672.<br />

283. Cottagnoud, P.; Neftel, K.A. b-Lactams Act on DNA<br />

Synthesis in K-562 Cells. Cell Biol. Toxicol. 1986, 2,<br />

523–52<strong>9.</strong><br />

284. Hübscher, U.; Do Huynh, U.; Hässig, M.; Neftel, K.A.<br />

Effects <strong>of</strong> b-Lactams on DNA Replication. Cell Biol.<br />

Toxicol. 1986, 2 (4), 541–547.<br />

285. Neftel, K.A.; Hübscher, U. Effects <strong>of</strong> b-Lactam<br />

Antibiotics on Proliferating Eucaryotic Cells.<br />

Antimicrob. Agents Chemother. 1987, 31 (11),<br />

1657–1661.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

286. Neftel, K.A.; Keusch, G.; Cottagnoud, P.; Widmer, U.;<br />

Hany, M.; Gautschi, K.; Joos, B.; Walt, H. Sind<br />

Cephalosporine bei der Intoxikation mit Knollenblätterpilz<br />

Besser Wirksam als Penicillin-G? Schweiz. Med.<br />

Wochenschr. 1988, 118 (2), 49–51.<br />

287. DeSwarte, R.D. Drug–Allergy Problems and Strategies.<br />

J. Allergy Clin. Immunol. 1984, 74 (3), <strong>20</strong>9–221.<br />

288. Erffmeyer, J.E. Adverse Reactions to Penicillin. Ann.<br />

Allergy 1981, 47, 288–300.<br />

28<strong>9.</strong> Al-Ramahi, M.; Leader, A.; Léveillé, M.C. An Allergic<br />

Reaction Following Intrauterine Insemination. Hum.<br />

Reprod. 1998, 13 (12), 3368–3370.<br />

290. Hruby, K.; Csomos, G.; Furhmann, M.; Thaler, H.<br />

Chemotherapy <strong>of</strong> Amanita phalloides <strong>Poisoning</strong> with<br />

Intravenous Silibinin. Hum. Toxicol. 1983, 2, 183–195.<br />

291. Hruby, K.; Fuhrmann, M.; Csomos, G.; Thaler, H.<br />

Pharmakotherapie der Knollenblätterpilzvergiftung mit<br />

Silibinin (<strong>Treatment</strong> with Silibinin for Amanita phalloides<br />

<strong>Poisoning</strong>). Wien. Klin. Wochenschr. 1983, 95<br />

(7), 225–231.<br />

292. Neftel, K.A.; Mueller, M.R.; Waelti, M.; Erni, J.;<br />

Gugler, M.; Arrenbrecht, S. Penicilin G Degradation<br />

Products Inhibit In Vitro Granulopoiesis. Br.<br />

J. Haematol. 1983, 54 (2), 255–260.<br />

293. Neftel, K.A.; Hauser, S.P.; Mueller, M. Inhibition <strong>of</strong><br />

Granulopoiesis In Vivo and In Vitro by b-Lactam<br />

Antibiotics. J. Infect. Dis. 1985, 152 (1), 90–98.<br />

294. Neftel, K.; Mueller, M.R.; Widmer, U.; Huegin, A.W. b-<br />

Lactam Antibiotics Inhibit In Vitro Granulopoiesis and<br />

Proliferation <strong>of</strong> Some Other Cell Types. Cell Biol.<br />

Toxicol. 1986, 2 (4), 513–521.<br />

295. Neftel, K.A.; Waelti, M.; Schulthess, H.K.; Gubler, J.<br />

Adverse Reactions Following Intravenous Penicillin G<br />

Relate to Degradation <strong>of</strong> the Drug In Vitro. Klin.<br />

Wochenschr. 1984, 62 (1), 25–2<strong>9.</strong><br />

296. Smith, H.; Lerner, P.I.; Weinsten, L. Neurotoxicity and<br />

“Massive” Intravenous Therapy with Penicillin. Arch.<br />

Intern. Med. 1967, 1<strong>20</strong>, 47–53.<br />

297. Moroni, F.; Fantozi, R.; Masini, E.; Mannaioni, P.F. A<br />

Trend in the Therapy <strong>of</strong> Amanita phalloides <strong>Poisoning</strong>.<br />

Arch. Toxicol. 1976, 36, 111–115.<br />

298. Floersheim, G.L.; Weber, O.; Tschumi, P.; Ulbrich, M.<br />

Die Klinische Knollenbblätter-Pilzvergiftung (Amanita<br />

phalloides ): Prognostische Faktoren und Therapeutische<br />

Massnahmen (Clinical <strong>Poisoning</strong> with Amanita phalloides<br />

(Death Cap): Prognostic Factors and Therapeutic<br />

Measures). Schweiz. Med. Wochenschr. 1982, 112 (34),<br />

1164–1177.<br />

29<strong>9.</strong> Wagner, V.H.; Diesel, P.; Seitz, M. Zur Chemie und<br />

Analytik von Silymarin, aus Silybum marianum Gaertn.<br />

Arzneim.-Forsch. 1974, 24, 466–471.<br />

300. Halbach, G.; Trost, W. Zur Chemie und Pharmakologie<br />

des Silymarins Untersuchungen an Einigen Umsetzungsprodukten<br />

des Silybins. Arzneim.-Forsch. 1974, 24,<br />

866–868.


