13.11.2012 Views

Staging of uterine cervical cancer with MRI: guidelines of the ...

Staging of uterine cervical cancer with MRI: guidelines of the ...

Staging of uterine cervical cancer with MRI: guidelines of the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Eur Radiol (2011) 21:1102–1110<br />

DOI 10.1007/s00330-010-1998-x<br />

UROGENITAL<br />

<strong>Staging</strong> <strong>of</strong> <strong>uterine</strong> <strong>cervical</strong> <strong>cancer</strong> <strong>with</strong> <strong>MRI</strong>: <strong>guidelines</strong><br />

<strong>of</strong> <strong>the</strong> European Society <strong>of</strong> Urogenital Radiology<br />

Corinne Balleyguier & E. Sala & T. Da Cunha & A. Bergman & B. Brkljacic & F. Danza &<br />

R. Forstner & B. Hamm & R. Kubik-Huch & C. Lopez & R. Manfredi & J. McHugo &<br />

L. Oleaga & K. Togashi & K. Kinkel<br />

Received: 27 July 2010 /Revised: 29 September 2010 /Accepted: 1 October 2010 /Published online: 10 November 2010<br />

# European Society <strong>of</strong> Radiology 2010<br />

Abstract Objective: To design clear <strong>guidelines</strong> for <strong>the</strong><br />

staging and follow-up <strong>of</strong> patients <strong>with</strong> <strong>uterine</strong> <strong>cervical</strong><br />

<strong>cancer</strong>, and to provide <strong>the</strong> radiologist <strong>with</strong> a framework for<br />

use in multidisciplinary conferences. Methods: Guidelines<br />

for <strong>uterine</strong> <strong>cervical</strong> <strong>cancer</strong> staging and follow-up were<br />

defined by <strong>the</strong> female imaging subcommittee <strong>of</strong> <strong>the</strong> ESUR<br />

C. Balleyguier (*)<br />

Radiology Department, Institut Gustave Roussy,<br />

39, rue Camille Desmoulins,<br />

94805 Villejuif, Cedex, France<br />

e-mail: corinne.balleyguier@igr.fr<br />

E. Sala<br />

Radiology Department, Addenbrooke’s Hospital,<br />

Cambridge, UK<br />

T. Da Cunha<br />

Radiology Department, Instituto Português de Oncologia de<br />

Lisboa Francisco Gentil,<br />

R. Pr<strong>of</strong>. Lima Basto,<br />

Lisbon, Portugal<br />

A. Bergman<br />

Department <strong>of</strong> Radiology, Uppsala University Hospital,<br />

Uppsala, Sweden<br />

B. Brkljacic<br />

Department <strong>of</strong> Diagnostic and Interventional Radiology,<br />

University Hospital “Dubrava”,<br />

Zagreb, Croatia<br />

F. Danza<br />

Dipartimento di Bioimmaginie scienze radiologiche, Università<br />

Cattolica del S. Cuore,<br />

Rome, Italy<br />

R. Forstner<br />

Zentralröntgeninstitut, LandesklinikenSalzburg,<br />

Salzburg, Austria<br />

(European Society <strong>of</strong> Urogenital Radiology) based on <strong>the</strong><br />

expert consensus <strong>of</strong> imaging protocols <strong>of</strong> 11 leading<br />

institutions and a critical review <strong>of</strong> <strong>the</strong> literature. Results:<br />

The results indicated that high field Magnetic Resonance<br />

Imaging (<strong>MRI</strong>) should include at least two T2-weighted<br />

sequences in sagittal, axial oblique or coronal oblique<br />

B. Hamm<br />

Department <strong>of</strong> Radiology, Charité Humboldt Universität Berlin,<br />

Berlin, Germany<br />

R. Kubik-Huch<br />

Institut Radiologie Kantonsspital Baden,<br />

Baden, Germany<br />

C. Lopez : R. Manfredi<br />

Department <strong>of</strong> Radiology, “A. Gemelli” University Hospital,<br />

Rome, Italy<br />

J. McHugo<br />

Department <strong>of</strong> Radiology, Birmingham Women’s Hospital,<br />

Birmingham, UK<br />

L. Oleaga<br />

Radiology Department, Hospital Clinic,<br />

C/Villaroel 170,<br />

Barcelona, Spain<br />

K. Togashi<br />

Department <strong>of</strong> Diagnostic Imaging and Nuclear Medicine, Kyoto<br />

University Graduate School <strong>of</strong> Medicine,<br />

Kyoto, Japan<br />

K. Kinkel<br />

Institut de radiologie, Clinique des Grangettes,<br />

Chêne-Bougerie/Geneva, Switzerland


Eur Radiol (2011) 21:1102–1110 1103<br />

orientation (short and long axis <strong>of</strong> <strong>the</strong> <strong>uterine</strong> cervix) <strong>of</strong> <strong>the</strong><br />

pelvic content. Axial T1-weighted sequence is useful to<br />

detect suspicious pelvic and abdominal lymph nodes, and<br />

images from symphysis to <strong>the</strong> left renal vein are required.<br />

The intravenous administration <strong>of</strong> Gadolinium-chelates is<br />

optional but is <strong>of</strong>ten required for small lesions (


1104 Eur Radiol (2011) 21:1102–1110<br />

Table 2 Proposed protocol for <strong>MRI</strong> in <strong>cervical</strong> <strong>cancer</strong> staging and evaluation<br />

• Optional use <strong>of</strong> fasting, Antiperistaltic IV injection, or vaginal/rectal sonographic gel opacification<br />

• Axial T2w sequence, <strong>with</strong>out a fat suppression : pelvis and abdomen (renal hilum) : 5 mm / 0.5 (pelvis), 6 mm / 1 mm (abdomen) ; matrix><br />

400×400<br />

• Sagittal T2w sequence <strong>with</strong>out a fat suppression : pelvis 5 mm / 0.5 (pelvis) ; matrix>400×400<br />

• Coronal oblique T2w perpendicular to <strong>the</strong> cervix, thin slices (4 mm/0.4 mm) ; matrix>400×400<br />

• Optional: in case <strong>of</strong> small lesions, not well depicted on T2w images, and after treatment.<br />

