

Серия 1114ИМ

ШИМ-контроллер с обратной связью по току и напряжению

Назначение

Микросхемы 1114ЕУ7/ИМ, 1114ЕУ8/ИМ, 1114ЕУ9/ИМ, 1114ЕУ10/ИМ представляют собой схемы ШИМ-контроллера с обратной связью по току и напряжению для управления ключевым каскадом на п-канальном МОП транзисторе, обеспечивая разряд его входной емкости форсированным током величиной до 0.7 А. Предназначены для применения в источниках электропитания и другой РЭА специального назначения.

Зарубежные прототипы

- прототип UC3842 1114EУ7/ИМ
- прототип UC3843 1114EУ8/ИМ
- прототип UC3844 1114EУ9/ИМ
- прототип UC3845 1114EУ10/ИМ

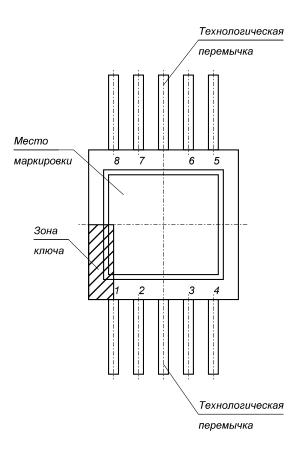
Обозначение технических условий

АЕЯР.431420.495-01ТУ

Диапазон температур

диапазон рабочих температур от - 60 до + 125 °C

Корпусное исполнение


- металлокерамический корпус H02.8-2B
- масса не более 0,5 г.
- предназначены для ручной сборки (монтажа) аппаратуры

Маркировка по ГОСТ 30668-2000

- Состав кодовой маркировки типа микросхемы «7У» по АЕЯР.431420.495 ТУ
- Состав кодовой маркировки типа микросхемы «8У» по АЕЯР.431420.495 ТУ
- Состав кодовой маркировки типа микросхемы «9У» по АЕЯР.431420.495 ТУ
- Состав кодовой маркировки типа микросхемы «10У» по АЕЯР.431420.495 ТУ

Рисунок 1 – Условное графическое обозначение микросхем серии 1114ИМ в корпусе Н02.8-2В

Назначение выводов

Номер вывода микросхемы	Назначение вывода микросхемы	
01	Коррекция	
02	Напряжение обратной связи	
03	Токовая обратная связь	
04	Задание частоты	
05	Общий	
06	Выход	
07	Питание	
08	Опорное напряжение	

Требования к электрическим параметрам и режимам эксплуатации

Электрические параметры микросхем при приемке и поставке должны соответствовать нормам, приведенным в таблице 1.

Электрические параметры микросхем, изменяющиеся в течение наработки до отказа при их эксплуатации в режимах и условиях, допускаемых ТУ, в пределах времени, равного сроку службы Т_{сл}, должны соответствовать нормам, приведенным в таблице 2.

Остальные параметры должны соответствовать нормам при приемке и поставке, приведенным в таблице 1.

Электрические параметры микросхем, изменяющиеся в процессе и после воздействия специальных факторов, в том числе в диапазоне температур окружающей среды, должны соответствовать нормам, приведенным в таблице 3. Остальные параметры должны соответствовать нормам, приведенным в таблице 1.

Электрические параметры микросхем в течение гамма-процентного срока сохраняемости при их хранении в условиях, допускаемых ТУ, должны соответствовать нормам при приемке и поставке, приведенным в таблице 1.

Диапазон напряжения питания микросхем приведен в таблице 4.

Значения предельно-допустимых и предельных режимов эксплуатации приведены в таблице 4.

Порядок подачи и снятия напряжений питания и входных сигналов на микросхемы должен быть следующим:

- 1. общий (вывод 05);
- 2. питание (вывод 07);
- 3. токовая обратная связь (вывод 03);
- 4. напряжение обратной связи (вывод 02).

Снятие – в обратном порядке.

