08.09.2014 Views

Key Methods in Reducing Pad Crack Risk at Probing Low-k Wafers

Key Methods in Reducing Pad Crack Risk at Probing Low-k Wafers

Key Methods in Reducing Pad Crack Risk at Probing Low-k Wafers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Key</strong> <strong>Methods</strong> <strong>in</strong> Reduc<strong>in</strong>g <strong>Pad</strong> <strong>Crack</strong><br />

<strong>Risk</strong> <strong>at</strong> Prob<strong>in</strong>g <strong>Low</strong>-k <strong>Wafers</strong><br />

Taiwan Semiconductor<br />

Manufactur<strong>in</strong>g Company, Ltd.<br />

Frank Hwang<br />

(E-mail:sxhwang@tsmc.com)<br />

Steve Hsu<br />

J. H. Chen<br />

MJC Probe Inc.<br />

Dean Yang<br />

(E-mail:dean.yang@mpi.com.tw)<br />

Wensen Hung<br />

Jacky Tsai<br />

1


Agenda<br />

• Prob<strong>in</strong>g Challenge on <strong>Low</strong>-k Devices<br />

• Scrub Depth Correl<strong>at</strong>es with Underne<strong>at</strong>h Layers<br />

• Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

• Review -2005<br />

• Experiment and Result<br />

• Constant Parameter Calcul<strong>at</strong>ion<br />

• BCF Measurement Limit<strong>at</strong>ion<br />

• Conclusion<br />

2


Prob<strong>in</strong>g Challenge on <strong>Low</strong>-k Devices<br />

1 st : Alum<strong>in</strong>um Tier<br />

Prob<strong>in</strong>g contradictory!<br />

2 nd : TaN<br />

<strong>Low</strong> Probe Force<br />

VS<br />

Contact Res.<br />

4 th : Oxide<br />

<strong>Low</strong>-k Structure<br />

3 rd : Copper<br />

<strong>Low</strong>-k experimental wafer – <strong>Pad</strong> m<strong>at</strong>rix cross section<br />

Tighter BCF Spec W<strong>in</strong>dow<br />

VS<br />

Analyser Accuracy<br />

Contact Force Uniformity<br />

VS<br />

Manufacture Devi<strong>at</strong>ion<br />

Multiple Touchdown<br />

VS<br />

<strong>Pad</strong> <strong>Crack</strong> <strong>Risk</strong><br />

3


Prob<strong>in</strong>g Challenge on <strong>Low</strong>-k Devices<br />

Wh<strong>at</strong> Should Be Concerned on <strong>Low</strong>-k?<br />

• Except <strong>Pad</strong> Void (PV), wh<strong>at</strong> risks will be suffered when<br />

prob<strong>in</strong>g <strong>Low</strong>-k wafer?<br />

• In comparison with the low-k defects, It’s “lucky” to suffer<br />

PV, because of the observable defects where after<br />

alum<strong>in</strong>ium layer removal, copper is physically exposed on<br />

TaN surface.<br />

• How about the scrub below?<br />

It’s OK or NG? In fact, microscope and wafer <strong>in</strong>spector<br />

show you “No PV.”<br />

Al Remove<br />

4


Prob<strong>in</strong>g Challenge on <strong>Low</strong>-k Devices<br />

Hidden Underne<strong>at</strong>h Layer Deform<strong>at</strong>ion<br />

• No PV ≠ Free Damage<br />

BCF:4gw/mil Tip Dia.=8um<br />

OD= 45μm Probe:6 times<br />

Cross<br />

Section<br />

Al<br />

BCF:4gw/mil Tip Dia.=14um<br />

OD=45μm Probe:6 times<br />

Deform<strong>at</strong>ion<br />

Cu<br />

Serious Destruction<br />

5


Prob<strong>in</strong>g Challenge on <strong>Low</strong>-k Devices<br />

Initial Prob<strong>in</strong>g Damage<br />

• After Al was removed, we found micro scr<strong>at</strong>ches<br />

and cracks as below images:<br />

OD= 65μm<br />

TD=6 times<br />

Tip Dia.=8μm<br />

BCF=4gw/mil<br />

Scrub<br />

direction<br />

Slight Medium Serious<br />

• Evalu<strong>at</strong>ion showed the probability of prob<strong>in</strong>g damage:<br />

