08.11.2014 Views

AD548 Precision, Low Power BiFET Op Amp - QRZ.ru

AD548 Precision, Low Power BiFET Op Amp - QRZ.ru

AD548 Precision, Low Power BiFET Op Amp - QRZ.ru

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

a<br />

FEATURES<br />

Enhanced Replacement for LF441 and TL061<br />

DC Performance:<br />

200 A max Quiescent Current<br />

10 pA max Bias Current, Warmed Up (<strong>AD548</strong>C)<br />

250 V max Offset Voltage (<strong>AD548</strong>C)<br />

2 V/C max Drift (<strong>AD548</strong>C)<br />

2 V p-p Noise, 0.1 Hz to 10 Hz<br />

AC Performance:<br />

1.8 V/s Slew Rate<br />

1 MHz Unity Gain Bandwidth<br />

Available in Plastic, Hermetic Cerdip and Hermetic<br />

Metal Can Packages and in Chip Form<br />

Available in Tape and Reel in Accordance with<br />

EIA-481A Standard<br />

MIL-STD-883B Parts Available<br />

Dual Version Available: AD648<br />

Surface Mount (SOIC) Package Available<br />

PRODUCT DESCRIPTION<br />

The <strong>AD548</strong> is a low power, precision monolithic operational<br />

amplifier. It offers both low bias current (10 pA max, warmed<br />

up) and low quiescent current (200 µA max) and is fabricated<br />

with ion-implanted FET and laser wafer trimming technologies.<br />

Input bias current is guaranteed over the <strong>AD548</strong>’s entire<br />

common-mode voltage range.<br />

The economical J grade has a maximum guaranteed input offset<br />

voltage of less than 2 mV and an input offset voltage drift of less<br />

than 20 µV/°C. The C grade reduces input offset voltage to less<br />

than 0.25 mV and offset voltage drift to less than 2 µV/°C. This<br />

level of dc precision is achieved utilizing Analog’s laser wafer<br />

drift trimming process. The combination of low quiescent current<br />

and low offset voltage drift minimizes changes in input offset<br />

voltage due to self-heating effects. Four additional grades are<br />

offered over the commercial, industrial and military temperature<br />

ranges.<br />

The <strong>AD548</strong> is recommended for any dual supply op amp application<br />

requiring low power and excellent dc and ac performance.<br />

In applications such as battery-powered, precision<br />

inst<strong>ru</strong>ment front ends and CMOS DAC buffers, the <strong>AD548</strong>’s<br />

excellent combination of low input offset voltage and drift, low<br />

bias current and low 1/f noise reduces output errors. High common-mode<br />

rejection (86 dB, min on the “C” grade) and high<br />

open-loop gain ensures better than 12-bit linearity in high impedance,<br />

buffer applications.<br />

The <strong>AD548</strong> is pinned out in a standard op amp configuration<br />

and is available in six performance grades. The <strong>AD548</strong>J and<br />

<strong>AD548</strong>K are rated over the commercial temperature range of<br />

0°C to +70°C. The <strong>AD548</strong>A, <strong>AD548</strong>B and <strong>AD548</strong>C are rated<br />

OFFSET NULL<br />

1<br />

INVERTING<br />

INPUT<br />

2<br />

3<br />

NONINVERTING<br />

INPUT<br />

<strong>Precision</strong>, <strong>Low</strong> <strong>Power</strong><br />

<strong>BiFET</strong> <strong>Op</strong> <strong>Amp</strong><br />

<strong>AD548</strong><br />

CONNECTION DIAGRAMS<br />

Plastic Mini-DIP (N) Package,<br />

Cerdip (Q) Package and<br />

SOIC (R)Package<br />

OFFSET NULL 1<br />

8 NC<br />

INVERTING<br />

INPUT<br />

NONINVERTING<br />

INPUT<br />

V–<br />

2<br />

3<br />

4 <strong>AD548</strong><br />

TOP VIEW<br />

7<br />

6<br />

5<br />

V+<br />

OUTPUT<br />

OFFSET<br />

NULL<br />

TO-99 (H) Package<br />

NC<br />

8 V+<br />

<strong>AD548</strong> 7<br />

4<br />

V–<br />

5<br />

6<br />

OUTPUT<br />

OFFSET<br />

NULL<br />

NOTE : PIN 4 CONNECTED TO CASE<br />

NC = NO CONNECT<br />

over the industrial temperature range of –40°C to +85°C. The<br />

<strong>AD548</strong>S is rated over the military temperature range of –55°C<br />

to +125°C and is available processed to MIL-STD-883B, Rev. C.<br />

The <strong>AD548</strong> is available in an 8-pin plastic mini-DIP, cerdip,<br />