Таблица 1. Электрические параметры микросхем при приемке и поставке

Наименование параметра, единица измерения	Буквенное обозначение параметра		ома метра не	Режим измерения	Темпера- тура окружаю- щей среды, ^о С
Напряжение источника опорного напряжения, В	U _{on} *	менее <u>4,900</u> 4,830	<u>более</u> <u>5,100</u> 5,170	U _{пит} = 12 В, I _{on} = 1 мА	2 <u>5</u> -60 - 125
Остаточное напряжение выходного каскада при втекающем токе, В	U _{ост вт} *	-	<u>0,5</u> 0,8	U _{пит} = 12 В, I _{вт} = 20 мА	<u>25 – 125</u> –60
Остаточное напряжение выходного каскада при вытекающем токе, В	U _{ост выт} *	-	2,0 2,5	U _{пит} = 12 В, I _{выт} = 20 мА	<u>25 – 125</u> –60
Ток потребления, мА	I _{пот} *	_	17	U _{пит} = 25 В	-60 - 125
Нестабильность источника опорного напряжения по напряжению, %/В	K _{Uon} *	_	0,03 0,05	U _{пит} =(12–25) В, I _{on} = 1 мА	<u>25</u> –60 – 125
Нестабильность источника опорного напряжения по току, %/A	K _{lon} *	_	30	U _{пит} = 12 В, I _{оп} =(1–20) мА	25
Температурный коэффициент опорного напряжения, %/°С	$lpha_{Uon}$	-	0,01	U _{пит} = 12 В, I _{on} = 1 мА	- 60 - 125
Время нарастания импульса выходного напряжения, нс	t _{нар}	-	150	U _{пит} = 12 B, С _н = 1 нФ	25
Время спада импульса выходного напряжения, нс	t _{en}	-	150	U _{пит} = 12 В, С _н =1 нФ	25

Продолжение таблицы 1. Электрические параметры микросхем при приемке и поставке

Наименование параметра, единица измерения	Буквенное обозначение параметра	Нор парам не менее		Режим измерения	Температура окружающей среды, °С
Напряжение включения, В 1114ЕУ7УИМ 1114ЕУ8УИМ 1114ЕУ9УИМ 1114ЕУ10УИМ	U _{вкл} *	14,8 7,6 14,8 7,6	17,2 9,2 17,2 9,2	-	25
Напряжение выключения, В 1114ЕУ7УИМ 1114ЕУ8УИМ 1114ЕУ9УИМ 1114ЕУ10УИМ	U _{выкл} *	8,8 6,8 8,8 6,8	11,2 8,4 11,2 8,4	-	25
Разность напряжений включения и выключения, В 1114ЕУ7УИМ 1114ЕУ8УИМ 1114ЕУ9УИМ 1114ЕУ10УИМ	$\Delta U_{вкл-выкл}$ *	5,0 0,5 5,0 0,5	- - - -	-	25
Максимальный рабочий цикл, % 1114ЕУ7УИМ 1114ЕУ8УИМ 1114ЕУ9УИМ 1114ЕУ10УИМ	t _{u max} *	90 90 45 45	100 100 50 50	U _{пит} = 12 В	– 60 – 125

^{*} Параметры, измеряемые на пластине при нормальной температуре окружающей среды

П р и м е ч а н и е – Для обеспечения $T_{\kappa p}$ = $T_{o\kappa p}$ измерение параметров проводить в импульсном режиме после окончания переходных процессов. Длительность подачи электрического режима не более 5 мс.

Таблица 2. Параметры, изменяющиеся в процессе и после наработки

Наименование	Буквенное	Норма параметра			Томпоротура
параметра, единица измерения	обозначе- ние параметра	не менее	не более	Режим измерения	Температура окружающей среды, ⁰ С
Напряжение источника опорного напряжения, В	U _{on}	4,85	5,15	U _{пит} = 12 В, I _{on} = 1 мА	25
Напряжение источника опорного напряжения, В	U _{оп}	4,78	5,22	U _{пит} = 12 В, I _{on} = 1 мА	-60 - 125

Таблица 3. Электрические параметры микросхем, изменяющиеся после воздействия специальных факторов

Наименование параметра, единица	_,		ома иетра	Режим	Темпера- тура окру-
измерения	параметра	не менее	не более	измерения	жающей среды, °С
Напряжение источника опорного напряжения, В	U _{on}	<u>4,655</u> 4,608	<u>5,355</u> 5,409	U _{пит} = 12 В, I _{оп} = 1 мА	<u>25</u> –60 – 125
Остаточное напряжение выходного каскада при втекающем токе, В	U _{ост вт}	_	0,8	U _{пит} = 12 B, I _{вт} = 20 мА	– 60 – 125
Остаточное напряжение выходного каскада при вытекающем токе, В	U _{ост выт}	-	2,5	U _{пит} = 12 В, I _{выт} = 20 мА	– 60 – 125
Ток потребления, мА	I _{пот}	_	20	U _{пит} = 25 B	- 60 - 125
Нестабильность источника опорного напряжения по напряжению, %/В	К _{Иоп}	_	0,05	U _{пит} = (12–25) В, I _{on} = 1 мА	– 60 – 125

П р и м е ч а н и е – Для обеспечения $T_{\kappa p}$ = $T_{\text{окр}}$ измерение параметров проводить в импульсном режиме после окончания переходных процессов. Длительность подачи электрического режима не более 5 мс.