TaN <strong>Crack</strong> > Underly<strong>in</strong>g Deform<strong>at</strong>ion > <strong>Pad</strong> Void<br />

• Safe prob<strong>in</strong>g method is to prevent TaN-crack!<br />

6


Scrub Depth Correl<strong>at</strong>es with Underne<strong>at</strong>h layers<br />

Underne<strong>at</strong>h Layer Evalu<strong>at</strong>ions<br />

• Measurements identified underne<strong>at</strong>h layer deform<strong>at</strong>ion risk was<br />

<strong>at</strong> stake.<br />

Unacceptable!<br />

Scrub Depth(um)<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

Scrub Depth of 4gw/mil Probe<br />

○PV Found by microscope<br />

TD 2 2 2 2 4 4 4 4 6 6 6 6<br />

OD(um) 45 55 65 75 45 55 65 75 45 55 65 75<br />

Depth(um) 1.2 1.4 1.4 1.3 1.4 1.5 1.4 1.4 1.5 1.6 1.6 1.5<br />

Parameters<br />

7


Scrub Depth Correl<strong>at</strong>es with Underne<strong>at</strong>h layers<br />

Acceptable Scrub Depth Region<br />

• Monitor the TaN layers of shallow scrubs.<br />

Acceptable<br />

Dangerous<br />

Smooth Smooth Smooth Wavy<br />

Scrub Depth<br />

30% of α<br />

Scrub Depth<br />

54% of α<br />

Scrub Depth<br />

60% of α<br />

Scrub Depth<br />

86% of α<br />

α= Thickness of Al Layer<br />

8


Scrub Depth Correl<strong>at</strong>es with Underne<strong>at</strong>h layers<br />

Scrub Depth Control is Necessary<br />

<strong>Low</strong>-k devices are highly sensitive to prob<strong>in</strong>g force issue, more<br />

severely is the unobservable physical damage <strong>in</strong>side the pad.<br />

Hidden damage not seen <strong>at</strong> wafer <strong>in</strong>spect after prob<strong>in</strong>g, but<br />

identified <strong>at</strong> test failure dur<strong>in</strong>g packag<strong>in</strong>g/f<strong>in</strong>al test.<br />

Experiment and evalu<strong>at</strong>ion works <strong>in</strong>dic<strong>at</strong>ed the safety band<br />

prob<strong>in</strong>g depth region is fallen below 60% of total Al thick.<br />

Efficient methodology to control the scrub depth is proposed by<br />

monitor<strong>in</strong>g the Kyy as the primary dom<strong>in</strong>ant factor.<br />

Cont<strong>in</strong>u<strong>in</strong>g the last year present<strong>at</strong>ion on SWTW 2005, the<br />

proposed SDMF will be demonstr<strong>at</strong>ed aga<strong>in</strong> as an effective<br />

backend assessment methodology to prevent the prob<strong>in</strong>g<br />

damage.<br />

9


Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

PV Case <strong>in</strong> TSMC<br />

• Problem description<br />

• <strong>Pad</strong> void by 1 st layer needle<br />

2005 SWTW<br />

Repe<strong>at</strong>ed PV p<strong>at</strong>terns<br />

10


Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

Primary Factors of Experiment I & II<br />

By choos<strong>in</strong>g all critical parameters, a two-level L8 orthogonal array<br />

experiment I has been performed, the <strong>in</strong>fluential factors have been<br />

determ<strong>in</strong>ed as follow:<br />

Primary dom<strong>in</strong>ant factors tip length, tip diameter<br />

Secondary dom<strong>in</strong>ant factors stiffness K yy , needle diameter<br />

