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Abstract			
	
	
Wetting	behavior	between	electrospun	nanofibrous	networks	and	liquids	is	of	critical	

importance	in	many	applications	including	filtration	and	liquid	repellent	textiles.	The	

relationship	between	intrinsic	nanofiber	properties,	including	surface	characteristics,	and	

extrinsic	nanofibrous	network	organization	on	resultant	wetting	characteristics	of	the	

nanofiber	network	is	shown	in	this	work.	Novel	3D	imaging	exploiting	focused	ion	beam	

(FIB)	microscopy	and	cryo-scanning	electron	microscopy	(cryo-SEM)	highlight	a	wetting	

hierarchy	that	defines	liquid	interactions	with	the	network.	Specifically,	small	length	scale	

partial	wetting	between	individual	electrospun	nanofibers	and	low	surface	tension	liquids,	

measured	both	using	direct	SEM	visualization	and	a	nano	Wilhelmy	balance	approach,	

provides	oleophobic	surfaces	due	to	the	high	porosity	of	electrospun	nanofiber	networks.	

These	observations	conform	to	a	meta-stable	Cassie-Baxter	regime	and	are	important	in	

defining	general	rules	for	understanding	the	wetting	behavior	between	fibrous	solids	and	

low	surface	tension	liquids	for	omniphobic	functionality.		
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Introduction	
	
The	thermodynamically	favored	spreading	of	low	surface	tension	liquids	on	solid	surfaces	is	

a	significant	problem	in	materials	science,	especially	when	contamination	of	solid	surfaces	

with	the	low	surface	tension	liquid	is	to	be	avoided1.	Considerable	efforts	have	been	made	

in	 designing	 surfaces	 that	 are	 suitable	 for	 repelling	 low	 surface	 tension	 liquids,	 with	 a	

number	 of	 promising	 strategies	 using	 nanostructured	 materials	 to	 provide	 surface	

oleophobicity	 for	 self-cleaning	 materials2-3,	 enhanced	 nanofibrous	 filtration	 and	 energy	

devices4,	 improved	biological	 therapies5	and	tissue	regeneration6-7.	Electrospun	nanofibers	

have	shown	considerable	success	in	repelling	a	range	of	liquids	and	chemical	modifications	

are	commonly	used	to	tailor	their	nanofibers	surfaces	to	improve	liquid	repellency,	including	

coaxial	electrospinning	to	produce	Teflon	coated	electrospun	fiber	mats8	and	fluorination	of	

electrospun	 fibers9.	 Critically,	 the	 overall	wetting	 behavior	 between	 liquids	 and	 nanofiber	

assemblies	 is	 defined	 by	 the	 smaller	 scale	 interaction	 between	 the	 nanofibers	 and	

contacting	 liquid.	 A	 wetting	 hierarchy	 can	 therefore	 be	 considered	 where	 the	 intrinsic	

wetting	behavior	between	electrospun	nanofibers	and	 the	contacting	 liquid	defines	 larger	

scale	wetting	behavior	 that	 is	additionally	controlled	by	extrinsic	behavior,	 specifically	 the	

organization	of	 the	electrospun	 fibers	contacting	 the	 liquid.	The	demands	of	 repelling	 low	

surface	tension	liquids	using	electrospun	nanofiber	networks	therefore	requires	controlling	

of	wetting	hierarchy	as	well	as	optimized	chemical	modification	of	 fibrous	surfaces.	These	

challenges	in	relating	intrinsic	and	extrinsic	nanofiber	properties	to	overall	wetting	behavior	

are	non-trivial	and	have	been	the	subject	of	intensive	research	in	larger	scale	textile	wetting.	

Descriptions	 of	 fibers	 repelling	 liquids	were	 historically	 developed	 by	 Cassie	 and	 Baxter10	

and	 the	 application	 of	 such	 descriptions	 to	 a	 range	 of	 fibrous	 networks	 is	 currently	

contentious.	Specifically,	Cassie-Baxter	 theory	has	successfully	described	wetting	of	acrylic	

acid	 grafted	 electrospun	 poly(vinylidene	 fluoride)	 (PVDF)	 fibers	 with	 water11	 but	 is	

insufficient	 for	 predicting	 wetting	 of	 perfluoroalkyl	 ethyl	 methacrylate	 (PPFEMA)	 coated	

poly(caprolactone)	(PCL)	with	low	surface	tension	liquids	including	n-decane,	n-octane,	and	

n-heptane12.	The	inconsistencies	in	applying	Cassie-Baxter	theory	to	oleophobic	electrospun	

nanofiber	networks,	despite	observations	of	Cassie-Baxter	regimes	where	the	liquid	is	non-

spreading	 at	 the	 network	 surface13,	 thus	 require	 quantitative	 descriptions	 of	 the	wetting	

behavior.	Perhaps	the	only	attempts	to	fully	describe	wetting	of	fibers	was	presented	for	a	
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simple	system	of	 two	parallel	glass	 fibers	contacting	a	 low	surface	 tension	oil	droplet14.	A	

consideration	of	the	anisotropy	of	the	fibers	was	shown	to	provide	a	liquid	repellent	regime	

for	 the	 system,	 despite	 oil	 completely	 wetting	 glass	 surfaces.	 Thus,	 wetting	 behavior	

between	fibers	and	liquids	requires	understanding	of	the	intrinsic	fiber	properties	as	well	as	

extrinsic	 properties	 of	 the	 network.	 This	 wetting	 hierarchy	 will	 be	 critical	 in	 oil	 repellent	

electrospun	 nanofiber	 networks	 but	 requires	 evaluation	 of	 wetting	 at	 nanofiber	 length	

scales	 as	well	 as	 considering	 the	 complex	 3D	 organization	 of	 these	 nanofibers	within	 the	

network.		

	

A	 conclusive	description	of	 low	 surface	 tension	 liquid	 repellency	 at	 electrospun	nanofiber	

surfaces	 is	presented	here	using	novel	microscopy	techniques	to	understand	wetting	from	

the	nanoscale	to	the	larger	3D	assembles	of	the	fibrous	network.	These	approaches	allow	us	

to	comprehensively	describe	liquid	interactions	with	the	electrospun	nanofiber	network	and	

identify	the	importance	of	a	wetting	hierarchy	at	multiple	length	scales	as	shown	in	Figure	1.	