301. Anonymous. In The Index Merck. An Encyclopedia <strong>of</strong><br />

Chemicals, Drugs, and Biologicals; Budavari, S., Ed.;<br />

Merck and Co., Inc.: Whitehouse Station, NJ, 1996;<br />

139–140, 1464.<br />

302. Hahn, V.G.; Lehmann, H.D.; Kürten, M.; Uebel, H.;<br />

Vogel, G.; Baumann, I.; Dobberstein, I.; Eisen, E.;<br />

Ersfeld, A.; Krüger, S.; Meier, E.; Walther, H. Zur<br />

Pharmakologie und Toxikologie von Silymarin, des<br />

Antihepatotoxischen Wirkprinzipes aus Silybum marianum<br />

(L.) Gaertn. Arzneim.-Forsch. 1968, 18,<br />

698–704.<br />

303. Vogel, V.G.; Trost, W.; Braatz, R.; Odenthal, K.P.;<br />

Brüsewitz, G.; Antweiler, H.; Seeger, R. Untersuchungen<br />

zu Pharmakodynamik, Angriffspunkt und Wirkungsmecha-nismus<br />

von Silymarin, dem<br />

Antihepatotoxischen Prinzip aus Silybum marianum<br />

(L.) Gaertn. (Studies on Pharmacodynamics, Site and<br />

Mechanism <strong>of</strong> Action <strong>of</strong> Silymarin, the Antihepatotoxic<br />

Principle from Silybum marianum (L.) Gaertn.).<br />

Arzneim.-Forsch. 1975, 25 (2), 179–18<strong>9.</strong><br />

304. Floersheim, G.L. <strong>Treatment</strong> <strong>of</strong> Experimental <strong>Poisoning</strong><br />

Produced by Extracts <strong>of</strong> Amanita phalloides. Toxicol.<br />

Appl. Pharmacol. 1975, 34, 499–508.<br />

305. Vogel, G.; Tuchweber, B.; Trost, W.; Mengs, U.<br />

Protection by Silibinin Against Amanita phalloides<br />

Intoxication in Beagles. Toxicol. Appl. Pharmacol.<br />

1984, 73, 355–362.<br />

306. Ramellini, G.; Meldolesi, J. Stabilization <strong>of</strong> Isolated Rat<br />

Liver Plasma Membranes by <strong>Treatment</strong> In Vitro with<br />

Silymarin. Arzneim.-Forsch. 1974, 24 (5), 806–808.<br />

307. Ramellini, G.; Meldolesi, J. Liver Protection by<br />

Silymarin: In Vitro Effect on Dissociated Rat Hepatocytes.<br />

Arzneim.-Forsch. 1976, 26 (1), 69–73.<br />

308. Vogel, G. The Anti-Amanita Effect <strong>of</strong> Silymarin. In<br />

Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell,<br />

B., Wieland, T., Eds.; Lubrecht Cramer: New<br />

York, 1980; 180–18<strong>9.</strong><br />

30<strong>9.</strong> Choppin, J.; Desplaces, A. The Action <strong>of</strong> Silybin on the<br />

Mouse Liver in a-Amanitine <strong>Poisoning</strong>. Arzneim.-<br />

Forsch. 1979, 29 (1), 63–68.<br />

310. Flora, K.; Hahn, M.; Rosen, H.; Benner, K. Milk Thistle<br />

(Silybum marianum) for the Therapy <strong>of</strong> Liver Disease.<br />

Am. J. Gastroenterol. 1998, 93 (2), 139–143.<br />

311. Leng-Peschlow, E.; Strenge-Hesse, A. Die Mariendistel<br />

(Silybum marianum) und Silymarin als Lebertherapeutikum.<br />

Z. Phytother. 1991, 12, 162–174.<br />

312. Leng-Peschlow, E. Properties and Medical Use <strong>of</strong><br />

Flavonolignans (Silymarin) from Silybum marianum.<br />

Phytother. Res. 1996, 10, S25–S26.<br />

313. Luper, S. A Review <strong>of</strong> Plants Used in the <strong>Treatment</strong> <strong>of</strong><br />

Liver Disease: Part 1. Altern. Med. Rev. 1998, 3 (6),<br />

410–421.<br />

314. Luyckx, F.; Scheen, A.J. Pharma-Clinics, le Médicament<br />

du mois: Le Legalon (Silymarine). Rev. Méd. Liège<br />

1997, 52 (12), 792–796.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 753<br />

315. Wellington, K.; Jarvis, B. Silymarin: A Review <strong>of</strong> Its<br />

Clinical Properties in the Management <strong>of</strong> Hepatic<br />

Disorders. BioDrugs <strong>20</strong>01, 15 (7), 465–48<strong>9.</strong><br />

316. Muriel, P.; Mourelle, M. Prevention by Silymarin <strong>of</strong><br />

Membrane Alterations in Acute CCl 4 Liver Damage.<br />

J. Appl. Toxicol. 1990, 10 (4), 275–27<strong>9.</strong><br />

317. Bosisio, E.; Cinzia, B.; Ondina, P. Effect <strong>of</strong> the<br />

Flavonolignans <strong>of</strong> Silybum marianum L. on Lipid<br />

Peroxidation in Rat Liver Microsomes and Freshly<br />

Isolated Hepatocytes. Pharmacol. Res. 1992, 25 (2),<br />

147–154.<br />

318. Carini, R.; Comoglio, A.; Albano, E.; Poli, G. Lipid<br />

Peroxidation and Irreversible Damage in the Rat<br />

Hepatocyte Model. Biochem. Pharmacol. 1992, 43<br />

(10), 2111–2115.<br />

31<strong>9.</strong> Dehmlow, C.; Jochen, E.; De Groot, H. Inhibition <strong>of</strong><br />