From TSMC mass production test<strong>in</strong>g, three critical parameters were<br />

chosen to perform experiment II with a L9 three-level sett<strong>in</strong>g. The<br />

summarized results are:<br />

Primary dom<strong>in</strong>ant factors tip length, stiffness K yy<br />

Secondary dom<strong>in</strong>ant factors tip diameter<br />

The slight vari<strong>at</strong>ion <strong>in</strong> results of these two experiments, it was<br />

recognized th<strong>at</strong> these experiments still had uncontrolled noise.<br />

2005 SWTW<br />

It is concluded th<strong>at</strong> these two experiments <strong>in</strong>dic<strong>at</strong>ed th<strong>at</strong> tip length,<br />

tip diameter, stiffness K yy were the three most <strong>in</strong>fluential primary<br />

parameters.<br />

11


Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

Theory, Experiment and Verific<strong>at</strong>ion<br />

• Constant values B & C were<br />

found from curve fitt<strong>in</strong>g.<br />

U<br />

z<br />

=<br />

=<br />

C<br />

C<br />

F<br />

y<br />

D<br />

2005 SWTW<br />

D<br />

( BK + K ) D<br />

yx<br />

yy<br />

y<br />

1200<br />

1000<br />

Curve Fitt<strong>in</strong>g Result<br />

Unit :<br />

U<br />

z<br />

: nm<br />

800<br />

Uz (nm)<br />

600<br />

400<br />

200<br />

0<br />

R 2 = 0.835<br />

K<br />

D<br />

yx<br />

y<br />

,K<br />

: mil<br />

D :μm<br />

yy<br />

: gw/mil<br />

0 0.5 1 1.5 2<br />

Fy/D (gw/um)<br />

12


Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

TheoryⅡ, ExperimentⅡ, and Verific<strong>at</strong>ionⅡ<br />

• Experiment background<br />

• Applicability of the model is evalu<strong>at</strong>ed.<br />

• Two more parameters <strong>in</strong>cluded:<br />

(1) Three most commonly used prober mach<strong>in</strong>es<br />

(2) Different needle diameter (4 mils)<br />

• Prober set-up based on TSMC production used methods.<br />

• Results<br />

Prober<br />

Probe<br />

Type<br />

OD<br />

(μm)<br />

Tip Dia.<br />

(μm)<br />

Tier<br />

Stiffness-Kyx<br />

(gw/mil)<br />

Stiffness-Kyy<br />

(gw/mil)<br />

UF200<br />

UF3000<br />

TEL P12<br />

40<br />

60<br />

75<br />

8<br />

13<br />

1-3<br />

1st: 7.28<br />

2nd: 5.23<br />

3rd: 4.19<br />

2<br />

Additional set up notes:. undershoot <strong>at</strong> UF prober is 25 um, while on TEL P12, double<br />

touchdown function is activ<strong>at</strong>ed.<br />

13


Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

TheoryⅡ, ExperimentⅡ, and Verific<strong>at</strong>ionⅡ<br />

• R-square was <strong>in</strong> high agreement for UF200<br />

◆ Actual Measurement d<strong>at</strong>a<br />

— Fitt<strong>in</strong>g Curve<br />

14


Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

TheoryⅡ, ExperimentⅡ, and Verific<strong>at</strong>ionⅡ<br />

• UF3000 also showed appreciable agreement<br />

◆ Actual Measurement d<strong>at</strong>a<br />

— Fitt<strong>in</strong>g Curve<br />

15


Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

TheoryⅡ, ExperimentⅡ, and Verific<strong>at</strong>ionⅡ<br />

• R-square showed lower fitt<strong>in</strong>g agreements.<br />

• Prober chuck movement mechanism was <strong>at</strong>tributed as major<br />

factor <strong>in</strong> the result vari<strong>at</strong>ion.<br />

• Initial guess is TEL P12 hav<strong>in</strong>g deeper prob<strong>in</strong>g height than<br />