TO-99 metal can, surface mount (SOIC), or in chip form.<br />

PRODUCT HIGHLIGHTS<br />

1. A combination of low supply current, excellent dc and ac<br />

performance and low drift makes the <strong>AD548</strong> the ideal op<br />

amp for high performance, low power applications.<br />

2. The <strong>AD548</strong> is pin compatible with industry standard op<br />

amps such as the LF441, TL061, and AD542, enabling designers<br />

to improve performance while achieving a reduction<br />

in power dissipation of up to 85%.<br />

3. Guaranteed low input offset voltage (2 mV max) and drift<br />

(20 µV/°C max) for the <strong>AD548</strong>J are achieved utilizing<br />

Analog Devices’ laser drift trimming technology, eliminating<br />

the need for external trimming.<br />

4. Analog Devices specifies each device in the warmed-up condition,<br />

insuring that the device will meet its published specifications<br />

in actual use.<br />

5. A dual version, the AD648 is also available.<br />

6. Enhanced replacement for LF441 and TL061.<br />

1<br />

10kΩ<br />

V OS TRIM<br />

TOP VIEW<br />

5<br />

4<br />

–15V<br />

REV. B<br />

Information furnished by Analog Devices is believed to be accurate and<br />

reliable. However, no responsibility is assumed by Analog Devices for its<br />

use, nor for any infringements of patents or other rights of third parties<br />

which may result from its use. No license is granted by implication or<br />

otherwise under any patent or patent rights of Analog Devices.<br />

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.<br />

Tel: 617/329-4700 Fax: 617/326-8703


<strong>AD548</strong>–SPECIFICATIONS<br />

(@ +25C and V S = 15 V dc unless otherwise noted)<br />

Model <strong>AD548</strong>J/A/S <strong>AD548</strong>K/B <strong>AD548</strong>C<br />