Kupffer Cell Functions as an Explanation for the<br />

Hepatoprotective Properties <strong>of</strong> Silybinin. Hepatology<br />

1996, 23 (4), 749–754.<br />

3<strong>20</strong>. De LaPuerta, R.; Martinez, E.; Bravo, L.; Ahumada, C.<br />

Effect <strong>of</strong> Silymarin on Different Acute Inflammation<br />

Models and on Leucocyte Migration. J. Pharm. Pharmacol.<br />

1996, 48, 968–970.<br />

321. Schuppan, D.; Lang, T.; Gerling, G.; Leng-Peschlow, E.;<br />

Krumbiegel, G.; Riecken, E.O.; Waldschmidt, J.<br />

Antifibrotic Effect <strong>of</strong> Silymarin in Rat Secondary<br />

Biliary Fibrosis Induced by Duct Obliteration with<br />

Ethiblock. Z. Gastroenterol. 1995, 32, 45–46.<br />

322. Fuchs, E.C.; Gressner, A.M.; Weyhem Meyer, R.;<br />

Weiner, O. Identification <strong>of</strong> the Antifibrogenic Properties<br />

<strong>of</strong> Silybin: Effect on TGF-b and Matrix Gene<br />

Expression <strong>of</strong> Hepatic Stellate Cells. Hepatology 1995,<br />

22, 286A.<br />

323. Boigk, G.; Stroedter, L.; Herbst, H.; Waldschmidt, J.;<br />

Riecken, E.O.; Schuppan, D. Silymarin Retards<br />

Collagen Accumulation in Early and Advanced Biliary<br />

Fibrosis Secondary to Complete Bile Duct Obliteration<br />

in Rats. Hepatology 1997, 26 (3), 643–64<strong>9.</strong><br />

324. Magliulo, E.; Scevola, D.; Carosi, G.P. Investigations on<br />

the Actions <strong>of</strong> Silybin on Regenerating Rat Liver:<br />

Effects on Kupffer’s Cells. Arzneim.-Forsch. 1979, 29<br />

(7), 1024–1028.<br />

325. Machicao, F.; Sonnenbichler, J. Mechanism <strong>of</strong> the<br />

Stimulation <strong>of</strong> RNA Synthesis in Rat Liver Nuclei by<br />

Silybin. Hoppe-Seyler’s Z. Physiol. Chem. 1977, 358,<br />

141–147.<br />

326. Sonnenbichler, J.; Zetl, I. Mechanism <strong>of</strong> Silybin<br />

Action V. Effect <strong>of</strong> Silybin on the Synthesis <strong>of</strong><br />

Ribosomal RNA, mRNA and tRNA in Rat Livers In<br />

Vivo. Hoppe-Seyler’s Z. Physiol. Chem. 1984, 365 (5),<br />

555–566.<br />

327. Sonnenbichler, J.; Goldberg, M.; Hane, L.; Madubunyi,<br />

I.; Vogl, S.; Zetl, I. Stimulatory Effect <strong>of</strong> Silybinin on<br />

the DNA Synthesis in Partially Hepatectomized Rat<br />

Livers: Non-response in Hepatoma and Other Malign


754<br />

Cell Lines. Biochem. Pharmacol. 1986, 35 (3),<br />

538–541.<br />

328. Sonnenbichler, J.; Zetl, I. Influence <strong>of</strong> the Flavonolignan<br />

Derivative Silibinin on Nucleic Acid and Protein<br />

Synthesis in Liver Cells. Flavonoids Bi<strong>of</strong>lavonoids<br />

1986, 361–372.<br />

32<strong>9.</strong> Sonnenbichler, J.; Zetl, I. Biochemical Effects <strong>of</strong> the<br />

Flavonolignan Silibinin on RNA, Protein and DNA<br />

Synthesis in Rat Livers. Prog. Clin. Biol. Res. 1986, 213,<br />

319–331.<br />

330. Lorenz, D.; Lücker, P.W.; Mennicke, W.H.; Wetzelsberger,<br />

N. Pharmacokinetic Studies with Silymarin in<br />

Human Serum and Bile. Methods Find. Exp. Clin.<br />

Pharmacol. 1984, 6 (10), 655–661.<br />

331. Bulles, H.; Bulles, J.; Krumbiegel, G.; Mennicke, W.H.;<br />

Nitz, D. Untersuchungen zur Verst<strong>of</strong>fwechselung und<br />

zur Ausscheidung von Silybin bei der Ratte (Investigation<br />

<strong>of</strong> the Metabolism and Excretion <strong>of</strong> Silybin in the<br />

Rat). Arzneim.-Forsch. 1975, 25, 902–905.<br />

332. Flory, P.J.; Krug, G.; Lorenz, D.; Mennicke, H.<br />

Untersuchungen zur Elimination von Silymarin bei<br />

Cholezystektomierten Patienten (Studies on Elimination<br />

<strong>of</strong> Silymarin in Cholecystectomized Patients). Planta<br />

Med. 1980, 38, 227–237.<br />

333. Faulstich, H.; Jahn, W.; Wieland, T. Silybin Inhibition <strong>of</strong><br />

<strong>Amatoxin</strong> Uptake in the Perfused Rat Liver. Arzneim.-<br />

Forsch. 1980, 30 (3), 452–454.<br />

334. Smetana, R.; Hruby, K.; Benesch, B.; Bauer, K.; Jahn, O.<br />

Laboratory Diagnosis and Surveillance <strong>of</strong> Amanitin<br />

Intoxication During Silibinin Therapy. Intensivebehandlung<br />

1986, 11 (4), 170–175.<br />

335. Schandalik, R.; Gatti, G.; Perucca, E. Pharmacokinetics<br />

<strong>of</strong> Silybin in Bile Following Administration <strong>of</strong> Silipide<br />