UF families.<br />

◆ Actual Measurement d<strong>at</strong>a<br />

— Fitt<strong>in</strong>g Curve<br />

16


Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

TheoryⅡ, ExperimentⅡ, and Verific<strong>at</strong>ionⅡ<br />

• SDMF – Constant parameter calcul<strong>at</strong>ion<br />

【UF200】<br />

Two normal TDs scrubbed<br />

2~22% deeper than s<strong>in</strong>gle<br />

TD. (see blue vs. red l<strong>in</strong>e)<br />

25um undershoot TDs has<br />

15~30% deeper scrub<br />

mark than the nonundershoot<strong>in</strong>g<br />

one.<br />

(see green vs. red l<strong>in</strong>e)<br />

17


Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

TheoryⅡ, ExperimentⅡ, and Verific<strong>at</strong>ionⅡ<br />

• SDMF – Constant parameter calcul<strong>at</strong>ion<br />

【UF3000】<br />

Two common TDs<br />

gener<strong>at</strong>ed 25~45% deeper<br />

scrub than with only 1 TD.<br />

(see blue vs. red l<strong>in</strong>es)<br />

Activ<strong>at</strong><strong>in</strong>g undershoot<br />

25um, scrubs became<br />

0~15% deeper than non<br />

activ<strong>at</strong>ed one.<br />

(see green vs. red l<strong>in</strong>es)<br />

18


Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

TheoryⅡ, ExperimentⅡ, and Verific<strong>at</strong>ionⅡ<br />

• SDMF – Constant parameter calcul<strong>at</strong>ion<br />

【TEL P12】<br />

“TEL double touchdown”<br />

function physically differs with<br />

UF’s “undershoot function.”<br />

Two normal TDs’ scrub marks<br />

were 4~9% deeper than the<br />

one by s<strong>in</strong>gle TD.<br />

(blue vs. red)<br />

After activ<strong>at</strong><strong>in</strong>g “double<br />

touchdown”, scrub is<br />

<strong>in</strong>creas<strong>in</strong>gly 8~17% deeper<br />

than non-activ<strong>at</strong>ed one.<br />

(green vs. red)<br />

19


Scrub Depth Model Formul<strong>at</strong>ion (SDMF)<br />

Summary<br />

SDMF results aga<strong>in</strong> showed the high level of quantit<strong>at</strong>ive<br />

prediction agreement with the correspond<strong>in</strong>g experimental<br />

measurement d<strong>at</strong>a.<br />

“L<strong>in</strong>ear Scrubb<strong>in</strong>g / Slope Scrubb<strong>in</strong>g” based assumption of SDMF<br />

is theoretically and experimentally proven to be capable of<br />

predict<strong>in</strong>g the scrub depth the complex scrubb<strong>in</strong>g action.<br />

Constant parameter modific<strong>at</strong>ion factors of prober <strong>in</strong>clud<strong>in</strong>g setup<br />

and multiple TDs functions, still need further st<strong>at</strong>istic sampl<strong>in</strong>g<br />

d<strong>at</strong>a to obta<strong>in</strong> accur<strong>at</strong>e results.<br />

Measurement errors existed <strong>in</strong> the experimental d<strong>at</strong>a is still<br />

acceptably tolerable as to be used <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g level applic<strong>at</strong>ion.<br />

Production d<strong>at</strong>a feedback is always an on-go<strong>in</strong>g process for<br />

better modific<strong>at</strong>ion results of certa<strong>in</strong> constant values of the model.<br />

20


BCF Measurement Limit<strong>at</strong>ion<br />

Analyzer, St<strong>at</strong>istic, Experiment<br />

• BCF control is unavoidable for low-k prob<strong>in</strong>g<br />

• How to address a common BCF def<strong>in</strong>ition by suppliers<br />

and vendors ?<br />

• Currently the <strong>in</strong>dustry available BCF measurement<br />

tool<strong>in</strong>g (ex. Equipment A) showed spec as below:<br />

Simply st<strong>at</strong>es:<br />

With measured value 1gw/mil, it will have confidence <strong>in</strong>tervals 99.7%<br />

th<strong>at</strong> the devi<strong>at</strong>ion range should fall from 0.75~1.25 gw, also denoted as (1gw ± 25%)<br />