Min Typ Max Min Typ Max Min Typ Max Units<br />

INPUT OFFSET VOLTAGE 1<br />

Initial Offset 0.75 2.0 0.3 0.5 0.10 0.25 mV<br />

T MIN to T MAX 3.0/3.0/3.0 0.7/0.8 0.4 mV<br />

vs. Temperature 20 5 2.0 µV/°C<br />

vs. Supply 80 86 86 dB<br />

vs. Supply, T MIN to T MAX 76/76/76 80 80 dB<br />

Long-Term Offset Stability 15 15 15 µV/Month<br />

INPUT BIAS CURRENT<br />

Either Input 2 , V CM = 0 5 20 3 10 3 10 pA<br />

Either Input 2 at T MAX , V CM = 0 0.45/1.3/20 0.25/0.65 0.65 nA<br />

Max Input Bias Current Over<br />

Common-Mode Voltage Range 30 15 15 pA<br />

Offset Current, V CM = 0 5 10 2 5 2 5 pA<br />

Offset Current at T MAX 0.25/0.65/10 0.15/0.35 0.35 nA<br />

INPUT IMPEDANCE<br />

Differential 1 × 10 12 3 1 × 10 12 3 1 × 10 12 3 ΩpF<br />

Common Mode 3 × 10 12 3 3 × 10 12 3 3 × 10 12 3 ΩpF<br />

INPUT VOLTAGE RANGE<br />

Differential 3 ±20 ±20 ±20 V<br />

Common Mode ±11 ±12 ±11 ±12 ±11 ±12 V<br />

Common-Mode Rejection<br />

V CM = ±10 V 76 90 82 92 86 98 dB<br />

T MIN to T MAX 76/76/76 90 82 92 86 98 dB<br />

V CM = ±11 V 70 84 76 86 76 90 dB<br />

T MIN to T MAX 70/70/70 84 76 86 76 90 dB<br />

INPUT VOLTAGE NOISE<br />

Voltage 0.1 Hz to 10 Hz 2 2 2 4.0 µV p-p<br />

f = 10 Hz 80 80 80 nV/√Hz<br />

f = 100 Hz 40 40 40 nV/√Hz<br />

f = 1 kHz 30 30 30 nV/√Hz<br />

f = 10 kHz 30 30 30 nV/√Hz<br />

INPUT CURRENT NOISE<br />

f = 1 kHz 1.8 1.8 1.8 fA/√Hz<br />

FREQUENCY RESPONSE<br />

Unity Gain, Small Signal 0.8 1.0 0.8 1.0 0.8 1.0 MHz<br />

Full <strong>Power</strong> Response 30 30 30 kHz<br />

Slew Rate, Unity Gain 1.0 1.8 1.0 1.8 1.0 1.8 V/µs<br />

Settling Time to ± 0.01% 8 8 8 µs<br />

OPEN LOOP GAIN<br />

V O = ± 10 V, R L ≥ 10 kΩ 300 1000 300 1000 300 1000 V/mV<br />

T MIN to T MAX , R L ≥ 10 kΩ 300/300/300 700 300 700 300 700 V/mV<br />

V O = ± 10 V, R L ≥ 5 kΩ 150 500 150 500 150 500 V/mV<br />

T MIN to T MAX , R L ≥ 5 kΩ 150/150/150 300 150 300 150 300 V/mV<br />

OUTPUT CHARACTERISTICS<br />

Voltage @ R L ≥ 10 kΩ, ±12 ±13 ±12 ±13 ±12 ±13 V<br />

T MIN to T MAX ±12/± 12/± 12 ±12 ±12<br />

Voltage @ R L ≥ 5 kΩ, ±11 ±12.3 ±11 ±12.3 ±11 ±12.3 V<br />

T MIN to T MAX ±11/± 11/± 11 ±11 ±11<br />

Short Circuit Current 15 15 15 mA<br />

POWER SUPPLY<br />

Rated Performance ±15 ±15 ±15 V<br />

<strong>Op</strong>erating Range ±4.5 ±18 ±4.5 ±18 ±4.5 ±18 V<br />

Quiescent Current 170 200 170 200 170 200 µA<br />

TEMPERATURE RANGE<br />

<strong>Op</strong>erating, Rated Performance<br />

Commercial (0°C to +70°C) <strong>AD548</strong>J <strong>AD548</strong>K<br />

Industrial (–40°C to +85°C) <strong>AD548</strong>A <strong>AD548</strong>B <strong>AD548</strong>C<br />

Military (–55°C to +125°C)<br />

<strong>AD548</strong>S<br />

PACKAGE OPTIONS<br />

SOIC (R-8) <strong>AD548</strong>JR <strong>AD548</strong>KR, <strong>AD548</strong>BR<br />

Plastic (N-8) <strong>AD548</strong>JN <strong>AD548</strong>KN<br />

Cerdip (Q-8) <strong>AD548</strong>AQ <strong>AD548</strong>CQ<br />

Metal Can (H-08A) <strong>AD548</strong>AH <strong>AD548</strong>BH<br />

Tape and Reel <strong>AD548</strong>JR-REEL <strong>AD548</strong>KR-REEL, <strong>AD548</strong>BR-REEL<br />

Chips Available <strong>AD548</strong>JCHIPS<br />

NOTES<br />

1 Input Offset Voltage specifications are guaranteed after 5 minutes of operation at TA = +25°C.<br />

2 Bias Current specifications are guaranteed maximum at either input after 5 minutes of operation at T A = +25°C. For higher temperature, the current doubles every 10°C.<br />

3 Defined as voltages between inputs, such that neither exceeds ±10 V from ground.<br />

Specifications subject to change without notice.<br />

–2–<br />

REV. C


<strong>AD548</strong><br />

ABSOLUTE MAXIMUM RATINGS l<br />

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±18 V<br />

Internal <strong>Power</strong> Dissipation 2 . . . . . . . . . . . . . . . . . . . . 500 mW<br />

Input Voltage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±18 V<br />

Output Short Circuit Duration . . . . . . . . . . . . . . . . .Indefinite<br />

Differential Input Voltage . . . . . . . . . . . . . . . . . . +V S and –V S<br />

Storage Temperature Range (Q, H) . . . . . . . . –65°C to +150°C<br />

(N, R) . . . . . . . . –65°C to +125°C<br />

<strong>Op</strong>erating Temperature Range<br />

<strong>AD548</strong>J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . .0°C to +70°C<br />

<strong>AD548</strong>A/B/C . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C<br />

<strong>AD548</strong>S . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C<br />

