Advance Information

The RF Small Signal Line

Gallium Arsenide PHEMT

Pseudomorphic High Electron Mobility Transistor

Designed for use in low voltage, moderate power amplifiers such as portable analog and digital cellular radios and PC RF modems.

- Performance Specifications at 3.5 V, 850 MHz: Output Power = 31 dBm Min Power Gain = 11 dB Typ Efficiency = 70% Min
- Guaranteed Ruggedness at Load VSWR = 20:1
- New Plastic Surface Mount Package
- Available in Tape and Reel Packaging Options:
 T1 suffix = 1,000 Units per Reel
- Device Marking = 9822

MRF9822T1

31 dBm, 850 MHz HIGH FREQUENCY POWER TRANSISTOR GaAs PHEMT

CASE 449-02, STYLE 1 (PLD-1)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V_{DGO}	12	Vdc
Gate-Source Voltage	V _{GS}	- 6	Vdc
Drain Current – Continuous	ΙD	3	Adc
Total Device Dissipation @ T _C = 50°C Derate above 50°C	PD	10 100	W mW/°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Temperature Range	TJ	150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	10	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain-Gate Breakdown Voltage (I _D = 1.5 mA)	BV _{GDO}	12	ı	ı	Vdc
Off–state Leakage Current (VDS = 5.5 V, VGS = -2. 6 V)	I _{DS(off)}	-	-	3	mA
Gate–Source Leakage Current (V _{GS} = -2. 6 V)	lgss	-	-	10	μAdc

NOTE – <u>CAUTION</u> – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS – continued ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS					
Gate Threshold Voltage (V _{DS} = 3.5 V, I _D = 150 mA)	VGS(th)	-1.5	-	-0.5	Vdc
Forward Transconductance (VDS = 6 V, ID = 200 mA)	9fs	-	1.5	-	mhos
Saturation Drain-Current (VGS = 0.0 V, VDS = 1.5 V)	IDSS	1.8	2.5	-	А
FUNCTIONAL CHARACTERISTICS					
Power Gain (V _{DD} = 3.5 Vdc, P _{in} = 20 dBm, I _{DQ} = 150 mA, f = 850 MHz)	G _{ps}	10.5	11	-	dB
Drain Efficiency (V _{DD} = 3.5 Vdc, P _{in} = 20 dBm, I _{DQ} = 150 mA, f = 850 MHz)	ηD	65	70	-	%

C1, C13	1000 pF, ATC "B" Series	L2	7 Turns, AWG #18, 0.09" I.D., Close Wound
C2	2.7 pF, ATC "B" Series	L3	3 Ferrite Beads on 1/2" AWG #16
C3	2.7 pF, ATC "B" Series	R1	680 Ω , 1/8 Watt Leaded
C4	7.5 pF, ATC "B" Series	Z1	0.075" x 0.790" Microstrip
C5	33 pF, ATC "B" Series	Z2	0.075" x 0.09" Microstrip
C6, C12	47 μF, Ceramic	Z3, Z4	0.075" x 0.25" Microstrip
C7, C8, C9, C10, C11	0.05 μF Chip	Z 5	0.075" x 0.09" Microstrip
L1, L4	VK-200 4 Turn Ferrite Bead	Z6	0.075" x 0.53" Microstrip
		Substrate	e Material: 0.05, Teflon/Glass, ε_{Γ} = 2.55, 2 oz. cu.

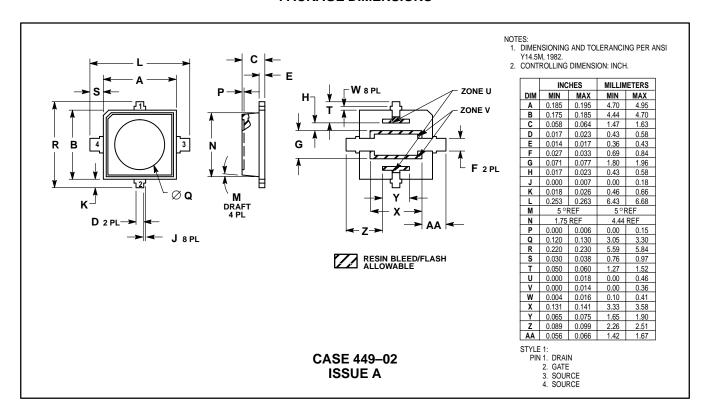

Figure 1. 850 MHz Test Fixture Schematic

Table 1. Large Signal Impedance V_{DD} = 3.5 V, P_{in} = 20 dBm, I_{DQ} = 150 mA

f	Z _{in}	Z _{OL} *
MHz	Ohms	Ohms
850	5.0 – j6.3	5.5 – j1.2

Z_{OL}* is the conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and was negligent regarding the design or manufacture of the part. Motorola and Parameters in a place of the part. Motorola and Parameters in a place of the part. Motorola and Parameters in a place of the part in a place of

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447

 $\label{eq:maxmax} \textbf{Mfax}^{\text{TM}}: RMFAX0@email.sps.mot.com - TOUCHTONE~602-244-6609\\ \textbf{INTERNET}: http://www.mot.com/sps/$

Mfax is a trademark of Motorola, Inc.

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MRF9822/D