Such	 approaches	 are	 broad	 and	 important	 in	 future	 liquid	 repellent	 strategies	 using	 the	

electrospun	nanofibers	of	this	work	as	well	as	generally	controlling	wetting	behavior	using	

nanofiber	networks.		

			

The	first	critical	evaluation	of	liquid	droplet	interactions	with	fibers	was	conducted	by	Cassie	

and	 Baxter.10	 This	 paper	 is	 frequently	 employed	 in	 an	 unmodified	 fashion	 due	 to	 the	

effectiveness	of	 the	 ‘Cassie-Baxter	equation’	 in	describing	a	 liquid	droplet	wetting	contact	

angle	θCB	on	a	fibrous	network,	thus	containing	pores,	using	the	relationship15-17:	

	

cosθCB = f1 cosθY − f2 		 	 	 	 	 	 	 (1)	

	

where	θY	is	the	Young	contact	angle	of	liquid	on	a	fiber,	ƒ1	is	the	total	solid-liquid	interfacial	

area	and	ƒ2	is	the	liquid-air	interfacial	area	at	the	contact	plane	with	the	liquid	droplets	(f1+	

f2=1).	While	 Cassie-Baxter	 theory	 has	 been	 exploited	 to	 explain	 a	 range	 of	 liquid	 contact	

angles	with	fibrous	materials,	the	original	work	critically	examined	a	liquid	contacting	fibers	

as	 a	 2-dimensional	 problem.	 Indeed,	 the	 Cassie-Baxter	 model	 can	 be	 more	 accurately	

described	 as	 a	 liquid	 droplet	 contacting	 solid	 spheres	 when	 considered	 in	 a	 three-
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dimensional	 context.	 The	 anisotropy	 of	 fibrous	 structures,	 especially	 when	 liquid	 droplet	

sizes	 approach	 the	 contact	 fiber	 diameters,	 is	 thus	 ignored.	 Recent	work	 has	 additionally	

highlighted	the	need	to	understand	the	ingress	of	liquids	within	electrospun	fibrous	mats,18-

20	with	perhaps	the	aim	of	justifying	the	use	of	Cassie-Baxter	models	through	observation	of	

liquid-air	 interfaces.	 In	 particular,	 optical	 imaging	 of	 liquids	 with	 fluorescent	 dyes	 at	

electrospun	fiber	mat	surfaces	suggested	little	penetration	of	the	liquid.20	Thus,	the	current	

literature	is	somewhat	diverse	in	both	evaluating	the	wetting	behavior	between	liquids	and	

electrospun	 fiber	surfaces,	as	well	as	 indicating	 if	electrospun	 fibers	are	effective	at	 liquid	

repellency.	 The	 more	 rigorous	 evaluations8	 suggest	 improvement	 in	 the	

superhydrophobicity	 and	 oleophobicity	 of	 fluorinated	 electrospun	 nanofiber	 mats	 but	

recent	 investigations	 into	 assessing	 liquid	 penetration	 into	 the	 electrospun	 fibrous	mat20	

require	further	evaluation.	The	literature	would	therefore	prompt	open	questions	about	the	

nature	 of	 the	 liquid-solid	 interface	 when	 considering	 electrospun	 nanofibers,	 where	 the	

fiber	 diameter	 is	 often	 in	 the	 range	 of	 a	 few	 hundreds	 of	 nanometers	 and	 beyond	 the	

optical	 resolution	 of	 conventional	 light	 microscopy,	 and	 about	 the	 ability	 of	 the	 Cassie-

Baxter	 equation	 to	 describe	 liquid	 contact	 angles	 with	 electrospun,	 or	 indeed	 any	

anisotropic	 nanofibrous	 system.	 Experiments	 are	 performed	 in	 this	 study	 to	 evaluate	 the	

apparent	 contact	 angle	 between	 a	 low	 surface	 tension	 liquid	 and	 electrospun	 nanofiber	

networks	at	 a	 range	of	 length	 scales.	Contact	angles	measurements	 throughout	 this	work	

therefore	 refer	 to	 the	 observed	 apparent	 contact	 angle.	 Extrinsic	 effects	 require	 the	

evaluation	 of	 the	 interaction	 between	 the	 electrospun	 nanofiber	 3D	 network	 and	 low	

surface	 tension	 liquid	whereas	 intrinsic	 behavior	warrants	 experimental	 design	 examining	

individual	nanofiber	wetting	with	the	liquid	that	ignores	organization	effects.		

	

Results		
	
A	nanofibrous	network	was	electrospun	from	a	solution	of	polyamide	and	plasma	treated	

with	fluoropolymer	for	enhanced	oil	repellency.	The	quality	of	plasma	coating	was	verified	

with	X-ray	photoelectron	spectroscopy	(XPS)	(see	Supporting	Information,	Figure	S1).	The	

wetting	behavior	at	the	individual	electrospun	nanofiber	length	scale	was	evaluated	using	a	

nanofiber	Wilhelmy	balance	experiment	and	larger	3D	network	organization	wetting	

characterized	using	cryo-	FIB-SEM	imaging.	This	latter	technique	provides	3D	imaging	
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capability	to	determine	the	spreading	of	liquid	throughout	the	nanofibrous	network	and	is	

critical	in	supporting	theoretical	descriptions	that	assume	particular	liquid	spreading	

regimes.	