◦ Sagittal 3D T1w dynamic sequences after gadolinium chelates injection : one native and 4 post contrast (total 5 scans <strong>with</strong> a total acquisition<br />

time <strong>of</strong> about 5 mn)<br />

◦ DWI sequences<br />

<strong>the</strong> internal <strong>cervical</strong> os (>1 cm). In order to achieve maximal<br />

staging accuracy by means <strong>of</strong> <strong>MRI</strong>, it is essential to ensure<br />

adequate patient preparation, optimal imaging sequences and<br />

adequate reporting expertise. Therefore, <strong>the</strong> female pelvis<br />

subcommittee <strong>of</strong> <strong>the</strong> European Society <strong>of</strong> Urogenital<br />

Radiology (ESUR) formed a working group to establish<br />

technical <strong>guidelines</strong> for <strong>uterine</strong> <strong>cervical</strong> <strong>cancer</strong> staging <strong>with</strong><br />

<strong>MRI</strong> based on extended clinical practice.<br />

Material and methods<br />

<strong>MRI</strong> protocols for staging <strong>of</strong> <strong>cervical</strong> <strong>cancer</strong> were collected<br />

from eleven European Institutions. Inclusion criteria to<br />

participate in <strong>the</strong> guideline process were: to be a member <strong>of</strong><br />

<strong>the</strong> European Society <strong>of</strong> Urogenital Radiology (ESUR) and to<br />

perform at least ten <strong>MRI</strong> examinations per year for staging<br />

biopsy-proven <strong>cervical</strong> carcinoma. Members <strong>of</strong> <strong>the</strong> ESUR are<br />

experts in gynaecological imaging, especially in pelvic <strong>MRI</strong>.<br />

The questionnaire contained <strong>the</strong> following information: patient<br />

preparation, magnet field strength, type <strong>of</strong> coil, type <strong>of</strong><br />

sequence <strong>with</strong> detailed geometry and contrast information,<br />

such as FOV, matrix scan and reconstruction, slice thickness,<br />

gap, orientation, saturation bands, 2D versus 3D sequence, TR/<br />

TE, use <strong>of</strong> number <strong>of</strong> acquisitions, number and lengths <strong>of</strong><br />

dynamic sequences, use <strong>of</strong> bolus intravenous (IV) injection and<br />

subtraction techniques and use <strong>of</strong> diffusion weighted imaging<br />

(DWI) sequences. In addition, published literature between<br />

1999 and 2010 was reviewed through a Medline literature<br />

search <strong>of</strong> abstracts in <strong>the</strong> English language <strong>of</strong> studies in human<br />

subjects, including <strong>the</strong> following key words: “Uterine neoplasm(s)<br />

AND MR imaging” and “Uterine <strong>cervical</strong> carcinoma<br />

AND MR imaging.” Articles that did not include technical<br />

details matching <strong>the</strong> information requested in <strong>the</strong> questionnaire<br />

were excluded. The details were entered in an excel sheet and<br />

<strong>the</strong> results were discussed and divided in topics <strong>with</strong> agreement<br />

and disagreement. Topics <strong>with</strong> disagreement were compared to<br />

<strong>the</strong> literature. Experts in favour <strong>of</strong> one technical option were<br />

asked to support <strong>the</strong>ir views using data from <strong>the</strong> literature.<br />

These were subsequently discussed by an expert panel. The<br />

collected data from <strong>the</strong> ESUR member institution was<br />

compared to <strong>the</strong> data from <strong>the</strong> literature which took into<br />

consideration year <strong>of</strong> publication, number <strong>of</strong> cases and<br />

performance <strong>of</strong> <strong>the</strong> technique. When technical details varied<br />

and no published work on performance was found, <strong>the</strong> subject<br />

wasdiscussedandresolvedinconsensusbasedon<strong>the</strong>majority<br />

<strong>of</strong> participating members. Members <strong>of</strong> <strong>the</strong> group met twice a<br />

year during a 2-year period and were asked to apply technical<br />

recommendations issued after <strong>the</strong> first two meetings during <strong>the</strong><br />

year before <strong>the</strong> meetings in year 2 in order to allow fur<strong>the</strong>r<br />

discussion and <strong>the</strong> issue <strong>of</strong> final recommendations in consensus.<br />

Validation <strong>of</strong> <strong>the</strong> manuscript has been done collegially <strong>with</strong><br />

<strong>the</strong> agreement <strong>of</strong> <strong>the</strong> ESUR committee.<br />

Results<br />

Indications for <strong>MRI</strong> in <strong>uterine</strong> <strong>cervical</strong> <strong>cancer</strong><br />

All <strong>the</strong> eleven ESUR members recommend <strong>MRI</strong> for staging<br />

<strong>of</strong> tumours stage 1B1 and over or smaller tumours if<br />

trachelectomy is being considered. They also all recommended<br />

<strong>MRI</strong> for treatment follow-up (after brachy<strong>the</strong>rapy<br />

and chemoradiation <strong>the</strong>rapy) and detection <strong>of</strong> tumour<br />

recurrence. There was no consensus among 11 ESUR<br />

participants regarding <strong>the</strong> <strong>MRI</strong> time-delay after treatment.<br />

This varied from 3 weeks to 6 months <strong>with</strong> <strong>the</strong> majority<br />

recommending <strong>MRI</strong> 3–6 months after completion <strong>of</strong><br />

chemoradiation <strong>the</strong>rapy and brachy<strong>the</strong>rapy. Similarly, <strong>the</strong>re<br />

was no consensus on <strong>the</strong> frequency <strong>of</strong> follow-up. Some<br />

ESUR members perform yearly follow-up <strong>MRI</strong> for 5 years<br />

and some only if <strong>the</strong>re are symptoms <strong>of</strong> recurrence. Three<br />

members use PET/CT routinely as complementary to <strong>MRI</strong><br />

staging, 5 only if <strong>the</strong>re are indeterminate lymph nodes on<br />

<strong>MRI</strong> and 2 only before salvage <strong>the</strong>rapy.<br />

Technical requirements for <strong>MRI</strong> in <strong>uterine</strong> <strong>cervical</strong> <strong>cancer</strong><br />

Among <strong>the</strong> eleven ESUR members, 6 worked <strong>with</strong> a 1.5 T<br />

magnet, 1 <strong>with</strong> a 3.0 T magnet and 4 members <strong>with</strong> both 1.5<br />

and 3.0 T magnet, Most <strong>of</strong> <strong>the</strong> published studies in <strong>the</strong><br />

literature use a 1.5 T magnet. There are only a few published


Eur Radiol (2011) 21:1102–1110 1105<br />

studies using a 3 T <strong>MRI</strong>, showing very promising results in<br />