Lead Temperature Range (Soldering 60 sec) . . . . . . . . +300°C<br />

NOTES<br />

1 Stresses above those listed under “Absolute Maximum Ratings” may cause<br />

permanent damage to the device. This is a stress rating only and functional<br />

operation of the device at these or any other conditions above those indicated in the<br />

operational sections of this specification is not implied. Exposure to absolute<br />

maximum rating conditions for extended periods may affect device reliability.<br />

2 Thermal Characteristics: 8-Pin SOIC Package: θ JA = 160°C/W, θ JC = 42°C/W;<br />

8-Pin Plastic Package: θ JA = 90°C/W; 8-Pin Cerdip Package: θ JC = 22°C/W, θ JA =<br />

110°C/W; 8-Pin Metal Can Package: θ JC = 65°C/W, θ JA = 150°C/W.<br />

3 For supply voltages less than ±18 V, the absolute maximum input voltage is equal<br />

to the supply voltage.<br />

20<br />

20<br />

METALIZATION PHOTOGRAPH<br />

Dimensions shown in inches and (mm).<br />

Contact factory for latest dimensions<br />

30<br />

Typical Characteristics<br />

INPUT VOLTAGE – ±V<br />

15<br />

10<br />

5<br />

+V IN<br />

–V IN<br />

OUTPUT VOLTAGE SWING – ±V<br />

15<br />

10<br />

5<br />

+V OUT<br />

–V OUT<br />

25°C<br />

R L = 10k<br />

OUTPUT VOLTAGE SWING – Volts p-p<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20<br />

SUPPLY VOLTAGE – ±V<br />

Figure 1. Input Voltage Range<br />

vs. Supply Voltage<br />

0<br />

0 5 10 15 20<br />

SUPPLY VOLTAGE – ±V<br />

Figure 2. Output Voltage Swing<br />

vs. Supply Voltage<br />

0<br />

10 100 1k 10k<br />

LOAD RESISTANCE – Ω<br />

Figure 3. Output Voltage Swing<br />

vs. Load Resistance<br />

200<br />

10<br />

100nA<br />

QUIESCENT CURRENT – µA<br />

180<br />

160<br />

140<br />

INPUT BIAS CURRENT – pA<br />

8<br />

6<br />

4<br />

2<br />

INPUT BIAS CURRENT<br />

10nA<br />

1nA<br />

100pA<br />

10pA<br />

1pA<br />

100fA<br />

120<br />

0 5 10 15 20<br />

SUPPLY VOLTAGE – ±V<br />

Figure 4. Quiescent Current vs.<br />

Supply Voltage<br />

0<br />

0 4 8 12 16 20<br />

SUPPLY VOLTAGE – ±V<br />

Figure 5. Input Bias Current<br />

vs. Supply Voltage<br />

10fA<br />

–55 –25 5 35 65 95 125<br />

TEMPERATURE – °C<br />

Figure 6. Input Bias Current vs.<br />

Temperature<br />

CAUTION<br />

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily<br />

accumulate on the human body and test equipment and can discharge without detection.<br />

Although the <strong>AD548</strong> features proprietary ESD protection circuitry, permanent damage may<br />

occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD<br />

precautions are recommended to avoid performance degradation or loss of functionality.<br />

WARNING!<br />

ESD SENSITIVE DEVICE<br />

REV. C –3–


<strong>AD548</strong>–Typical Characteristics<br />

INPUT BIAS CURRENT – pA<br />

10<br />

8<br />

6<br />

4<br />

2<br />

I∆V OS I – µV<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

OPEN LOOP GAIN – V/mV<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

R L = 10k<br />

0<br />

–10 –6 –2 2 6 10<br />

COMMON-MODE VOLTAGE – V<br />

Figure 7. Input Bias Current vs.<br />

Common-Mode Voltage<br />

0 0 10 20 30 40 50 60 70<br />

WARM-UP TIME – Seconds<br />

Figure 8. Change in Offset Voltage<br />

vs. Warm-Up Time<br />

0<br />

–55 –25 5 35 65 95 125<br />

TEMPERATURE – °C<br />

Figure 9. <strong>Op</strong>en Loop Gain vs.<br />

Temperature<br />

100<br />

100<br />

120<br />

120<br />

OPEN LOOP GAIN – dB<br />

80<br />

60<br />

40<br />

20<br />

0<br />

–20<br />

PHASE<br />

GAIN<br />

80<br />

60<br />

40<br />

20<br />

0<br />

–20<br />

PHASE IN DEGREES<br />

OPEN LOOP VOLTAGE GAIN – dB<br />

110<br />

100<br />

90<br />

80<br />

70<br />

POWER SUPPLY REJECTION – dB<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