and Silymarin in Cholecystectomy Patients. Arzneim.-<br />

Forsch. 1992, 42 (7), 964–968.<br />

336. Barzaghi, N.; Crema, F.; Gatti, G.; Pifferi, G.; Perucca,<br />

E. Pharmacokinetic Studies on IdB 1016, a Silybin–<br />

Phosphatidylcholine Complex, in Healthy Human<br />

Subjects. Eur. J. Drug Metab. Pharmacokinet. 1990, 15<br />

(4), 333–338.<br />

337. Beer, J.H. Der Falsche Pilz (The Wrong Mushroom).<br />

Schweiz. Med. Wochenschr. 1993, 123 (17),<br />

892–905.<br />

338. MacPartland, J.M.; Vilgalys, R.J.; Cubeta, M.A. Mushroom<br />

<strong>Poisoning</strong>. Am. Fam. Physician 1997, 55 (5),<br />

1797–180<strong>9.</strong><br />

33<strong>9.</strong> Castiella, A.; Arenas, J.I. Utility <strong>of</strong> Silymarin in<br />

the Cyclopeptide Syndrome. J. Hepatol. 1994, 21,<br />

1148.<br />

340. Kurkin, V.; Lebedev, A.; Zapesochnaya, A.; Avdeeva,<br />

E.V.; Simonova, G.V.; Lebedev, P.A.; Egorov, V.A.;<br />

Mizina, P.; Bulatova, M.V. The New Possibilities <strong>of</strong> the<br />

Use <strong>of</strong> Silybum marianum (L.) Gaertn. Fruits. XIXth<br />

International Conference on Polyphénols, Lille, France,<br />

Sept 1–4, 1998; 29–30.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

341. Kubicka, J. Rozbor Smrtelnych Otrav Houbami<br />

Lécenych Kyselinou Tioktovou (Analysis <strong>of</strong> Fatal<br />

Intoxications with Mushrooms Treated with Thioctic<br />

Acid). Cas. Lék. Cesk. 1969, 108, 790–793.<br />

342. Zaffiri, O.; Centi, R.; Mastroianni, A.; Francescato, F.;<br />

Bisiani, M. Therapy <strong>of</strong> Acute <strong>Poisoning</strong> by Amanita<br />

phalloides with High Doses <strong>of</strong> Thioctic Acid. Minerva<br />

Anestesiol. 1970, 36 (1), 56–57.<br />

343. Zanninni, L.; Carbone, G.; Stelluti, A. l’Attuale Terapia<br />

Dell’avvelenamento da Amanita phalloides. Clin. Ter.<br />

1971, 56, 177.<br />

344. Dudova, V.; Kubicka, J.; Veselky, J. Thioctic Acid in the<br />

<strong>Treatment</strong> <strong>of</strong> Amanita phalloides Intoxication. In<br />

Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell,<br />

B., Wieland, T., Eds.; Lubrecht Cramer: New<br />

York, 1980; 190–191.<br />

345. Zulik, R.; Kassay, S.F. The Role <strong>of</strong> Thioctic Acid in the<br />

<strong>Treatment</strong> <strong>of</strong> Amanita phalloides Intoxication. In<br />

Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell,<br />

B., Wieland, T., Eds.; Lubrecht Cramer: New<br />

York, 1980; 192–196.<br />

346. Finestone, A.J.; Berman, R.; Widmer, B.; Markowitz, J.;<br />

Laquer, U.J. Thioctic Acid <strong>Treatment</strong> <strong>of</strong> Acute Mushroom<br />

<strong>Poisoning</strong>. PA Med. 1972, 75, 49–51.<br />

347. Becker, C.E.; Tong, T.G.; Boerner, U.; Roe, R.L.; Scott,<br />

R.; MacQuarrie, M.B.; Bartter, F. Diagnosis and<br />

<strong>Treatment</strong> <strong>of</strong> Amanita phalloides-Type Mushroom<br />

<strong>Poisoning</strong>. West. J. Med. 1976, 125, 100–10<strong>9.</strong><br />

348. Culliton, B.J. The Destroying Angel: A Story <strong>of</strong> a Search<br />

for an Antidote. Science 1974, 185, 600–601.<br />

34<strong>9.</strong> Bartter, F.C.; Berkson, B.; Gallelli, J.; Hiranaka, P.<br />

Thioctic Acid in the <strong>Treatment</strong> <strong>of</strong> <strong>Poisoning</strong> with a-<br />