<strong>cervical</strong> <strong>cancer</strong> [6]. At 3 T, spatial resolution is improved,<br />

allowing accurate local staging and detection <strong>of</strong> a residual<br />

tumour after treatment [6]. At 3.0-T imaging, mean tumour<br />

signal-to-noise ratios, mean <strong>cervical</strong> stroma signal-to-noise<br />

ratios, and mean tumour-to-<strong>cervical</strong> stroma contrast-to-noise<br />

ratios are higher than those at 1.5-T imaging. Never<strong>the</strong>less,<br />

image homogeneity at 3.0-T imaging seems inferior to that at<br />

1.5-T imaging. In recent published studies, even if imaging<br />

quality seems to be higher at 3 T, accuracy seems to be<br />

equivalent at 1.5 T and 3 T (6).<br />

a. Patient Preparation<br />

There was no consensus among <strong>the</strong> 11 ESUR members or<br />

in <strong>the</strong> literature regarding <strong>the</strong> type <strong>of</strong> preparation before pelvic<br />

<strong>MRI</strong>. Never<strong>the</strong>less, different types <strong>of</strong> patient preparations<br />

have been suggested in order to improve <strong>the</strong> quality <strong>of</strong> <strong>the</strong><br />

examination. Several authors proposed a 6 h fast before <strong>MRI</strong><br />

[7, 8] o<strong>the</strong>rs an IV or intramuscular (IM) injection <strong>of</strong><br />

antiperistaltic agent [9] or vaginal/rectal opacification <strong>with</strong><br />

sterile gel [10]. The use <strong>of</strong> an antiperistaltic agent seems to<br />

be <strong>the</strong> most efficient way to limit bowel motion artifacts. An<br />

intramuscular injection <strong>of</strong> an antiperistaltic agent is used (1<br />

mg glucagon; (Glucagen ®, Novo Nordisk ® ; Bagsværd ;<br />

Denmark) or 20 mg butyl-scopolamine (Buscopan ® ;<br />

Boehringer Ingelheim GmbH ; Ingelheim, Germany) unless<br />

contraindicated (e.g., diabetes or pheochromocytoma) to<br />

decrease peristalsis artifacts. In <strong>the</strong> ESUR group, only 50%<br />

<strong>of</strong> <strong>the</strong> experts included combined fasting and antiperistaltic<br />

agents in <strong>the</strong>ir patient preparation protocol. Seven ESUR<br />

centres use an antiperistaltic agent routinely before <strong>MRI</strong><br />

examination (4 use IV injection and 3 use IM injection)<br />

whereas four centres do not use an antiperistaltic agent.<br />

Bladder must be half filled in order to improve lesion<br />

visibility <strong>with</strong>out changing anatomy. Vaginal opacification<br />

<strong>with</strong> gel yielding high signal intensity on T2 weighting may<br />

be useful in case <strong>of</strong> suspicion <strong>of</strong> tumour extension into <strong>the</strong><br />

vagina in order to differentiate FIGO IIA from FIGO IB<br />

tumour, particularly in <strong>the</strong> posterior vaginal fornix [10];<br />

however only one ESUR centre uses a vaginal opacification<br />

routinely and two o<strong>the</strong>rs only if <strong>the</strong>re is a suspicion <strong>of</strong><br />

posterior fornix invasion at physical examination. Therefore,<br />

<strong>the</strong> use <strong>of</strong> intraluminal (vagina/rectum) contrast agents<br />

before <strong>the</strong> <strong>MRI</strong> staging <strong>of</strong> <strong>uterine</strong> <strong>cervical</strong> carcinoma<br />

remains optional.<br />

b. Use <strong>of</strong> Intravenous Contrast Medium<br />

There is wide variation among <strong>the</strong> 11 ESUR members and<br />

in <strong>the</strong> literature regarding <strong>the</strong> use <strong>of</strong> IV contrast medium for<br />

<strong>cervical</strong> <strong>cancer</strong> staging. Seven <strong>of</strong> <strong>the</strong> 11 ESUR members use<br />

IV contrast medium routinely for staging <strong>of</strong> <strong>cervical</strong> <strong>cancer</strong><br />

and identification <strong>of</strong> small tumours, one uses it only for<br />

detection <strong>of</strong> tumour recurrence and three do not use IV)<br />

contrast medium. Among those 7 centres that use IV contrast<br />

medium, 6 use a dynamic acquisition and 1 uses a semidynamic<br />

one. The results <strong>of</strong> <strong>the</strong> literature are also variable<br />

<strong>with</strong> some authors using IV contrast medium systematically in<br />

all cases [10–12] whereas o<strong>the</strong>r authors not using IV contrast<br />

medium at all [13, 14]. In a dynamic acquisition, contrast<br />

enhancement <strong>of</strong> <strong>the</strong> tumour is lower than <strong>the</strong> myometrium in<br />

<strong>the</strong> early phase, whereas on <strong>the</strong> late phases, tumour signal<br />

intensity is higher than <strong>the</strong> myometrium. Thus, interpretation<br />

<strong>of</strong> images is easier on <strong>the</strong> earlier phases <strong>of</strong> contrast medium<br />

enhancement. The use <strong>of</strong> IV contrast medium increases <strong>the</strong><br />

contrast between <strong>the</strong> tumour and normal <strong>cervical</strong> stroma and<br />

can improve tumour detection and localization, this is<br />

especially useful for small tumours which may be considered<br />

for trachelectomy [15]. Van Vierzen et al [15] found that <strong>the</strong><br />

combination <strong>of</strong> pre-contrast and post-contrast MR images<br />

did not clearly improve staging accuracy (83%). However,<br />

<strong>the</strong> addition <strong>of</strong> fast dynamic contrast-enhanced <strong>MRI</strong> improved<br />

staging accuracy to 91%. The use <strong>of</strong> dynamic<br />

contrast-enhanced <strong>MRI</strong> also improves <strong>the</strong> accuracy <strong>of</strong><br />

assessment <strong>of</strong> bladder and rectal wall invasion [15].<br />

Fur<strong>the</strong>rmore, <strong>the</strong> use <strong>of</strong> IV contrast medium is useful in <strong>the</strong><br />

post-treatment setting to differentiate residual or recurrent<br />

tumour from radiation fibrosis [16] aswellaspresence<strong>of</strong><br />

fistulae occurring post radiation <strong>the</strong>rapy.<br />

c. Imaging Sequences<br />

There is significant variability in <strong>the</strong> literature regarding <strong>the</strong><br />