+SUPPLY<br />

–SUPPLY<br />

–40 –40<br />

1k 10k 100k 1M 10M<br />

FREQUENCY – Hz<br />

Figure 10. <strong>Op</strong>en Loop Frequency<br />

Response<br />

CMRR – dB<br />

TOTAL HARMONIC DISTORTION – %<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

1k 10k 100k 1M<br />

FREQUENCY – Hz<br />

Figure 13. CMRR vs. Frequency<br />

4<br />

1<br />

0.1<br />

0.01<br />

FOLLOWER<br />

WITH GAIN = 10<br />

UNITY GAIN<br />

FOLLOWER<br />

0.001<br />

100 1k 10k<br />

FREQUENCY – Hz<br />

Figure 16. Total Harmonic<br />

Distortion vs. Frequency<br />

100k<br />

60<br />

0 2 4 6 8 10 12 14 16 18<br />

SUPPLY VOLTAGE – ±V<br />

Figure 11. <strong>Op</strong>en Loop Voltage Gain<br />

vs. Supply Voltage<br />

OUTPUT VOLTAGE – V p-p<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

10 100 1k 10k 100k 1M<br />

FREQUENCY – Hz<br />

Figure 14. Large Signal Frequency<br />

Response<br />

INPUT NOISE VOLTAGE – nV/√Hz<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

10 100 1k 10k 100k<br />

FREQUENCY – Hz<br />

Figure 17. Input Noise Voltage<br />

Spectral Density<br />

OUTPUT VOLTAGE SWING – V<br />

–20<br />

100 1k 10k 100k 1M<br />

FREQUENCY – Hz<br />

Figure 12. PSRR vs. Frequency<br />

10<br />

5<br />

0<br />

–5<br />

10mV<br />

1mV<br />

1mV<br />

10mV<br />

–10<br />

0 2 4 6 8<br />

SETTLING TIME – µs<br />

Figure 15. Output Swing and Error<br />

Voltage vs. Output Settling Time<br />

INPUT NOISE VOLTAGE – µV p-p<br />

10,000<br />

1,000<br />

100<br />

10<br />

WHENEVER JOHNSON NOISE IS GREATER THAN<br />

AMPLIFIER NOISE, AMPLIFIER NOISE CAN BE<br />

CONSIDERED NEGLIGIBLE FOR APPLICATION<br />

1kHz BANDWIDTH<br />

RESISTOR JOHNSON<br />

NOISE<br />

10Hz<br />

BANDWIDTH<br />

1<br />

AMPLIFIER GENERATED NOISE<br />

0<br />

100k 1M 10M 100M 1G 10G 100G<br />

SOURCE IMPEDANCE – Ω<br />

Figure 18. Total Noise vs. Source<br />

Impedance<br />

–4– REV. C


Typical Characteristics–<strong>AD548</strong><br />

Figure 19a. Unity Gain Follower<br />

Figure 19b. Unity Gain Follower<br />

Pulse Response (Large Signal)<br />

Figure 19c. Unity Gain Follower<br />

Pulse Response (Small Signal)<br />

Figure 20a. Utility Gain Inverter<br />

APPLICATION NOTES<br />

The <strong>AD548</strong> is a JFET-input op amp with a guaranteed maximum<br />

I B of less than 10 pA, and offset and drift laser-trimmed to<br />

0.25 mV and 2 µV/°C respectively (<strong>AD548</strong>C). AC specs include<br />

1 MHz bandwidth, 1.8 V/µs typical slew rate and 8 µs settling<br />

time for a 20 V step to ±0.01%—all at a supply current less<br />

than 200 µA. To capitalize on the device’s performance, a number<br />

of error sources should be considered.<br />

The minimal power drain and low offset drift of the <strong>AD548</strong><br />

reduce self-heating or “warm-up” effects on input offset voltage,<br />

making the <strong>AD548</strong> ideal for on/off battery powered applications.<br />