21


BCF Measurement Limit<strong>at</strong>ion<br />

Analyzer, St<strong>at</strong>istic, Experiment<br />

12%<br />

(1)BCF Spec:4gw/mil ±20%<br />

(2)Accuracy:±0.25gw @3σ<br />

(1)BCF Spec:1gw/mil ±20%<br />

(2)Accuracy:±0.25gw @3σ<br />

10%-offset BCF Measure<br />

100% confidence with<strong>in</strong> Spec.<br />

10%-offset BCF Measure<br />

88% confidence with<strong>in</strong> Spec.<br />

As metrology accuracy has been pushed to its limit, allowable manufacture devi<strong>at</strong>ion suffers<br />

more and more tighter tolerance. New BCF metrology pl<strong>at</strong>form is urgently needed.<br />

22


BCF Measurement Limit<strong>at</strong>ion<br />

Analyzer, St<strong>at</strong>istic, ExperimentⅠ<br />

• At low BCF values, measurement accuracy is degraded to<br />

marg<strong>in</strong>al range<br />

Average Standard Devi<strong>at</strong>ion:<br />

σ Ave<br />

-TSMC is 0.065<br />

σ Ave<br />

-MPI is 0.075<br />

BCF under 3σ confidence <strong>in</strong>terval:<br />

TSMC≒μ±0.195 4 gw/mil ±5%<br />

MPI ≒μ±0.225 4 gw/mil ±5%<br />

Average Standard Devi<strong>at</strong>ion:<br />

σ Ave<br />

-TSMC is 0.033<br />

σ Ave<br />

-MPI is 0.025<br />

BCF under 3σ confidence <strong>in</strong>terval:<br />

TSMC≒μ±0.1 1 gw/mil ±10%<br />

MPI ≒μ±0.075 1 gw/mil ±7.5%<br />

Accuracy is<br />

gett<strong>in</strong>g worse!<br />

23


BCF Measurement Limit<strong>at</strong>ion<br />

Analyzer, St<strong>at</strong>istic, ExperimentⅡ<br />

Procure a qualified<br />

low-k probe card.<br />

Only 85% could<br />

s<strong>at</strong>isfy the spec-<br />

1gw/mil±20%<br />

Carried out 5 repetitive<br />

BCF measurements<br />

from selected 50 p<strong>in</strong>s.<br />

For required spec<br />

1gw/mil ±20%, sigma<br />

must <strong>at</strong>


Conclusion<br />

• High density of mechanically weak structural layers of IC pad<br />

<strong>in</strong>troduced <strong>in</strong> low-k wafers will <strong>in</strong>crease the pad crack possibilities.<br />

• Now TSMC keeps practic<strong>in</strong>g the SDMF as the standard guidel<strong>in</strong>e<br />

for monitor<strong>in</strong>g and controll<strong>in</strong>g the prob<strong>in</strong>g scrub marks <strong>in</strong><br />

achiev<strong>in</strong>g the robust wafer sort.<br />

• SDMF results can also be further implemented <strong>in</strong>to probe card<br />

design <strong>in</strong> order to obta<strong>in</strong> acceptable probe depth.<br />

• SDMF was aga<strong>in</strong> valid<strong>at</strong>ed experimentally under consider<strong>at</strong>ion of<br />

more complete practical prob<strong>in</strong>g parameters. However, prober<br />

set-up (particularly chuck movement) still considered as important<br />

factor.<br />

• Available BCF metrology is recently <strong>at</strong> its bottleneck limit, for<br />

low-k card, new enhancement tool<strong>in</strong>g to obta<strong>in</strong><strong>in</strong>g accur<strong>at</strong>e<br />

measurement is under request.<br />

25


Q&A<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!