<strong>MRI</strong> protocols used. The number <strong>of</strong> <strong>the</strong> sequences can vary<br />

from 3 [17] to more than 5 [18]. There was a consensus in<br />

<strong>the</strong> ESUR group that <strong>the</strong> essential protocol must include a<br />

combination <strong>of</strong> at least two T2-weighted sequences obtained<br />

in <strong>the</strong> sagittal and oblique (perpendicular to <strong>the</strong> <strong>cervical</strong><br />

canal) planes and T1W sequences <strong>of</strong> <strong>the</strong> upper abdomen and<br />

pelvis. Lymph node evaluation might be done also on T2<br />

sequences in an axial plan, from pelvis to left renal vein.<br />

T2w sequences are <strong>the</strong> best sequences to detect <strong>the</strong><br />

<strong>cervical</strong> tumour and its extension to <strong>the</strong> uterus, parametria<br />

and <strong>the</strong> adjacent organs [19] (Fig. 1). The use <strong>of</strong> fat<br />

suppression is not recommended as <strong>the</strong> presence <strong>of</strong> parametrial<br />

fat can lead to better tumour delineation. All <strong>the</strong><br />

ESUR centres and most <strong>of</strong> <strong>the</strong> authors in <strong>the</strong> literature are<br />

performing T2w sequences in two orthogonal planes such<br />

as sagittal and oblique [19]. Oblique images must be<br />

acquired perpendicularly to <strong>the</strong> long axis <strong>of</strong> <strong>the</strong> <strong>cervical</strong><br />

canal. Slice thickness varied from 3 to 6 mm, <strong>with</strong> a 0.25<br />

gap. For optimal image quality, T2-weighted images<br />

covering <strong>the</strong> pelvis should be acquired <strong>with</strong> a small FOV<br />

(20–25 cm) and ideally <strong>with</strong> a 512×512 matrix. 8 <strong>of</strong> 18<br />

reviewed papers also add a coronal T2w sequence on <strong>the</strong><br />

pelvis <strong>with</strong> thin slices (3-4 mm/0.4 mm) to assess parametrial<br />

extension [20] (Fig. 2). All <strong>the</strong> ESUR centres and<br />

several authors in <strong>the</strong> literature are also obtaining images <strong>of</strong>


1106 Eur Radiol (2011) 21:1102–1110<br />

Fig. 1 Sagittal T2w image, <strong>MRI</strong>. 45 years old woman, stage IB2 <strong>cervical</strong><br />

carcinoma. T2W images demonstrate <strong>the</strong> tumour (arrow) invading <strong>the</strong><br />

<strong>cervical</strong> stroma. Vaginal opacification <strong>with</strong> gel yielding high signal<br />

intensity on T2 weighting does not depict any vaginal invasion<br />

<strong>the</strong> abdomen (from <strong>the</strong> level <strong>of</strong> <strong>the</strong> renal veins to <strong>the</strong> pelvic<br />

brim) to evaluate for presence <strong>of</strong> abnormal lymph nodes [7,<br />

19, 21] (Fig. 3). Both T1 and T2—weighted images can be<br />

used for this purpose. This obviates <strong>the</strong> need for an<br />

additional CT <strong>of</strong> <strong>the</strong> abdomen. The total acquisition time<br />

for <strong>the</strong> entire staging <strong>MRI</strong> is 25–30 min.<br />

T1w sequences were part <strong>of</strong> <strong>the</strong> <strong>MRI</strong> staging protocol<br />

<strong>with</strong> 14/18 reviewed papers and nearly all members <strong>of</strong> <strong>the</strong><br />

ESUR group performing T1w images <strong>with</strong>out fat suppression.<br />

T1w sequences are very useful to evaluate for<br />

presence <strong>of</strong> lymphadenopathy, bone metastases and also<br />

in <strong>the</strong> rare occasion <strong>of</strong> hematometria. Therefore, <strong>the</strong>y<br />

should be mandatory. Never<strong>the</strong>less, lymph node evaluation<br />

can also be done accurately on T2w axial sequences.<br />

Diffusion weighted imaging (DWI) Although <strong>the</strong>re is little<br />

published data, DWI seems to be a very promising<br />

Fig. 2 Sagittal and axial T2W<br />

images, <strong>MRI</strong>. 38 years old<br />

woman, stage IB2 <strong>cervical</strong><br />

carcinoma. Hyperintense lesion<br />

is invading <strong>the</strong> <strong>cervical</strong> stroma<br />

(Fig 2a). Coronal oblique<br />

section shows an intact low<br />

signal intensity <strong>cervical</strong> stroma<br />

(arrows, Fig 2b) accurately<br />

excluding presence <strong>of</strong><br />

parametrial invasion<br />

Fig. 3 Axial T2W image, <strong>MRI</strong>. 47 years old woman, stage IIB <strong>cervical</strong><br />

carcinoma. Lymph node spreading. An abnormal lymph node (small axis><br />

10 mm) is seen in <strong>the</strong> para-aortic space (arrow). It is mandatory to perform<br />

in <strong>the</strong> same examination a pelvic and an abdominal staging, <strong>with</strong> slices<br />

from <strong>the</strong> symphysis to <strong>the</strong> left renal vein<br />

emerging technique in <strong>the</strong> evaluation <strong>of</strong> <strong>uterine</strong> <strong>cervical</strong><br />

<strong>cancer</strong> [8, 22–25]. Seven ESUR centres routinely use DWI.<br />

Cervical carcinoma has a lower apparent diffusion coefficient<br />

(ADC) compared to <strong>the</strong> normal cervix (Fig. 4). The<br />

ADC increases after chemoradio<strong>the</strong>rapy [26]. There is a<br />

variability in <strong>the</strong> B-values used <strong>with</strong> a range <strong>of</strong> B values<br />

between 500 and 1000bms/-2 [26, 27]. DWI may be helpful<br />

in detection <strong>of</strong> residual tumour or suspicious lymph nodes<br />

after chemoradio<strong>the</strong>rapy [8], and might be competitive <strong>with</strong><br />

PET-imaging [28, 29]. A recent paper showed that <strong>the</strong> pretreatment<br />

ADCs <strong>of</strong> patients <strong>with</strong> complete response are<br />

lower than that <strong>of</strong> those <strong>with</strong> partial response, and pretreatment<br />