The power dissipation due to the <strong>AD548</strong>’s 200 µA supply<br />

current has a negligible effect on input current, but heavy output<br />

loading will raise the chip temperature. Since a JFET’s input<br />

current doubles for every 10°C rise in chip temperature, this<br />

can be a noticeable effect.<br />

The amplifier is designed to be functional with power supply<br />

voltages as low as ±4.5 V. It will exhibit a higher input offset<br />

voltage than at the rated supply voltage of ±15 V, due to power<br />

supply rejection effects. The common-mode range of the<br />

<strong>AD548</strong> extends from 3 V more positive than the negative supply<br />

to 1 V more negative than the positive supply. Designed to<br />

cleanly drive up to 10 kΩ and 100 pF loads, the <strong>AD548</strong> will<br />

drive a 2 kΩ load with reduced open loop gain.<br />

OFFSET NULLING<br />

Unlike bipolar input amplifiers, zeroing the input offset voltage<br />

of a <strong>BiFET</strong> op amp will not minimize offset drift. Using balance<br />

Pins 1 and 5 to adjust the input offset voltage as shown in Figure<br />

21 will induce an added drift of 0.24 µV/°C per 100 µV of<br />

nulled offset. The low initial offset (0.25 mV) of the <strong>AD548</strong>C<br />

results in only 0.6 µV/°C of additional drift.<br />

Figure 20b. Utility Gain Inverter<br />

Pulse Response (Large Signal)<br />

Applying the <strong>AD548</strong><br />

Figure 20c. Unity Gain Inverter<br />

Pulse Response (Small Signal)<br />

Figure 21. Offset Null Configuration<br />

LAYOUT<br />

To take full advantage of the <strong>AD548</strong>’s 10 pA max input current,<br />

parasitic leakages must be kept below an acceptable level. The<br />

practical limit of the resistance of epoxy or phenolic circuit<br />

board material is between 1 × 10 12 Ω and 3 × 10 12 Ω. This can<br />

result in an additional leakage of 5 pA between an input of 0 V<br />

and a –15 V supply line. Teflon or a similar low leakage material<br />

(with a resistance exceeding 10 17 Ω) should be used to isolate<br />

high impedance input lines from adjacent lines carrying high<br />

voltages. The insulator should be kept clean, since contaminants<br />

will degrade the surface resistance.<br />

A metal guard completely surrounding the high impedance<br />

nodes and driven by a voltage near the common-mode input potential<br />

can also be used to reduce some parasitic leakages. The<br />

guarding pattern in Figure 22 will reduce parasitic leakage due<br />

to finite board surface resistance; but it will not compensate for<br />

a low volume resistivity board.<br />

REV. C –5–


<strong>AD548</strong><br />

Figure 22. Board Layout for Guarding Inputs<br />

INPUT PROTECTION<br />

The <strong>AD548</strong> is guaranteed to withstand input voltages equal to<br />

the power supply potential. Exceeding the negative supply voltage<br />

on either input will forward bias the substrate junction of<br />

the chip. The induced current may destroy the amplifier due to<br />

excess heat.<br />

Input protection is required in applications such as a flame<br />

detector in a gas chromatograph, where a very high potential<br />

may be applied to the input terminals during a sensor fault condition.<br />

Figure 23 shows a simple current limiting scheme that<br />

can be used. R PROTECT should be chosen such that the maximum<br />

overload current is 1.0 mA (l00 kΩ for a 100 V overload,<br />

for example).<br />

Exceeding the negative common-mode range on either input<br />

terminal causes a phase reversal at the output, forcing the<br />

amplifier output to the corresponding high or low state. Exceeding<br />

the negative common-mode on both inputs simultaneously<br />

forces the output high. Exceeding the positive common-mode<br />

range on a single input doesn’t cause a phase reversal, but if<br />

both inputs exceed the limit the output will be forced high. In<br />

all cases, normal amplifier operation is resumed when input<br />

voltages are brought back within the common-mode range.<br />

Figure 24. <strong>AD548</strong> Used as DAC Output <strong>Amp</strong>lifier<br />

That is:<br />

⎛<br />

V OS Output =V OS Input 1+ R FB ⎞<br />

⎜<br />

⎝ R<br />

⎟<br />

O ⎠<br />

R FB is the feedback resistor for the op amp, which is internal to<br />

the DAC. R O is the DAC’s R-2R ladder output resistance. The<br />

value of R O is code dependent. This has the effect of changing<br />

the offset error voltage at the amplifier’s output. An output amplifier<br />

with a sub millivolt input offset voltage is needed to<br />

preserve the linearity of the DAC’s transfer function.<br />

The <strong>AD548</strong> in this configuration provides a 700 kHz small signal<br />