Таблица 4. Предельно-допустимые и предельные режимы эксплуатации микросхем

Наименование параметра, единица измерения	Буквенное обозначение	Предельно- допустимый режим		Предельный режим	
		не менее	не более	не менее	не более
Напряжение питания, В 1114ЕУ7УИМ, 1114ЕУ9УИМ 1114ЕУ8УИМ, 1114ЕУ10УИМ	U _{пит}	11,2 8,4	25	11,0 8,2	30
Рассеиваемая мощность, Вт при Т _{окр} от минус 60 до 70 °C, при Т _{окр} = 125 °C	P _{pac}	_ _	0,5 0,16 *	_ _	0,6 0,18 *
Частота внутреннего генератора, кГц	F _{ген}	_	400	_	500
Втекающий и вытекающий выходной ток, мА	I _{BЫX}	_	20	_	50
Ток нагрузки источника опорного напряжения, мА	I _{оп}	_	20	_	30
Амплитуда импульсного втекающего и вытекающего выходного тока, А	I _{вых, и}	_	0,5	_	0,7

 $^{^{\}ast}\,$ В диапазоне температур от 70 до 125 °C рассеиваемая мощность снижается линейно и рассчитывают по формуле

$$P_{pac} = \frac{(150 - T_{oKp}) ^{\circ}C}{160 ^{\circ}C/BT}$$
, BT

Требования по стойкости к воздействию специальных факторов

Микросхемы устойчивы к воздействию специальных факторов 7.И, 7.С, 7.К с характеристиками:

- $7.И_1$, $7.И_6$, $7.И_7$, $7.C_1$, $7.C_4$ по группе исполнения $1У_c$;
- 7.K₁, 7.K₄ по группе исполнения 1К.

Требования к специальным факторам с характеристиками $7.\mathsf{N}_{10},\ 7.\mathsf{N}_{11},\ 7.\mathsf{K}_{6},\ 7.\mathsf{K}_{9},\ 7.\mathsf{K}_{10},\ 7.\mathsf{K}_{11},\ 7.\mathsf{K}_{12}$ не предъявляются.

Допускается в процессе и непосредственно после воздействия специальных факторов с характеристиками $7.И_1$, $7.И_6$ временная потеря работоспособности микросхем. По истечении времени, указанного в таблице 5, от начала воздействия работоспособность восстанавливается.

Таблица 5. Время потери работоспособности

Тип микросхемы	Время потери работоспособности, мс, не более
1114ЕУ7УИМ	
1114ЕУ8УИМ	2
1114ЕУ9УИМ	_
1114ЕУ10УИМ	

Таблица 6. Уровень бессбойной работы по 7.И₈

Тип микросхемы	Уровень бессбойной работы, d x 1У _с
1114ЕУ7УИМ 1114ЕУ8УИМ	0,001 x 1У _c
1114ЕУ9УИМ 1114ЕУ10УИМ	0,001 X 19 _c

Таблица 7. Параметры-критерии работоспособности микросхем

Тип микросхемы	Относительное изменение опорного напряжения, δU _{on} , % не более
1114ЕУ7УИМ	
1114ЕУ8УИМ	± 5
1114ЕУ9УИМ	
1114ЕУ10УИМ	

Указания по применению и эксплуатации

Указания по применению и эксплуатации микросхем – по AEЯР.431420.495 ТУ с дополнениями и уточнениями, изложенными в настоящем разделе.

При монтаже на печатную плату микросхемы распаивают за выводы.

При монтаже микросхем должны исключаться передача усилий на корпус микросхемы, а также попадание на корпус флюса и припоя.

При работе микросхем на емкостную нагрузку энергия заряда емкости не должна превышать 3 мкДж.

При использовании для запуска микросхемы маломощного источника питания его выходной ток должен быть не менее 1,5 мА.

При монтаже микросхем в аппаратуре рекомендуется общие выводы конденсатора фильтра и времязадающего конденсатора (С3 и С2; см. типовую схему включения) располагать в непосредственной близости от вывода 5 микросхемы.