Amanitin. In Amanita Toxins and <strong>Poisoning</strong>s; Faulstich,<br />

H., Kommerell, B., Wieland, T., Eds.; Lubrecht Cramer:<br />

New York, 1980; 197–<strong>20</strong>2.<br />

350. Berkson, B.M. Thioctic Acid in <strong>Treatment</strong> <strong>of</strong> Hepatotoxic<br />

Mushroom (Phalloides ) <strong>Poisoning</strong>. N. Engl. J.<br />

Med. 1979, 300, 371.<br />

351. Berkson, B.M. <strong>Treatment</strong> <strong>of</strong> Four Delayed-Mushroom<br />

<strong>Poisoning</strong> Patients with Thioctic Acid. In Amanita<br />

Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell, B.,<br />

Wieland, T., Eds.; Lubrecht Cramer: New York, 1980;<br />

<strong>20</strong>3–210.<br />

352. Alleva, F.R. Thioctic Acid and Mushroom <strong>Poisoning</strong>.<br />

Science 1975, 187, 216.<br />

353. Trost, W.; Lang, W. Effect <strong>of</strong> Thioctic Acid and<br />

Silibinin on the Survival Rate in Amanitin and<br />

Phalloidin Poisoned Mice. IRCS Med. Sci. 1984, 12,<br />

1079–1080.<br />

354. Roldan, E.J.; Pérez Lloret, A. Thioctic acid in Amanita<br />

<strong>Poisoning</strong>. Crit. Care Med. 1986, 14 (8), 753–754.<br />

355. Anonymous. Monography: a-Lipoic Acid. Altern. Med.<br />

Rev. 1998, 3 (4), 308–311.<br />

356. Bustamante, J.; Lodge, J.K.; Marcocci, L.; Tritschler,<br />

H.J.; Packer, L.; Rihn, B.H. a-Lipoic Acid in Liver


Metabolism and Disease. Free Radic. Biol. Med. 1988,<br />

24 (6), 1023–103<strong>9.</strong><br />

357. Olson, K.R.; Woo, O.F.; Pond, S.M. <strong>Treatment</strong> <strong>of</strong><br />

Mushroom <strong>Poisoning</strong>. J. Am. Med. Assoc. 1984, 252<br />

(22), 3130–3131.<br />

358. Paaso, B.; Harrison, D.C. A New Look at an Old<br />

Problem: Mushroom <strong>Poisoning</strong>. Am. J. Med. 1975, 58,<br />

505–508.<br />

35<strong>9.</strong> Vesconi, S.; Langer, M. Thioctic Acid in Amanita<br />

<strong>Poisoning</strong>. Drs. Vesconi and Langer Reply. Crit. Care<br />

Med. 1986, 14 (8), 754.<br />

360. Floersheim, G.L. <strong>Treatment</strong> <strong>of</strong> Mushroom <strong>Poisoning</strong>.<br />

J. Am. Med. Assoc. 1985, 253 (22), 3252.<br />

361. Hanrahan, J.P.; Gordon, M.A. Reply to Olson: <strong>Treatment</strong><br />

<strong>of</strong> Mushroom <strong>Poisoning</strong>. J. Am. Med. Assoc. 1984,<br />

252 (22), 3131–3132.<br />

362. Mitchel, D.H. Amanita Mushroom <strong>Poisoning</strong>. Ann. Rev.<br />

Med. 1980, 31, 51–57.<br />

363. Bartter, F.C. Thioctic Acid and Mushroom <strong>Poisoning</strong>.<br />

Science 1975, 187, 216.<br />

364. Tate, M.; Tufts, E. <strong>Treatment</strong> <strong>of</strong> Mushroom <strong>Poisoning</strong>.<br />

J. Am. Med. Assoc. 1985, 253 (22), 3252.<br />

365. Levine, M. Review <strong>of</strong> Biochemistry, Physiology and<br />

Clinical Uses <strong>of</strong> Ascorbic Acid. N. Engl. J. Med. 1986,<br />

314, 892–902.<br />

366. Jaeger, A.; Sauder, P.; Kopferschmitt, J.; Berton, C. Les<br />

Cytoprotecteurs Hépatiques. XXXème Congrès de la<br />

Société de Toxicologie Clinique, Nancy, France, Sept<br />

16–17, 1993; 2.<br />

367. Monthoux, O. Une Intoxication Volontaire par l’Amanite<br />

Phalloïde et son Traitement: l’Expérience du Dr<br />

Bastien à Genève en 1981. Schweiz. Z. Pilzkd. 1982, 60<br />

(11), 194–197.<br />

368. Bastien, P. l’Intoxication Phalloïdienne à l’Aube de<br />

1988. Bull. Trim. Féd. Mycol. Dauphiné-Savoie 1988,<br />

110, 4–7.<br />

36<strong>9.</strong> Chabré, P.A. Intoxication par l’Amanite Phalloïde: Place<br />

du Traitement Bastien. Thèse de Pharmacie, Université<br />

Lyon 1: France, 1995, 98.<br />

370. Anonymous. Symposium on Clinical Efficacy, Cytoprotection<br />

and Antifibrinolytic Effects. Scand.<br />

J. Gastroenterol. 1986, 21 (Suppl. 121), 1–62.<br />

371. Schneider, S.M.; Borochovitz, D.; Krenzelok, E.P.<br />

Cimetidine Protection Against a-Amanitin Hepatoxicity<br />

in Mice: A Potential Model Protection for the <strong>Treatment</strong><br />

<strong>of</strong> Amanita phalloides <strong>Poisoning</strong>. Ann. Emerg. Med.<br />

1987, 16 (10), 1136–1140.<br />

372. Schneider, S.M.; Vanscoy, G.J.; Michelson, E.A.<br />

Combination Therapy with Cimetidine, Penicillin and<br />

Ascorbic Acid for Alpha-Amanitin Toxicity in Mice.<br />

Ann. Emerg. Med. 1989, 18, 482.<br />

373. Dawson, J.R.; Norbeck, K.; Anundi, I.; Moldeus, P. The<br />

Effectiveness <strong>of</strong> N-Acetylcysteine in Isolated Hepatocytes<br />

Against the Toxicity <strong>of</strong> Paracetamol, Acrolein and<br />

Paraquat. Arch. Toxicol. 1984, 55 (1), 11–15.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 755<br />