bandwidth and 1.8 V/µs typical slew rate. The 33 pF capacitor<br />

across the feedback resistor optimizes the circuit’s response.<br />

The oscilloscope photos in Figures 25 and 26 show small and<br />

large signal outputs of the circuit in Figure 24. Upper traces<br />

show the input signal V IN . <strong>Low</strong>er traces are the resulting output<br />

voltage with the DAC’s digital input set to all 1s. The <strong>AD548</strong><br />

settles to ±0.01% for a 20 V input step in 14 µs.<br />

5V 20V<br />

5µS<br />

100<br />

90<br />

10<br />

0%<br />

Figure 25. Response to ±20 V p-p Reference Square Wave<br />

Figure 23. Input Protection of IV Converter<br />

D/A CONVERTER OUTPUT BUFFER<br />

The circuit in Figure 24 shows the <strong>AD548</strong> and AD7545 12-bit<br />

CMOS D/A converter in a unipolar binary configuration. V OUT<br />

will be equal to V REF attenuated by a factor depending on the<br />

digital word. V REF sets the full scale. Overall gain is trimmed by<br />

adjusting R IN . The <strong>AD548</strong>’s low input offset voltage, low drift<br />

and clean dynamics make it an attractive low power output<br />

buffer.<br />

The input offset voltage of the <strong>AD548</strong> output amplifier results<br />

in an output error voltage. This error voltage equals the input<br />

offset voltage of the op amp times the noise gain of the<br />

amplifier.<br />

100<br />

90<br />

10<br />

0%<br />

50mV 200mV<br />

2µS<br />

Figure 26. Response to ±100 mV p-p Reference Square<br />

Wave<br />

–6– REV. C


Application Hints–<strong>AD548</strong><br />

PHOTODIODE PREAMP<br />

The performance of the photodiode preamp shown in Figure 27<br />

is enhanced by the <strong>AD548</strong>’s low input current, input voltage<br />

offset and offset voltage drift. The photodiode sources a current<br />

proportional to the incident light power on its surface. R F converts<br />

the photodiode current to an output voltage equal to R F × I S .<br />

Figure 27.<br />

An error budget illustrating the importance of low amplifier<br />

input current, voltage offset and offset voltage drift to minimize<br />

output voltage errors can be developed by considering the equivalent<br />

circuit for the small (0.2 mm 2 area) photodiode shown in<br />

Figure 27. The input current results in an error proportional to<br />

the feedback resistance used. The amplifier’s offset will produce<br />

an error proportional to the preamp’s noise gain (I + R F /R SH ),<br />

where R SH is the photodiode shunt resistance. The amplifier’s<br />

input current will double with every 10°C rise in temperature,<br />

and the photodiode’s shunt resistance halves with every 10°C<br />

rise. The error budget in Figure 28 assumes a room temperature<br />

photodiode R SH of 500 MΩ, and the maximum input current<br />

and input offset voltage specs of an <strong>AD548</strong>C.<br />

TEMP<br />

C R SH (M) V OS (V) (1+ R F /R SH ) V OS I B (pA) I B R F TOTAL<br />

–25 15,970 150 151 µV 0.30 30 µV 181 µV<br />

0 2,830 200 207 µV 2.26 262 µV 469 µV<br />

+25 500 250 300 µV 10.00 1.0 mV 1.30 mV<br />

+50 88.5 300 640 µV 56.6 5.6 mV 6.24 mV<br />

+75 15.6 350 2.6 mV 320 32 mV 34.6 mV<br />

+85 7.8 370 5.1 mV 640 64 mV 69.1 mV<br />

Figure 28. Photo Diode Pre-<strong>Amp</strong> Errors Over Temperature<br />

The capacitance at the amplifier’s negative input (the sum of the<br />

photodiode’s shunt capacitance, the op amp’s differential input<br />

capacitance, stray capacitance due to wiring, etc.) will cause a<br />

rise in the preamp’s noise gain over frequency. This can result in<br />

excess noise over the bandwidth of interest. C F reduces the<br />

noise gain “peaking” at the expense of bandwidth.<br />

INSTRUMENTATION AMPLIFIER<br />

The <strong>AD548</strong>C’s maximum input current of 10 pA makes it an<br />

excellent building block for the high input impedance inst<strong>ru</strong>mentation<br />

amplifier shown in Figure 29. Total current drain for<br />

this circuit is under 600 µA. This configuration is optimal for<br />

conditioning differential voltages from high impedance sources.<br />

The overall gain of the circuit is controlled by R G , resulting in<br />

the following transfer function:<br />

V OUT<br />

V IN<br />

= 1 + (R 1 + R 2 )<br />

R G<br />

REV. C –7–<br />

Figure 29. <strong>Low</strong> <strong>Power</strong> Inst<strong>ru</strong>mentation <strong>Amp</strong>lifier<br />