Критичными температурами работоспособности микросхем при воздействии специальных факторов являются минус 40 °C, плюс 85 °C.

При установке в блоки аппаратуры рекомендуется покрытие микросхем лаком.

Частоту генератора пилообразного напряжения F_{ген}, кГц, рекомендуется определять по формуле

$$F_{reh} = \frac{1,7}{R2 \cdot C2}$$
, кГц,

где R2, кОм и C2, мкФ – частотозадающие элементы, согласно схеме включения.

Мощность, рассеиваемую микросхемой, рекомендуется определять по следующей приближенной формуле:

$$P_{pac} = U_{nut} \cdot I_{not} + (U_{nut} - 5 B) \cdot I_{on} + U_{oct} \cdot I_{Bbix} + 0.7 \cdot C \cdot U_{nut}^2 \cdot F,$$

где I_{on} – ток нагрузки источника опорного напряжения;

 $I_{вых}$ – постоянный выходной ток;

U_{пит} – напряжение питания микросхемы;

U_{ост} – остаточное напряжение выходного каскада, равное 1 В;

С – входная емкость полевого транзистора VT (см. схему включения);

F – частота следования выходных импульсов.

Справочные данные

Справочные данные – по АЕЯР.431420.495 ТУ с дополнениями и уточнениями, приведенными в настоящем разделе.

Значение теплового сопротивления кристалл – окружающая среда 160 °C/Вт.

Амплитуда пилообразного напряжения на выводе 04 микросхемы равна (1,6 \pm 0,2) В на уровне постоянной составляющей, равной (1,2 \pm 0,2) В.

Типовое значение нестабильности частоты генератора пилообразного напряжения $\pm 5~\%$ в диапазоне температур от минус 60 до 125 0С.

Входное напряжение усилителя рассогласования (вывод 02) в рабочем режиме должно быть равно половине опорного напряжения, а входное напряжение компаратора ШИМ (вывод 03) от 0,9 до 1,1 В.

Усилитель рассогласования (вывод 02) имеет диапазон выходного напряжения не менее (1,1 – 5) В и обеспечивает втекающий выходной ток до 2 мА и вытекающий выходной ток до 0,5 мА.

Выходное напряжение усилителя рассогласования (вывод 02) и компаратора ШИМ (вывод 03) не должно превышать плюс 5 В.

Входные токи усилителя рассогласования и компаратора ШИМ являются вытекающими и имеют величину не более 2 и 10 мкА соответственно.

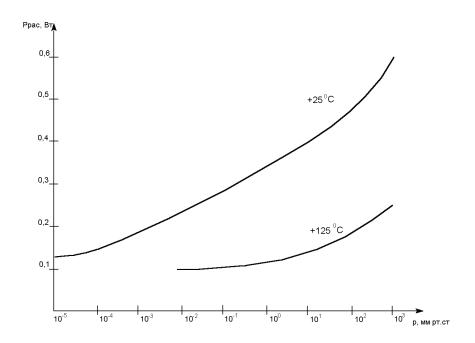


Рисунок 2 – Зависимость рассеиваемой мощности P_{pac} от атмосферного давления P при заданной температуре окружающей среды T_{okp}

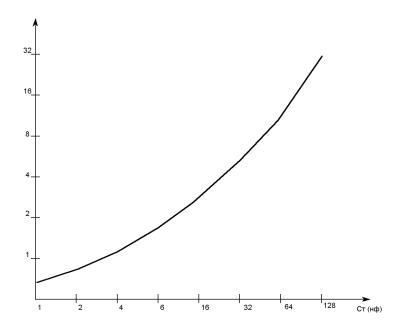


Рисунок 3 – Зависимость «мертвого» времени t от емкости времязадающего конденсатора C2 (согласно типовой схеме включения).