374. Flanagan, R.J. The Role <strong>of</strong> Acetylcysteine in Clinical<br />

Toxicology. Med. Toxicol. 1987, 2, 93–104.<br />

375. Kawaji, A.; Sone, T.; Natsuki, R.; Isobe, M.;<br />

Takabatake, E.; Yamaura, Y. In Vitro Toxicity Test <strong>of</strong><br />

Poisonous Mushroom Extracts with Isolated Rat<br />

Hepatocytes. J. Toxicol. Sci. 1990, 15 (3), 145–156.<br />

376. Schneider, S.M.; Michelson, E.A.; Vanscoy, G.J. Failure<br />

<strong>of</strong> N-Acetylcysteine to Reduce Alpha-Amanitin Toxicity.<br />

J. Appl. Toxicol. 1992, 12 (2), 141–142.<br />

377. Usadel, K.H.; Wdowinski, J.; Schwedes, U.; Faulstich,<br />

H.; Röttger, G.; Hübner, K. Effects <strong>of</strong> Somatotropin,<br />

Insulin, “Liver Growth Factor” and Silybin on Liver<br />

Regeneration After a-Amanitin <strong>Poisoning</strong> in the Rat. In<br />

Amanita Toxins and <strong>Poisoning</strong>s; Faulstich, H., Kommerell,<br />

B., Wieland, T., Eds.; Lubrecht Cramer: New<br />

York, 1980; 216–224.<br />

378. Harrison, P.M.; Hughes, R.D.; Forbes, A.; Portmann, B.;<br />

Alexander, G.J.M.; Williams, R. Failure <strong>of</strong> Insulin and<br />

Glucagon Infusion to Stimulate Liver Regeneration in<br />

Fulminant Hepatic Failure. J. Hepatol. 1990, 10,<br />

332–336.<br />

37<strong>9.</strong> Rakeka, J. A Double-Blinded Randomized Trial <strong>of</strong><br />

Hydrocortisone in Acute Hepatic Failure: Acute Hepatic<br />

Failure Study Group. Gastroenterology 1979, 76, 1297.<br />

380. Chang, I.M.; Yun, H.S.; Kim, Y.S.; Ahn, J.W. Aucubin:<br />

Potential Antidote for a-Amanitin <strong>Poisoning</strong>. Clin.<br />

Toxicol. 1984, 22 (1), 77–85.<br />

381. Bianco, A.; Bonini, C.C.; Iavarone, C.; Trogolo, C.<br />

Structure Elucidation <strong>of</strong> Eucommioside (2 00 -O-b-D-<br />

Glucopyranosyl Eucommiol) from Eucommia ulmoides.<br />

Phytochemistry 1982, 21 (1), <strong>20</strong>1–<strong>20</strong>3.<br />

382. Chang, I.M.; Yamaura, Y. Aucubin: A New Antidote for<br />

Poisonous Amanita Mushrooms. Phytother. Res. 1993,<br />

7, 53–56.<br />

383. Bernini, R.; Iavarone, C.; Trogolo, C. 1-O-b-Glucopyranosyleucommiol,<br />

an Iridoid Glucoside from Aucuba<br />

japonica. Phytochemistry 1984, 23 (7), 1431–1433.<br />

384. Chang, I.M. Liver-Protective Activities <strong>of</strong> Aucubin<br />

Derived from Traditional Oriental Medicine. Res.<br />

Commun. Mol. Pathol. Pharmacol. 1998, 102 (2),<br />

189–<strong>20</strong>4.<br />

385. Lee, D.H.; Cho, I.G.; Park, M.S.; Kim, K.N.; Chang,<br />

I.M.; Mar, W. Studies on the Possible Mechanisms <strong>of</strong><br />

Protective Activity Against a-Amanitin <strong>Poisoning</strong> by<br />

Aucubin. Arch. Pharm. Res. <strong>20</strong>01, 24 (1), 55–63.<br />

386. Suh, N.J.; Shim, C.K.; Lee, M.H.; Kim, S.K.; Chang,<br />

I.M. Pharmacokinetic Study <strong>of</strong> an Iridoid Glucoside:<br />

Aucubin. Pharm. Res. 1991, 8, 1059–1063.<br />

387. Weinges, K.; Kloss, P.; Henkels, W.D. Natural Products<br />

from Medicinal Plants. XVII. Pricoside II, a New 6-<br />

Vanilloyl-catapol from Picrorhiza kuroa Royle and<br />

Benth. Justus Liebigs Ann. Chem. 1972, 759, 173–182.<br />

388. Ansari, R.A.; Aswal, B.S.; Chander, R.; Dhawan, B.N.;<br />

Garg, N.K.; Kapoor, N.K.; Kulshreshtha, D.K.; Mehdi,<br />

H.; Mehrotra, B.N.; Patnaik, G.K.; Sharma, S.K.


756<br />

Hepatoprotective Activity <strong>of</strong> Kutkin—The Iridoid<br />

Glycoside Mixture <strong>of</strong> Picrorhiza kurrooa. Indian<br />

J. Med. Res. 1988, 401–404.<br />

38<strong>9.</strong> Dwivedi, Y.; Rastogi, R.; Garg, N.K.; Dhawan, B.N.<br />

Effects <strong>of</strong> Picroliv, the Active Principle <strong>of</strong> Picrorhiza<br />