	
Individual	nanofiber	wetting	behavior	

	

A	Wilhelmy	balance	method	was	used	to	quantify	the	contact	angle	between	a	low	surface	

tension	 oil	 droplet	 with	 an	 individual	 electrospun	 nanofiber	 attached	 to	 an	 atomic	 force	

microscope	(AFM)	probe	as	shown	in	Figure	2.	The	wetting	force	acting	between	individual	

electrospun	nanofibers	and	liquid	oil	in	air	with	experimental	time	is	shown	in	Figure	2.	The	

force	 curve	 shows	 a	 distinct	 increase	 in	 the	 wetting	 force,	 which	 corresponds	 to	 the	

nanofiber	 moving	 into	 contact	 with	 the	 liquid	 and	 partial	 spreading	 of	 the	 oil	 over	 the	

nanofiber	 surface.	This	 resultant	 spreading	exerts	a	 force	on	 the	nanofiber	 surface	 that	 is	

measurable	 with	 the	 AFM.	 The	 magnitude	 of	 the	 wetting	 force	 acting	 on	 the	 individual	

nanofiber	is	determined	by	the	contact	angle	made	with	the	nanofiber	surface.	This	contact	

angle	θnano	is	given	by	the	force	balance:	

	

dF nanoPDMS θπγ cos= 	 	 	 	 	 	 	 	 	 (2)	

	

where	d	 is	 the	nanofiber	diameter	measured	 from	SEM	 images,	γPDMS	 is	 surface	energy	of	

silicone	oil	 equal	 to	20	mJ.m-2	 and	θnano	 is	 the	 liquid-nanofiber	wetting	 contact	angle.	We	

note	 that	 θnano	 is	 effectively	 θY	 as	 both	 consider	 liquids	 contacting	 a	 continuum	 surface,	

although	the	 former	requires	small	 scale	measurement.	Resultant	contact	angles	between	

the	 individual	 electrospun	 nanofibers	 and	 liquid	 oil	 are	 shown	 in	 Table	 1	 and	 indicates	

partial	wetting	contact	angles	of	60°.		

	

3D	imaging	of	nanofiber	networks	

	

Electrospun	nanofiber	networks	supporting	 liquid	oil	droplets	were	 imaged	using	cryo-FIB-

SEM	with	an	example	of	serial	2D	images	reconstructed	into	a	complete	3D	image	shown	in	

Figure	 3.	 Complementary	 2D	 cryo-SEM	 images	 were	 additionally	 used	 to	 examine	 the	

wetting	behavior	between	the	oil	and	electrospun	fibers,	especially	as	the	wetting	between	
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the	 liquid	droplet	edge	and	nanofiber	surfaces	was	observed	to	be	potentially	different	to	

the	larger	scale	wetting	of	the	whole	oil	droplet	in	contact	with	the	fibrous	array	as	shown	in	

Figures	4	 and	5.	 The	 volume	 fraction	of	 nanofibers	within	 the	3D	network	was	measured	

from	FIB-SEM	 images	 as	 shown	 in	 Figure	 3	 and	was	 given	 as	 0.0421.	 Resultant	 oil	 contact	

angles	 with	 the	 nanofibers	 were	 taken	 from	 3D	 imaging	 and	 verified	 using	 conventional	

contact	 angle	 measurements	 employing	 optical	 microscopy	 (see	 Supporting	 Information,	

Figure	S2	and	Table	S1)	to	give	a	macroscopic	oil-network	contact	angle	θmacro	of	110	±	7°.	

Critically,	the	3D	imaging	highlighted	a	liquid	spreading	that	was	confined	to	the	surface	of	

the	electrospun	nanofiber	network,	with	no	observable	 ingress	of	oil	 into	the	network.	As	

the	 electron	 microscopy	 imaging	 is	 sufficient	 to	 resolve	 the	 liquid	 with	 nanometer	

resolution,	we	are	confident	that	the	network	is	repelling	the	oil.	Wetting	behavior	between	

the	 solid	 and	 oil	 is	 thus	 defined	 by	 the	 electrospun	 nanofibers	 at	 the	 surface	 of	 the	 3D	

network.	

	

Discussion	

	
Macroscopic	 contact	 angle	 measurements	 between	 oil	 droplets	 and	 plasma	 treated	

electrospun	nanofiber	networks	indicate	non	wetting	behavior,	as	shown	with	both	3D	SEM	

imaging	and	optical	microscopy.	The	oil	contact	angle	on	the	fibrous	network	is	higher	than	

the	 contact	 angle	 on	 a	 plasma	 treated	 glass	 slide	 (which	 is	 smooth	 and	 planar	 -	 see	

Supporting	Information,	Figures	S2	and	S3	and	Tables	S1	and	S2).		Oil	droplets	wet	uncoated	

electrospun	PA6	nanofibers	rapidly,	as	presented	in	Figure	S6	of	the	Supporting	Information.	

Uncoated	nanofibers	appear	to	be	completely	wetted	by	the	oil	and	 is	assumed	to	have	a	

resultant	0˚	contact	angle.	 Indeed,	comparable	measurements	on	PA6	films	on	glass	slides	

without	 plasma	 treatment	 exhibit	 low	 contact	 angles	 tending	 towards	 complete	 wetting	

(see	Supporting	Information,	Figure	S7	and	Table	S3).	A	series	of	wetting	experiments	were	

carried	 out	 to	 quantify	 θmacro	 between	 silicone	 oil	 and	 plasma	 treated	 electrospun	 fiber	

arrays	using	conventional	observations	of	contact	angle	using	optical	microscopy.	A	typical	

optical	image	of	the	oil	contact	angle	with	the	electrospun	fiber	array	is	shown	in	Supporting	

Information,	Figure	S2,	and	highlights	a	non-wetting	condition	providing	a	contact	angle	of	

110	±	7°.	The	organization	of	electrospun	nanofibers	therefore	provides	oleophobicity	that	

is	enhanced	compared	to	a	macroscopic	angle	of	72.6°	oil	on	a	plasma	coated	glass	slide.	
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We	 can	 conclude	 that	 the	 extrinsic	 nanofibrous	 network	 geometry	 is	 able	 to	 provide	

oleophobicity	beyond	 the	 influence	of	 fluorinated	 surface	 chemistry.	 3D	 imaging	provides	

higher	 spatial	 resolution	 information	 beyond	 optical	microscopy,	which	 indicates	 intrinsic	

effects	related	to	the	wetting	between	individual	nanofibers	and	the	contacting	oil	as	shown	

in	 Figures	5(b),	 (c)	 and	 (d).	 	 The	 size	of	oil	 droplets	has	been	previously	 shown	 to	dictate	

wetting	behavior	between	two	parallel	fibers14.	Specifically,	smaller	droplet	volumes	provide	

wetting	 regimes	 whereas	 increasing	 droplet	 volume	 above	 a	 critical	 volume	 promotes	 a	

non-wetting	condition.	Evidence	of	sprayed	oil	droplets	wetting	electrospun	nanofibers	was	

absent	 in	all	high	 resolution	electron	microscopy	evaluations	as	 shown	 in	Figures	3-6.	We	

therefore	conclude	that	the	oil	droplet	sizes	used	in	this	study	are	above	the	critical	volumes	

needed	to	wet	the	electrospun	nanofibers.	