ADC values <strong>of</strong> all patients correlated negatively<br />

<strong>with</strong> <strong>the</strong> percentage size reduction <strong>of</strong> <strong>the</strong> tumour after 2<br />

months <strong>of</strong> chemoradiation. A possible explanation for this<br />

observation is that tumours <strong>with</strong> high pretreatment ADC<br />

values are likely to be more necrotic than those <strong>with</strong> low


Eur Radiol (2011) 21:1102–1110 1107<br />

Fig. 4 Sagittal and axial T2W images, <strong>MRI</strong>; DWI images <strong>with</strong> ADC<br />

map (B 800). 42 years old woman, stage IIB <strong>cervical</strong> carcinoma. A<br />

2 cm hyperintense lesion is seen in <strong>the</strong> cervix (arrow) (Fig 4a) <strong>with</strong><br />

right parametrial invasion (Fig 4c) (arrowheads) and a beginning <strong>of</strong><br />

ADC values [8]. We recommend performing optional DWI<br />

sequences <strong>of</strong> <strong>the</strong> pelvis and <strong>the</strong> abdomen.<br />

Reporting<br />

The following check list is helpful for a comprehensive and<br />

easy to read report.<br />

a. Description <strong>of</strong> <strong>the</strong> lesions<br />

Cervical tumour is depicted on T2w images as a<br />

hyperintense mass compared to <strong>the</strong> <strong>cervical</strong> stroma [30,<br />

31]. Tumour size (in three dimensions) must be evaluated<br />

in at least two orthogonal views; it is crucial to give<br />

precise measurements as size <strong>of</strong> <strong>the</strong> tumour can dictate<br />

treatment options. Fertility sparing surgery is possible<br />

<strong>with</strong> tumours 4 cm<br />

may undergo chemoradio<strong>the</strong>rapy ra<strong>the</strong>r than radical<br />

surgery.<br />

left parametrial invasion (arrow). Sagittal and axial DWI images<br />

(Fig 4b) and Fig 4d show high signal intensity on DWI and <strong>with</strong> a low<br />

signal intensity on <strong>the</strong> ADC map (Fig 4e) suggesting restricted<br />

diffusion<br />

b. Local staging<br />

- Vaginal extension: precise description should be<br />

given if <strong>the</strong> extension is anterior or posterior. If <strong>the</strong><br />

lesion reaches <strong>the</strong> 2/3 <strong>of</strong> <strong>the</strong> upper vagina, it is a<br />

FIGO IIA; if <strong>the</strong> lesion invades <strong>the</strong> 1/3 inferior part<br />

<strong>of</strong> <strong>the</strong> vagina, it is a FIGO IIIA.<br />

- Parametrial extension: stromal invasion is present<br />

if <strong>the</strong>re is a disruption <strong>of</strong> <strong>the</strong> hypointense line<br />

circumscribing <strong>the</strong> cervix on oblique T2w images<br />

(Fig. 5). Parametrial invasion is present if in<br />

addition to <strong>the</strong> stromal invasion <strong>the</strong>re is tumour<br />

present in <strong>the</strong> parametrium, a spiculated tumourparametrial<br />

interface or tumour encasement <strong>of</strong> <strong>the</strong><br />

peri-<strong>uterine</strong> vessels [12]. Presence <strong>of</strong> hydronephrosis<br />

is consistent <strong>with</strong> parametrial invasion.<br />

Accuracy <strong>of</strong> <strong>MRI</strong> in assessing parametrial invasion<br />

varies from 80 to 87% according to <strong>the</strong> literature<br />

[32].


1108 Eur Radiol (2011) 21:1102–1110<br />

Fig. 5 Axial T2W image, <strong>MRI</strong>. 49 years old woman, stage IIB <strong>cervical</strong><br />

carcinoma. Parametrial tumoural extension is seen on both sides <strong>of</strong><br />

<strong>uterine</strong> cervix (arrows). Limits <strong>of</strong> <strong>cervical</strong> stroma are nearly not visible<br />

- Isthmic extension: clinical evaluation is not<br />

accurate in case <strong>of</strong> isthmic invasion. The reporting<br />

should include it because positioning <strong>of</strong> brachy<strong>the</strong>rapy<br />

coils might be dependant <strong>of</strong> <strong>the</strong> level <strong>of</strong><br />

isthmic tumour extension [33].<br />

c. Lymph node staging<br />

FIGO classification does not include <strong>the</strong> nodal status.<br />

Yet, lymph node spreading is one <strong>of</strong> <strong>the</strong> most important<br />

prognostic factors in <strong>cervical</strong> carcinoma [34, 35]. Accuracy<br />

<strong>of</strong> <strong>MRI</strong> is low for lymph node staging, <strong>with</strong> a sensitivity<br />

varying from 38 to 89%, and a specificity from 78 to 99%<br />

[36, 37]. Due to its high sensitivity, PET-CT is recommended<br />

for locally advanced <strong>cervical</strong> carcinoma <strong>with</strong> no<br />

abnormal lymph node depicted in <strong>the</strong> pelvis or <strong>the</strong> abdomen<br />

[38]. Size criterion for a suspicious lymph node is a short<br />

axis superior to 1 cm, in <strong>the</strong> pelvis or <strong>the</strong> abdomen [39].<br />

Fig. 6 Sagittal T2W image<br />

before a and after b<br />

radiation-chemo<strong>the</strong>rapy (RCT)<br />

and brachy<strong>the</strong>rapy. 37 years old<br />

woman, stage IIB <strong>cervical</strong><br />

carcinoma. A 5 cm lesion<br />

invading <strong>the</strong> <strong>cervical</strong> stroma is<br />

seen <strong>with</strong> a hyperintense signal<br />

intensity (arrow, fig a). After<br />

treatment (3 weeks delay), <strong>the</strong><br />

tumour is not seen. There is<br />

reconstitution <strong>of</strong> <strong>the</strong> normal low<br />

signal intensity <strong>cervical</strong> stroma<br />

suggestive <strong>of</strong> complete response<br />

to treatment. No residual tumour<br />

was found at hysterectomy<br />

However, smaller lymph nodes may be malignant, especially<br />

in <strong>the</strong> pelvis; <strong>the</strong>refore it is important to take in<br />

account o<strong>the</strong>r features <strong>of</strong> malignancy such as round shape,<br />

irregular margins, signal intensity similar to <strong>the</strong> primary<br />

tumour and presence <strong>of</strong> necrosis.<br />

d. Evaluation <strong>of</strong> Tumour Response to Treatment<br />

Chemoradio<strong>the</strong>rapy followed by brachy<strong>the</strong>rapy is <strong>the</strong><br />

standard treatment for patients <strong>with</strong> locally advanced<br />

<strong>uterine</strong> <strong>cervical</strong> carcinoma (> IB1 FIGO stage) [40].<br />