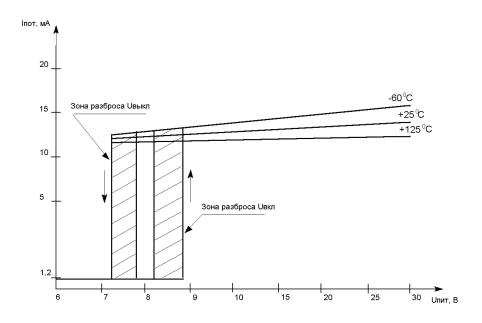


Рисунок 4 – Зависимость тока потребления $I_{\text{пот}}$ от напряжения питания $U_{\text{пит}}$ для микросхемы 1114ЕУ8УИМ, 1114ЕУ10УИМ

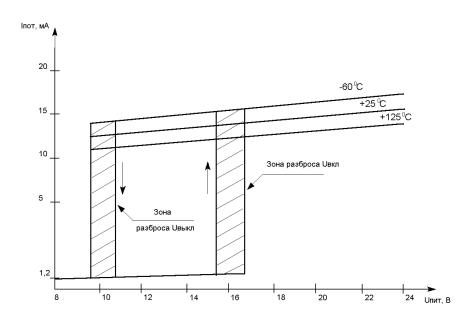


Рисунок 5 – Зависимость тока потребления $I_{\text{пот}}$ от напряжения питания $U_{\text{пит}}$ для микросхемы 1114ЕУ7УИМ, 1114ЕУ9УИМ

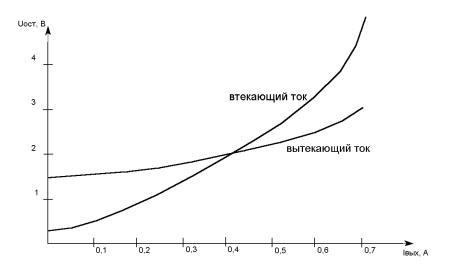


Рисунок 6 — Зависимость остаточного напряжения $U_{\text{ост}}$ выходного каскада от втекающего и вытекающего выходных токов $I_{\text{вых}}$ (по переменному току).

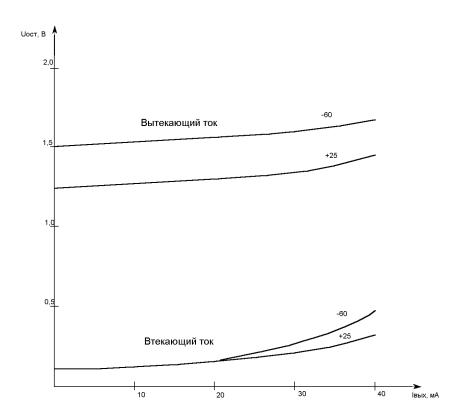


Рисунок 7 – Зависимости остаточного напряжения выходного каскада $U_{\text{ост}}$ от втекающего и вытекающего выходных токов $I_{\text{вых}}$

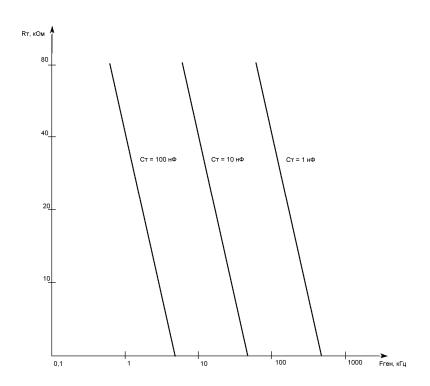


Рисунок 8 – Рекомендуемые номограммы для выбора частотозадающих элементов R2 и C2 (согласно типовой схеме включения)

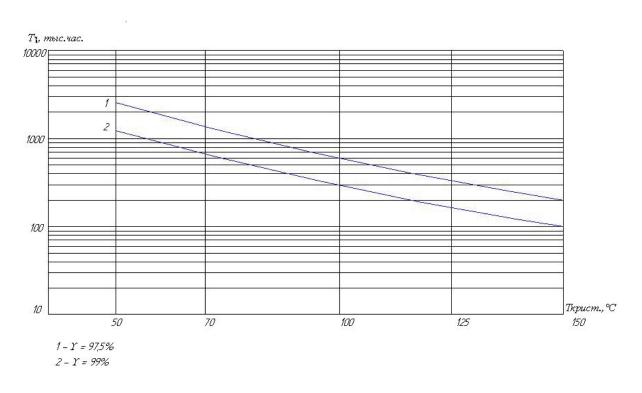
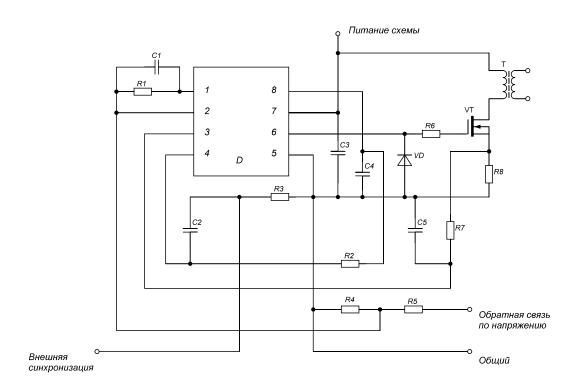