Quantitative	 descriptions	 of	 intrinsic	 wetting	 behavior	 were	 made	 using	 both	 Wilhelmy	

balance	methods	and	cryo-SEM	imaging	in	Figure	6	and	highlighted	partial	wetting	between	

the	 oil	 and	 electrospun	 nanofibers,	 with	 a	 contact	 angle	 of	 θnano	 =	 60°.	 This	 nansocale	

contact	angle	differs	from	the	larger	scale	contact	angle	measurements	of	110°	and	critically	

indicates	 the	wetting	hierarchy	 from	 large	 scale	 to	 small	 scale.	The	electrospun	nanofiber	

contact	angle	was	additionally	lower	than	for	the	plasma	coated	slide,	suggesting	a	wetting	

variability	due	to	the	cylindrical	curved	surface	of	an	individual	nanofiber	compared	to	the	

planar	 slide22.	 Thermodynamic	 arguments	 have	 been	 used	 to	 show	 that	 fiber	 curvature	

influences	liquid	spreading	power	relative	to	a	flat	planar	surface23.	In	addition,	surface	free	

energy	 of	 electrospun	 nanofibers	 have	 been	 shown	 to	 differ	 from	 bulk	 behavior	 but	 the	

typical	range	of	electrospun	nanofiber	diameters	is	too	limited	to	provide	any	surface	free	

energy	 variation24-25.	 The	 observed	 hierarchical	 wetting	 where	 a	 contact	 angle	 between	

liquid	 and	 individual	 nanofibers	 differs	 from	 a	 larger	 scale	 multi-fiber	 contact	 with	 a	

macroscopic	liquid	droplet	has	been	additionally	used	in	previous	literature,	including	liquid	

water	 contacting	 silicon	 micropillars	 imaged	 using	 environmental	 scanning	 electron	

microscopy26.	3D	wetting	using	cryo-FIB-SEM	at	nanoscale	was	also	 investigated	 for	water	

and	 silicon	 nanowires	 where	 complex	 wetting	 with	 locally	 bent	 droplets	 at	 substrate	

interfaces	was	observed27.	

	

To	describe	hierarchical	wetting	conclusively,	Cassie-Baxter	theory	is	applied	to	our	intrinsic	

contact	angle	data	to	give	a	predicted	macroscopic	contact	angle	as	shown	in	Figure	7	using	
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the	 directly	 measured	 porosity	 of	 nanofiber	 mats,	 ƒ1	 =	 0.04,	 from	 3D	 imaging21.	 Further	

models	have	been	developed	to	modify	Cassie-Baxter	theory	and	should	also	be	considered	

when	 describing	 wetting	 between	 the	 oil	 droplets	 and	 the	 electrospun	 nanofibrous	

network.	Specifically,	a	meta-stable	Cassie-Baxter	model	has	been	additionally	proposed	to	

predict	super-oleophobicity	of	non-woven	fabrics	of	relatively	large	diameter	textile	fibers28.	

A	meta-stable	Cassie–Baxter	describes	liquid	sitting	on	the	surface	of	a	fibrous	network	with	

air	 pockets	 created	 by	 the	 surface	 roughness,	 but	 is	 effective	 at	 describing	 entangled	

random	roughness	surfaces	as	opposed	to	the	regular	porosities	considered	by	a	standard	

Cassie-Baxter	 regime.	 Indeed,	 the	 application	 of	 Cassie-Baxter	 to	 compositional	 or	 non-

uniform	surfaces	has	been	shown	to	be	problematic29,	30.		Thus,	a	macroscopic	contact	angle	

between	 an	 oil	 droplet	 and	 the	 irregular	 electrospun	 nanofiber	 network,	 θmCB,	 can	 be	

defined	from	a	meta-stable	Cassie-Baxter	consideration	using28:	

	

( ) 1sincoscos −
+

+
+
−

= nanonano
Y

mCB Rd
R

Rd
R

θθ
θπ

θ 	 	 	 	 	 	 (3)	

	

where	R	 is	the	nanofiber	radius	and	2d	 is	the	distance	between	two	adjacent	fibers	 in	the	

network.	 The	 average	 nanofiber	 radius	 is	 calculated	 based	 on	 fiber	 diameter	 distribution	

plots	 taken	 from	 SEM	 imaging,	 see	 Supporting	 Information,	 page	 S7	 Figure	 S4	 and	 give	 a	

value	of	R	=	0.4	µm	for	the	electrospun	network.	The	2d	value	is	taken	from	the	previously	

calculated	average	distance	of	 1.7	µm	between	nanofibers	 from	 the	3D	 reconstruction	of	

electrospun	 PA6	 nanofiber	 networks21.	 The	 3D	 images	 of	 oils	 droplets	 on	 the	 nanofiber	

network,	 as	 shown	 in	 Figure	 3,	 importantly	 indicate	 a	 lack	 of	 oil	 penetration	 within	 the	

network.	 Such	an	observation	 is	 counter	 to	previous	 literature	where	3D	 imaging	 showed	

partial	penetration	of	liquid	water	within	networks	of	silicon	nanowire-type	pillars27.	Thus,	a	

Cassie-Baxter	condition	where	the	oil	droplet	is	situated	at	the	network	surface	is	found.		