Gains of 1 to 100 can be accommodated with gain nonlinearities<br />

of less than 0.01%. Referred to input errors, which contribute<br />

an output error proportional to in amp gain, include a maximum<br />

untrimmed input offset voltage of 0.5 mV and an input<br />

offset voltage drift over temperature of 4 µV/°C. Output errors,<br />

which are independent of gain, will contribute an additional<br />

0.5 mV offset and 4 µV/°C drift. The maximum input current is<br />

15 pA over the common-mode range, with a common-mode<br />

impedance of over 1 × 10 12 Ω. Resistor pairs R3/R5 and R4/R6<br />

should be ratio matched to 0.01% to take full advantage of the<br />

<strong>AD548</strong>’s high common-mode rejection. Capacitors C1 and C1′<br />

compensate for peaking in the gain over frequency caused by<br />

input capacitance when gains of 1 to 3 are used.<br />

The –3 dB small signal bandwidth for this low power inst<strong>ru</strong>mentation<br />

amplifier is 700 kHz for a gain of 1 and 10 kHz for a<br />

gain of 100. The typical output slew rate is 1.8 V/µs.<br />

LOG RATIO AMPLIFIER<br />

Log ratio amplifiers are useful for a variety of signal conditioning<br />

applications, such as linearizing exponential transducer outputs<br />

and compressing analog signals having a wide dynamic<br />

range. The <strong>AD548</strong>’s picoamp level input current and low input<br />

offset voltage make it a good choice for the front-end amplifier<br />

of the log ratio circuit shown in Figure 30. This circuit produces<br />

an output voltage equal to the log base 10 of the ratio of the input<br />

currents I 1 and I 2 . Resistive inputs R1 and R2 are provided<br />

for voltage inputs.<br />

Input currents I 1 and I 2 set the collector currents of Q1 and Q2,<br />

a matched pair of logging transistors. Voltages at points A and<br />

B are developed according to the following familiar diode<br />

equation:<br />

V BE<br />

= (kT/q)ln(I C<br />

/I ES<br />

)<br />

In this equation, k is Boltzmann’s constant, T is absolute temperature,<br />

q is an electron charge, and I ES is the reverse saturation<br />

current of the logging transistors. The difference of these two<br />

voltages is taken by the subtractor section and scaled by a factor<br />

of approximately 16 by resistors R9, R10, and R8. Temperature


<strong>AD548</strong><br />

OUTLINE DIMENSIONS<br />

Dimensions shown in inches and (mm).<br />

TO-99 (H) Package<br />

Figure 30. Log Ratio <strong>Amp</strong>lifier<br />

compensation is provided by resistors R8 and R15, which have a<br />

positive 3500 ppm/°C temperature coefficient. The transfer<br />

function for the output voltage is:<br />

V OUT = 1V log 10 (I 2 /I 1 )<br />

Frequency compensation is provided by R11, R12, C1, and C2.<br />

Small signal bandwidth is approximately 300 kHz at input currents<br />

above 100 µA and will proportionally decrease with lower<br />

signal levels. D1, D2, R13, and R14 compensate for the effects<br />

of the two logging transistors’ ohmic emitter resistance.<br />

To trim this circuit, set the two input currents to 10 µA and adjust<br />

V OUT to zero by adjusting the potentiometer on A3. Then<br />

set I 2 to 1 µA and adjust the scale factor such that the output<br />

voltage is 1 V by trimming potentiometer R10. Offset adjustment<br />

for A1 and A2 is provided to increase the accuracy of the<br />

voltage inputs.<br />

This circuit ensures a 1% log conformance error over an input<br />

current range of 300 pA to 1 mA, with low level accuracy<br />

limited by the <strong>AD548</strong>’s input current. The low level input voltage<br />

accuracy of this circuit is limited by the input offset voltage<br />

and drift of the <strong>AD548</strong>.<br />

Plastic Mini-DIP (N) Package<br />

Cerdip (Q) Package<br />

SOIC (R) Package<br />

PRINTED IN U.S.A. C999a–19–12/86<br />

–8– REV. C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!