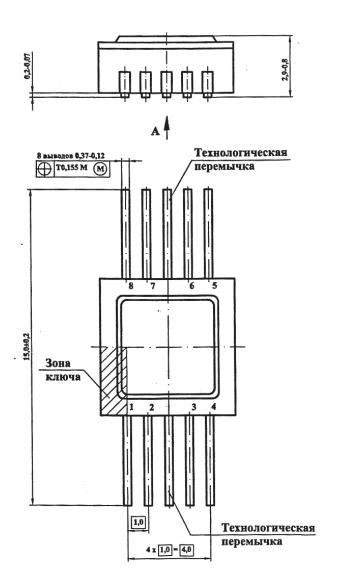
Рисунок 9 – Зависимость гамма-процентной наработки до отказа Т γ микросхем от температуры кристалла Ткр

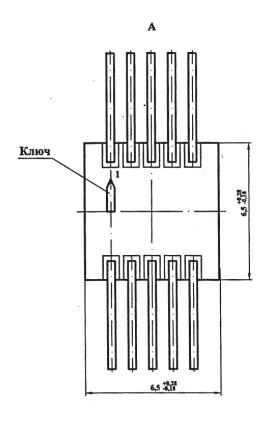


Источник Питание опорного напряжения Блокировка 5B 8 Опорное Усилитель напряжение рассогласования 6 Триггер 2,5B 2 Выход Напряжение 12 обратной связи 5 Логика 1 ШИМ компаратор Коррекция 3 Токовая обратная связь Ограничительный стабилитрон Триггер Задание Генератор частоты . паузы Общий

Рисунок 10 – Схема электрическая структурная

Рисунок 11 — Типовая рекомендуемая схема включения микросхем серии 1114ИМ (для управления ключевым каскадом на n-канальном МОП-транзисторе)


D – микросхема;


- С1 ≥ 470 пФ конденсатор формирования АЧХ усилителя;
- C2 = 1000 пФ 0,1 мкФ конденсатор задания частоты и «мертвого» времени;
- С3 ≥ 0,1 мкФ конденсатор фильтра напряжения питания;
- С4 ≥ 0,01 мкФ конденсатор фильтра опорного питания;
- С5 > 100 пФ конденсатор фильтра обратной связи по току;
- R1 ≥ 10 кОм резистор задания коэффициента усиления усилителя рассогласования:
- R2 = (3 100) кОм резистор задания частоты пилообразного напряжения;
- R3 = (0 100) Ом резистор нагрузки цепи внешней синхронизации и задания «мертвого» времени:
- R4 > 3 кОм резистор делителя обратной связи по напряжению;
- R5 = (0 100) кОм резистор делителя обратной связи по напряжению;
- $R6 = (10 47) \, \text{Ом} \text{резистор ограничения импульсного выходного тока;}$
- R7 = (0 3) кОм резистор фильтра обратной связи по току:
- R8 = (0 100) Om датчик пилообразного тока выходного каскада;
- VD диод для ограничения импульсов отрицательного напряжения электромагнитных помех;
- VT транзистор силового каскада;
- Т трансформатор силового каскада.

Примечание: В конкретных схемах применения допускается изменение номиналов и типов элементов, а также исключение из схемы и введение в нее дополнительных элементов, не приводящих к превышению допустимых режимов работы микросхемы.

Рисунок 12 – Габаритный чертеж корпуса Н02.8-2В

- 1. Форма ключа не регламентируется.
 2. Нумерация выводов показана условно.

ОАО "ИНТЕГРАЛ", г. Минск, Республика Беларусь

Внимание! Данная техническая спецификация является ознакомительной и не может заменить собой учтенный экземпляр технических условий или этикетку на изделие.

ОАО "ИНТЕГРАЛ" сохраняет за собой право вносить изменения в описания технических характеристик изделий без предварительного уведомления.

Изображения корпусов приводятся для иллюстрации. Ссылки на зарубежные прототипы не подразумевают полного совпадения конструкции и/или технологии. Изделие ОАО "ИНТЕГРАЛ" чаще всего является ближайшим или функциональным аналогом.

Контактная информация предприятия доступна на сайте:

http://www.integral.by