	

The	standard	Cassie–Baxter	and	meta-stable	Cassie–Baxter	models	were	used	to	predict	the	

extrinsic	macroscopic	 contact	angle	of	 the	oil	droplet	on	 the	nanofiber	network	using	 the	

organization	of	the	nanofibers,	which	defines	the	volume	fraction	of	nanofibers	 in	contact	

with	 the	 oil	 droplet,	 and	 the	 intrinsic	 contacting	 angle	 between	 the	 oil	 and	 individual	

nanofibers.	Figure	7	shows	the	predicted	macroscopic	contact	angles	for	a	range	of	intrinsic	
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contact	angles	 for	the	Cassie-Baxter	and	meta-stable	Cassie-Baxter	theories.	Both	theories	

predict	an	 increasing	macroscopic	oil	 contact	angle	as	 the	 intrinsic	contact	angle	between	

the	 oil	 and	 nanofiber	 surfaces	 increases.	 However,	 the	 meta-stable	 Cassie-Baxter	 model	

exhibits	 a	 larger	 increase	 in	 macroscopic	 contact	 angle	 as	 the	 intrinsic	 contact	 angle	

between	 the	 oil	 and	 nanofiber	 increase	 compared	 to	 the	 Cassie-Baxter	 model.	 Our	

experimental	observations	can	be	used	to	confirm	the	applicability	of	each	model	to	our	oil	

droplet	contacting	plasma	treated	electrospun	nanofibers.	The	intrinsic	contact	angle	of	60°	

allows	the	prediction	of	macroscopic	contact	angle	as	shown	in	Figure	7.	Critically,	the	meta-

stable	Cassie-Baxter	model	provides	a	predicted	macroscopic	contact	angle	of	113°,	which	

correlated	 precisely	 with	 our	 experimental	 observations	 (see	 Figure	 S2	 in	 Supporting	

Information),	 whereas	 Cassie-Baxter	 considerably	 overestimates	 the	 macroscopic	 contact	

angle	at	approximately	160°.	 	The	Cassie-Baxter	model	considers	a	rigid	network	and	does	

not	fit	the	data	whereas	the	meta-stable	Cassie-Baxter	predicts	wetting	behavior.	The	issue	

of	a	liquid	droplet	causing	a	deformation	of	fibers	must	therefore	be	a	suitable	mechanism	

that	defines	wetting.	Electrospun	fibers	are	typically	of	high	aspect	ratio	so	relatively	easy	to	

deflect	 under	 the	 action	 of	 the	 oil	 droplet.	 Network	 sagging	 under	 a	 liquid	 droplet	 is	

therefore	 suggested	 as	 the	mechanism	 responsible	 for	 the	macroscopic	wetting	 behavior	

between	 the	 liquid	and	electrospun	nanofiber	network31.	 These	 results	highlight	both	 the	

importance	 of	 experimentally	 linking	 the	 small	 scale	 intrinsic	 wetting	 behavior	 to	 larger	

scale	extrinsic	contact	angles	for	electrospun	nanofibrous	networks	and	the	suitability	of	the	

meta-stable	 Cassie-Baxter	 in	 accurately	 predicting	 this	 resultant	 wetting	 for	 low	 surface	

tension	liquids.		

Finally,	 our	 results	 predict	 superoleophobicity	 (θmacro	 >	 150°)	 for	 electrospun	 nanofibrous	

networks	only	when	the	intrinsic	contact	angle	between	the	oil	and	nanofiber	exceeds	θnano	

values	 of	 120°.	 However,	 120° is	 unlikely	 to	 be	 achievable	 other	 than	 for	 relatively	 high	

surface	tension	organic	liquids.	Plasma	coating	with	highly	fluorinated	C8F17	chains	as	used	

in	 this	work	 is	 a	 limiting	 factor	 as	 further	oil	 repellent	 chemistry	 is	 difficult	 to	 achieve,	 in	

addition	to	a	drive	by	industry	to	use	shorter	chains	with	potentially	poorer	olephobicity32-

33.	 Network	 design	 and	 organization	 of	 electrospun	 nanofibers	 therefore	 becomes	 more	

dominant	in	achieving	superolephobic	surfaces.		
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Conclusions	
	
	
The	 hierarchical	 wetting	 behavior	 between	 a	 low	 surface	 tension	 oil	 and	 fluorinated	

electrospun	 nanofiber	 networks	 from	 nanoscale	 to	 macroscopic	 length	 scales	 was	

conclusively	 evaluated	 using	 a	 range	 of	 microscopy	 techniques.	 Oil	 partially	 wetting	

individual	electrospun	nanofibers	 in	 conjunction	with	extrinsic	nanofiber	organization	was	

highlighted	 as	 defining	 larger	 scale	wetting	 behavior	 and	 is	 described	 fully	 using	 a	meta-

stable	Cassie-Baxter	condition.	Such	 intrinsic	partial	wetting	(θnano	=	60°)	between	oils	and	

fluorinated	 electrospun	 nanofibers	 are	 still	 able	 to	 give	 extrinsic	 non-wetting	 conditions	

(θmacro	 =	 110°)	 with	 relatively	 large	 oil	 droplets	 due	 to	 the	 inherent	 high	 porosity	 of	

electrospun	 nanofibrous	 networks.	 These	 results	 show	 the	 synergy	 between	 surface	

chemistry	 and	 extrinsic	 organization	 in	 electrospun	 nanofiber	 networks	 for	 enhanced	

olephobic	properties	in	a	material	system.	

	

Methods	(less	than	3000	words)	

	
Electrospinning	of	PA6	nanofibers	

	

Polyamide	6	(PA6,	Mw	=	24,000	g.mol-1,	BASF,	Ultramid	B33	L,	Germany)	was	dissolved	in	a	

mixture	of	acetic	acid	(≥99.7%,	Sigma	Aldrich,	U.S.A.)	and	formic	acid	(98%,	Sigma	Aldrich,	

U.S.A.)	 (50/50	 mass	 ratio)	 to	 produce	 a	 resultant	 polymer	 concentration	 of	 12	 wt%	 in	

solution.	 The	 PA6	 polymer	 solution	 was	 electrospun	 into	 nanofibers	 using	 a	 large	 scale	

multi-jet	 electrospinning	 setup	 (NanoSpider,	 Elmarco,	 Czech	 Republic).	 The	 experimental	

settings	are	as	published	previously21,34.		