kurroa, on Biochemical Changes in Rat Liver Poisoned<br />

by Amanita phalloides. Chung-kuo Yao Li Hsueh Pao<br />

1992, 13 (3), 197–<strong>20</strong>0.<br />

390. Floersheim, G.L.; Bieri, A.; Koenig, R.; Pletscher, A.<br />

Protection Against Amanita phalloides by the Iridoid<br />

Glycoside Mixture <strong>of</strong> Picrorhiza kurroa (Kutkin).<br />

Agents Actions 1990, 29 (3/4), 386–387.<br />

391. Chen, N.; Bowles, M.R.; Pond, S.M. Polyclonal<br />

Amanitin-Specific Antibodies: Production and Cytoprotective<br />

Properties In Vitro. Biochem. Pharmacol. 1993,<br />

46 (2), 327–32<strong>9.</strong><br />

392. Faultstich, H.; Kirchner, K.; Derenzini, M. Strongly<br />

Enhanced Toxicity <strong>of</strong> the Mushroom Toxin Alpha-<br />

Amanitin by an <strong>Amatoxin</strong>-Specific Fab or Monoclonal<br />

Antibody. Toxicon 1998, 26 (5), 491–49<strong>9.</strong><br />

393. Tempé J.D.; Lutun, P.; Schneider, F.; Bilbault, P.;<br />

Marcoux, L. Hépatites Aiguës Toxiques. Indications et<br />

Résultats de la Transplantation Hépatique. XXXIème<br />

Congrès de la Société de Toxicologie Clinique, Nancy,<br />

France, Sept 16–17, 1993; Part I, 1–2<strong>9.</strong><br />

394. Gubernatis, G.; Pichlmayr, R.; Kemnitz, J.; Gratz, K.<br />

Auxiliary Partial Orthotopic Liver Transplantation<br />

(APOLT) for Fulminant Hepatic Failure: First<br />

Successful Case Report. World J. Surg. 1991, 15,<br />

660–665.<br />

395. Boudjema, K.; Siméoni, U.; Becmeur, F.; Schiffer, F.;<br />

Odeh, M.; Chenard, M.P.; Bellocq, J.P.; Wolf, P.;<br />

Gelsert, J.; Sauvage, P.; Cinquabre, J.; Jaeck, D.<br />

Transplantation Hépatique Auxiliaire dans le Traitement<br />

de l’Hépatite Fulminante chez l’Enfant: À Propos d’Une<br />

Observation. Réa. Urg. 1993, 3, 316.<br />

396. Moritz, M.J.; Jarrell, B.E.; Munoz, S.J.; Maddrey, W.C.<br />

Regeneration <strong>of</strong> the Native Liver After Heterotopic<br />

Liver Transplantation for Fulminant Hepatic Failure.<br />

Transplantation 1992, 55 (4), 952–954.<br />

397. Chenard-Neu, M.P.; Boudjema, K.; Bernuau, J.; Degott,<br />

C.; Belghiti, J.; Cherqui, D.; Costes, V.; Domergue, J.;<br />

Durand, F.; Ehrard, J.; De Hemptinne, B.; Gubernatis,<br />

G.; Hadengue, A.; Kemnitz, J.; McCarthy, M.; Maschek,<br />

H.; Mentha, G.; Oldhafer, K.; Portmann, B.; Praet, M.;<br />

Ringers, J.; Rogiers, X.; Rubbia, L.; Schalm, S.; Ten<br />

Kate, F.; Terpstra, O.; Van Hoek, B.; Williams, R.;<br />

Zafrani, E.S.; Cinqualbre, J.; Wolf, P.; Jaeck, D.;<br />

Bellocq, J.P. Auxiliary Liver Transplantation:<br />

Regeneration <strong>of</strong> the Native Liver and Outcome in<br />

30 Patients with Fulminant Hepatic Failure—A Multicenter<br />

European Study. Hepatology 1996, 23,<br />

1119–1127.<br />

398. Duffy, T.J. Liver Transplantation for Victims <strong>of</strong> Amanita<br />

Mushroom <strong>Poisoning</strong>. McIlvainea 1989, 9 (1), 4–5.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

Enjalbert et al.<br />

39<strong>9.</strong> Frohburg, E.; Stölzel, U.; Lenz, K.; Schäfer, J.H.; Tung,<br />

L.C.; Riecken, E.O. Prognostic Indicators in<br />

Fulminant Hepatic Failure. Z. Gastroenterol. 1992, 30,<br />

571–575.<br />

400. Caraceni, P.; Van Thiel, D.H. Acute Liver Failure.<br />

Lancet 1995, 345, 163–16<strong>9.</strong><br />

401. Castells, A.; Salmeron, J.M.; Navasa, M.; Rimola, A.;<br />

Salö, J.; Andreu, H.; Mas, A.; Rodès, J. Liver<br />

Transplantation for Acute Liver Failure: Analysis <strong>of</strong><br />

Applicability. Gastroenterology 1993, 105, 532–538.<br />

402. Chapman, R.W.; Forman, D.; Perto, R.; Smallwood, R.<br />

Liver Transplantation for Acute Hepatic Failure? Lancet<br />

1990, 335, 32–35.<br />

403. Lake, J.R.; Sussman, N.L. Determining Prognosis in<br />

Patients with Fulminant Hepatic Failure: When You<br />

Absolutely Positively Have to Know the Answer.<br />

Hepatology 1995, 21 (3), 879–881.<br />

404. Jaeger, A.; Kopferschmitt, J.; Flesch, F.; Berton, C.;<br />

Levenos, H.; Sauder, P. Liver Transplantation for<br />

Amanita <strong>Poisoning</strong>. Congress <strong>of</strong> Anti-Poisons Centre,<br />