Surgery is usually avoided in case <strong>of</strong> complete response<br />

following chemoradio<strong>the</strong>rapy treatment, due to its high rate<br />

<strong>of</strong> urinary side effects (incontinence, uteral distension,<br />

chronic bladder infection …). Tumour response evaluation<br />

is based on three criteria: clinical examination, PAP smear<br />

analysis and post treatment MR evaluation [41].<br />

After treatment, MR protocol is <strong>the</strong> same as for <strong>cervical</strong><br />

<strong>cancer</strong> staging, but IV injection is recommended. MR<br />

criteria for a complete response include:<br />

– no lesion seen in <strong>the</strong> cervix or in <strong>the</strong> adjacent anatomic<br />

areas<br />

– homogeneous hypointense <strong>cervical</strong> stroma<br />

– homogeneous and delayed intravenous contrast medium<br />

uptake <strong>of</strong> <strong>the</strong> cervix after IV injection [42] (Fig. 6).<br />

Interpretation and performance <strong>of</strong> <strong>MRI</strong> in <strong>the</strong> follow-up<br />

setting are lower compared to <strong>the</strong> primary staging tumour<br />

detection. It is useful to compare <strong>the</strong> post treatment images<br />

<strong>with</strong> <strong>the</strong> pre-treatment images to facilitate tumour detection<br />

and re-staging.<br />

e. Detection <strong>of</strong> a recurrence<br />

- After medical treatment:<br />

There is no consensus among <strong>the</strong> ESUR centres on in <strong>the</strong><br />

reviewed literature regarding <strong>the</strong> indication <strong>of</strong> <strong>MRI</strong> for <strong>the</strong><br />

follow-up <strong>of</strong> patients <strong>with</strong> treated <strong>cervical</strong> carcinoma.


Eur Radiol (2011) 21:1102–1110 1109<br />

Usually, <strong>MRI</strong> is performed when <strong>the</strong>re is a clinical<br />

suspicion <strong>of</strong> recurrence.<br />

– After surgery :<br />

There is also no consensus for a systematic MR followup.<br />

Never<strong>the</strong>less, in case <strong>of</strong> trachelectomy, an <strong>MRI</strong> at 6<br />

months and 1 year is advised, because recurrence rate is<br />

higher compare to patients who undergo brachy<strong>the</strong>rapy or<br />

chemo<strong>the</strong>rapy [43].<br />

Conclusion<br />

Although FIGO staging system does not include imaging in<br />

<strong>the</strong> staging <strong>of</strong> <strong>cervical</strong> <strong>cancer</strong>, in <strong>the</strong> revised FIGO system<br />

imaging techniques are encouraged to assess <strong>the</strong> important<br />

prognostic factors and imaging is now complimentary to<br />

<strong>the</strong> clinical assessment. Radiologists must familiarize<br />

<strong>the</strong>mselves <strong>with</strong> <strong>the</strong> new FIGO staging system and<br />

understand its relevance to patient management. Magnetic<br />

resonance imaging is <strong>the</strong> imaging modality <strong>of</strong> choice for<br />

staging <strong>the</strong> primary <strong>cervical</strong> tumour, evaluate response to<br />

treatment and detect tumour recurrence and potential<br />

complications. Adequate patient preparation, protocol optimization<br />

and <strong>MRI</strong> reporting expertise are essential to<br />

achieve high diagnostic accuracy.<br />

References<br />

1. Ozsarlak O, Tjalma W, Schepens E, Corthouts B, Op de Beeck B,<br />

Van Marck E et al (2003) The correlation <strong>of</strong> preoperative CT, MR<br />

imaging, and clinical staging (FIGO) <strong>with</strong> histopathology findings<br />

in primary <strong>cervical</strong> carcinoma. Eur Radiol 13:2338–2345<br />

2. Odicino F, Tisi G, Rampinelli F, Miscioscia R, Sartori E, Pecorelli<br />

S (2007) New development <strong>of</strong> <strong>the</strong> FIGO staging system. Gynecol<br />

Oncol 107(1 Suppl 1):S8–S9<br />

3. Lagasse LD, Creasman WT, Shingleton HM, Ford JH, Blessing<br />

JA (1980) Results and complications <strong>of</strong> operative staging in<br />

<strong>cervical</strong> <strong>cancer</strong>: experience <strong>of</strong> <strong>the</strong> Gynecologic Oncology Group.<br />

Gynecol Oncol 9:90–98<br />

4. Piver MS, Chung WS (1975) Prognostic significance <strong>of</strong> <strong>cervical</strong><br />

lesion size and pelvic node metastases in <strong>cervical</strong> carcinoma.<br />

Obstet Gynecol 46:507–510<br />

5. Pecorelli S (2009) Revised FIGO staging for carcinoma <strong>of</strong> <strong>the</strong> vulva,<br />

cervix, and endometrium. Int J Gynaecol Obstet 105:103–104<br />

6. Hori M, Kim T, Murakami T, Imaoka I, Onishi H, Tomoda K et al<br />

(2009) Uterine <strong>cervical</strong> carcinoma: preoperative staging <strong>with</strong> 3.0-<br />

T MR imaging–comparison <strong>with</strong> 1.5-T MR imaging. Radiology<br />

251:96–104<br />

7. Engin G, Cervical <strong>cancer</strong> (2006) MR imaging findings before,<br />

during, and after radiation <strong>the</strong>rapy. Eur Radiol 16:313–324<br />

8. Liu Y, Bai R, Sun H, Liu H, Zhao X, Li Y (2009) Diffusionweighted<br />

imaging in predicting and monitoring <strong>the</strong> response <strong>of</strong><br />

<strong>uterine</strong> <strong>cervical</strong> <strong>cancer</strong> to combined chemoradiation. Clin Radiol<br />

64:1067–1074<br />

9. Haider MA, Patlas M, Jhaveri K, Chapman W, Fyles A, Rosen B<br />

(2006) Adenocarcinoma involving <strong>the</strong> <strong>uterine</strong> cervix: magnetic<br />

resonance imaging findings in tumours <strong>of</strong> endometrial, compared<br />