	

Attachment	of	individual	electrospun	nanofibers	to	AFM	tips	
	
The	attachment	of	individual	electrospun	nanofibers	to	the	apex	of	an	AFM	tip	was	carried	

out	 in	 the	 SEM	 containing	 a	 custom	 built	 nanomanipulator	 (attoAFM	 II,	 attocube	 GmbH,	

Germany)	according	to	previous	methodologies35-36.	A	small	section	of	the	electrospun	PA6	

mat	 was	 placed	 on	 carbon	 tape	 and	 attached	 to	 a	 sample	 stage	 holder	 within	 the	 SEM	

chamber.	A	small	droplet	of	vacuum	compatible	glue	(Poxipol,	Argentina)	was	also	added	to	
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the	 sample	 stage	 holder.	 An	 AFM	 tip	 (Veeco,	 U.S.A.,	 spring	 constant	 K=0.2	 N.m–1)	 was	

attached	 to	 the	 nanomanipulator	 system	 and	 the	 tip	 translated	 towards	 the	 glue	 while	

observing	using	the	SEM	until	contact	with	the	glue	occurred.	Residual	glue	remained	at	the	

apex	of	the	AFM	tip	after	retraction.	Subsequent	translation	and	contact	between	the	AFM	

tip	and	an	 individual	PA6	nanofiber	within	an	electrospun	mat	was	 carried	out.	 Following	

solidification	 of	 the	 glue,	 a	 FIB	 system	 integrated	 within	 the	 SEM	 was	 used	 to	 cut	 the	

nanofiber	 and	 leave	 a	 nanofiber	 length	 of	 approximately	 10	µm	 fixed	 to	 the	 AFM	 tip	 as	

shown	in	Figure	2.	The	diameter	of	electrospun	PA6	nanofibers	attached	to	the	AFM	probe	

was	typically	400-500	nm.		

	

Plasma	treatment	
	
Electrospun	PA6	 fiber	mats	and	glass	 slides	were	used	 in	 their	 as-manufactured	 state	but	

also	surface	modified	to	provide	a	more	hydrophobic,	and	potentially	oleophobic,	material.	

Surface	modification	of	the	PA6	fiber	sample	was	achieved	using	plasma	treatment	to	add	

fluoropolymer	to	the	electrospun	fiber	surface	as	described	previously37	to	repel	low	surface	

tension	 liquids.	 The	 treatments	 of	 electrospun	 fibers	 were	 carried	 out	 in	 a	 inductively	

coupled	glass	cylindrical	glow	discharge	reactor,	0.01	m	diameter,	4.3×10-3	m3	volume,	base	

pressure	of	1×10-2	 	mbar.	The	reactor	was	connected	to	a	two	stage	Edwards	rotary	pump	

via	a	liquid	nitrogen	cold	trap	with	a	thermocouple	pressure	gauge	inline.	A	monomer	tube	

containing	1H,1H,2H,2H-perfluorodecyl	acrylate	 (PFAC8,	Fluorochem,	U.K.)	was	purified	by	

freeze-thaw	 cycles	 prior	 to	 use	 and	 attached	 to	 the	 air	 inlet	 side	 of	 the	 reactor.	 The	

deposition	apparatus	was	heated	to	approximately	32	°C	in	order	to	generate	a	stable	vapor	

pressure.	Once	base	pressure	had	been	reached,	the	monomer	vapor	was	 introduced	 into	

the	reactor.	The	reactor	was	purged	with	the	vapor	for	five	minutes,	and	once	the	pressure	

had	 stabilised	 at	 between	 8×10-2	 	 and	 1×10-2	mbar,	 a	 radio	 frequency	 (RF)	 generator	was	

switched	 on	 to	 create	 a	 40	W	 continuous	 wave	 plasma.	 This	 was	 allowed	 to	 run	 for	 30	

seconds.	At	this	point	the	pulse	generator	was	turned	on,	at	a	pulsing	sequence	of	40	µs	on,	

20	ms	off.	Once	the	plasma	deposition	had	recovered,	as	indicated	by	an	input	power	of	40	

W	and	a	stable	pulse	envelope,	confirmed	using	an	oscilloscope	the	deposition	was	allowed	

to	run	for	20	minutes.	At	the	end	of	the	treatment	the	RF	generator	was	switched	off	and	

the	 reactor	 purged	 for	 2	minutes	with	monomer	 vapor,	 prior	 to	 being	 evacuated	back	 to	
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base	pressure.	Once	base	pressure	was	reached	the	vacuum	chamber	was	isolated	from	the	

pump	 and	 the	 system	 was	 brought	 up	 to	 atmospheric	 pressure	 and	 the	 samples	 were	

removed.	 All	 wetting	 experiments	 are	 restricted	 to	 the	 AFM	 tips	 where	 the	 plasma	

treatment	was	applied	after	the	attachment	in	order	to	avoid	any	removal	of	plasma	coating	

when	FIB	was	used.	The	plasma	is	stable	over	a	calculated	length	of	74	μm	38,	known	as	the	

Debye	length,	which	indicates	the	distance	at	which	the	coverage	of	the	fluorinated	coating	

will	be	uniform	within	the	electrospun	fibrous	mat.		

	

Contact	angle	measurements	on	individual	nanofibers.	