Istambul, Turkey, May 24–27, 1992; 103.<br />

405. O’Grady, J.G.; Alexander, G.J.M.; Hayllar, K.M.;<br />

Williams, R. Early Indicators <strong>of</strong> Prognosis in<br />

Fulminant Hepatic Failure. Gastroenterology 1989, 97,<br />

439–445.<br />

406. Shakil, A.O.; Kramer, D.; Mazariegos, G.V.; Fung, J.J.;<br />

Rakela, J. Acute Liver Failure: Clinical Features,<br />

Outcome Analysis, and Applicability <strong>of</strong> Prognostic<br />

Criteria. Liver Transplant. <strong>20</strong>00, 6 (2), 163–16<strong>9.</strong><br />

407. Bernuau, J.; Samuel, D.; Durand, F.; Saliba, F.;<br />

Bourlière, M.; Adam, R.; Gugenheim, J.; Castaing, D.;<br />

Bismuth, H.; Rueff, B.; Erfinger, S.; Benhamou, J.P.<br />

Criteria for Emergency Liver Transplantation in Patients<br />

with Acute Viral Hepatitis and Factor V (FV) Below<br />

50% <strong>of</strong> Normal: A Prospective Study. Hepatology 1991,<br />

14, 49A.<br />

408. Bismuth, H.; Samuel, D.; Gugenheim, J.; Castaing, D.;<br />

Bernuau, J.; Rueff, B.; Benhamou, J.P. Emergency Liver<br />

Transplantation for Fulminant Hepatitis. Ann. Intern.<br />

Med. 1987, 107, 337–341.<br />

40<strong>9.</strong> Bismuth, H.; Samuel, D.; Castaing, D.; Adam, R.;<br />

Saliba, F.; Johann, M.; Azoulay, D.; Ducot, B.; Chiche,<br />

L. Orthotopic Liver Transplantation in Fulminant and<br />

Subfulminant Hepatitis. The Paul Brousse Experience.<br />

Ann. Surg. 1995, 222 (2), 109–11<strong>9.</strong><br />

410. Pereira, L.M.M.B.; Langley, P.G.; Hayllar, K.M.;<br />

Tredger, J.M.; Williams, R. Coagulation Factor V and<br />

VIII/V Ratio as Predictors <strong>of</strong> Outcome in Paracetamol<br />

Induced Fulminant Hepatic Failure: Relation to Other<br />

Prognostic Indicators. Gut 1992, 33, 98–102.<br />

411. Lee, W.M.; Galbraith, R.M.; Watt, G.H.; Hughes, R.D.;<br />

McIntire, D.D.; H<strong>of</strong>fman, B.J.; Williams, R. Predicting<br />

Survival in Fulminant Hepatic Failure Using Serum Gc<br />

Protein Concentrations. Hepatology 1995, 21 (1),<br />

101–105.


412. Trey, C.; Davidson, L.S. The Management <strong>of</strong> Fulminant<br />

Hepatic Failure. In Progress in Liver Disease; Popper,<br />

H., Schaffner, F., Eds.; Grune and Stratton Publishers:<br />

New York, 1970; 282–298.<br />

413. Bernuau, J.; Benhamou, J.P. Classifying Acute Liver<br />

Failure. Lancet 1993, 342, 252–253.<br />

414. Edmond, J.C.; Aran, P.P.; Whitington, P.F.; Broelsch,<br />

C.E.; Baker, A.L. Liver Transplantation in the Management<br />

<strong>of</strong> Fulminant Hepatic Failure. Gastroenterology<br />

1989, 96, 1583–1588.<br />

415. O’Grady, J.G.; Schalm, S.W.; Williams, R. Acute Liver<br />

Failure: Redefining the Syndromes. Lancet 1993, 342,<br />

273–275.<br />

416. Bernuau, J.; Goudeau, A.; Poynard, T.; Dubois, F.;<br />

Lesage, G.; Yvonnet, B.; Degott, C.; Bezeaud, A.; Rueff,<br />

B.; Benhamou, J.P. Multivariate Analysis <strong>of</strong> Prognostic<br />

Factors in Fulminant Hepatitis B. Hepatology 1986, 6<br />

(4), 648–651.<br />

MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016<br />

©<strong>20</strong>02 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission <strong>of</strong> Marcel Dekker, Inc.<br />

<strong>Amatoxin</strong> <strong>Treatment</strong> 757<br />

417. Pauwels, A.; Mostefa-Kara, N.; Florent, C.; Levy, V.G.<br />

Emergency Liver Transplantation for Acute Liver<br />

Failure. Evaluation <strong>of</strong> London and Clichy Criteria.<br />

J. Hepatol. 1993, 17, 124–127.<br />

418. Izumi, S.; Langley, P.G.; Wendon, J.; Ellis, A.J.;<br />

Pernambuco, J.R.B.; Hughes, R.D.; Williams, R.<br />

Coagulation Factor V Levels as a Prognostic Indicator<br />

in Fulminant Hepatic Failure. Hepatology 1996, 23 (6),<br />

1507–1511.<br />

41<strong>9.</strong> Harrison, P.M.; O’Grady, J.G.O.; Keays, R.T.;<br />

Alexander, G.J.M.; Williams, R. Serial Prothrombin<br />

Time as Prognostic Indicator in Paracetamol-Induced<br />

Fulminant Hepatic Failure. Br. Med. J. 1990, 301,<br />

964–966.<br />

4<strong>20</strong>. Christensen, E.; Bremmelgaard, A.; Bahnsen, M.; Buch<br />

Andreasen, P.; Tygstrup, N. Prediction <strong>of</strong> Fatality in<br />

Fulminant Hepatic Failure. Scand. J. Gastroenterol.<br />

1984, 19 (1), 90–96.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!