<strong>with</strong> <strong>cervical</strong>, origin. Can Assoc Radiol J 57:43–48<br />

10. Van Hoe L, Vanbeckevoort D, Oyen R, Itzlinger U, Vergote I<br />

(1999) Cervical carcinoma: optimized local staging <strong>with</strong> intravaginal<br />

contrast-enhanced MR imaging–preliminary results. Radiology<br />

213:608–611<br />

11. Haider MA, Sitartchouk I, Roberts TP, Fyles A, Hashmi AT,<br />

Milosevic M (2007) Correlations between dynamic contrastenhanced<br />

magnetic resonance imaging-derived measures <strong>of</strong><br />

tumour microvasculature and interstitial fluid pressure in patients<br />

<strong>with</strong> <strong>cervical</strong> <strong>cancer</strong>. J Magn Reson Imaging 25:153–159<br />

12. Hricak H, Yu KK, Powell CB, Subak LL, Stem J, Arenson RL<br />

(1996) Comparison <strong>of</strong> diagnostic studies in <strong>the</strong> pretreatment<br />

evaluation <strong>of</strong> stage Ib carcinoma <strong>of</strong> <strong>the</strong> cervix. Acad Radiol 3<br />

(Suppl 1):S44–S46<br />

13. deSouza NM, Dina R, McIndoe GA, Soutter WP (2006) Cervical<br />

<strong>cancer</strong>: value <strong>of</strong> an endovaginal coil magnetic resonance imaging<br />

technique in detecting small volume disease and assessing<br />

parametrial extension. Gynecol Oncol 102:80–85<br />

14. Rockall AG, Ghosh S, Alexander-Sefre F, Babar S, Younis MT,<br />

Naz S et al (2006) Can <strong>MRI</strong> rule out bladder and rectal invasion in<br />

<strong>cervical</strong> <strong>cancer</strong> to help select patients for limited EUA? Gynecol<br />

Oncol 101:244–249<br />

15. Van Vierzen PB, Massuger LF, Ruys SH, Barentsz JO (1998) Fast<br />

dynamic contrast enhanced MR imaging <strong>of</strong> <strong>cervical</strong> carcinoma.<br />

Clin Radiol 53:183–192<br />

16. Kinkel K, Ariche M, Tardivon AA, Spatz A, Castaigne D,<br />

Lhomme C et al (1997) Differentiation between recurrent tumour<br />

and benign conditions after treatment <strong>of</strong> gynecologic pelvic<br />

carcinoma: value <strong>of</strong> dynamic contrast-enhanced subtraction MR<br />

imaging. Radiology 204:55–63<br />

17. Hricak H, Gatsonis C, Chi DS, Amendola MA, Brandt K,<br />

Schwartz LH et al (2005) Role <strong>of</strong> imaging in pretreatment<br />

evaluation <strong>of</strong> early invasive <strong>cervical</strong> <strong>cancer</strong>: results <strong>of</strong> <strong>the</strong><br />

intergroup study American College <strong>of</strong> Radiology Imaging<br />

Network 6651-Gynecologic Oncology Group 183. J Clin Oncol<br />

23:9329–9337<br />

18. Keller TM, Michel SC, Frohlich J, Fink D, Caduff R, Marincek B<br />

et al (2004) USPIO-enhanced <strong>MRI</strong> for preoperative staging <strong>of</strong><br />

gynecological pelvic tumours: preliminary results. Eur Radiol<br />

14:937–944<br />

19. Choi SH, Kim SH, Choi HJ, Park BK, Lee HJ (2004) Preoperative<br />

magnetic resonance imaging staging <strong>of</strong> <strong>uterine</strong> <strong>cervical</strong> carcinoma:<br />

results <strong>of</strong> prospective study. J Comput Assist Tomogr 28:620–627<br />

20. Akata D, Kerimoglu U, Hazirolan T, Karcaaltincaba M, Kose F,<br />

Ozmen MN et al (2005) Efficacy <strong>of</strong> transvaginal contrastenhanced<br />

<strong>MRI</strong> in <strong>the</strong> early staging <strong>of</strong> <strong>cervical</strong> carcinoma. Eur<br />

Radiol 15:1727–1733<br />

21. Hancke K, Heilmann V, Straka P, Kreienberg R, Kurzeder C<br />

(2008) Pretreatment staging <strong>of</strong> <strong>cervical</strong> <strong>cancer</strong>: is imaging better<br />

than palpation?: Role <strong>of</strong> CT and <strong>MRI</strong> in preoperative staging <strong>of</strong><br />

<strong>cervical</strong> <strong>cancer</strong>: single institution results for 255 patients. Ann<br />

Surg Oncol 15:2856–2861<br />

22. Messiou C, Morgan VA, De Silva SS, Ind TE, deSouza NM<br />

(2009) Diffusion weighted imaging <strong>of</strong> <strong>the</strong> uterus: regional ADC<br />

variation <strong>with</strong> oral contraceptive usage and comparison <strong>with</strong><br />

<strong>cervical</strong> <strong>cancer</strong>. Acta Radiol 50:696–701<br />

23. Charles-Edwards EM, Messiou C, Morgan VA, De Silva SS,<br />

McWhinney NA, Katesmark M et al (2008) Diffusion-weighted<br />

imaging in <strong>cervical</strong> <strong>cancer</strong> <strong>with</strong> an endovaginal technique:<br />

potential value for improving tumour detection in stage Ia and<br />

Ib1 disease. Radiology 249:541–550<br />

24. Harry VN, Semple SI, Gilbert FJ, Parkin DE (2008) Diffusionweighted<br />

magnetic resonance imaging in <strong>the</strong> early detection <strong>of</strong><br />

response to chemoradiation in <strong>cervical</strong> <strong>cancer</strong>. Gynecol Oncol<br />

111:213–220


1110 Eur Radiol (2011) 21:1102–1110<br />

25. Whittaker CS, Coady A, Culver L, Rustin G, Padwick M, Padhani<br />

AR (2009) Diffusion-weighted MR imaging <strong>of</strong> female pelvic<br />

tumours: a pictorial review. Radiographics 29:759–774, discussion<br />

74-8<br />

26. Naganawa S, Sato C, Kumada H, Ishigaki T, Miura S, Takizawa O<br />

(2005) Apparent diffusion coefficient in <strong>cervical</strong> <strong>cancer</strong> <strong>of</strong> <strong>the</strong><br />

uterus: comparison <strong>with</strong> <strong>the</strong> normal <strong>uterine</strong> cervix. Eur Radiol<br />