	

The	 wetting	 behavior	 of	 the	 individual	 electrospun	 PA6	 nanofibers	 was	 carried	 out	

according	to	Wilhelmy	balance	experiments24-25,39	 in	air	using	a	stand-alone	AFM	(NT-MDT	

NTegra,	Russia)	with	 the	electrospun	PA6	nanofiber-AFM	 tips	 replacing	 conventional	AFM	

tips.	 The	experiments	were	performed	at	22	 °C	and	a	humidity	of	 35%.	A	probe	 liquid	of	

silicone	oil	was	placed	separately	into	a	liquid	cell	situated	below	the	fiber-AFM	tip.	Contact	

between	the	 liquid	surface	and	 the	 individual	PA6	nanofiber	attached	to	 the	AFM	tip	was	

achieved	by	first	moving	the	liquid	cell	up	towards	the	nanofiber	in	a	standard	AFM	landing	

mode.	Proximity	of	the	liquid	surface	to	the	PA6	nanofiber	was	determined	using	the	AFM	in	

semi-contact	mode	by	an	cantilever	amplitude	drop.	The	AFM	was	then	switched	to	contact	

mode	and	 the	 liquid	 cell	moved	up	more	 slowly	using	 the	 z–piezo	positioner	of	 the	AFM,	

situated	underneath	the	liquid	cell,	until	contact	of	the	PA6	nanofiber	with	the	liquid	surface	

was	achieved,	determined	as	an	abrupt	bending	of	 the	AFM	cantilever	down	 towards	 the	

liquid	as	wetting	of	the	nanofiber	surface	occurred.	The	approach	velocity	was	of	the	order	

of	1	µm.s-1.	

The	 change	 in	 the	 AFM	 cantilever	 deflection	 during	 the	 progression	 of	 the	 experiment	 is	

shown	 in	Figure	2.	The	cantilever	deflection	was	recorded	during	the	partial	 immersion	of	

the	nanofiber	length	within	each	probe	liquid	and	the	nanofiber	was	removed	by	lowering	

the	 liquid	 cell	 using	 the	 AFM	 z–piezo	 positioner.	 Cantilever	 deflection	 was	 converted	 to	

force	 by	 first	 determining	 the	 cantilever	 spring	 constant	 K,	 calibrated	 using	 the	 thermal	

noise	method40.	The	displacement	of	the	AFM	cantilever,	measured	as	the	deflection	signal	

x,	was	converted	to	force	F	acting	on	the	nanofiber	using	F=Kx.		
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X-ray	photoelectron	spectroscopy	

	

The	chemistry	of	the	electrospun	plasma	treated	PA6	nanofiber	surfaces	was	analyzed	with	

the	parallel	acquisition	X–ray	photoelectron	spectroscopy	(PARXPS)	(Thermo	Scientific	Theta	

Probe,	U.S.A.)	collecting	angle	resolved	data	over	a	60°	range	of	angles	in	parallel,	without	

the	 need	 to	 tilt	 the	 sample,	 (see	 Supporting	 Information,	 Figures	 S1).	 The	 chemistry	 of	

nanofibers	 is	verified	up	to	10	nm	 in	high	vacuum	conditions.	Using	parallel	acquisition	of	

angular	data	 in	PARXPS,	 the	compensation	conditions	are	 the	same	 for	all	angles	and	any	

changes	 in	 the	 spectra	 as	 a	 function	 of	 angle	 reflect	 real	 chemical	 differences.	 XPS	 was	

performed	over	an	area	of	700	x	300	µm	and	elemental	 compositions	of	 carbon,	oxygen,	

nitrogen	 and	 fluorine	 corresponding	 to	 polar	 side	 groups	 in	 the	 polyamide	 chain	 and	 the	

plasma	coating	were	recorded.		

	

Cryo-SEM	sample	preparation	and	imaging	

	

Droplets	 of	 silicone	 oil	 (Baysilone	 oil	M1000,	 polydimethylsiloxane,	 PDMS,	 Sigma	 Aldrich,	

U.K.)	were	deposited	using	a	spray	brush	and	air	compressor	(Iwata,	Japan)	at	a	pressure	of	

0.28	MPa	and	distance	0.3	m	onto	electrospun	nanofiber	mats	and	flash	frozen	under	liquid	

nitrogen.	The	distribution	of	droplet	sizes	were	known,	based	on	measuring	droplet	volumes	

sprayed	 onto	 continuum	 solid	 surfaces,	 and	 ranged	 from	 a	 few	 microns	 to	 80	 µm	 in	

diameter	 with	 a	 median	 diameter	 of	 10	 µm	 (see	 droplet	 size	 distribution	 histogram	 in	

Supporting	 Information,	 Figure	 S5).	 The	 frozen	 liquid	droplets	on	 the	nanofiber	mat	were	

vacuum	transferred	and	sputter	coated	with	Au/Pd	for	2-4	min.	As	samples	contained	liquid	

phase	agents,	all	samples	were	installed	into	a	cryo-stage	(Gatan,	U.K.)	incorporated	within	

the	FIB-SEM	chamber.	The	cryo-stage	allows	liquid	nitrogen	to	be	pumped	through	a	sample	

holder	containing	the	electrospun	fiber	mat	with	droplets,	and	maintains	low	temperatures	

from	-130	to	-160	°C	in	this	work.	The	liquid	droplets	on	the	electrospun	nanofiber	mat	are	

therefore	in	the	solid	state	when	introduced	into	the	vacuum	chamber,	thus	preserving	the	

shape	 of	 the	 liquid	 droplet	 and	 allowing	 high	 resolution	 SEM	 imaging	 of	 the	 liquid	

interaction	 with	 the	 solid	 fibrous	mat	 while	 suppressing	 liquid	 flow	 or	 evaporation.	 SEM	
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imaging	was	taken	at	a	working	distance	of	0.1	m,	5	kV	electron	beam	accelerating	voltage	

and	beam	current	no	higher	than	53.3	pA.	The	sample	stage	was	tilted	at	52°	 to	measure	

contact	 angle	 and	 observe	 the	 contact	 line	 between	 silicone	 oil	 and	 nanofibers.	 The	

measurement	 of	 contact	 angle	 on	 the	 individual	 nanofibers	 from	 SEM	 images	 was	

performed	according	to	previously	published	protocols22.	

	

Cryo-FIB-SEM	work	and	slice	and	view	procedure	

	

Visualization	 of	 wetting	 between	 liquid	 droplets	 and	 electrospun	 nanofiber	 mats	 was	

achieved	 using	 a	 Small	 Dual	 Beam	 (SDB)	 microscope	 (Quanta	 3D	 FEG,	 FEI	 Company,	

E.U./U.S.A.)	 and	 following	 previous	 protocols21,41.	 The	 sample	 stage	was	 tilted	within	 the	

SDB	 so	 that	 the	 sample	 surface	 was	 perpendicular	 to	 the	 FIB	 direction	 and	 the	 electron	

beam	 had	 an	 angle	 of	 52°	 36,42.	 	 The	 SDB	 allows	 both	 imaging	 of	 surfaces	with	 SEM	 and	

removal	of	the	surface	layer	using	FIB	to	allow	further	SEM	imaging	of	sub-surface	structure.	

Gallium	ions	from	FIB	impinge	onto	the	sample	and	cause	sputtering	of	sample	fragments,	

thus	allowing	section	of	materials.	FIB	was	performed	using	an	 ion	beam	current	from	0.5	

nA	to	30	nA	accelerated	at	a	voltage	of	16	and	30	kV	to	remove	cross-sectional	slices	of	100	

nm.	The	collected	SEM	images	during	FIB	sectioning	were	filtered	and	colored	using	Image	J	

(version	 1.46r,	 NIH,	 U.S.A.)	 with	 the	 electrospun	 nanofibers	 and	 silicone	 oil	 droplets	

reconstructed.	The	3D	reconstruction	of	 the	nanofiber	sample	with	droplets	was	obtained	

using	Resolve	RT	(version	5.2	–	FEI	Edition,	Germany)	as	shown	in	Figure	3.	

	
Measurement	of	macroscopic	contact	angle	
	
Macroscopic	 contact	 angle	 measurements	 of	 silicone	 oil	 and	 plasma	 treated	 PA6	

electrospun	 nanofibers	 and	 glass	 slides	 were	 taken	 using	 a	 Drop	 Shape	 Analysis	 System	

(Krϋs,	DSA100,	Germany)	(see	example	 in	Supporting	Information	in	Figure	S2,	S3	and	S7).	

The	experiments	were	performed	at	a	 temperature	of	24	°C.	The	errors	on	 the	measured	

contact	angles	were	determined	based	on	 the	standard	deviation	between	contact	angles	

measurements	taken	from	all	directions.		
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Figures	(displays)		
	

	
	

Figure	1.		Schematic	of	wetting	hierarchy	in	electrospun	nanofiber	networks.	
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Figure	2.		a)	SEM	image	of	an	isolated	PA6	nanofiber,	with	average	diameter	of	480	nm,	

attached	to	the	AFM	tip	after	sectioning	with	FIB.	b)	Plot	of	the	AFM	cantilever	deflection	

(DFL),	converted	to	force,	during	time	progression	of	the	wetting	experiment.		AFM	

cantilever	deflection	is	constant	during	the	initial	part	of	the	experiment	as	the	end	of	the	

electrospun	nanofiber	is	above	the	liquid	surface	(A).	An	abrupt	drop	in	the	AFM	cantilever	

deflection	occurs	when	the	nanofiber	contacts	the	liquid	surface	during	wetting	of	the	

nanofiber	(B).	Once	the	nanofiber	is	remove	from	the	liquid,	the	cantilever	deflection	

corresponding	to	applied	force	returns	to	the	constant	position	again	(C).	Please	note	the	

magnitude	of	the	wetting	forces	acting	on	the	electrospun	nanofiber	is	a	function	of	the	

magnitude	of	the	AFM	cantilever	deflection.	c)	Schematic	of	the	wetting	steps	and	force	

acting	on	the	AFM	cantilever	(A,	B,	C)	with	attached	nanofiber.	
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Figure	 3.	 2D	 cryo-SEM	 micrographs	 in	 a)	 and	 b)	 showing	 individual	 silicone	 oil	 droplets	

before	 slice	 and	 view	 imaging.	 3D	 reconstructions	 of	 the	 individual	 droplets	 in	 c)	 and	d)	

showing	 silicone	 oil	 droplets	 (in	 blue)	 on	 a	 plasma	 treated	 electrospun	 nanofiber	 array	

(shown	in	red).		
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Figure	4.	2D	cryo-SEM	micrographs	of	sprayed	silicone	oil	on	plasma	treated	electrospun	
nylon	6	nanofibers	in	a)	and	b).	Higher	magnification	cryo-SEM	imaging	in	c),	d)	and	e)	
indicates	the	contact	line	between	silicone	oil	and	nanofibers	
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Figure	5.	Scanning	electron	micrographs	of	silicone	oil	droplets	contacting	nanofibers	
network	of	plasma	treated	electrospun	fibers.	a)	side	view	of	a	non-wetting	droplet	
suspended	on	nanofibers,	b)	side	view	of	an	oil	droplet	with	wetting	contact	points	on	
individual	nanofibers	with	c)	top	view	and	d)	side	view	of	a	further	oil	droplet	wetting	
nanofibers.	
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Figure	6.	Scanning	electron	micrograph	of	a	relatively	small	silicone	oil	droplet	contacting	an	
individual	plasma	treated	electrospun	nanofiber.	Contact	angles	indicate	partial	wetting	that	
was	consistent	with	Wilhelmy	balance	measurements.	
	
	
	
	

	
	

Figure	7.	Plot	of	a	liquid	contact	angle	on	a	porous	surface,	described	by	the	liquid	fraction	
in	contact	with	air	f2,	equal	to	0.96	(or	fraction	of	nanofibers	f2	=	0.04)	and	θY	=	θnano	=	60°	
for	silicone	oil	on	nylon	6	nanofibers,	indicated	with	a	dotted	line.	The	superoleophobic	
region	where	θCB	≥	150°	is	circled	at	the	top	right	corner	of	the	plot.	
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Table	1.	Wetting	data	for	the	contact	between	plasma	coated	electrospun	PA6	nanofibers	

and	silicone	oil,	with	the	contact	angle	θnano	calculated	from	Equation	2.	

	

Probe	Liquid	 Wetting	Force	[nN]	 Cos	θnano	 θnano	[°]	

Silicone	Oil	 12.03	 0.53	 58.24	

11.54	 0.51	 59.65	

11.61	 0.51	 59.43	

11.02	 0.48	 61.15	

11.47	 0.50	 59.84	

	 	 Average	θnano	[°]	 59.66	

	 	 Standard	Deviation	 2.08	

	

	
	
	