15:71–78<br />

27. McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA<br />

(2008) Diffusion-weighted <strong>MRI</strong> in <strong>cervical</strong> <strong>cancer</strong>. Eur Radiol<br />

18:1058–1064<br />

28. Park SO, Kim JK, Kim KA, Park BW, Kim N, Cho G et al (2009)<br />

Relative apparent diffusion coefficient: determination <strong>of</strong> reference<br />

site and validation <strong>of</strong> benefit for detecting metastatic lymph nodes<br />

in <strong>uterine</strong> <strong>cervical</strong> <strong>cancer</strong>. J Magn Reson Imaging 29:383–390<br />

29. Xue HD, Li S, Sun F, Sun HY, Jin ZY, Yang JX et al (2008)<br />

Clinical application <strong>of</strong> body diffusion weighted MR imaging in<br />

<strong>the</strong> diagnosis and preoperative N staging <strong>of</strong> <strong>cervical</strong> <strong>cancer</strong>. Chin<br />

Med Sci J 23:133–137<br />

30. Torashima M, Yamashita Y, Hatanaka Y, Takahashi M, Miyazaki<br />

K, Okamura H (1997) Invasive adenocarcinoma <strong>of</strong> <strong>the</strong> <strong>uterine</strong><br />

cervix: MR imaging. Comput Med Imaging Graph 21:253–260<br />

31. Liu PF, Krestin GP, Huch RA, Gohde SC, Caduff RF, Debatin JF<br />

(1998) <strong>MRI</strong> <strong>of</strong> <strong>the</strong> uterus, <strong>uterine</strong> cervix, and vagina: diagnostic<br />

performance <strong>of</strong> dynamic contrast-enhanced fast multiplanar<br />

gradient-echo imaging in comparison <strong>with</strong> fast spin-echo T2weighted<br />

pulse imaging. Eur Radiol 8:1433–1440<br />

32. Sheu MH, Chang CY, Wang JH, Yen MS (2001) Preoperative<br />

staging <strong>of</strong> <strong>cervical</strong> carcinoma <strong>with</strong> MR imaging: a reappraisal <strong>of</strong><br />

diagnostic accuracy and pitfalls. Eur Radiol 11:1828–1833<br />

33. Dimopoulos JC, Kirisits C, Petric P, Georg P, Lang S, Berger D et<br />

al (2006) The Vienna applicator for combined intracavitary and<br />

interstitial brachy<strong>the</strong>rapy <strong>of</strong> <strong>cervical</strong> <strong>cancer</strong>: clinical feasibility and<br />

preliminary results. Int J Radiat Oncol Biol Phys 66:83–90<br />

34. Ferrandina G, Distefano M, Ludovisi M, Morganti A, Smaniotto<br />

D, D’Agostino G et al (2007) Lymph node involvement in locally<br />

advanced <strong>cervical</strong> <strong>cancer</strong> patients administered preoperative<br />

chemoradiation versus chemo<strong>the</strong>rapy. Ann Surg Oncol 14:1129–<br />

1135<br />

35. Narayan K, McKenzie AF, Hicks RJ, Fisher R, Bernshaw D, Bau<br />

S (2003) Relation between FIGO stage, primary tumour volume,<br />

and presence <strong>of</strong> lymph node metastases in <strong>cervical</strong> <strong>cancer</strong> patients<br />

referred for radio<strong>the</strong>rapy. Int J Gynecol Cancer 13:657–663<br />

36. Hawighorst H (1999) Dynamic MR imaging in <strong>cervical</strong> carcinoma.<br />

Radiology 213:617–618<br />

37. Scheidler J, Hricak H, Yu KK, Subak L, Segal MR (1997)<br />

Radiological evaluation <strong>of</strong> lymph node metastases in patients <strong>with</strong><br />

<strong>cervical</strong> <strong>cancer</strong>. A meta-analysis. JAMA 278:1096–1101<br />

38. Pandharipande PV, Choy G, del Carmen MG, Gazelle GS, Russell<br />

AH, Lee SI (2009) <strong>MRI</strong> and PET/CT for triaging stage IB<br />

clinically operable <strong>cervical</strong> <strong>cancer</strong> to appropriate <strong>the</strong>rapy: decision<br />

analysis to assess patient outcomes. AJR Am J Roentgenol<br />

192:802–814<br />

39. Mitchell DG, Snyder B, Coakley F, Reinhold C, Thomas G,<br />

Amendola MA et al (2009) Early invasive <strong>cervical</strong> <strong>cancer</strong>: <strong>MRI</strong><br />

and CT predictors <strong>of</strong> lymphatic metastases in <strong>the</strong> ACRIN 6651/<br />

GOG 183 intergroup study. Gynecol Oncol 112:95–103<br />

40. Jimenez de la Pena M, de Vega M, Fernandez V, Recio Rodriguez<br />

M, Carrascoso Arranz J, Herraiz Hidalgo L, Alvarez Moreno E<br />

(2008) Current imaging modalities in <strong>the</strong> diagnosis <strong>of</strong> <strong>cervical</strong><br />

<strong>cancer</strong>. Gynecol Oncol 110:S49–S54<br />

41. Haie-Meder C, Fervers B, Chauvergne J, Fondrinier E, Lhomme<br />

C, Bataillard A et al (2000) Radiochimiothérapie concomitante<br />

dans les <strong>cancer</strong>s du col de l’utérus: analyse critique des données et<br />

mise a jour des Standards, Options et Recommandations. Cancer<br />

Radio<strong>the</strong>r 4:60–75<br />

42. Gong QY, Brunt JN, Romaniuk CS, Oakley JP, Tan LT, Roberts N<br />

et al (1999) Contrast enhanced dynamic <strong>MRI</strong> <strong>of</strong> <strong>cervical</strong><br />

carcinoma during radio<strong>the</strong>rapy: early prediction <strong>of</strong> tumour<br />

regression rate. Br J Radiol 72:1177–1184<br />

43. Plante M, Roy M (2006) Fertility-preserving options for <strong>cervical</strong><br />

<strong>cancer</strong>. Oncology 20:479–488, discussion 491-3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!